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Broad Research Overview: What are dynamical cores?

1 Develop discrete models of the atmosphere (dynamical cores)

2 Dynamical core: deals with ”resolved processes”

3 Parameterizations: deals with ”unresolved processes”

4 Model: dynamical core + parameterizations

Which is the model, and which is reality? (from Miura et. al 2007)
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Philosophy of Dynamical Core Development

1 Model development is a series of choices: equation sets,
predicted variables, numerical methods, many others

2 Numerical model: Continuous equations → algebraic
equations

3 Are solutions between these two the same?

4 → Mimetic methods, conservation properties

~∇× ~∇φ = 0⇐⇒ CG~φ = 0
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Mimetic Methods

Discrete Exterior Calculus

~∇× ~∇φ = 0⇐⇒ D̄2D̄1 = 0

~∇ · ~∇Tφ = 0⇐⇒ D2D1 = 0

(~∇)∗ = −~∇· ⇐⇒ D2 = D̄1
T

(~∇T )∗ = −~∇× ⇐⇒ D̄2 = −DT
1

These are purely topological relations

Spherical Grids
Planar Grids
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Conservation Laws

1 Why are certain quantities conserved?

2 → Symmetry!

3 Ex. Translational symmetry ↔ momentum conservation

4 Ex. Time symmetry ↔ energy conservation

5 Noether’s theorem: every continuous symmetry leads to
conserved quantity (and visa-versa)

Rotational Symmetry Translation Symmetry
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Discrete Conservation Laws

1 Problem: Computers don’t understand continuous symmetry

2 Solution: Computers understand anti-symmetry

{A,B} = −{B,A}

3 → Non-Canonical Hamiltonian Mechanics

∂~x

∂t
= J

δH
δ~x

J
δZ
δ~x

= 0

H - Hamiltonian (Energy)
J - Casimirs (PV, Potential Enstrophy)

J- Antisymmetric bilinear operator (symplectic)
~x- state variables
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Conservative, Mimetic Methods

Conservation Laws

1 Hamiltonian Mechanics

2 Salmon, Dubos, Gassmann,
Sommer, Nevir, others

Mimetic Properties

1 Discrete Exterior Calculus

2 Thuburn, Cotter, others

Conservative, Mimetic Methods

1 Use DEC to build a discrete (quasi-)Hamiltonian system

2 Unifies two important lines of research
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Shallow Water Equations

Vector Invariant Shallow Water Equations

~x = (h, ~u)

J =

(
0 ~∇·
~∇ qk̂×

)

H =
1

2
g(h, h) +

1

2
(~F , ~u)

δH
δ~x

=

(
Φ
~F

)
=

(
gh + K
h~u

)
Z =

∫
Ω
dΩhC (q) Shallow water simulation from

Ringler et. al 2010
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Generalized C Grid Discretization

Discrete variables are mi =
∫
hdA (discrete primal 2-form)

and ue =
∫
~u · ~dl (discrete dual 1-form)

C grid staggering (mi at cell centers, ue at edges)

General formulation is:

~x = (mi , ue)

J =

(
0 D2

D̄1 Q

)
H =

1

2
g(mi ,mi )I +

1

2
(Fe , ue)H

δH
δ~x

=

(
IΦi

HFe

)
Non-orthogonal primal-dual C

grid
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Summary

1 General discrete framework can conserve mass, potential
vorticity, total energy and potential enstrophy on
general, non-orthogonal polygonal meshes

2 Framework cleanly splits topological (D̄1,D2, etc.) and
metrical (I,H,etc.) aspects

3 Hamiltonian/DEC framework also has useful mimetic
properties (linear stability, no spurious vorticity production,
etc.)

4 Any questions?
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Mass and Potential Vorticity Conservation

Mass Conservation

∂mi

∂t
+ D2HFe = 0

Local and global conservation by form alone (”flux form”,
independent of how Fe is formulated)

Potential Vorticity Conservation

∂mvqv
∂t

+ D̄2QHFe = 0

Local and global conservation by form alone (”flux form”,
independent of how Q is formulated)
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Discrete Energy Conservation

Requires two things:

1 J is anti-symmetric: DT
2 = −D̄1, and Q = QT

2 H is positive definite: I and H are symmetric positive definite

Planar Grids
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Discrete Potential Enstrophy

ZC =
1

2
(ηv , J

−1qv )J

δZC
δ~x

=

(
−RT q2

v
2

D̄2
T
qv

)
=

(
−RT q2

v
2

D1qv

)

Construction of R from Thuburn
et. al 2009

Discrete vorticity is
ζv = D̄2ue

Mass-weighted potential
vorticity
mvqv = ζv + f = ηv

mv = Rmi ; R maps primal
2-forms to dual 2-forms
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Discrete Potential Enstrophy Conservation

Conservation

Casimir conservation requires

J
δZC
δ~x

= 0

which gives

D2D1qv = 0 (1)

−D̄1R
T q2

v

2
+ QD1qv = 0 (2)

Operator Requirements

(1) is automatic (D2D1 = 0)
(2) is tricky- depends on RT

TRiSK and Arakawa and
Lamb 1981 schemes both
construct Q such that (2) is
satisfied

Only Arakawa and Lamb
1981 also has Q = QT

(energy conservation)

Form of (2) gives hope that Arakawa and Lamb 1981 scheme
can be extended to non-orthogonal, arbitrary polygonal
meshes

Chris Eldred CSGF Presentation


	Introduction
	My Research
	Appendix

