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Desirable Properties and
Structure Preservation




(Incomplete) List of Desirable Model Properties

Structu

Linear Modes
-Spurious Stationary Modes
-Dispersion Relationship

Geometric Flexibility
-Variable Resolution
-Element Shape Choice

namical Cores

-Spurious Branches of Waves,

-r\Simulations

Efficiency
-Strong Scalability
-Weak Scalability

-Time to Solution

Mimetic Properties
-Discrete DeRham Cohmology
V.¥x=0 ¥xV=0

(Vi)e= -V

Conservation
-Mass

-Energy

-Potential Vorticity
-Potential Enstrophy
ete.

A

Realistic

Accuracy
“Taylor Series Sense
-Convergence to Reference Solution

PV Dynamics
-Steady Geostrophic Modes
-Compatibility
-Consistency

Desirable Properties and Structure Preservation

4 /39



What is structure-preservation?

Obtaining these properties

© Hamiltonian Formulation: Easily expresses conservation of
mass, total energy and possibly other invariants

dH

dC
~"_0 —
dt

— =0
dt
@ Mimetic Discretization: Discrete analogues of vector
calculus identities (such as curl-free vorticity, div and grad are
adjoints, etc.)
VxV=0 S -
(V) ==V

-

V- -Vx =0

Structure Preserving Dynamical Cores Desirable Properties and Structure Preservation 5 /39



Non-Canonical Hamiltonian Dynamics

Evolution of an arbitrary functional F = F[X] is governed by:

dF 0F OH

g = Uox 5%
with Poisson bracket {, } antisymmetric (also satisfies Jacobi):

(OF 09, 3G iF
oxox? T YoxT X
Also have Casimirs C that satisfy:

0F oC

(552 =0 vF

Neatly encapsulates conservation properties (H and C).
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General Formulation for Mimetic Discretizations: Primal
deRham Complex (Finite Element Type Methods)

Wo Wi W W3
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Hamiltonian + Mimetic : What properties do we get?

Mimetic Properties
-Discrete DeRham Cohmology
v-v 0

VxV=0

4

Linear Modes
-Spurious Stationary Modes
-Dispersion Relationship

-Spurious Branches of Waves,

Conservation
-Mass
-Energy

~Potential Vorticity
-Potential Enstrophy
ete.

Geometric Flexibility
-Variable Resolution
-Element Shape Choice

Accuracy
Taylor Series Sense

~Convergence to Reference Solution

Efficiency
-Strong Scalability
-Weak Scalability
-Time to Solution

PV Dynamics
-Steady Geostrophic Modes
-Compatibility
~Consistency

There are MANY choices of spaces that give these
properties: key point is the deRham complex
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What properties are still lacking

Mimetic Properties
-Discrete DeRham Cohmology
V.¥x=0 VxV=0
(Ve =-¥

Linear Modes
-Spurious Stationary Modes
-Dispersion Relationship

-Spurious Branches of Waves,

Conservation
-Mass

-Energy

-Potential Vorticity
-Potential Enstrophy
cetc.

Realistic
Simulations

AN
S

Geometric Flexibility
-Variable Resolution
-Element Shape Choice

Taylor Series Sense
— -Convergence to Reference Solution
Efficiency

-Strong Scalability
-Weak Scalability
-Time to Solution

PV Dynamics
-Steady Geostrophic Modes
-Compatibility
-Consistency

These are a function of the specific choice of spaces
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Tensor Product Compatible
Galerkin Methods
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Tensor Product Compatible Galerkin Spaces
Tensor Product Compatible Galerkin Spaces

4
Select 1D Spaces A and B such that : A -2 (1)

@ Use tensor products to extend to n-dimensions

@ Works for ANY set of spaces A and B that satisfy this
property (compatible finite elements use P, and Ppg n—1;
other choices yield mimetic spectral elements and compatible
isogeometric methods)

@ Our (novel) choices of A and B are guided by linear mode
properties and coupling to physics/tracer transport

Structure Preserving Dynamical Cores Tensor Product Compatible Galerkin Methods 11 /39



How do we get the remaining properties?

Tensor Product Compatible Galerkin Methods on Structured Grids

© Tensor product + structured grids:
@ Quadrilateral grids-
© Key: What about dispersion relationships?

<4 - 6x24x24 - thuburn Primal
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Compatible FE: P, — P; pg Dispersion Relationship

C e Inertia-Gravity Wave Dispersion
B = L, Space (1D) Relationship (1D)

Multiple dofs per element with different basis functions — breaks
translational invariance — spectral gaps

but equation dependent and doesn’t
work for 3rd order and higher

Structure Preserving Dynamical Cores Tensor Product Compatible Galerkin Methods



Mimetic Galerkin Differences

os // \\ /\\ /\ e A//\\

A = H; Space (1D) B = L, Space (1D)
Higher-order by increasing support of basis functions
Single degree of freedom per geometric entity — dofs are identical
to finite-difference ( )
Higher order by larger stencils (less local, efficiency concerns)
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Mimetic Galerkin Differences: Dispersion

Inertia-Gravity Wave Dispersion Relationship (1D) for 3rd Order
Elements

More details in a forthcoming paper with Daniel Le Roux
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Overview of 3D Spaces

S a

\
/
:;I

W

v v V-
Wo — W1 =5 Wy > W

Wo=A® AR A = H; = Continuous Galerkin

W3
W, = (BQAR®A)+... = H(curl) = Nedelec

W, = (A® B®B)i + ... = H(div) = Raviart-Thomas
W3 =B®B®B = L, = Discontinuous Galerkin
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Actual Model and Results
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Prognostic Variables and Grid Staggering for
(Quasi-)Hydrostatic Equations

vert Mo (2) V= 0+ R and (3) S = us (or
© = ub)
Diagnose z from (quasi-)hydrostatic balance
Diagnose W = un from vertical coordinate definition
Galerkin Version of a C/Lorenz Grid

Prognose (1) p or Ms = §

Structure Preserving Dynamical Cores Actual Model and Results 18 / 39



Equations of Motion: Lagrangian Vertical Coordinate (1)

. o e OH N\
<M7(9t>+</ﬁav'(5‘7)>—0
~ 0S A= OH

. OV - 0H . o~ OH N AN
<v, 6t><v -V, 7 >+<v, gk x (5‘7)><V - (sV), 55> =0

H = ju[¢+ K+ U(a,s)] +f P Z
rm
The p equation holds pointwise, S and V require a linear solve
Different choices of K and ® give hydrostatic primitive (HPE),
non-traditional shallow (NTE) and deep quasi-hydrostatic
equations (QHE)
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Equations of Motion: Lagrangian Vertical Coordinate (2)

Functional derivatives of H close the system and are given by:

o
<ﬂ,;:>=<ﬂ,K+¢+U+pasT>

(3=
(0.5 ) = Gundy
(25 )= (o)~ (aw)-

2 ([PIDr = <2, Prs +<2,poo)rr =0

Some of these can be directly substituted into equations of motion,
some require a linear solve

Hydrostatic balance is %H = 0, requires a nonlinear solve
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ydrostatic Gravity Wave

o7s
oso
) 0.45

]
x (ke

0'(t =0)

320x30 mesh (320km x 10km
domain, Ax = 1km), At = 3s,
Lagrangian coordinate, MGD-1,
at 3600s, xz slice, 4th order
Runge-Kutta
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Energy Conserving Time
Stepping




Energy Conserving Time Stepping

Energy conserving spatial discretizations can be written as:

oxX LOH
== TR =)

where 7 = J7T and H is conserved. A 2nd-order, fully implicit
energy conserving time integrator for this system is:
X+l gn P N Y
T | =X+ (X" —xM))dT
. ) | S )
Evaluate integral via a quadrature rule. Details are in Cohen, D. &
Hairer, E. Bit Numer Math (2011)
Hydrostatic balance and functional derivative solves can be
incorporated into implicit solve — one single nonlinear solve
Can simplify Jacobian to get a semi-implicit system without
compromising energy conserving nature
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Shallow Water Results

¥ tkm)

X k)

y k)
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Hydrostatic Gravity Wave Results

048

008

Structure Preserving Dynamical Cores

4th order
Runge Kutta

200 00 EQ 1000 T200

(E — E(0))/E(0) * 100.

2nd order
Energy
Conserving

(E — E(0))/E(0) * 100.

Energy Conserving Time Stepping



Future Work, Summary and
Conclusions




© Mass-based vertical coordinate
@ Dispersion analysis for time integrator

© Replace S by s (Lorenz — Charney-Phillips)

@ Multipatch domains: cubed-sphere grid

© Computational efficiency: simplified Jacobian,
preconditioning, faster assembly and operator action

©

Past Reversible (Inviscid, Adiabatic) Dynamics: Subgrid
Turbulence, Moisture/Tracers/Chemistry, 2nd Law of
Thermodynamics, Physics-Dynamics Coupling (metriplectic?,
build on work by Almut Gassmann,John Thuburn?)
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Summary and Conclusions

© Developing a structure-preserving atmospheric dynamical core:
Dynamico-FE

@ Use tensor-product Galerkin methods on structured grids:
Obtain almost all the desired properties

© Mimetic Galerkin Differences: Fixes dispersion issues

@ Energy conserving time integration: possible, similar to
existing semi-implicit schemes!

v

Conclusions

@ Mimetic discretizations + Hamiltonian formulation =
Structure-Preservation = (Most) Desired Properties

@ Many choices of mimetic discretization, select the one that
gets the other properties
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Additional Slides

Structure Preservi namical Cores 29 / 39




Motivating science question

@ For canonical, finite-dimensional Hamiltonian systems,
structure-preserving numerics are essential to obtain correct
long-term statistical behavior

@ The equations of (moist) adiabatic, inviscid atmospheric
dynamics are a non-canonical, infinite-dimensional
Hamiltonian system

© Given (2), to what extent does (1) hold, especially since the
real atmosphere has forcing and dissipation that makes it
non-Hamiltonian?

@ Studying these questions requires a structure-preserving
atmospheric model!
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Poisson Brackets (Lagrangian Vertical Coordinate)

From Dubos and Tort 2014, evolution of F[X]| = F[u, V,©, z] is

dF oF OF 0z
= Gw v Y (2)
{‘EE < ﬂ(z— _ 57% ﬂ‘S}—>_|_
ox’ oV o oV o
(3)
(4)

where 1 is the pseudo-density, v = & — R is the absolute
(covariant) velocity, © = p6 is the mass-weighted potential
temperature and z is the height.
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Equations of Motion: Lagrangian Vertical Coordinate

Choose F = (i (or {0/§6/(2) to get:

[a(Z+9-G5) =0 ©)
[o(2+ )—o (6)
f <8v + + +6(?j)) -0 (7)

Jo [ (e 3) - ©

Note that these are ALL 2D except for hydrostatic balance (8)
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Hamiltonian (Lagrangian Vertical Coordinate)

Hamiltonian and Functional Derivatives

M= w702 [ m‘%ﬁ + rg2) (9)
|05 = [ o (10)
[a8 - (2 v (11)

f@ Je =Jé (12)
Jf(szz 2(g,u—|— ) (13)
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@ Arises purely from anti-symmetry of the brackets PLUS
M =0
6z

@ Mimetic Galerkin methods automatically ensure an
anti-symmetric bracket

@ Works for ANY choice of H

@ Something similar can be done with a mass-based vertical
coordinate, although it is slightly more complicated

Mass, Potential Vorticity and Entropy
@ These are Casimirs

@ Can show that this discretization also conserves them
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What is Themis?

@ PETSc-based software framework (written in Python and C)

@ Parallel, high-performance*, automated* discretization of
variational forms

© Using mimetic, tensor-product Galerkin methods on
structured grids

© Enables rapid prototyping and experimentation

Available online at https://bitbucket.org/chris_eldred/themis
*_ work in progress
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https://bitbucket.org/chris_eldred/themis

Design Principles

@ Leverage existing software packages: PETSc, petscdpy,
Numpy, Sympy, UFL, COFFEE, TSFC, Instant, ...

@ Restrict to a subset of methods: mimetic, tensor-product
Galerkin methods on structured grids

@ Similar in spirit and high-level design to FEniCS/Firedrake (in
fact, will share UFL/COFFEE/TSFC)

I LinearVariationalProblem- KSP I

[  Forms-Vec,Mat || Fields- Vec |

IFunctionSpace- IS, Scatter, DMDA, LocaIToGIobaII
| Mesh- DMDA " Geometry || FiniteElement |
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Current Capabilities

@ Support for single block structured grids in 1, 2 and 3
dimensions

@ Parallelism through MPI

© Arbitrary curvilinear mappings between physical and reference
space

@ Support for mimetic Galerkin difference elements, Q- AK
elements (both Lagrange and Bernstein basis) and mimetic
spectral elements (single-grid version only): plus mixed, vector
and standard function spaces on those elements

Essential and periodic boundary conditions

Facet and volume integrals

© 00

Linear and nonlinear variational problems
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Planned Extensions

o
2]

o
o
o
o
o

©

o

UFL/TSFC/COFFEE integration

Multiple element types (in the same domain): enables MGD
elements with non-periodic boundaries

Matrix-free operator action

Manifolds and non-Euclidean domains
Multi-block domains: enables cubed-sphere
Geometric multigrid with partial coarsening

Weighted-row based assembly and operator action for MGD
elements

Custom DM specialized for multipatch tensor product
Galerkin methods

Further optimizations for assembly and operator action
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