Extension of the 1981 Arakawa and Lamb Scheme to Arbitrary Grids

Chris Eldred Department of Atmospheric Science Colorado State University May 7th, 2015

Introduction

Chris Eldred Thesis Presentation

æ

_ ₽ ▶

Key Principles of Numerical Modeling

- Not solving arbitrary PDEsphysical system
- 2 No analytic solutions
- Do algebraic solutions have the same properties as the differential solutions?

Broad Research Overview: Dynamical Cores

э

Elements of Dynamical Core Design

(日)

э

C Grid and Z Grid Schemes

C and Z Grid Comparison

- C grid = staggered mass and wind
- Z grid = collocated mass, vorticity and divergence
- A major motivation of Z grid is to avoid computational modes; and have good wave dispersion properties independent of Rossby radius
- Comes at the cost of solving elliptic (global) equations

Standing on the Shoulders of Giants

- 4 同 6 4 日 6 4 日 6

My Research

Dissertation Overview

- C Grid Scheme on Arbitrary Grids (Icosahedral and Cubed Sphere)
- Z Grid Scheme on Orthogonal Grids (Icosahedral)
- Linear Modes: Stationary and Propagating (Inertia-Gravity Waves and Rossby Waves)
- Test Cases- Williamson TC2 (Solid Body Rotation), TC5 (Flow over a Mountain), TC6 (Rossby-Haurwitz Wave); Galewsky, Thuburn Forced-Dissipative; Order of Accuracy

Icosahedral-hexagons

Key Papers

Arakawa and Lamb 1981

A Potential Enstrophy and Energy Conserving Scheme for the Shallow Water Equations

AKIO ARAKAWA AND VIVIAN R. LAMB¹

Salmon 2004

Poisson-Bracket Approach to the Construction of Energy- and Potential-Enstrophy-Conserving Algorithms for the Shallow-Water Equations

RICK SALMON

Thuburn, Cotter and Dubos 2012

A FRAMEWORK FOR MIMETIC DISCRETIZATION OF THE ROTATING SHALLOW-WATER EQUATIONS ON ARBITRARY POLYGONAL GRIDS*

J. THUBURN[†] AND C. J. COTTER[‡]

▲ 同 ▶ → ● 三

AL81 on arbitrary grids

Extension of AL81 to Arbitrary Grids

Chris Eldred Thesis Presentation

Shallow Water Equations

Vector Invariant Shallow Water Equations

Vector Calculus Formulation

$$\frac{\partial h}{\partial t} + \vec{\nabla} \cdot (h\vec{u}) = 0$$
$$\frac{\partial \vec{u}}{\partial t} + q\hat{k} \times (h\vec{u}) + \vec{\nabla}\Phi = 0$$

Hamiltonian Formulation

$$\vec{x} = (h, \vec{u}) ; \frac{\partial \vec{x}}{\partial t} = \mathbb{J} \frac{\delta \mathcal{H}}{\delta \vec{x}}$$
$$\mathbb{J} = \begin{pmatrix} 0 & -\vec{\nabla} \cdot \\ -\vec{\nabla} & -q\hat{k} \times \end{pmatrix}$$
$$\mathcal{H} = \frac{1}{2}g(h, h) + \frac{1}{2}(h\vec{u}, \vec{u})$$
$$\frac{\delta \mathcal{H}}{\delta \vec{x}} = \begin{pmatrix} \Phi \\ h\vec{u} \end{pmatrix}$$

▲ 同 ▶ → ● 三

Shallow Water Equations: AL81 Scheme and Properties

Mimetic (Discrete Exterior Ca	lculus, Thuburn et. al 2012)
$ec abla imes ec \phi = 0$	$ar{D_2}ar{D_1}=0$
$(ec{ abla})^* = -ec{ abla}\cdot$	$D_2^{ op}=-ar{D_1}$

Conservation (Hamiltonian Methods, Salmon 2004)

Arakawa and Lamb 1981 Scheme: Limitations and Extensions

(A Subset of) AL81 Shortcomings

Restricted to logically square, orthogonal grids

TRiSK: Ringler, Skamarok, Klemp, Thuburn, Cotter, Dubos

- Extension of AL81 to general, non-orthogonal polygonal grids
- Choose between total energy and potential enstrophy conservation

What am I trying to accomplish?

- How can Arakawa and Lamb 1981 be extended to arbitrary, non-orthogonal polygonal grids?
- 2 Can the above be done in a way that preserves all of its desirable properties, and does not add new limitations?

Mimetic Methods (Discrete Exterior Calculus)

Mimetic Operators

$$ec{
abla} imes ec{
abla} imes ec{
abla} \phi = 0 \Longleftrightarrow ec{D_2} ec{D_1} = 0$$

 $(ec{
abla})^* = -ec{
abla} \cdot \Longleftrightarrow D_2 = -ec{D_1}^T$

(Discrete) Exterior Derivative

Primal-Dual Grid Mass lives on primal grid

Image: A = A

Conservation Laws (Hamiltonian Mechanics)

Hamiltonian (Energy)

$$\mathbb{J}^{\mathcal{T}}=-\mathbb{J}$$

$\ensuremath{\mathcal{H}}$ is positive definite

Casimirs (Potential Enstrophy)

$$\mathbb{J}\frac{\delta \mathcal{Z}}{\delta \vec{x}} = 0$$

Discrete Conservation

Enforce these conditions in discrete case \rightarrow conservation!

Recap: Conservative, Mimetic Methods

Conservation Laws

 ${\mathcal H}$ is positive definite

Mimetic Properties

$$\vec{
abla} imes \vec{
abla} \phi = \mathbf{0} \Longleftrightarrow \vec{D_2} \vec{D_1} = \mathbf{0}$$

$$(\vec{\nabla})^* = -\vec{\nabla} \cdot \Longleftrightarrow D_2 = -\bar{D_1}^T$$

Conservative, Mimetic Methods

 Use mimetic operators to build a discrete (quasi-)Hamiltonian system

Generalized C Grid Discretization: Hamiltonian-DEC

• Discrete variables are $m_i = \int h dA$ and $u_e = \int \vec{u} \cdot \vec{dI}$

• C grid staggering $(m_i \text{ at cell centers}, u_e \text{ at edges})$

Q operator is the remaining hurdle

What is **Q**?

Diagram of Q operator action

$q\hat{k} imes extsf{Q}$

Given mass fluxes normal to primal edges and potential vorticities at vertices (black diamonds), produces PV fluxes normal to dual edges

General Form of **Q**

Following Salmon 2004, set

$$\mathbf{Q}F_{e} = \sum_{\mathbf{e}' \in \mathbf{ECP}(e)} \sum_{\mathbf{v} \in \mathbf{VC}(i)} q_{\mathbf{v}} \alpha_{e,\mathbf{e}',\mathbf{v}} F_{\mathbf{e}'}$$

What are $\alpha_{e,e',v}$'s? Each $\alpha_{e,e',v}$ is associated with one green/red edge pair; and one blue vertex

Diagram of Q operator stencil

Discrete Conservation

Energy

$$\mathbb{J}^{\mathsf{T}} = -\mathbb{J} \longrightarrow \mathbf{Q} = -\mathbf{Q}^{\mathsf{T}} \longrightarrow \alpha_{e,e',v} = -\alpha_{e',e,v}$$

Potential Enstrophy

$$\mathbb{J}\frac{\delta \mathcal{Z}}{\delta \vec{x}} = 0 \longrightarrow \text{ linear system of equations} \longrightarrow \mathbf{A}\vec{\alpha} = \vec{b}$$

Also want **Q** to give steady geostrophic modes when q_v is constant

Solving $\mathbf{A}\vec{\alpha} = \vec{b}$

Issue: System is too large

- Geodesic grid: 90 coefficients per cell, all coefficients are interdependent \rightarrow not feasible for realistic grids
- Cubed sphere grid is similar (24 coefficients per cell)

Solution: Subsystem Splitting

$$\mathbf{A}\vec{lpha} = \vec{b} \longrightarrow \sum_{i} \mathbf{A}_{i}\vec{lpha}_{i} = \vec{b}_{i}$$

Split into independent subsystems for each cell!

System has been solved for various planar and spherical grids Gives AL81 on a uniform square grid

Recap: What have I accomplished?

What has been done?

- Arakawa and Lamb 1981 extended to arbitrary grids via new **Q**
- Coefficients can be precomputed (efficiently)

Hamiltonian

 $\ensuremath{\mathcal{H}}$ is positive definite

$$\mathbb{J} = -\mathbb{J}^{\mathsf{T}}$$
$$\mathbb{J} \frac{\delta \mathcal{Z}}{\delta \vec{x}} = 0$$

Mimetic

$$\vec{\nabla} \times \vec{\nabla} \phi = 0 \iff \bar{D}_2 \bar{D}_1 = 0$$
$$(\vec{\nabla})^* = -\vec{\nabla} \iff D_2 = -\bar{D}_1^T$$

Test Case Results

Chris Eldred Thesis Presentation

Model Configuration

Settings

- Cubed Sphere: 6x384x384, 880K cells (25km resolution)
- Geodesic: G8, 640K cells (30km resolution)
- 3rd Order Adams Bashford (15s CS, 22.5s Geodesic)
- 3 Variants of **Q**

Galewsky et. al

Galewsky (Unstable Jet)

Chris Eldred Thesis Presentation

- ● ● ●

No dissipation

Run for 10 days, absolute vorticity at 6 days is shown Perturbation added to (balanced) initial height field

Galewsky et. al (Unstable Jet)- C Grid Geodesic

Inactive portion of jet differs

Minor differences in active portion of jet

A > 4 B

Galewsky et. al (Unstable Jet)- C Grid Cubed Sphere

A > 4 B

Galewsky et. al (Unstable Jet)- Z Grid Geodesic

- ● ● ●

Order of Accuracy

Order of Accuracy (Taylor Series Sense)

Chris Eldred Thesis Presentation

RMS Error

Order of Accuracy- Laplacian on Primal (C Grid)

10 100 10-1 10-1 10-2 10.5 10-3 10-3 10-10 geo-tweaked geo-tweaked aeo-spring0.8 geo-spring0.8 aeo-spring1.1 aeo-sprina1.1 10.5 10 aeo-cvt aeo-cvt 101 10 10² 10³ 10⁴ 10⁶ 101 10⁵ 107 10 10² 103 10^{4} 105 10^{6} 107 Computed for $\psi = \cos(\theta) \sin(\lambda)$

Maximum Error

▲ 同 ▶ ▲ 目

Cubed sphere is inconsistent, geodesic is \approx 1st order

Order of Accuracy- Q

RMS Error

Maximum Error

10 10 10 10-2 10-2 10-3 10-3 10-4 10 geo-tweaked geo-tweaked aeo-spring0.8 aeo-sprina0.8 10-5 geo-spring1.1 geo-spring1.1 10 aeo-cvt aeo-cvt 101 10 104 101 10² 103 105 10^{6} 107 103 102 10^{3} 10^{4} 105 10^{6} 107

Computed for $\psi = q = \cos(\theta) \sin(\lambda)$ error = $q_e \bar{D_1} \psi_e - \mathbf{Q}(q_v, D_1 \psi_v)$ error = exact PV flux from streamfunction vs computed PV flux All grids are inconsistent

Chris Eldred

Order of Accuracy- Zonal Jet (Williamson Test Case 2, C Grid)

Thuburn (Forced-Dissipative Turbulence)

Chris Eldred Thesis Presentation

Thuburn (Forced-Dissipative Turbulence)- Description

2400 days total run time: 400 days spin-up, 2000 days simulation Run at C6/G6 resolution (\approx 120km resolution)

Thuburn (Forced-Dissipative Turbulence)- Height (C Grid Geodesic)

Zonal means are basically identical Differences (mid-latitudes) in zonal standard deviations

A D

Thuburn (Forced-Dissipative Turbulence)- Height (C Grid Cubed Sphere)

Total energy variant has issues in zonal mean Zonal standard deviations are different

A > 4

Thuburn (Forced-Dissipative Turbulence)- Height (Z Grid Geodesic)

Identical zonal means Differences in zonal standard deviations at mid-latitudes

Thuburn (Forced-Dissipative Turbulence)- Divergence (Zonal Means, C and Z Grid)

C Grid Geodesic C Grid Cubed Sphere Z Geodesic zonal means are almost identical Again, cubed-sphere total energy variant is different Z Grid and C grid markedly different

Z Grid Geodesic

Thuburn (Forced-Dissipative Turbulence)- Divergence (C Grid)

C Grid Geodesic

C Grid Cubed Sphere

Strong grid imprinting for ALL grids

C Grid Geodesic

Thuburn (Forced-Dissipative Turbulence)- Divergence (Z Grid)

Z Grid Geodesic

Z grid does not show the same grid imprinting Possibly due to better behaviour of inconsistent Z grid operator (Jacobian)?

Summary and Conclusions

Conclusions

Chris Eldred Thesis Presentation

Summary

Summary

- Galewsky results indicate all geodesic variants, and all but total energy cubed-sphere variants are producing good results
- Q is inconsistent for all grids; Laplacians are inconsistent for cubed-sphere
- Long time tests (Thuburn forced-dissipative) show strong grid imprinting NOT present in shorter (Galewsky) tests
- The Z grid scheme does not appear to have any of these issues, but it is also inconsistent (Jacobian operator)

Fixing the C Grid Scheme

Primal-Dual Finite Elements

- Recent work by John Thuburn and Colin Cotter
- ≥ Low order, compound polygonal finite elements (same degrees of freedom) → all operators are consistent
- Current version does not conserve energy or potential enstrophy
- Can fix this with Hamiltonian approach

Figure from Thuburn and Cotter 2015. Bottom row is primal function spaces, top row is dual function spaces.

Elements of Dynamical Core Design- Redux

(日)

э

Conclusions

Conclusions

- This C grid scheme on geodesic and cubed-sphere grids does not appear suitable as a basis for dynamical core development
- This Z grid scheme does appear suitable, but inconsistency is troubling, although it can likely be fixed

Future Work

- Consistent Q (Primal-Dual Finite Element)
- Onsistent Jacobian operator for Z grid (Finite Element)
- Output State of the second second
- Sully conservative (implicit) time stepping

Acknowledgements

Acknowledgements

- My advisor, Dave Randall, for giving me the freedom to follow my ideas
- ② Our research group, for lively conversations and debates
- Fellow graduate students- Doug, Brandon, John, Liz, many others
- My committee, for their invaluable feedback and generous donation of time
- My parents, sisters and Nikki for their unwavering support

Questions?