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Introduction

Elements of Dynamical Core Design

Conservation
-Mass

-Energy

-Potential Vorticity
-Potential Enstrophy
cetc.

Hamiltonian
Methods

Mimetic
Discretization

Linear Properties
-Curl-Free Pressure Gradient
-Linear Stability
-Computational Modes
-Dispersion Relationship (Waves)
-etc.

Realistic
Simulations

PV Dynamics
-Steady Geostrophic Modes
-Compatibility
-Consistency

-etc.

Taylor Series
Accuracy
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Introduction

Standing on the Shoulders of Giants

General Grids
Energy and Potential Enstrophy Conservation

e

Mimetic
General Grids

Loses potential enstrophy conservation Hamiltonian
Energy and Potential Enstrophy Conservation

Logically square, orthogonal grids
Salmon 2004

~

Arakawa and Lamb 1981
Arakawa 1966

Ringler et. al 2010
Thuburn et. al 2012, 2014
Weller 2012, 2014

Logically square, orthogonal grids
Energy and Potential Enstrophy Conservation
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Extension of AL81 to Arbitrary Grids

AL81 on arbitrary grids

Extension of AL81 to Arbitrary
Grids
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Extension of AL81 to Arbitrary Grids

Generalized C Grid Scheme

Discrete Generalized C Grid

Formulation
8m,-
D>F. =0
ot + s
) A, _
S = Qlav. Fe) + D19 = 0
Grid Staggering t

o Discrete variables are m; = [ hdA and uo = [ - dl

o C grid staggering (m; at cell centers, v, at edges)

@ Different choices for F., ®; and Q gives rise to a wide range
of schemes (TRiSK, Thuburn et. al, Weller, AL81)

Q operator is the remaining hurdle
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Extension of AL81 to Arbitrary Grids

What is Q7

o ~
gkx — Q

@ Given mass fluxes normal to
primal edges and potential
vorticities at vertices (black
diamonds), produces

Diagram of Q operator action
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Extension of AL81 to Arbitrary Grids

General Form of Q

Following Salmon 2004, set

QF. = Z Z qv ,e’,vFe’

e/ €ECP(e) ve VC(i)

What are o o ,'s?

Each a. e, is associated with
one /red edge pair; and one
blue vertex

Diagram of Q operator stencil
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Extension of AL81 to Arbitrary Grids

Discrete Conservation

Can use Hamiltonian methods to derive:

Potential Enstrophy

_ 2
Q(qv, D1qy) — DlRT% =0 Vg, —

linear system of equations — Ad = b

Also want Q to give steady geostrophic modes when g, is constant
(equivalent to PV compatibility)
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Extension of AL81 to Arbitrary Grids

Solving A@ = b

Issue: System is too large

@ Geodesic grid: 90 coefficients per cell, all coefficients are
interdependent — not feasible for realistic grids

@ Cubed sphere grid is similar (24 coefficients per cell)

Solution: Subsystem Splitting

A&ZE—)ZA;&,’:E;

1

Split into independent subsystems for each cell!

System has been solved for various planar and spherical grids
Gives AL81 on a uniform square grid
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Extension of AL81 to Arbitrary Grids

Recap: What have | accomplished?

What has been done?
@ Arakawa and Lamb 1981 extended to arbitrary grids via new Q
o Coefficients for new Q can be precomputed (efficiently)

@ Unfortunately, Q inherits the (in)accuracy of W (TRiSK
reconstruction operator)
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Test Results

Test Case Results
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Galewsky et. al

Galewsky (Unstable Jet)
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Results

Galewsky et. al (Unstable Jet)- C Grid Geodesic
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Results

Galewsky et. al (Unstable Jet)- C Grid Cubed Sphere

Absolute Vortluty at Day 6, Doubly Conservatlve C
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Order of Accuracy

Order of Accuracy (Taylor
Series Sense)
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Results

Order of Accuracy- Q

RMS Error Maximum Error

10? 10°
1
107 10 .
107 \
5 hS
10 T
107 N
10 ..
10% N
— geo-tweaked > geo-tweaked AN
| — geo-spring0.8 R ° — geo-spring0.8 N AN
10 — geo-springl.1 \\ 105} — geo-springl.1 \\
geo-cvt N geo-cvt >
— ¢ N — ¢
1005 2 3 9 s 6 7 1075 2 5 + s 3 7
10 10 10 10 10 10 10 10 10 10 10 10 10 10

Computed for ¢ = g = cos(f)) sin(\)
error = geD1tpe — Q(qw Dlwv)
error = exact PV flux from streamfunction vs computed PV flux

All grids are inconsistent
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Thuburn Test

Thuburn (Forced Turbulence)
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Results

Thuburn (Forced Turbulence)- Description

Oh h—h ou 7 —
_ + eqm u n U — Uegm
ot Th ot Tu
Height Forcing Vorticity Forcing
a0 Height Forcing Zonal Mean % Vorticity Forcing Zonal Mean
60 60
40 40
$ 2
2 o0 Z o
k] k|
20 =20
60 60
732 0 500 600 700 800 900 1000 1100 1200 1300 :RD. 003 -0.0002 -0.0001 0.0000 0.0001 0.0002 0.0003

2400 days total run time: 400 days spin-up, 2000 days simulation
Run at C6/G6 resolution (~ 120km resolution)
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Results

Thuburn (Forced Turbulence)- Divergence (C Grid)

Mean Divergence, Doubly Conservative C le-3,

5 =

-15

90° -
90°S, g g o g 9 g o g o
T80°  135°W 90°W 45°W  0°  45°E  90°E  135°F 180° 0 135°W 00°W a5W 0 45°E 90°E 135°E 180

C Grid Geodesic C Grid Cubed Sphere

-Strong grid imprinting for both geodesic and cubed-sphere grids
-Same issues seen in energy conserving and enstrophy conserving
variants on both geodesic and cubed-sphere grids — strongly
suggests this is due to accuracy in W

-Issue not seen in a Z grid model with same mimetic and
conservation properties
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Summary and Conclusions

Summary and Conclusions

Conclusions
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Summary and Conclusions

Summary

© Galewsky results indicate all geodesic variants, and all but
total energy cubed-sphere variants are producing good results

@ Q is inconsistent for all grids

© Long time tests (Thuburn forced tubrulence) show strong grid
imprinting NOT present in shorter (Galewsky) tests

@ Apply these techniques to primal-dual FE (Thuburn et. al
2015) to develop doubly conservative version of this

@ Cubed sphere accuracy- Purser optimized grid
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Appendix

Appendix
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Fixing the C Grid Scheme

Primal-Dual Finite Elements

o

2]

o

Recent work by John
Thuburn and Colin Cotter

Low order, compound
polygonal finite elements
(same degrees of freedom)
— all operators are
consistent

Current version does not
conserve energy or potential
enstrophy

Can fix this with
Hamiltonian approach

. u 7l
v? v o€ v
k- V=
v v
Va Vi Vs
P k- Ux ©F v

Figure from Thuburn and Cotter
2015. Bottom row is primal
function spaces, top row is dual
function spaces.
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Discrete Hamiltonian Framework

1
J= 0_ —D, z = E(qV7CV)J
_Dl Q .
1 1 02 _ (-RT%
H= Eg(miv mi)l + E(C& Ue)H 0xX D1qg,
577'[ _ <|¢;> . <IK,~—|—gIm;>
0x Fs HCe aquv — [jZQ(qw Fe) =0
m, = Rm;
- om,
myqy, =1y = G +f, = Daue + 1, ot +RDyFe =0
Ce = Meole

1 1
Q - 7QeW + 7WQe
ulHue 2 2
K=ol ==

2 Q:Qew



Continuous Hamiltonian Formulation
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Galewsky et. al (Unstable Jet)- Z Grid Geodesic
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Thuburn (Forced Turbulence)- Divergence (Z Grid)

45°E 90°E  135°E  180° 9OTsos 135°W oow 45w ° 45°E  9Q0°E 135°E  180°

C Grid Geodesic Z Grid Geodesic
Z grid does not show the same grid imprinting
Possibly due to better behavior of inconsistent Z grid operator
(Jacobian)?
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Energy Conservation

Hamiltonian mechanics says that energy conservation requires

ONLY
IT=-J
which implies
Q' =-Q
D =-D"

Only the first needs to be enforced, the second is built into DEC
operators by construction. Also need H to be positive definite
— 1, J, H symmetric positive-definite
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Potential Enstrophy Conservation

Hamiltonian mechanics says that Casimir Z is conserved when

J—=0

60X

which implies that
D;D1gqy, =0

2
Q(gy, D1qv) — 51RT% =0

The first is an automatic feature of DEC operators, while the 2nd
must be enforced.
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DeRham Cohomology
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DEC Operators




Grid Geometry

Chris Eldred MOW Presentation



Linear Modes

Propagating || Stationary

Physical Physical
-Inertia-Gravity -Hydrostatic
-Rossby -Geostrophic
-etc
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