Progress towards a Hydrostatic Dynamical Core using Structure-Preserving "Finite Elements"

Chris Eldred, Thomas Dubos, Evaggelos Kritsikis, Daniel Le Roux and Fabrice Voitus

April 6th, 2017

1 Desirable Properties and Structure Preservation

- 2 Tensor Product Compatible Galerkin Methods
- 3 Actual Model and Results
- 4 Energy Conserving Time Stepping
- 5 Future Work, Summary and Conclusions

Desirable Properties and Structure Preservation

(Incomplete) List of Desirable Model Properties

Obtaining these properties

 Hamiltonian Formulation: Easily expresses conservation of mass, total energy and possibly other invariants

$$\frac{d\mathcal{H}}{dt} = 0 \qquad \qquad \frac{d\mathcal{C}}{dt} = 0$$

 Mimetic Discretization: Discrete analogues of vector calculus identities (such as curl-free vorticity, div and grad are adjoints, etc.)

$$\vec{\nabla} \times \vec{\nabla} = 0$$

$$\vec{\nabla} \cdot \vec{\nabla} \times = 0$$

$$(\vec{\nabla} \cdot)^* = -\vec{\nabla}$$

Non-Canonical Hamiltonian Dynamics

Evolution of an arbitrary functional $\mathcal{F} = \mathcal{F}[\vec{x}]$ is governed by:

$$\frac{d\mathcal{F}}{dt} = \{\frac{\delta\mathcal{F}}{\delta\vec{x}}, \frac{\delta\mathcal{H}}{\delta\vec{x}}\}$$

with Poisson bracket $\{,\}$ antisymmetric (also satisfies Jacobi):

$$\{\frac{\delta \mathcal{F}}{\delta \vec{x}}, \frac{\delta \mathcal{G}}{\delta \vec{x}}\} = -\{\frac{\delta \mathcal{G}}{\delta \vec{x}}, \frac{\delta \mathcal{F}}{\delta \vec{x}}\}$$

Also have Casimirs $\mathcal C$ that satisfy:

$$\{\frac{\delta \mathcal{F}}{\delta \vec{x}}, \frac{\delta \mathcal{C}}{\delta \vec{x}}\} = 0 \quad \forall \mathcal{F}$$

Neatly encapsulates conservation properties (\mathcal{H} and \mathcal{C}).

General Formulation for Mimetic Discretizations: Primal deRham Complex (Finite Element Type Methods)

$$egin{aligned} \delta &= *d* \ &
abla^2 &= d\delta + \delta d \ & ec
abla \cdot ec
abla &= 0 &= ec
abla imes ec
abla &= 0 &= \delta\delta \end{aligned}$$

Hamiltonian + Mimetic : What properties do we get?

There are MANY choices of spaces that give these properties: key point is the deRham complex

What properties are still lacking?

These are a function of the specific choice of spaces

Tensor Product Compatible Galerkin Methods

Tensor Product Compatible Galerkin Spaces

Select 1D Spaces \mathcal{A} and \mathcal{B} such that $: \mathcal{A} \xrightarrow{\frac{d}{dx}} \mathcal{B}$ (1)

- Use tensor products to extend to n-dimensions
- Works for ANY set of spaces A and B that satisfy this property (compatible finite elements use P_n and P_{DG,n-1}; other choices yield mimetic spectral elements and compatible isogeometric methods)
- Our (novel) choices of A and B are guided by linear mode properties and coupling to physics/tracer transport

How do we get the remaining properties?

Tensor Product Compatible Galerkin Methods on Structured Grids

- **1** Tensor product + structured grids: efficiency
- Quadrilateral grids- no spurious wave branches
- Solution State Action State Action Control Con

Compatible FE: $P_2 - P_{1,DG}$ Dispersion Relationship

Multiple dofs per element with different basis functions \rightarrow breaks translational invariance \rightarrow spectral gaps Can fix with mass lumping, but equation dependent and doesn't work for 3rd order and higher

Mimetic Galerkin Differences

Higher-order by increasing support of basis functions Single degree of freedom per geometric entity \rightarrow dofs are identical to finite-difference (physics and tracer transport coupling) Higher order by larger stencils (less local, efficiency concerns)

Mimetic Galerkin Differences: Dispersion

Inertia-Gravity Wave Dispersion Relationship (1D) for 3rd Order Elements Spectral gap is gone Can show that dispersion relation is O(2n) where n is the order More details in a forthcoming paper with Daniel Le Roux

Overview of 3D Spaces

$$\mathbb{W}_{0} \xrightarrow{\vec{\nabla}} \mathbb{W}_{1} \xrightarrow{\vec{\nabla} \times} \mathbb{W}_{2} \xrightarrow{\vec{\nabla}} \mathbb{W}_{3}$$
$$\mathbb{W}_{0} = \mathcal{A} \otimes \mathcal{A} \otimes \mathcal{A} = \mathcal{H}_{1} = \text{Continuous Galerkin}$$
$$\mathbb{W}_{1} = (\mathcal{B} \otimes \mathcal{A} \otimes \mathcal{A})\hat{i} + \ldots = \mathcal{H}(\textit{curl}) = \text{Nedelec}$$
$$\mathbb{W}_{2} = (\mathcal{A} \otimes \mathcal{B} \otimes \mathcal{B})\hat{i} + \ldots = \mathcal{H}(\textit{div}) = \text{Raviart-Thomas}$$
$$\mathbb{W}_{3} = \mathcal{B} \otimes \mathcal{B} \otimes \mathcal{B} = \mathcal{L}_{2} = \text{Discontinuous Galerkin}$$

Actual Model and Results

Prognostic Variables and Grid Staggering for (Quasi-)Hydrostatic Equations

Prognose (1) μ or $M_s = \int_{vert} \mu$, (2) $\vec{v} = \vec{u} + \vec{R}$ and (3) $S = \mu s$ (or $\Theta = \mu \theta$) Diagnose z from (quasi-)hydrostatic balance Diagnose $W = \mu \dot{\eta}$ from vertical coordinate definition Galerkin Version of a C/Lorenz Grid

Equations of Motion: Lagrangian Vertical Coordinate (1)

$$\left\langle \hat{\mu}, \frac{\partial \mu}{\partial t} \right\rangle + \left\langle \hat{\mu}, \vec{\nabla} \cdot \left(\frac{\delta \mathcal{H}}{\delta \vec{v}}\right) \right\rangle = 0$$
$$\left\langle \hat{S}, \frac{\partial S}{\partial t} \right\rangle + \left\langle \hat{S}, \vec{\nabla} \cdot \left(s\frac{\delta \mathcal{H}}{\delta \vec{v}}\right) \right\rangle = 0$$

$$\left\langle \hat{\mathbf{v}}, \frac{\partial \vec{\mathbf{v}}}{\partial t} \right\rangle - \left\langle \vec{\nabla} \cdot \hat{\mathbf{v}}, \frac{\delta \mathcal{H}}{\delta \mu} \right\rangle + \left\langle \hat{\mathbf{v}}, q\hat{\mathbf{k}} \times \left(\frac{\delta \mathcal{H}}{\delta \vec{\mathbf{v}}}\right) \right\rangle - \left\langle \vec{\nabla} \cdot (s\hat{\mathbf{v}}), \frac{\delta \mathcal{H}}{\delta S} \right\rangle = 0$$
$$\mathcal{H} = \int \mu \left[\Phi + K + U(\alpha, s) \right] + \int_{\Gamma^T} p_{\infty} z$$

The μ equation holds pointwise, S and \vec{v} require a linear solve Different choices of K and Φ give hydrostatic primitive (HPE), non-traditional shallow (NTE) and deep quasi-hydrostatic equations (QHE)

Equations of Motion: Lagrangian Vertical Coordinate (2)

Functional derivatives of $\mathcal H$ close the system and are given by:

$$\begin{split} \left\langle \hat{\mu}, \frac{\delta \mathcal{H}}{\delta \mu} \right\rangle &= \left\langle \hat{\mu}, \mathcal{K} + \Phi + U + p\alpha - sT \right\rangle \\ \left\langle \hat{S}, \frac{\delta \mathcal{H}}{\delta S} \right\rangle &= \left\langle \hat{S}, T \right\rangle \\ \left\langle \hat{v}, \frac{\delta \mathcal{H}}{\delta \vec{v}} \right\rangle &= \left\langle \hat{v}, \mu \vec{u} \right\rangle \\ \left\langle \hat{z}, \frac{\delta \mathcal{H}}{\delta z} \right\rangle &= \left\langle \hat{z}, \mu \frac{\partial \mathcal{K}}{\partial z} + \mu \frac{\partial \Phi}{\partial z} \right\rangle - \left\langle \frac{\partial \hat{z}}{\partial \eta}, p \right\rangle - \\ \left\langle \hat{z}, [[p]] \right\rangle_{\Gamma'} - \left\langle \hat{z}, p \right\rangle_{\Gamma^B} + \left\langle \hat{z}, p_{\infty} \right\rangle_{\Gamma^T} = 0 \end{split}$$

Some of these can be directly substituted into equations of motion, some require a linear solve Hydrostatic balance is $\frac{\delta \mathcal{H}}{\delta z} = 0$, requires a nonlinear solve

Hydrostatic Gravity Wave

320x30 mesh (320km x 10km domain, $\Delta x = 1$ km), $\Delta t = 3s$, Lagrangian coordinate, MGD-1, at 3600s, xz slice, 4th order Runge-Kutta

Energy Conserving Time Stepping

Energy Conserving Time Stepping

Energy conserving spatial discretizations can be written as:

$$\frac{\partial \vec{x}}{\partial t} = \mathcal{J}(\vec{x}) \frac{\delta \mathcal{H}}{\delta \vec{x}}(\vec{x})$$

where $\mathcal{J} = \mathcal{J}^T$ and \mathcal{H} is conserved. A 2nd-order, fully implicit energy conserving time integrator for this system is:

$$\frac{\vec{x}^{n+1} - \vec{x}^n}{\Delta t} = \mathcal{J}(\frac{\vec{x}^{n+1} + \vec{x}^n}{2}) \int \frac{\delta \mathcal{H}}{\delta \vec{x}} (\vec{x}^n + \tau (\vec{x}^{n+1} - \vec{x}^n)) d\tau$$

Evaluate integral via a quadrature rule. Details are in Cohen, D. & Hairer, E. Bit Numer Math (2011)

Hydrostatic balance and functional derivative solves can be incorporated into implicit solve \rightarrow one single nonlinear solve Can simplify Jacobian to get a semi-implicit system without compromising energy conserving nature

Shallow Water Results

q

(E - E(0))/E(0) * 100.

2nd order Energy Conserving (semiimplicit)

(E - E(0))/E(0) * 100.

q

Hydrostatic Gravity Wave Results

4th order Runge Kutta

2nd order Energy Conserving

(E - E(0))/E(0) * 100.

(E - E(0))/E(0) * 100.

Future Work, Summary and Conclusions

Future Work

- Mass-based vertical coordinate
- Oispersion analysis for time integrator
- **(3)** Replace S by s (Lorenz \rightarrow Charney-Phillips)
- Multipatch domains: cubed-sphere grid
- Computational efficiency: simplified Jacobian, preconditioning, faster assembly and operator action
- Past Reversible (Inviscid, Adiabatic) Dynamics: Subgrid Turbulence, Moisture/Tracers/Chemistry, 2nd Law of Thermodynamics, Physics-Dynamics Coupling (metriplectic?, build on work by Almut Gassmann, John Thuburn?)

Summary and Conclusions

Summary

- Developing a structure-preserving atmospheric dynamical core: Dynamico-FE
- Use tensor-product Galerkin methods on structured grids: Obtain almost all the desired properties
- **③** Mimetic Galerkin Differences: Fixes dispersion issues
- Energy conserving time integration: possible, similar to existing semi-implicit schemes!

Conclusions

- Mimetic discretizations + Hamiltonian formulation = Structure-Preservation = (Most) Desired Properties
- Many choices of mimetic discretization, select the one that gets the other properties

Additional Slides

- For canonical, finite-dimensional Hamiltonian systems, structure-preserving numerics are essential to obtain correct long-term statistical behavior
- The equations of (moist) adiabatic, inviscid atmospheric dynamics are a non-canonical, infinite-dimensional Hamiltonian system
- Given (2), to what extent does (1) hold, especially since the real atmosphere has forcing and dissipation that makes it non-Hamiltonian?
- Studying these questions requires a structure-preserving atmospheric model!

Poisson Brackets

From Dubos and Tort 2014, evolution of $\mathcal{F}[\vec{x}] = \mathcal{F}[\mu, \vec{v}, \Theta, z]$ is

$$\frac{d\mathcal{F}}{dt} = \{\frac{\delta\mathcal{F}}{\delta\vec{x}}, \frac{\delta\mathcal{H}}{\delta\vec{x}}\}_{SW} + \{\frac{\delta\mathcal{F}}{\delta\vec{x}}, \frac{\delta\mathcal{H}}{\delta\vec{x}}\}_{\Theta} + \langle\frac{\delta\mathcal{F}}{\deltaz}\frac{\partial z}{\partial t}\rangle$$
(2)
$$\{\frac{\delta\mathcal{F}}{\delta\vec{x}}, \frac{\delta\mathcal{H}}{\delta\vec{x}}\}_{SW} = \langle\frac{\delta\mathcal{H}}{\delta\vec{v}} \cdot \vec{\nabla}\frac{\delta\mathcal{F}}{\delta\mu} - \frac{\delta\mathcal{H}}{\delta\vec{v}} \cdot \vec{\nabla}\frac{\delta\mathcal{F}}{\delta\mu}\rangle + \langle\frac{\vec{\nabla} \times \vec{v}}{\mu} \cdot (\frac{\delta\mathcal{F}}{\delta\vec{v}} \times \frac{\delta\mathcal{H}}{\delta\vec{v}})\rangle$$
(3)
$$\{\frac{\delta\mathcal{F}}{\delta\vec{x}}, \frac{\delta\mathcal{H}}{\delta\vec{x}}\}_{\Theta} = \langle\theta(\frac{\delta\mathcal{H}}{\delta\vec{v}} \cdot \vec{\nabla}\frac{\delta\mathcal{F}}{\delta\Theta} - \frac{\delta\mathcal{H}}{\delta\vec{v}} \cdot \vec{\nabla}\frac{\delta\mathcal{F}}{\delta\Theta})\rangle$$
(4)
where μ is the pseudo-density, $\vec{v} = \vec{u} - \vec{R}$ is the absolute
(covariant) velocity, $\Theta = \mu\theta$ is the mass-weighted potential
temperature and z is the height.

Equations of Motion

Choose $\mathcal{F} = \int \hat{\mu}$ (or $\int \hat{v} / \int \hat{\Theta} / \int \hat{z}$) to get:

$$\int \hat{\mu} \left(\frac{\partial \mu}{\partial t} + \vec{\nabla} \cdot \left(\frac{\delta \mathcal{H}}{\delta \vec{v}} \right) \right) = 0$$
(5)

$$\int \hat{\Theta} \left(\frac{\partial \Theta}{\partial t} + \vec{\nabla} \cdot \left(\theta \frac{\delta \mathcal{H}}{\delta \vec{v}} \right) \right) = 0$$
 (6)

$$\int \hat{\mathbf{v}} \left(\frac{\partial \vec{\mathbf{v}}}{\partial t} + \frac{\zeta_{\mathbf{v}}}{\mu} \times \frac{\delta \mathcal{H}}{\delta \vec{\mathbf{v}}} + \theta \vec{\nabla} (\frac{\delta \mathcal{H}}{\delta \Theta}) + \vec{\nabla} (\frac{\delta \mathcal{H}}{\delta \mu}) \right) = 0$$
(7)

$$\int \hat{z} \frac{\delta \mathcal{H}}{\delta z} = \int \hat{z} \left(g \mu + \frac{\partial p}{\partial \eta} \right) = 0$$
(8)

Note that these are ALL 2D except for hydrostatic balance (8)

Hamiltonian (Lagrangian Vertical Coordinate)

J

Hamiltonian and Functional Derivatives

$$\mathcal{H} = \mathcal{H}[\mu, \vec{v}, \Theta, z] = \int \mu(\frac{\vec{u} \cdot \vec{u}}{2} + U(\frac{1}{\mu} \frac{\partial z}{\partial \eta}, \frac{\Theta}{\mu}) + gz) \qquad (9)$$
$$\int \hat{v} \frac{\delta \mathcal{H}}{\delta \vec{v}} = \int \hat{v} (\mu \vec{u}) \qquad (10)$$

$$\int \hat{\mu} \frac{\delta \mathcal{H}}{\delta \mu} = \int \hat{\mu} \left(\frac{\vec{u} \cdot \vec{u}}{2} + gz \right)$$
(11)

$$\int \hat{\Theta} \frac{\delta \mathcal{H}}{\delta \Theta} = \int \hat{\Theta} \frac{\partial U}{\partial \theta} = \int \hat{\Theta} \pi$$
(12)

$$\int \hat{z} \frac{\delta \mathcal{H}}{\delta z} = \int \hat{z} \left(g \mu + \frac{\partial p}{\partial \eta} \right)$$
(13)

Energy

- Arises purely from anti-symmetry of the brackets PLUS $\frac{\delta \mathcal{H}}{\delta z}=0$
- Mimetic Galerkin methods automatically ensure an anti-symmetric bracket
- \bullet Works for ANY choice of ${\cal H}$
- Something similar can be done with a mass-based vertical coordinate, although it is slightly more complicated

Mass, Potential Vorticity and Entropy

- These are Casimirs
- Can show that this discretization also conserves them

What is Themis?

- **9** PETSc-based software framework (written in Python and C)
- Parallel, high-performance*, automated* discretization of variational forms
- Using mimetic, tensor-product Galerkin methods on structured grids
- Inables rapid prototyping and experimentation

Available online at https://bitbucket.org/chris_eldred/themis *- work in progress

Design Principles

- Leverage existing software packages: PETSc, petsc4py, Numpy, Sympy, UFL, COFFEE, TSFC, Instant, ...
- Restrict to a subset of methods: mimetic, tensor-product Galerkin methods on structured grids
- Similar in spirit and high-level design to FEniCS/Firedrake (in fact, will share UFL/COFFEE/TSFC)

Current Capabilities

- Support for single block structured grids in 1, 2 and 3 dimensions
- Parallelism through MPI
- Arbitrary curvilinear mappings between physical and reference space
- Support for mimetic Galerkin difference elements, Q⁻_rΛ^k elements (both Lagrange and Bernstein basis) and mimetic spectral elements (single-grid version only): plus mixed, vector and standard function spaces on those elements
- Sessential and periodic boundary conditions
- Facet and volume integrals
- Iinear and nonlinear variational problems

Planned Extensions

- UFL/TSFC/COFFEE integration
- Multiple element types (in the same domain): enables MGD elements with non-periodic boundaries
- Matrix-free operator action
- Manifolds and non-Euclidean domains
- Multi-block domains: enables cubed-sphere
- Geometric multigrid with partial coarsening
- Weighted-row based assembly and operator action for MGD elements
- Custom DM specialized for multipatch tensor product Galerkin methods
- Further optimizations for assembly and operator action

