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Standing on the Shoulders of Giants
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Generalized C Grid Scheme

Grid Staggering

Discrete Generalized C Grid
Formulation

∂mi

∂t
+ D2Fe = 0

∂ue
∂t
−Q(qv ,Fe) + D̄1Φi = 0

Discrete variables are mi =
∫
hdA and ue =

∫
~u · ~dl

C grid staggering (mi at cell centers, ue at edges)

Different choices for Fe , Φi and Q gives rise to a wide range
of schemes (TRiSK, Thuburn et. al, Weller, AL81)

Q operator is the remaining hurdle
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What is Q?

Diagram of Q operator action

1

qk̂× → Q

2 Given mass fluxes normal to
primal edges and potential
vorticities at vertices (black
diamonds), produces PV
fluxes normal to dual edges
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General Form of Q

Following Salmon 2004, set

QFe =
∑

e′∈ECP(e)

∑
v∈VC(i)

qvαe,e′,vFe′

What are αe,e′,v ’s?
Each αe,e′,v is associated with
one green/red edge pair; and one
blue vertex

Diagram of Q operator stencil
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Discrete Conservation

Can use Hamiltonian methods to derive:

Energy

Q = −QT −→ αe,e′,v = −αe′,e,v

Potential Enstrophy

Q(qv ,D1qv )− D̄1R
T q2v

2
= 0 ∀qv −→

linear system of equations −→ A~α = ~b

Also want Q to give steady geostrophic modes when qv is constant
(equivalent to PV compatibility)
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Solving A~α = ~b

Issue: System is too large

Geodesic grid: 90 coefficients per cell, all coefficients are
interdependent → not feasible for realistic grids

Cubed sphere grid is similar (24 coefficients per cell)

Solution: Subsystem Splitting

A~α = ~b −→
∑
i

Ai~αi = ~bi

Split into independent subsystems for each cell!

System has been solved for various planar and spherical grids
Gives AL81 on a uniform square grid
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Recap: What have I accomplished?

What has been done?

Arakawa and Lamb 1981 extended to arbitrary grids via new Q

Coefficients for new Q can be precomputed (efficiently)

Unfortunately, Q inherits the (in)accuracy of W (TRiSK
reconstruction operator)
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Test Results

Test Case Results
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Model Configuration

Settings

Cubed Sphere: 6x384x384, 880K cells (25km resolution)

Geodesic: G8, 640K cells (30km resolution), HR95 opt.

3rd Order Adams Bashford (15s CS, 22.5s Geodesic)

3 Variants of Q: Energy conserving, Enstrophy conserving,
Doubly conservative
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Galewsky et. al

Galewsky (Unstable Jet)
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Galewsky et. al (Unstable Jet)- C Grid Geodesic

1 Inactive
portion of
jet differs

2 Minor
differences
in active
portion of
jet

Chris Eldred MOW Presentation



Introduction
Extension of AL81 to Arbitrary Grids

Results
Summary and Conclusions

Galewsky et. al (Unstable Jet)- C Grid Cubed Sphere

1 Inactive
portion of
jet differs

2 Total
energy
variant is
unstable
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Order of Accuracy

Order of Accuracy (Taylor
Series Sense)
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Order of Accuracy- Q

RMS Error Maximum Error

Computed for ψ = q = cos(θ) sin(λ)
error = qeD̄1ψe −Q(qv ,D1ψv )
error = exact PV flux from streamfunction vs computed PV flux
All grids are inconsistent
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Thuburn Test

Thuburn (Forced Turbulence)
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Thuburn (Forced Turbulence)- Description

∂h

∂t
= · · ·+ h − heqm

τh

Height Forcing

∂~u

∂t
= · · ·+

~u − ~ueqm
τu

Vorticity Forcing

2400 days total run time: 400 days spin-up, 2000 days simulation
Run at C6/G6 resolution (≈ 120km resolution)
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Thuburn (Forced Turbulence)- Divergence (C Grid)

C Grid Geodesic C Grid Cubed Sphere

-Strong grid imprinting for both geodesic and cubed-sphere grids
-Same issues seen in energy conserving and enstrophy conserving
variants on both geodesic and cubed-sphere grids → strongly
suggests this is due to accuracy in W
-Issue not seen in a Z grid model with same mimetic and
conservation properties
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Summary

Summary

1 Galewsky results indicate all geodesic variants, and all but
total energy cubed-sphere variants are producing good results

2 Q is inconsistent for all grids

3 Long time tests (Thuburn forced tubrulence) show strong grid
imprinting NOT present in shorter (Galewsky) tests

Future Work

1 Apply these techniques to primal-dual FE (Thuburn et. al
2015) to develop doubly conservative version of this

2 Cubed sphere accuracy- Purser optimized grid
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Fixing the C Grid Scheme

Primal-Dual Finite Elements

1 Recent work by John
Thuburn and Colin Cotter

2 Low order, compound
polygonal finite elements
(same degrees of freedom)
→ all operators are
consistent

3 Current version does not
conserve energy or potential
enstrophy

4 Can fix this with
Hamiltonian approach

Figure from Thuburn and Cotter
2015. Bottom row is primal

function spaces, top row is dual
function spaces.
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Discrete Hamiltonian Framework

~x = (mi , ue)

J =

(
0 −D2

−D̄1 Q

)
H =

1

2
g(mi ,mi )I +

1

2
(Ce , ue)H

δH
δ~x

=

(
IΦi

Fe

)
=

(
IKi + g Imi

HCe

)
mv = Rmi

mvqv = ηv = ζv + fv = D̄2ue + fv

Ce = meue

Ki = φT
uTe Hue

2

me = φImi

Z =
1

2
(qv , ζv )J

δZ
δ~x

=

(
−RT q2v

2
D1qv

)

∂mvqv
∂t

− D̄2Q(qv ,Fe) = 0

∂mv

∂t
+ RD2Fe = 0

Q =
1

2
QeW +

1

2
WQe

Q = QeW
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Continuous Hamiltonian Formulation

~x = (h, ~u)

J =

(
0 ~∇·
~∇ qk̂×

)

H =
1

2
g(h, h) +

1

2
(h~u, ~u)

δH
δ~x

=

(
Φ
~F

)
=

(
gh + ghs + K

h~u

)
=

(
gh + ghs + ~u·~u

2
h~u

)
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Galewsky et. al (Unstable Jet)- Z Grid Geodesic

1 Almost
identical
results
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Thuburn (Forced Turbulence)- Divergence (Z Grid)

C Grid Geodesic Z Grid Geodesic
Z grid does not show the same grid imprinting
Possibly due to better behavior of inconsistent Z grid operator
(Jacobian)?
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Energy Conservation

Hamiltonian mechanics says that energy conservation requires
ONLY

JT = −J

which implies
QT = −Q

DT
2 = −D̄1

T

Only the first needs to be enforced, the second is built into DEC
operators by construction. Also need H to be positive definite
→ I, J,H symmetric positive-definite
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Potential Enstrophy Conservation

Hamiltonian mechanics says that Casimir Z is conserved when

J
δZ
δ~x

= 0

which implies that
D2D1qv = 0

Q(qv ,D1qv)− D̄1R
T q2v

2
= 0

The first is an automatic feature of DEC operators, while the 2nd
must be enforced.
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DeRham Cohomology
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DEC Operators
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Grid Geometry
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Linear Modes
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