A Hydrostatic Dynamical Core using Higher-Order Structure-Preserving Finite Elements

Chris Eldred, Thomas Dubos, Evaggelos Kritsikis, Daniel Le Roux and Fabrice Voitus

October 26th, 2016

Introduction

ъ

Broad Research Overview: Dynamical Cores

- Solve the Euler equations for a rotating fluid
- **2** Limited computational resources \rightarrow truncation scale
- **③** Dynamical core: "resolved" adiabatic, inviscid part of the flow

Key Principle of Numerical Modeling

- Not solving arbitrary PDEs- physical system
- 2 No analytic solutions
- $\textcircled{O} Differential equations \rightarrow algebraic equations$
- O algebraic solutions have the same properties as the differential (true) solutions?

3.1

(Incomplete) List of Desirable Model Properties (NLSWE)

Motivating science questions

- For canonical, finite-dimensional Hamiltonian systems, structure-preserving numerics are essential to obtain correct long-term statistical behavior
- The equations of (moist) adiabatic, inviscid atmospheric dynamics are a non-canonical, infinite-dimensional Hamiltonian system
- To what extent does (1) hold for models of the atmosphere, given (2), especially since the real atmosphere has forcing and dissipation that makes it non-Hamiltonian?
- Studying these questions requires a structure-preserving atmospheric model!

글 에 글 에 글 이 글

Structure Preservation

What is structure-preservation?

Obtaining these properties

 Quasi-Hamiltonian Formulation: Easily expresses conservation of mass, total energy and possibly other invariants

$$\frac{d\mathcal{H}}{dt} = 0$$
$$\frac{d\mathcal{C}}{dt} = 0$$

Olimetic Discretization: Discrete analogues of vector calculus identities (such as curl-free vorticity, div and grad are adjoints, etc.)

$$\vec{\nabla} \times \vec{\nabla} = 0$$
$$\vec{\nabla} \cdot \vec{\nabla} \times = 0$$

$$(\vec{\nabla}\cdot)^* = -\vec{\nabla}$$

General Formulation for Mimetic Discretizations: Primal deRham Complex (Finite Element Type Methods)

 $\delta = *d*$ $\nabla^2 = d\delta + \delta d$ $\vec{\nabla} \cdot \vec{\nabla} \times = 0 = \vec{\nabla} \times \vec{\nabla}$ $dd = 0 = \delta\delta$

Non-Canonical Hamiltonian Dynamics

Evolution of an arbitrary functional $\mathcal{F} = \mathcal{F}[\vec{x}]$ is governed by:

$$\frac{d\mathcal{F}}{dt} = \{\frac{\delta\mathcal{F}}{\delta\vec{x}}, \frac{\delta\mathcal{H}}{\delta\vec{x}}\}$$
(1)

with Poisson bracket $\{,\}$ antisymmetric (also satisfies Jacobi):

$$\{\frac{\delta\mathcal{F}}{\delta\vec{x}},\frac{\delta\mathcal{G}}{\delta\vec{x}}\} = -\{\frac{\delta\mathcal{G}}{\delta\vec{x}},\frac{\delta\mathcal{F}}{\delta\vec{x}}\}$$
(2)

Also have Casimirs $\mathcal C$ that satisfy:

$$\{\frac{\delta \mathcal{F}}{\delta \vec{x}}, \frac{\delta \mathcal{C}}{\delta \vec{x}}\} = 0 \quad \forall \mathcal{F}$$
(3)

A = A = A = A = A
 A = A
 A

Neatly encapsulates conservation properties (\mathcal{H} and \mathcal{C}).

What properties do we get?

There are MANY choices of spaces that give these properties: key point is the deRham complex

ъ

What properties are still lacking?

These are a function of the specific choice of spaces

<ロ><目><目><目><目><目><目><目
 <目><目><<0

Tensor Product Mimetic Galerkin Methods

Tensor Product Mimetic Galerkin Spaces

Tensor Product Mimetic Galerkin Spaces

Select 1D Spaces \mathcal{A} and \mathcal{B} such that $: \mathcal{A} \xrightarrow{\frac{d}{d_{X}}} \mathcal{B}$

(4)

- Use tensor products to extend to n-dimensions
- Works for ANY set of spaces A and B that satisfy this property (mimetic finite elements use P_n and P_{DG,n-1})
- Mimetic spectral element, Mimetic isogeometric methods (B-splines) all fall under this framework
- Our (different) choices of \mathcal{A} and \mathcal{B} are guided by linear mode properties and coupling to physics/tracer transport
- See Hiemstra et. al 2014 (and references therein)

How do we get the remaining properties?

Tensor Product Mimetic Galerkin Methods on Structured Grids

- Tensor product + structured grids: efficiency (for a method with non-diagonal mass matrices)
- **Quadrilateral grids-** no spurious wave branches
- **(3)** Key: What about dispersion relationships?
- Also: What about geometric flexibility?

 $P_2 - P_{1,DG}$ Dispersion Relationship

Mimetic Galerkin Differences: Basis (3rd Order)

 $\mathcal{A} = \mathcal{H}_1$ Space (1D)

 $\mathcal{B} = L_2$ Space (1D)

Single degree of freedom per geometric entity (physics coupling) Higher order by larger stencils (less local, efficiency concerns) Shown for 3rd Order Elements (works for arbitrary order)

Mimetic Galerkin Differences- Dispersion

Inertia-Gravity Wave Dispersion Relationship (1D) for 3rd Order Elements

Spectral gap is gone

Can show that dispersion relation is O(2n) where *n* is the order More details in a forthcoming paper

Overview of 3D Spaces

$$\mathbb{W}_0 \xrightarrow{\vec{\nabla}} \mathbb{W}_1 \xrightarrow{\vec{\nabla} \times} \mathbb{W}_2 \xrightarrow{\vec{\nabla} \cdot} \mathbb{W}_3$$

$$\begin{split} \mathbb{W}_0 &= \mathcal{A} \otimes \mathcal{A} \otimes \mathcal{A} = H_1 = \text{Continuous Galerkin} \\ \mathbb{W}_1 &= (\mathcal{B} \otimes \mathcal{A} \otimes \mathcal{A})\hat{i} + \ldots = H(\textit{curl}) = \text{Nedelec} \\ \mathbb{W}_2 &= (\mathcal{A} \otimes \mathcal{B} \otimes \mathcal{B})\hat{i} + \ldots = H(\textit{div}) = \text{Raviart-Thomas} \\ \mathbb{W}_3 &= \mathcal{B} \otimes \mathcal{B} \otimes \mathcal{B} = L_2 = \text{Discontinuous Galerkin} \end{split}$$

Dynamico-FE

- Hydrostatic primitive equations
- Mimetic Galerkin discretization
- Hamiltonian formulation
- Lagrangian and Mass-Based Vertical Coordinates
- Oubed-Sphere Grid
- Conserves mass, entropy and total energy
- Has the complete set of properties discussed at the beginning

Current Status

Current Status of Dynamico-FE

- Multilayer Ripa Equations with full set of desired properties
- **2** Very close to an HPE model in lagrangian vertical coordinates

Themis*

- Software library for tensor-product Galerkin methods on (block-)structured grids with arbitrary geometric mappings
- Built on top of PETSc; written in Python and C

4 E > 4 E > E

Parallelism through MPI

*-Available online at https://bitbucket.org/chris_eldred/themis

Future Work, Summary and Conclusions

Future Work

Future Work

- Ocomputational efficiency: preconditioning, solvers, matrix-free
- Mass-based vertical coordinate
- Onhydrostatic equations
- Past Inivscid, Adiabatic Dry Dynamics: Subgrid Turbulence, Moisture, Tracers, Physics Coupling
- Time stepping and 4D formulations
- Removal of other approximations: Deep-atmosphere/quasi-hydrostatic, non-traditional, non-spherical, vertical and latitudinal variation of gravity

∃ ► < ∃ ►</p>

Summary and Conclusions

Summary

- Developing a structure-preserving atmospheric dynamical core: Dynamico-FE
- Obtain almost all the desired properties
- Mimetic Galerkin Differences: Fixes dispersion issues

Conclusions

- Mimetic discretizations + Hamiltonian formulation = Structure-Preservation = (Most) Desired Properties
- Many choices of mimetic discretization, select the one that gets the other properties

(日) (종) (종) (종) (종) (종)

Additional Slides

General Formulation for Mimetic Discretizations: Primal-Dual Double deRham Complex (Staggered Grids)

$$egin{aligned} \delta &= *d* \ &
abla^2 &= d\delta + \delta d \ &
end{aligned} ec{
abla} \cdot ec{
abla} imes = 0 &= ec{
abla} imes ec{
abla} \end{aligned}$$

$$\int_{\Omega} dW = \int_{d\Omega} W$$
$$dd = 0 = \delta\delta$$

Grid Staggering for HPE

Follows from differential geometry and Tonti diagram Galerkin Version of a C Grid Question: Where should ⊖ live?

Grid Staggering: Θ , p, $\overline{\theta}$ and z

Grid Staggering: Placement of Θ

- Lorenz (Dynamico): μ,Θ ∈ W₃ (Admits a spurious computational mode in the vertical, poor dispersion properties for high-frequency IGWs)
- Charney-Phillips: Θ ∈ W_{2,vert} (Avoids computational mode, complicates formulation)
- O Differential Geometry: Θ is a 0-form → Θ ∈ W₀ (Excessive horizontal averaging → computational mode/poor dispersion properties?)

Poisson Brackets (Lagrangian Vertical Coordinate)

Poisson Brackets

From Dubos and Tort 2014, evolution of $\mathcal{F}[\vec{x}] = \mathcal{F}[\mu, \vec{v}, \Theta, z]$ is

$$\frac{d\mathcal{F}}{dt} = \{\frac{\delta\mathcal{F}}{\delta\vec{x}}, \frac{\delta\mathcal{H}}{\delta\vec{x}}\}_{SW} + \{\frac{\delta\mathcal{F}}{\delta\vec{x}}, \frac{\delta\mathcal{H}}{\delta\vec{x}}\}_{\Theta} + \langle\frac{\delta\mathcal{F}}{\delta z}\frac{\partial z}{\partial t}\rangle$$
(5)
$$\{\frac{\delta\mathcal{F}}{\delta\vec{x}}, \frac{\delta\mathcal{H}}{\delta\vec{x}}\}_{SW} = \langle\frac{\delta\mathcal{H}}{\delta\vec{v}} \cdot \vec{\nabla}\frac{\delta\mathcal{F}}{\delta\mu} - \frac{\delta\mathcal{H}}{\delta\vec{v}} \cdot \vec{\nabla}\frac{\delta\mathcal{F}}{\delta\mu}\rangle + \langle\frac{\vec{\nabla} \times \vec{v}}{\mu} \cdot (\frac{\delta\mathcal{F}}{\delta\vec{v}} \times \frac{\delta\mathcal{H}}{\delta\vec{v}})\rangle$$
(6)
$$\{\frac{\delta\mathcal{F}}{\delta\vec{x}}, \frac{\delta\mathcal{H}}{\delta\vec{x}}\}_{\Theta} = \langle\theta(\frac{\delta\mathcal{H}}{\delta\vec{v}} \cdot \vec{\nabla}\frac{\delta\mathcal{F}}{\delta\Theta} - \frac{\delta\mathcal{H}}{\delta\vec{v}} \cdot \vec{\nabla}\frac{\delta\mathcal{F}}{\delta\Theta})\rangle$$
(7)
where μ is the pseudo-density, $\vec{v} = \vec{u} - \vec{R}$ is the absolute
(covariant) velocity, $\Theta = \mu\theta$ is the mass-weighted potential

temperature and z is the height.

Equations of Motion: Lagrangian Vertical Coordinate

Equations of Motion

Choose $\mathcal{F} = \int \hat{\mu}$ (or $\int \hat{v} / \int \hat{\Theta} / \int \hat{z}$) to get: $\int \hat{\mu} \left(\frac{\partial \mu}{\partial t} + \vec{\nabla} \cdot \left(\frac{\delta \mathcal{H}}{\delta \vec{v}} \right) \right) = 0$ (8) $\int \hat{\Theta} \left(\frac{\partial \Theta}{\partial t} + \vec{\nabla} \cdot \left(\theta \frac{\delta \mathcal{H}}{\delta \vec{v}} \right) \right) = 0$ (9) $\int \hat{v} \left(\frac{\partial \vec{v}}{\partial t} + \frac{\zeta_{v}}{\mu} \times \frac{\delta \mathcal{H}}{\delta \vec{v}} + \theta \vec{\nabla} (\frac{\delta \mathcal{H}}{\delta \Theta}) + \vec{\nabla} (\frac{\delta \mathcal{H}}{\delta \mu}) \right) = 0$ (10) $\int \hat{z} \frac{\delta \mathcal{H}}{\delta z} = \int \hat{z} \left(g \mu + \frac{\partial p}{\partial n} \right) = 0$ (11)

Note that these are ALL 2D except for hydrostatic balance (8)

200

Hamiltonian (Lagrangian Vertical Coordinate)

Hamiltonian and Functional Derivatives

$$\mathcal{H} = \mathcal{H}[\mu, \vec{v}, \Theta, z] = \int \mu(\frac{\vec{u} \cdot \vec{u}}{2} + U(\frac{1}{\mu}\frac{\partial z}{\partial \eta}, \frac{\Theta}{\mu}) + gz) \qquad (12)$$
$$\int \hat{v}\frac{\delta \mathcal{H}}{\delta \vec{v}} = \int \hat{v}(\mu \vec{u}) \qquad (13)$$

$$\int \hat{\mu} \frac{\delta \mathcal{H}}{\delta \mu} = \int \hat{\mu} \left(\frac{\vec{u} \cdot \vec{u}}{2} + gz \right)$$
(14)

$$\int \hat{\Theta} \frac{\delta \mathcal{H}}{\delta \Theta} = \int \hat{\Theta} \frac{\partial U}{\partial \theta} = \int \hat{\Theta} \pi$$
(15)

$$\int \hat{z} \frac{\delta \mathcal{H}}{\delta z} = \int \hat{z} \left(g \mu + \frac{\partial p}{\partial \eta} \right)$$
(16)

< 17 ▶

Conservation

Energy

- Arises purely from anti-symmetry of the brackets PLUS $\frac{\delta \mathcal{H}}{\delta z}=0$
- Mimetic Galerkin methods automatically ensure an anti-symmetric bracket
- \bullet Works for ANY choice of ${\cal H}$
- Something similar can be done with a mass-based vertical coordinate, although it is slightly more complicated

Mass, Potential Vorticity and Entropy

- These are Casimirs
- Can show that this discretization also conserves them

ъ

What is Themis?

- **Q** PETSc-based software framework (written in Python and C)
- Parallel, high-performance*, automated* discretization of variational forms
- Using mimetic, tensor-product Galerkin methods on structured grids
- Inables rapid prototyping and experimentation

Available online at https://bitbucket.org/chris_eldred/themis

*- work in progress

Design Principles

- Leverage existing software packages: PETSc, petsc4py, Numpy, Sympy, Instant, ...
- Restrict to a subset of methods: mimetic, tensor-product Galerkin methods on structured grids
- Similar in spirit and high-level design to FEniCS/Firedrake

글 > < 글 > 글

ъ

Current Capabilities

- Support for structured grids in 1, 2 and 3 dimensions
- Parallelism through MPI
- Automated generation of assembly code (with user supplied kernels)
- Arbitrary curvilinear mappings between physical and reference space
- Support for mixed, vector and standard tensor-product Galerkin function spaces
- Support for mimetic Galerkin difference elements, Q⁻_rΛ^k elements (both Lagrange and Bernstein basis) and mimetic spectral elements (single-grid version only)
- Ssential and periodic boundary conditions
- Both tensor-product (sum-factorization)-based assembly and operator action

Planned Extensions

- Facet integrals: enables natural boundary conditions
- Ø Multi-block domains: enables cubed-sphere
- Nonlinear variational problems (via SNES): enables (semi)-implicit timestepping
- Multiple element types (in the same domain): enables MGD elements with non-periodic boundaries
- Additional work on optimization of data structures (Vecs/Mats/DMs) and assembly/operator action kernels (including vectorization and better shared memory support)
- Sernstein polynomial based assembly and operator action
- Weighted-row based assembly and operator action for MGD elements

Dynamico

- Primal-Dual: Mimetic finite differences (based on TRiSK scheme): C grid horizontal, Lorenz vertical
- Icosahedral grid
- Hydrostatic primitive equations: Lagrangian and mass-based vertical coordinates
- Conserves mass, energy and entropy
- See Dubos et. al 2015 for more information

Reconstruction Operator (W) in TRiSK

$$\mathbf{W} = \sum_{e' \in ECP(e)} W_{e,e'}$$
$$\mathbf{W} = -\mathbf{W}^T$$
$$-\mathbf{R}D_2 = \bar{D}_2\mathbf{W}$$

Given normal fluxes, reconstruct tangential fluxes Satisfying: Steady geostrophic modes AND energy conservation AND accuracy

Issues with TRiSK

Operator Accuracy

Spurious Branches of Dispersion Relationship

Hexagonal grid means 3:1 ratio of wind to mass dofs (should be 2:1) \to spurious branch of Rossby waves with unphysical behaviour

Linear Modes

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Static Refinement (r-refinement)

Stretched grids (picture from GDFL FV3, also known as Schmidt transform)

Grid topology is preserved \rightarrow no change in computational efficiency

Adaptive Refinement (r-refinement)

