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Desirable Properties and
Structure Preservation
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(Incomplete) List of Desirable Model Properties
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What is structure-preservation?

Obtaining these properties

1 Hamiltonian Formulation: Easily expresses conservation of
mass, total energy and possibly other invariants

dH
dt

“ 0
dC
dt
“ 0

2 Mimetic Discretization: Discrete analogues of vector
calculus identities (such as curl-free vorticity, div and grad are
adjoints, etc.)

~∇ˆ ~∇ “ 0

~∇ ¨ ~∇ˆ “ 0
p~∇¨q˚ “ ´~∇
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Non-Canonical Hamiltonian Dynamics

Evolution of an arbitrary functional F “ Fr~xs is governed by:

dF
dt

“ t
δF
δ~x
,
δH
δ~x
u

with Poisson bracket t, u antisymmetric (also satisfies Jacobi):

t
δF
δ~x
,
δG
δ~x
u “ ´t

δG
δ~x
,
δF
δ~x
u

Also have Casimirs C that satisfy:

t
δF
δ~x
,
δC
δ~x
u “ 0 @F

Neatly encapsulates conservation properties (H and C).
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General Formulation for Mimetic Discretizations: Primal
deRham Complex (Finite Element Type Methods)

δ “ ˚d˚

∇2 “ dδ ` δd

~∇ ¨ ~∇ˆ “ 0 “ ~∇ˆ ~∇

dd “ 0 “ δδ

W0 W1 W2 W3
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Hamiltonian + Mimetic : What properties do we get?

There are MANY choices of spaces that give these
properties: key point is the deRham complex
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What properties are still lacking?

These are a function of the specific choice of spaces
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Tensor Product Compatible
Galerkin Methods
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Tensor Product Compatible Galerkin Spaces

Tensor Product Compatible Galerkin Spaces

Select 1D Spaces A and B such that : A
d
dx
ÝÑ B (1)

Use tensor products to extend to n-dimensions

Works for ANY set of spaces A and B that satisfy this
property (compatible finite elements use Pn and PDG ,n´1;
other choices yield mimetic spectral elements and compatible
isogeometric methods)

Our (novel) choices of A and B are guided by linear mode
properties and coupling to physics/tracer transport
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How do we get the remaining properties?

Tensor Product Compatible Galerkin Methods on Structured Grids

1 Tensor product + structured grids: efficiency

2 Quadrilateral grids- no spurious wave branches

3 Key: What about dispersion relationships?
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Compatible FE: P2 ´ P1,DG Dispersion Relationship

A “ H1 Space (1D)

B “ L2 Space (1D)

Inertia-Gravity Wave Dispersion
Relationship (1D)

Multiple dofs per element with different basis functions Ñ breaks
translational invariance Ñ spectral gaps
Can fix with mass lumping, but equation dependent and doesn’t
work for 3rd order and higher
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Mimetic Galerkin Differences

A “ H1 Space (1D) B “ L2 Space (1D)

Higher-order by increasing support of basis functions
Single degree of freedom per geometric entity Ñ dofs are identical
to finite-difference (physics and tracer transport coupling)
Higher order by larger stencils (less local, efficiency concerns)
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Mimetic Galerkin Differences: Dispersion

Inertia-Gravity Wave Dispersion Relationship (1D) for 3rd Order
Elements

Spectral gap is gone
Can show that dispersion relation is Op2nq where n is the order

More details in a forthcoming paper with Daniel Le Roux
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Overview of 3D Spaces

W0 W1 W2 W3

W0
~∇
ÝÑW1

~∇ˆ
ÝÝÑW2

~∇¨
ÝÑW3

W0 “ AbAbA = H1 = Continuous Galerkin
W1 “ pB bAbAqî ` . . . = Hpcurlq = Nedelec
W2 “ pAb B b Bqî ` . . . = Hpdivq = Raviart-Thomas
W3 “ B b B b B = L2 = Discontinuous Galerkin
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Actual Model and Results
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Prognostic Variables and Grid Staggering for
(Quasi-)Hydrostatic Equations

W0 W1
~ζ

W2

~v ,W ,z

W3

µ,S ,Ms

Prognose (1) µ or Ms “
ş

vert µ, (2) ~v “ ~u ` ~R and (3) S “ µs (or
Θ “ µθ)

Diagnose z from (quasi-)hydrostatic balance
Diagnose W “ µ 9η from vertical coordinate definition

Galerkin Version of a C/Lorenz Grid
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Equations of Motion: Lagrangian Vertical Coordinate (1)

B

µ̂,
Bµ

Bt

F

`

B

µ̂, ~∇ ¨ pδH
δ~v
q

F

“ 0

B

Ŝ ,
BS

Bt

F

`

B

Ŝ , ~∇ ¨ ps δH
δ~v
q

F

“ 0

B

v̂ ,
B~v

Bt

F

´

B

~∇ ¨ v̂ , δH
δµ

F

`

B

v̂ , qk̂ ˆ p
δH
δ~v
q

F

´

B

~∇ ¨ psv̂q, δH
δS

F

“ 0

H “

ż

µ rΦ` K ` Upα, sqs `

ż

ΓT

p8z

The µ equation holds pointwise, S and ~v require a linear solve
Different choices of K and Φ give hydrostatic primitive (HPE),
non-traditional shallow (NTE) and deep quasi-hydrostatic
equations (QHE)
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Equations of Motion: Lagrangian Vertical Coordinate (2)

Functional derivatives of H close the system and are given by:

B

µ̂,
δH
δµ

F

“ xµ̂,K ` Φ` U ` pα´ sT y

B

Ŝ ,
δH
δS

F

“

A

Ŝ ,T
E

B

v̂ ,
δH
δ~v

F

“ xv̂ , µ~uy

B

ẑ ,
δH
δz

F

“

B

ẑ , µ
BK

Bz
` µ

BΦ

Bz

F

´

B

Bẑ

Bη
, p

F

´

xẑ , rrpssyΓI ´ xẑ , pyΓB ` xẑ , p8yΓT “ 0

Some of these can be directly substituted into equations of motion,
some require a linear solve
Hydrostatic balance is δH

δz “ 0, requires a nonlinear solve
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Hydrostatic Gravity Wave

θ1pt “ 0q

320x30 mesh (320km x 10km
domain, ∆x “ 1km), ∆t “ 3s,
Lagrangian coordinate, MGD-1,
at 3600s, xz slice, 4th order
Runge-Kutta

θ1

u1
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Energy Conserving Time
Stepping
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Energy Conserving Time Stepping

Energy conserving spatial discretizations can be written as:

B~x

Bt
“ J p~xqδH

δ~x
p~xq

where J “ J T and H is conserved. A 2nd-order, fully implicit
energy conserving time integrator for this system is:

~xn`1 ´ ~xn

∆t
“ J p

~xn`1 ` ~xn

2
q

ż

δH
δ~x
p~xn ` τp~xn`1 ´ ~xnqqdτ

Evaluate integral via a quadrature rule. Details are in Cohen, D. &
Hairer, E. Bit Numer Math (2011)
Hydrostatic balance and functional derivative solves can be
incorporated into implicit solve Ñ one single nonlinear solve
Can simplify Jacobian to get a semi-implicit system without
compromising energy conserving nature
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Shallow Water Results

q

q

4th order
Runge Kutta

2nd order
Energy
Conserving
(semi-
implicit)

pE ´ E p0qq{E p0q ˚ 100.

pE ´ E p0qq{E p0q ˚ 100.
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Hydrostatic Gravity Wave Results

θ1

θ1

4th order
Runge Kutta

2nd order
Energy
Conserving

pE ´ E p0qq{E p0q ˚ 100.

pE ´ E p0qq{E p0q ˚ 100.
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Future Work, Summary and
Conclusions
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Future Work

Future Work

1 Mass-based vertical coordinate

2 Dispersion analysis for time integrator

3 Replace S by s (Lorenz Ñ Charney-Phillips)

4 Multipatch domains: cubed-sphere grid

5 Computational efficiency: simplified Jacobian,
preconditioning, faster assembly and operator action

6 Past Reversible (Inviscid, Adiabatic) Dynamics: Subgrid
Turbulence, Moisture/Tracers/Chemistry, 2nd Law of
Thermodynamics, Physics-Dynamics Coupling (metriplectic?,
build on work by Almut Gassmann,John Thuburn?)
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Summary and Conclusions

Summary

1 Developing a structure-preserving atmospheric dynamical core:
Dynamico-FE

2 Use tensor-product Galerkin methods on structured grids:
Obtain almost all the desired properties

3 Mimetic Galerkin Differences: Fixes dispersion issues

4 Energy conserving time integration: possible, similar to
existing semi-implicit schemes!

Conclusions

1 Mimetic discretizations + Hamiltonian formulation =
Structure-Preservation = (Most) Desired Properties

2 Many choices of mimetic discretization, select the one that
gets the other properties
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Additional Slides
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Motivating science question

1 For canonical, finite-dimensional Hamiltonian systems,
structure-preserving numerics are essential to obtain correct
long-term statistical behavior

2 The equations of (moist) adiabatic, inviscid atmospheric
dynamics are a non-canonical, infinite-dimensional
Hamiltonian system

3 Given (2), to what extent does (1) hold, especially since the
real atmosphere has forcing and dissipation that makes it
non-Hamiltonian?

4 Studying these questions requires a structure-preserving
atmospheric model!
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Poisson Brackets (Lagrangian Vertical Coordinate)

Poisson Brackets

From Dubos and Tort 2014, evolution of Fr~xs “ Frµ, ~v ,Θ, zs is

dF
dt

“ t
δF
δ~x
,
δH
δ~x
uSW ` t

δF
δ~x
,
δH
δ~x
uΘ ` x

δF
δz

Bz

Bt
y (2)

t
δF
δ~x
,
δH
δ~x
uSW “ x

δH
δ~v
¨ ~∇δF

δµ
´
δH
δ~v
¨ ~∇δF

δµ
y`x

~∇ˆ ~v
µ

¨ p
δF
δ~v
ˆ
δH
δ~v
qy

(3)

t
δF
δ~x
,
δH
δ~x
uΘ “ xθp

δH
δ~v
¨ ~∇δF

δΘ
´
δH
δ~v
¨ ~∇δF

δΘ
qy (4)

where µ is the pseudo-density, ~v “ ~u ´ ~R is the absolute
(covariant) velocity, Θ “ µθ is the mass-weighted potential
temperature and z is the height.
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Equations of Motion: Lagrangian Vertical Coordinate

Equations of Motion

Choose F “
ş

µ̂ ( or
ş

v̂/
ş

Θ̂/
ş

ẑ) to get:

ż

µ̂

ˆ

Bµ

Bt
` ~∇ ¨ pδH

δ~v
q

˙

“ 0 (5)

ż

Θ̂

ˆ

BΘ

Bt
` ~∇ ¨ pθ δH

δ~v
q

˙

“ 0 (6)

ż

v̂

ˆ

B~v

Bt
`
ζv
µ
ˆ
δH
δ~v
` θ~∇pδH

δΘ
q ` ~∇pδH

δµ
q

˙

“ 0 (7)

ż

ẑ
δH
δz

“

ż

ẑ

ˆ

gµ`
Bp

Bη

˙

“ 0 (8)

Note that these are ALL 2D except for hydrostatic balance (8)
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Hamiltonian (Lagrangian Vertical Coordinate)

Hamiltonian and Functional Derivatives

H “ Hrµ, ~v ,Θ, zs “
ż

µp
~u ¨ ~u

2
` Up

1

µ

Bz

Bη
,

Θ

µ
q ` gzq (9)

ż

v̂
δH
δ~v

“

ż

v̂ pµ~uq (10)

ż

µ̂
δH
δµ

“

ż

µ̂

ˆ

~u ¨ ~u

2
` gz

˙

(11)

ż

Θ̂
δH
δΘ

“

ż

Θ̂
BU

Bθ
“

ż

Θ̂π (12)

ż

ẑ
δH
δz

“

ż

ẑ

ˆ

gµ`
Bp

Bη

˙

(13)
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Conservation

Energy

Arises purely from anti-symmetry of the brackets PLUS
δH
δz “ 0

Mimetic Galerkin methods automatically ensure an
anti-symmetric bracket

Works for ANY choice of H
Something similar can be done with a mass-based vertical
coordinate, although it is slightly more complicated

Mass, Potential Vorticity and Entropy

These are Casimirs

Can show that this discretization also conserves them
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What is Themis?

1 PETSc-based software framework (written in Python and C)

2 Parallel, high-performance*, automated* discretization of
variational forms

3 Using mimetic, tensor-product Galerkin methods on
structured grids

4 Enables rapid prototyping and experimentation

Available online at https://bitbucket.org/chris_eldred/themis
*- work in progress
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Design Principles

1 Leverage existing software packages: PETSc, petsc4py,
Numpy, Sympy, UFL, COFFEE, TSFC, Instant, ...

2 Restrict to a subset of methods: mimetic, tensor-product
Galerkin methods on structured grids

3 Similar in spirit and high-level design to FEniCS/Firedrake (in
fact, will share UFL/COFFEE/TSFC)
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Current Capabilities

1 Support for single block structured grids in 1, 2 and 3
dimensions

2 Parallelism through MPI

3 Arbitrary curvilinear mappings between physical and reference
space

4 Support for mimetic Galerkin difference elements, Q´r Λk

elements (both Lagrange and Bernstein basis) and mimetic
spectral elements (single-grid version only): plus mixed, vector
and standard function spaces on those elements

5 Essential and periodic boundary conditions

6 Facet and volume integrals

7 Linear and nonlinear variational problems
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Planned Extensions

1 UFL/TSFC/COFFEE integration

2 Multiple element types (in the same domain): enables MGD
elements with non-periodic boundaries

3 Matrix-free operator action

4 Manifolds and non-Euclidean domains

5 Multi-block domains: enables cubed-sphere

6 Geometric multigrid with partial coarsening

7 Weighted-row based assembly and operator action for MGD
elements

8 Custom DM specialized for multipatch tensor product
Galerkin methods

9 Further optimizations for assembly and operator action

Structure Preserving Dynamical Cores 38 / 39



Linear Modes
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