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My Background

Background

B.S. : Computational Physics, Carnegie Mellon University

PhD : Atmospheric Science, Colorado State University

I worked with David Randall on (quasi-)Hamiltonian
discretizations for the rotating shallow water equations

C and Z grid total energy and potential enstrophy schemes
(extension of 1981 Arakawa and Lamb to arbitrary grids)

Linear modes for these schemes on cubed-sphere and
icosahedral grids (both stationary and propagating)

Joined HEAT project in October 2015
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Elements of Dynamical Core Design
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Underlying questions

1 For canonical, finite-dimensional Hamiltonian systems,
structure-preserving numerics are essential to obtain correct
long-term statistical behavior

2 The equations of (moist) adiabatic, inviscid atmospheric
dynamics are a non-canonical, finite-dimensional Hamilontian
system

3 To what extent does (1) hold for model of the atmosphere,
given (2)?

4 Weather vs. climate simulations, planetary atmospheres,
forced-dissipative systems, role of various approximations,
what properties should we conserve and why?

5 Studying these questions requires a structure-preserving
atmospheric model!
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Mixed Finite Elements

De Rham Cohomology

Strong : V0
~∇T

−−→ V1
~∇·−→ V2

Weak : V0
~∇T ·←−− V1

~∇←− V2

C Grid Analogue

V0 = ψ/ζ = H1 = continuous (Lagrange)

V1 = ~u = H(div) = continuous normals, discontinuous
tangents (Raviart-Thomas)

V2 = h/δ/χ = L2 = discontinuous (Discontinuous Lagrange)

Could invert the diagram (define V0
~∇−→ V1

~∇T ·−−→ V2 strong,
gives H(curl)/Nedelec spaces and D grid analogue)
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FV-FE Spaces

Given 1D Spaces : A
d
dx−→ B

Tensor Product 2D Spaces

V0 = A⊗A
V1 = Aî + Bĵ and Bî +Aĵ
V2 = B ⊗ B
This works generally for ANY set of spaces A and B (usually
Pn and PDG ,n−1)

Our (different) choices of A and B guided by linear mode
properties and coupling to physics/tracer transport
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WP3 Milestones and Progress

WP3 Milestones

1 D3.3 (T0+6) Linear analysis and convergence of higher-order
finite-element schemes, journal article

2 D3.4 (T0+12) Benchmarking of HO FE schemes for the RSW
equations on the sphere, journal article

WP3 Progress (from Evaggelos)

1 Nothing new from January

2 1D dispersion relationship

3 Basic convergence testing on cubed-sphere

4 Basic test cases (Galewsky, Williamson) on cubed-sphere

5 Possible meeting with Daniel Le Roux to discuss dispersion
relationship?
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My Workplan

Workplan Stage 1: 2D Shallow Water

1 Theory of 2D FV-FE spaces and scheme

Do the FV-FE spaces form a De Rham complex? What about
steady geostrophic modes and PV compatibility? Proof of
various properties
What are the linear modes? Analytic for 1D and 2D f-plane,
numerical for cubed-sphere variable and constant f, proof of
various properties

2 (Parallel) 2D Shallow Water Model

Re-implement current Matlab code in parallel
Explore preconditioning and solver options
Detailed testing and comparison with existing schemes,
especially GungHo work
Start looking at stabilization/dissiptation
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My Workplan

Workplan Stage 2: 3D Hydrostatic Primitive

1 2D Vertical Slice Model

Theory of how finite element spaces should look, what
variables go where
Implementation using tensor-product grid and spaces approach
Explore advection choices for thermodynamic variables
(entropy, moisture, etc.)

2 3D Hydrostatic Primitive Equations Model

Combine 2D SW and 2D Vertical Slice
Multilayer uncoupled SW → Multilayer coupled SW →
Lagrangian HPE → Hybrid mass-based HPE
Start looking at stabilization/dissiptation
Efficiency- explore solvers and preconditioners
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Implementation Details

Implementation Details
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Implementation Plan- 2D Shallow Water

Design Goals

1 Flexibility in choice of grid, equations to be solved and
discretization used (enables intercomparison)

2 Flexibility in choice of linear algebraic solvers

3 Leverage existing software packages

4 Focus on ease of development and proving feasibility, not pure
performance

5 Inspired by Firedrake/FEniCS/GungHo (UK Met Office)
approach
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Implementation Plan- 2D Shallow Water

Preliminary Approach

1 Portable Extensible Toolkit for Scientific Computation: PETSc

2 Use PETSc (through petsc4py) along with code generation

3 Separate parts can be independently changed: new
discretizations by altering grid/matrix assembly, new solvers,
new equations by changing matrix assembly and driver, etc.
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Implementation Plan- 2D Shallow Water

General Parallel Assembly Code (Vectors or Matrices)

Ul <- Ug

for element_type in element_types

for element in subdomain(element_type)

Ue <- Ul

Ge = geometry(element)

Fe = 0

for xq ,wq in quadrature(element)

Jq = jacobian(element ,xq)

bq ,bdq = basis(element ,xq)

iq = integrand(bq ,bdq ,xq)

Fe += wq*Jq*iq

Fe -> Fl

Fl -> Fg
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Implementation Plan- 2D Shallow Water

Change basis/quadrature: new discretization

Change integrand/jacobian: new equations

Lots of opportunity for optimization: vectorize calculations
over quadrature points, inline constant parts, etc.

Use code generation for given choice of basis, quadrature,
Jacobian and integrand → efficient but extremely flexible
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Implementation Plan- 2D Vertical Slice

2D Vertical Slice Model

1 Combine Cotter and Shipton approach (spaces) with Dubos
(Hamiltonian) equation formulation and prognostic variables

2 FE both in horizontal and vertical

Given

1D : A
d
dx−→ B and 2D : V0

~∇T

−−→ V1
~∇·−→ V2

Produce

3D : W0
~∇−→W1

~∇×−−→W2
~∇·−→W3

W0 = V0 ⊗A = H1 = Continuous
W1 = (V1 ⊗A)⊕ (A⊕ B) = H(curl) = Nedelec
W2 = (B ⊗A)⊕ (V1 ⊕ B) = H(div) = Raviart-Thomas
W3 = V2 ⊗ B = L2 = Discontinuous
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Implementation Plan- 3D Hydrostatic

3D Model

1 Combine 2D shallow water and 2D vertical slice

2 Use extruded mesh idea from Firedrake (structured vertical
columns)

3 Lorenz Grid = S in W3 (S could also be placed in vertical
part of W2 = Charney-Phillips grid)

W0

ψ
W1
~ζ

W2

ui ,W
W3

µ,S ,δ,χ
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Future Work

Possible extensions

New equation sets and approximations- non-spherical geoid,
deep atmosphere, non-traditional Coriolis, non-hydrostatic

Different discretizations: FEEC, compound FE, polygonal FE
(many varieties here), IGA, mimetic SE, TRiSK, mimetic
FV/DEC, etc.

Time stepping- semi-implicit, symplectic, fully conservative

FAS multigrid (to solve semi-implicit)

2D FV-FE spaces

Multicomponent flows- moisture

Chris Eldred Toulouse Presentation



Appendix

Appendix
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Grid Types

TYPE 1: logically square, extended stencil, each function space
has degrees of freedom associated with a single type of geometric
entity (this supports IGA, compatible SE and FV-FE; also certain
compatible FE, compound FE and TRiSK spaces)- DMDA
Restriction to single type of geometric entity is mostly a software
restriction due to issues with DMDA and support for staggered
geometric stuff in DMDA
TYPE 2: unstructured polygonal, covering relation, each function
space has degrees of freedom associated with many types of
geometric entities (this supports compatible FE, TRiSK,
compound FE)- DMPLEX ie cubed-sphere, geodesic and diamond
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Grid
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Numerical Methods
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Primal Dual FE
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Resolved/Unresolved
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Linear Modes
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Dynamical Core
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