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Abstract

The generalized shallow water model
framework (GSWMF) is a generalized
framework for the development and testing of
numerical schemes intended for use in the
dynamical cores of atmospheric models.

Results are presented from two different
schemes (Ringler, Thuburn, Klemp &
Skamarock 2010 and Randall & Heikes 1995).

GSWMF: Design

Horizontal meshes represented as directed
acyclic graphs via Sieve (see Knepley &
Karpeev 2009)

Variables (scalar, vector, array, vector
component) placed arbitrarily on mesh
elements

User-provided functions define operators on
these variables

Compile and run-time polymorphism provide
flexibility

Figure: Sieve representation of a mesh (from Knepley &
Karpeev 2009)

GSWMF: Implementation

Models are written in Fortran 90 using
Cheetah for compile time polymorphism; code
is heavily shared between linear and non-linear
models

Uses PETSc and SLEPc to provide grid
management, linear/eigenvalue solvers and
I/O (see references)

Analysis packages are written in Python using
the Numpy, Scipy and Matplotlib libraries

Currently perfect planar square, triangular and
hexagonal meshes are implemented (except for
hexagonal/triangular Fourier transforms)

Adams-Bashford and Runge-Kutta explicit
time stepping

TRiSK and Randall & Heikes horizontal
discretizations

Results: Numerical Dispersion Relationships

Dispersion relationship calculated as
d~x
dt

= L~x→ iω~x = A~x (eigenvalue
problem)

Well resolved Rossby radii (λ
d
= 2.0) and

poorly resolved Rossby radii (λ
d
= 0.1) tested

Both C-grid (50x50) and Z-grid (18x18 and
45x45) perfect planar square meshes
investigated

Results are identical to theoretical dispersion
relations (within numerical bounds)

Spatial Fourier Transform used to determine
which spatial wavenumbers each
eigenvector/eigenvalue pair is associated with

Framework can handle ANY spatial
discretization that can be expressed as the
above eigenvalue problem

Figure: C-Grid dispersion relations for λ
d
= 2.0 (top)

and λ
d
= 0.1 (bottom) where ω = σ

f

Figure: Z-Grid dispersion relations for λ
d
= 2.0 (top)

and λ
d
= 0.1 (bottom) where ω = σ

f

Results: Nonlinear Shallow Water Equations

Geostrophic turbulence test case

Perfect planar square mesh (50x50), 50km
grid spacing

3rd order Adams-Bashford time stepping, 15s
time steps, 500 steps taken

g = 9.81ms−1 , f = 0.0001s−1

H = 400.0± 50m , ~u = ±0.5m/s
Figure: Percentage change in energy for the TRiSK scheme

GSWMF: Extensions

Parallelization

Additional horizontal meshes

Additional discretization schemes

Additional time stepping schemes

Further support for analyzing operator matrix
properties- symmetry, eigenvalues, rank,
nullity, null spaces

Future Work

Matrix kernel analysis of horizontal
discretization schemes

Wave dispersion properties
Stationary modes
Computational modes

Projection of non-linear solutions onto
(computational) normal modes

Conservation properties

Conclusions

GSWMF provides a useful framework for
inter-comparison of various numerical schemes
for the nonlinear shallow water equations

Two very different schemes (Z-grid and
C-grid) can be implemented under the same
code framework

Can reproduce previous results for C-grid and
Z-grid schemes (see Randall 1994)
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