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Introduction

The goal of this presentation is to propose some basic ideas behind
the development of a complete finite volume code for the numerical
simulation of multifimensional hydrodynamic and flow problems.
In particular, Finite Volume method relay on the hypothesis of a
piecewise constant approximate solution. This implies that at each
time level one has to solve a collection of local Riemann Problems.
This short course aims to explain the properties of these Riemann
Problem, how to solve them both in the case of scalar conservation
laws and the case of nonlinear hyperbolic systems, and from this to
devise the general concept of conservative, stable and convergent
Finite Volume schemes.
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PHYSICAL MODELS

MAIN PHYSICAL MODELS
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Non Linear Systems Considered

We are intersted by fluid flow problems described by such non linear
systems:

[∂W /∂t] + [∂F (W )/∂x ] + [∂G (W )/∂y ] + [∂H(W )/∂z ] = S(W )
(1)

Examples:
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Some examples of considered physical problems

Homogeneous Hyperbolic systems

[∂W /∂t] + [∂F (W )/∂x ] + [∂G (W )/∂y ] + [∂H(W )/∂z ] = 0 (2)
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Euler equations in one space dimension


[∂ρ/∂t] + [∂(ρu)/∂x ] = 0

[∂(ρu)/∂t] +
[
∂
(
ρu2 + P

)
/∂x

]
= 0

[∂E/∂t] + [∂ [u (E + P)] /∂x ] = 0

(3)

with the perfect gas equation of state:
p = (γ − 1)

(
E − [1/2] ρu2), where ρ is the fluid density, u the

velocity, E the energy and p the pressure.
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Shallow Water Flow

We consider water flow in a configuration where the water depth is
neglectible when compared to the characteristic length of the
domain. [4]).
If the bottom is flat, and the friction neglectible, the problem is
described by the following system:

[∂h/∂t] + [∂(hu)/∂x ] = 0

[∂(hu)/∂x ] + [∂/∂x ]
(
hu2 + [1/2] gh2) = 0

(4)

h being the water depth, u the velocity, and g the gravity constant.
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Exact solutions and properties for 1D scalar problems

Consider the 1D scalar problem:
[∂u/∂t] + [∂f (u)/∂x ] = 0 in IR×]0,T [

u = u(x , t) ∈ IR

u(x , 0) = u0(x)

(5)

In the sequel, note X = IR× [0,T [.

Example, Burger’s equation: [∂u/∂t] + [∂/∂x ]
([
u2/2

])
= 0
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Fundamental theorem

Theorem

The 3 following assertions are equivalent:
i) u is a weak solution of problem (5) , i.e:
∞∫
0

∫
IR

(u [∂ϕ/∂t] + f (u) [∂ϕ/∂x ]) dxdt +

∫
IR

u0(x)ϕ(x , 0)dx = 0,

∀ϕ ∈ D (IR× [0,+∞[)
ii) ∀R = [x1, x2]× [t1, t2] ⊂ Ω = IR× [0,T ] ,∫
∂R

[u.nt + f (u).nx ] dσ = 0
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Theorem

iii) If u is C 1, u is classical solution of [∂u/∂t] + [∂/∂x ] f (u) = 0 ,
and on a shoc curve Γ (ul , ur ), the solution is governed by the jump
condition: [f (u)] = s [u].
One defines the jump [u] = ur − ul , and the curve Γ (ul , ur ), which
equation is: [dx/dt] = s, separates the left and right states ul and
ur

The jump condition is called the Rankime-Hugoniot condition in
gas dynamics.
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Remark
i) says that we are considering solutions in the distribution sens
iii) is used to develop exact solutions
ii) is the basic property to write finite volume schemes
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Weak solution and jump condition

Smooth solution
If u ∈ C 1(X ), one has: (5) =⇒ [∂u/∂t] + f ′(u) [∂(u)/∂x ] = 0
then in the frame (x , t), u is constant on the characteristic curve
given by: 

[dx(t)/dt] = f ′ [u (x(t), t)]

x(t = 0) = x0

(6)

One deduce the solution u:

u (x(t), t) = u (x(0), 0) = u (x0, 0) = u0(x0)
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1. Linear case

f (u) = cu : [∂u/∂t] + c [∂u/∂x ] = 0 =⇒ a(u) = c

characteristic curve: x = x0 + tc ⇔ x0 = x − ct
Solution: u(x , t) = u0(x − ct)
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2. Burger’s equation
Consider the non linear equation:
[∂u/∂t] + [∂/∂x ]

[
u2/2

]
= 0,

here f (u) =
[
u2/2

]
, then a(u) = f ′(u) = u

The characteristic curve is given by: x = x0 + tu0(x0)
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Continuous solution of Burgers equation
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Discontinuous solution of Burgers equation
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Non Unicity of weak solutions

Example: Consider the Burger’s equation:

[∂u/∂t] + [∂/∂x ]
[
u2/2

]
= 0 (7)

and the initial condition : u0(x) =

{
0 if x < 0
1 if x ≥ 0

First possibiliy: a weak solution with the shoc Γ (0, 1).
The jump condition gives:
[f (u)] = s [u] =⇒

[[
u2
r /2
]
−
[
u2
l /2
]]

= s [ur − ul ] =⇒ s =

[1/2] =⇒ u(x , t) =

{
0 si [x/t] < [1/2]
1 si [x/t] ≥ [1/2]
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Second possibility: a continuous weak solution.

u(x , t) =


0 si [x/t] < 0
[x/t] si 0 ≤ [x/t] < 1
1 si [x/t] ≥ 1
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We come to the fact that one needs a specific criterium to select,
among the above two weak solutions, the unique physical one.
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Physical validation of the solution: the entropy condition

The entropy solution

Definition
A smooth convex function U, is said to be an entropy of the
problem, if there exists an entropy flux F such that:
U ′(u)f ′(u) = F ′(u).

Definition
a weak solution u of (5) is said entropy solution if
∀ϕ ∈ D (IR×]0,T ]) :
T∫

0

∫
IR

(U(u) [∂ϕ/∂t] + F (u) [∂ϕ/∂x ]) dxdt ≥ 0, where U is an

entropy of the problem, and F its entropy flux.
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Theorem
(Kruzkov 1970) Under some regularity assumptions on u0, there
exists a unique entropy weak solution of problem (5).

F. Benkhaldoun1, M. Seaid2 2012 IPWE, January 4-7, Marrakech, Morocco



Proposition

A piecewise C 1 function u, is an entropy weak solution of (5) if and
only if:
i) u is a classical solution in (x , t) regions where u is C 1

ii) On an shoc curve Γ, u satisfies [F (u)] ≤ s [U(u)] , ∀ (U,F ) a
couple of entropy and antropy flux.

Corollaire

1) If f is strictly convex, then a shoc is entropic if and only if:
f ′(ur ) < s < f ′(ul )

Corollaire
2) If f is strictly convex, then a shoc is entropic if and only if:
ur < ul
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Application : the first weak solution in example (7) is non entropic,
and hence non admissible.
The second weak solution is the unique entropy solution.
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EXACT SOLUTION FOR HYPERBOLIC SCL
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Linear systems

Let A be a constant square matrix of ordre p, W0 ∈ L∞(IR)p, and
the system: 

[∂W /∂t] + A [∂W /∂x ] = 0

W (x , 0) = W0(x)
(8)

We assume that the system is strictly hyperbolic (i.e. A is
IR-diagonalizable and has p distinct eigenvalues).
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Hyperbolic Systems

Hyperbolic system means A = RΛR−1 with
Λ = Diag(λ1, ..., λj , ..., λp) and λ1 < λ2 < ...λj < ... < λp.
R = [r1, ..., rj , ..., rp] is the eigenvectors matrix, i.e.:

A rj = λj rj

The rows li of the inverse matrix R−1 are the left eigenvalues of the
system, i.e.:

li A = λi li , and li . rj = δij

and

R−1 =


l1

. . .
li

. . .
lp


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Solution of the Linear System

Proposition
The solution of the linear system is given by:

W (x , t) =

p∑
j=1

[lj ·W0(x − λj t] · rj .

Proof: Let’s make the change of variable

V = R−1W , (vj = ljW ).

Thus,

W = RV =

p∑
j=1

vj rj .
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The linear system becomes

[∂V /∂t] + Λ [∂V /∂x ] = 0, x ∈ IR, t > 0,
V (x , 0) = R−1W0(x) = V0(x), .

where
vj(x , t) = vj(x − λj t, 0) = ljW0(x − λj t),

and

W (x , t) = RV (x , t) =

p∑
j=1

vj(x , t)rj .
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Self Similarity

Proposition
The solution of the Riemann problem

[∂W /∂t] + [∂/∂x ]F (W (x , t)) = 0,

W (x , 0) = W0(x) =


WL, if x ≤ 0,

WR , if x > 0,

is self-similar i.e.,
W (x , t) = H ([x/t]) .
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Proof:

For α > 0 let y = αx and ταt. Let

U(y , τ) = W (x , t) = W ([y/α] , [τ/α]) .

Remark that

U(y , τ = 0) = W0 ([y/α]) =


WL, if y ≤ 0,

WR , if y > 0,
,

[∂U/∂τ ] = [1/α] [∂W /∂t] , and [∂F (U)/∂y ] = [1/α] [∂F (W )/∂x ] .

Hence,
[∂U/∂τ ] + [∂/∂y ]F (U) = 0.

Thus,
U(y , τ) = W (y , τ) = W (αx , αt) = W (x , t),

and W is constant on the rays [x/t] = cst,

W (x , t) = H ([x/t])
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The Riemann Problem

Consider the initail value problem:

[∂W /∂t] + A [∂W /∂x ] = 0,
(9)

W (x , 0) = W0(x) =


WL, if x ≤ 0,

WR , if x > 0,

Note that if WL =
∑p

k=1 αk rk and WR =
∑p

k=1 βk rk

WR −WL =

p∑
k=1

(αk − βk) rk .
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Proposition
The solution of the problem (9) is made of constant states,
separated by characteristic curves Ck : [x/t] = λk in the frame
(x , t). The solution shows a jump

[W ]k = (βk − αk) rk ,

across the k-characteristic Ck . λk is the speed of propagation of
the discontinuity [W ]k (also called k-wave).
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Proof:

Remark that v0,k(x) = lk .
∑p

j=1 γj(x) rj ,

where γj(x) = αj if x < 0, and γj = βj if x > 0.

But lk .rj = δk,j , hence vk(x , t) = γk(x − λk t).

And as W (x , t) =
∑p

k=1 vk(x , t) rk ,

Finaly ∀(x , t) such that [x/t] 6= λk :

W (x , t) =
∑

[x/t]<λk

αk rk +
∑

[x/t]>λk

βk rk
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p 1 x

Figure: Riemann Problem Solution
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Phase frame

One has:
W (x , t) = WL +

∑
[x/t]>λk

(βk − αk) rk ,

or
W (x , t) = WR +

∑
[x/t]<λk

(βk − αk) rk ,

Remark: Solving the Rieman Problem consists in a decomposition
of the initial discontinuity into several jumps:

W (x , t) = WL +
P∑
1

(βk − αk) rk ,
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w2

r2

r1

w1

The path

D1

D2

W*

WL

WR

Figure: Riemann Problem Solution in Phase frame

Lines D1 and D2 give the location of all the states that can be
connected to WL by a 1-wave or a 2-wave family.
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WRWL

Figure: Riemann Problem Solution in (x,t) frame
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Non Linear Riemann Problem

Consider the problem:

[∂W /∂t] + [∂F (W )/∂x ] = 0

W (x , 0) = W0(x)

=


WL, if x ≤ 0,

WR , if x > 0,

We assume that F ′(W ) = A(W ) is strictly diagonisable in IR, with:
λ1(W ) < λ2(W ) < ... < λp(W ).
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Hugoniot Locus

Goal: Construct a weak solution made of m discontinuities
propagationg at speeds:
s1 < s2 < ... < sm.

Consider the discontinuity (Ŵ , W̃ ) with speed s.

The jump condition (Rankine-Hugoniot) writes:
F (Ŵ )− F (W̃ ) = s(Ŵ − W̃ )

This gives m equation with m + 1 unknowns.

−→ A one-parameter family solution.
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In analogy with the linear case, one writes:

W̃l = W̃l (u, Ŵ ) = Ŵ + url , u ∈ IR

sl = sl (u, Ŵ )

W̃l is connected to Ŵ by a l-wave.

Proposition

The curve (Hugoniot Locus) W̃l is tangent to the vector rl at
W = Ŵ .

Proof: Remark that W̃l (0, Ŵ ) = Ŵ , then derive the Rankine
Hugoniot relation with respect to u and put u = 0.
One gets m = p, sl (0, Ŵ ) = λl , and

[
dW̃ /du

]
= αrl (Ŵ ).
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r2(WL)

r2(WR)

r1(WR)

w1

WL r1(WL)

w2

W*

WR

Figure: Non Linear Riemann Problem Solution in phase frame
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Application: exact solution for Dam break problem


[∂h/∂t] + [∂(hu)/∂x ] = 0

[∂(hu)/∂x ] + [∂/∂x ]
(
hu2 + [1/2] gh2) = 0

(10)

x

uL = 0

hL

hR
uR = 0

Initial State

Figure: Initial condition for Dam break problem

Here r1(W ) = [1, λ1(W )]T , r2(W ) = [1, λ2(W )]T , where
λ1(W ) = u − c and λ2(W ) = u + c .
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The Rankine Hugoniot relation gives:

ũ = ε(ĥ − h̃)

√
[g/2]

([
1/ĥ
]

+
[
1/h̃
])

, where ε = 1 or ε = −1.

r1R
r2R r1L r2L

h

q=hu

W*

h*

WLWR

hR hL

Figure: Dam Break Solution in phase frame based on Rankine Hugoniot
relation
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One then gets:

u? = (hL − h?)
√

[g/2] ([1/hL] + [1/h?])

s1 = [−u?h?/(hL − h?)]

u? = (h? − hR)
√

[g/2] ([1/hR ] + [1/h?])

s2 = [u?h?/(h? − hR)]
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Rankine Hugoniot Solution

hR

hL

h*

x

s1
s2

Figure: Dam Break Solution in phase frame with the hypothesis of two
shocks
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Lax Entropy Condition

Proposition
A shock in a l-wave family is admissible if:

λl (WL) > sl > λl (WR)

or
λ−1

l (WL) < s−1
l < λ−1

l (WR)
t

x

ACCEPTABLE

shock curve

dx/dt = lL

dx/dt =   lR
WL

WR

NOT ACCEPTABLE
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Rarefaction Wave

Proposition
Let W (x , t) = H([x/t]) the solution of the Riemann Problem in a
smooth region. Then H is the solution of the following ODE:

H ′(µ) = [λl (H(µ)).rl (H(µ))]−1 ṙl (H(µ))

µ1 < µ < µ2

H(µ1) = WL

Application to SW system gives the solution:

h = [1/9g ]
(
2
√

ghL − [x/t]
)2

u = [2/3]
(√

ghL + [x/t]
)
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hR

hL

x

s2
h*

Dab break Entropy solution

Figure: Dam Break Entropy Solution
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The method of Finite Volumes for scalar 1D problems

Riemann problem and self similar solution

Definition
We call Riemann problem a system of a scalar conservation law and
a discontinuous initial condition:


[∂u/∂t] + [∂f (u)/∂x ] = 0

u0(x) =

∣∣∣∣ ul si x < 0
ur si x > 0

(11)

Lemma
The solution of the Riemann problem is self similar. i.e.: there
exists a function g such that u(x , t) = g([x/t]).
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The solution of the Riemann problem is self similar. i.e.: there
exists a function g such that u(x , t) = g([x/t]).
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proof of the lemma:
consider the change of variables: X = αx , and τ = αt, α > 0
One has then u(x , t) = u (x(X , τ), t(X , τ)) = U(X , τ)
One shows that the fuction u and U are solutions of the same
problem, and hence U(X , τ) = u(αx , αt) = u(x , t), which gives
u(x , t) = g([x/t]).

Proposition
The solution of the Riemann problem writes: u(x , t) = g([x/t]),
with u(x , t) = ul for [x/t] < α1, and u(x , t) = ur pour [x/t] > α2.

Remark
At the location of the original discontinuity x = 0, the solution
does not depend upon time: u(0, t) = g(0) = Riem(ul , ur ).
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The method of Finite Volumes for scalar 1D problems

We discretize the spacial domain: IR : xj = jh, j ∈ ZZ, and the
temporal domain: [0,T [: tn = nτ.
Let un

j = un(xj) be the approximate solution of u at (xj , tn),.
Introduce the piecewise constant function uτ (x , t) = un(x) if
t ∈ Tn = [tn, tn+1[ , where un(x) = un

j if x ∈ Ij =]xj−[1/2], xj+[1/2][.
Recall that if uτ is a weak solution of the problem, one has
(property ii)):

∀R ⊂ IR× [0,T ] :

∫
∂R

[uτ .nt + f (uτ ).nx ] dσ = 0
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xj xj+1/2xj 1/2 xj+1xj 1

hj
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Figure: 1D discretization
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Using R = Rn
j = Ij × Tn and the approximation:

un+1
j = [1/h]

∫ xj+[1/2]

xj−[1/2]

uτ (x , tn+1)dx

one gets:

un+1
j = un

j − [τ/h]
[
f
(
Riem(un

j , u
n
j+1)

)
− f

(
Riem(un

j−1, u
n
j )
)]

or

un+1
j = un

j − r
[
gG (un

j , u
n
j+1)− gG (un

j−1, u
n
j )
]

gG is the numerical flux of Godunov.

Definition
A finite volume scheme is said under conservative form when it can
be written:

un+1
j = un

j − r
[
gn
j+1/2 − gn

j−1/2)

]
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Definition
A conservative finite volume numerical scheme is consistent if
g(uj−q+1, ..., uj+q) tends to f (u) when uj+i tends to u, whith
−(q − 1) ≤ i ≤ q.

Definition
The numerical flux g is said Lipschitz continuous if
|(g(vj−q+1, ..., vj+q)− f (v)| < K max

−(q−1)≤i≤q
|vj+i − v)|
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Fundamental Lax-Wendroff theorem

Theoreme
Considere X = IR× [0,T [
Suppose Sτ is conservative with a Lipschitz continuous flux and
u0 = [1/h]

∫
Ij
u0(x)dx , if:

i) ‖uτ‖L∞(X ) ≤ C
ii) uτ −→ u, when τ −→ 0, almost everyware (a.e.) in L1(X )
then u is a weak solution of the problem.
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Lemme
The set BV (X ) ={
v ∈ L1(X ) such that VT (v) < R, and supp (v(., t)) ⊂ [−A,A] ⊂ IR

}
,

is a compact subset of L1(X ).

Definition
The scheme Sτ is TV-stable if ∃ τ0 > 0, / ∀ τ < τ0, uτ ∈ BV (X ).

Remarque

VT (uτ ) =
T/τ∑
n=0

+∞∑
j=−∞

(
τ
∣∣∣un

j+1 − un
j

∣∣∣+ h
∣∣∣un+1

j − un
j

∣∣∣)

Proposition
If Sτ is TV-stable, then it is convergent. i.e. uτ −→ u a.e. in
L1(X ).
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Proposition

A convergent conservative finite volume scheme with lipschitz
continuous numerical flux, which is entropy consistent, converges to
the unique entropy solution.
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Incremental form of a finite volume scheme

Definition
A finite volume scheme is under incremental form if one can writes:

un+1
j = un

j + Cn
j+[1/2]∆un

j+[1/2] − Dn
j−[1/2]∆un

j−[1/2] (12)

with:

∆un
j+[1/2] = un+1

j − un
j
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Proposition
Under the conditions: ∀j ∈ ZZ,∀n ≥ 0

Cn
j+[1/2] ≥ 0, Dn

j+[1/2] ≥ 0 (13)
Cn

j+[1/2] + Dn
j+[1/2] ≤ 1 (14)

The finite volume scheme under incremental form is TVD stable.
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Proposition
Under the conditions: ∀j ∈ ZZ,∀n ≥ 0

Cn
j+[1/2] ≥ 0, Dn

j−[1/2] ≥ 0 (15)
Cn

j+[1/2] + Dn
j−[1/2] ≤ 1 (16)

The finite volume scheme under incremental form is L∞ stable.
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FINITE VOLUMES FOR 2D PROBLEMS

FINITE VOLUMES FOR 2D PROBLEMS
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Fully 2D Poluttant Shallow Water model

Wt + F (W )x + G (W )y − F̃ (W )x − G̃ (W )y = S(W )

W = (h, hu, hv , hC )T

F (W ) = (hu, hu2 +
g
2
h2, huv , huC )T

G (W ) = (hv , huv , hv2 +
g
2
h2, hvC )T (17)

F̃ (W ) = (0, 0, 0, hDx
∂C
∂x

)T G̃ (W ) = (0, 0, 0, hDy
∂C
∂y

)T

S(W ) = (0, gh(Sox − Sfx), gh(Soy − Sfy ), 0)T

where g is the gravity acceleration. Sox , Soy and Sfx , Sfy are
respectively the bed slopes and friction terms. C means the
average pollutant concentration, Dx and Dy are dispersion
coefficients considered equal in the sequel.
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The Finite Volume method

The integration of equation (17) is done over a finite volume Ti .
We will denote by ∂Ti the boundary of cell Ti , by Γij the interface
between cells Ti and Tj , and E (i) is the set of triangles that have
common edge with volume Ti .
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The Finite Volume method
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Figure: cell and neighbors
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The Finite Volume method

T
T

j

i X

X

 i

 jd d
i

j

ij

Figure: Two Neighboring cells Ti and Tj
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The Finite Volume method

Let us write:

F(W ,~n) = nxF (W ) + nyG (W ),

F̃(W ,~n) = nx F̃ (W ) + ny G̃ (W ),

where (nx , ny ) are components of the outward unit normal to ∂Ti .
Due to Green’s formula, this leads to:

Meas(Ti )
∂Wi

∂t
+

∫
∂Ti

F(W ,~n) dσ−
∫
∂Ti

F̃(W ,~n) dσ =

∫
Ti

S(W ) dV

(18)
one has to evaluate the convection and diffusion flux F(W ,~n),
F̃(W ,~n) over the three borders of the cell Ti .
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The Finite Volume method

Let us split the boundary of the cell Ti in a union of partial
boundaries associated to each edge.

∂Ti =
⋃

j∈E(i)

Γij

eqn(18) gives at time tn+1,

W n+1
i = W n

i −
∆t

A (Ti )

 ∑
j∈E(i)

(∫
Γij

F(W ,~n) dσ −
∫

Γij

F̃(W ,~n) dσ

)
− ∆t
A (Ti )

∫
Ti

S(W ) dV
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Convection flux approximation

We seek an approximation of∫
Γij

F(W ,~n) dσ = Φ(Wi ,Wj ,~nij)meas(Γij)

where Φ is the numerical flux, Wi and Wj are respectively the
values of W at cells Ti and Tj .
P.L. Roe proposed a particular choice of Φ based upon the
resolution of approximate linear Riemann problems,

Φ(Wi ,Wj ,~nij) =
1
2

[F(Wi ,~nij) + F(Wj ,~nij)] (19)

− 1
2
|A∗(Wi ,Wj ,~nij)|(Wj −Wi )

with specific requirements about the matrix A∗.
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Second Order using MUSCL method

The scheme described above is first order accurate for the
convective part. It can be easily extended to second order accuracy
upon non-structured meshes, by using MUSCL technique intoduced
by Van Leer3. We can split this technique in two steps: First, in
order to increase the accuracy of the scheme, one approximates the
state W in the set of linear piecewise functions. At the interface
Γij , we define left and right states given by linear interpolation,

W−
ij = Wi +

1
2
~∇Wi .

−→
GiGj ,

W+
ij = Wj −

1
2
~∇Wj .

−→
GiGj ,

(20)

where ~∇ denotes the gradient operator, Gi and Gj are respectively
the barycenters of cells Ti and Tj .
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Second Order using MUSCL method

The remaining problem is to evaluate the gradient upon the cell

considered. In our case,
∂Wi

∂x
and

∂Wi

∂y
are evaluated as the

minimum points of the following quadratic function,

Ψi (X ,Y ) =
∑

j∈K(i)

|Wi + (xj − xi )X + (yj − yi )Y −Wj |2

where K (i) is the indices set of neigbourhood triangles that have
common edge or vertex with the triangle Ti , (xi , yi ) are barycenter
coordinates of cell Ti .
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The Finite Volume method

Ti

A

B

C

   

Figure: Neighboring cells for the Least Square approximation in MUSCL
method
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Unfortunatly, this method does not garantie the monotonicity
preserving of the scheme, to overcome this difficulty, one uses
limitations techniques. A general two-dimensional MinMod limiter
is obtained by,

∂ limWi

∂x
=

1
2

[
min

j∈K(i)
sgn
(
∂Wj

∂x

)
+ max

j∈K(i)
sgn
(
∂Wj

∂x

)]
min

j∈K(i)

∣∣∣∣∂Wj

∂x

∣∣∣∣
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∂ limWi

∂y
is evaluated in the same way. Then, interpolated left and

right values are obtained by replacing in eqn(20) ~∇Wi and ~∇Wj

respectively with ~∇limWi and ~∇limWj . Afterward, Roe numerical
flux is calculated using W−

ij and W+
ij .
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