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I- NUMERICAL SIMULATION OF WATER-OIL FLOW

IN A POROUS MEDIUM




MOTIVATIONS

Numerical simulation by Finite Volumes (FV) of the flow of a fluid

constituted by two immiscible and incompressible phases in a
porous medium. One example of such a flow is the extraction of oil

by water during exploitation of oil gisements.




MATHEMATICAL MODEL

e The tank is represented by an open set € of R? with smooth by
parts boundary I'. I' =1y UI's UTI's, where I'; is the inlet
where water is injected, I's the outlet from which oil is

recovered, and I's an impermeable part.
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e Assumptions

L.
2.
3.

the Darcy law applies separately for each fluid,

the medium is saturated by the two fluids,

the thermodynamic properties (density, viscosity) of the two

phases are constants,

. the capillary pressure and the permeability depend only of

saturation (case where () is constituted by only one type of
rock),

. the deformations of the porous medium as well as the effect

of gravity are negligible.




e The model of equations:

Under the previous assumptions, the application of continuity

law and Darcy law to each phase, leads to the system:

’

K (2)ku(Suw) Vo] = 0in Qr = Q x [0,T]

K (2)ko(S0) Vo] = 0 in @ = 2 x [0, 7]
So=1-S5
Pc = py — po = pe(S)Pem
S=8wM Guwn=—qq only
Gun=0 ¢, m=0o0nT5
S = Suwm, Po = Fatm and ¢,.n >0 onl's
S(x,0) = S%x) in Q



The above system can not be subject to a mathematical study,
owing to the fact that in the area where Sy, = Sy m, the first
equation disappears. It is one of the reasons for which Chavent
introduced a new unknown, called global pressure. This leads to
a system of coupled P.D.E. formed by a family of elliptic equations

in pressure and by a nonlinear parabolic equation in saturation:

(2)

(3)




/Ou a(s)ds where a(u)
(note that a(1) = a(0) = 0),

1
P = §(pw + po) + d(u) the global pressure

1

with 6(u) = /1 u(b(u) - §)p;(s)PCMds.




THE NUMERICAL SCHEME

The temporal domain [0, T is discretized in subintervals: [t,, ;41|
of length At,,, n=0,..., Ny — 1 withtg =0and tn,. =T

The space domain, Which is the tank €2, is discretized using a
triangular non structured grid 7.

us and Ppg represent respectively a constant by cell approximation
of v and P in the center of the control volume C at time t,,.
Integrating the equations (2) and (3) and applying the divergence

theorem, one has for the pressure elliptic problem:

d(u")K(xz)VP".1iyds =0




for the parabolic problem:

u?’b—|—1 n tn—l—l
bt (< [ s tmesyat) +
tn

veoC

n+1
Z / K, o ( w)Vu, i, mes(y)dt

~yeOC\ OS2

For these two problems one needs to devise a discrete gradient on
the interface of the grid cells. For this purpose a first choice is a
method suggested by Vila, Coudiéere et Villedieu [1]. It
consists in approaching the gradient by its average on a diamond
shape Co-volume around the edge . One builds this cell diamond

by connecting the barycentres of the two triangles having v in

common to the ends of v (see figure(1)).




Figure 1: Diamond co-volume




Hence the component of the approximate gradient along x-axis

o L or,
ox |7Nmes(Cdec) o, Ox *

(subscript n is ommited to simplify) Application of divergence

writes:

dec

theorem gives:

oP 1
A ~ P TE
0x |y  mes(Cgec) Z € /gn do

geacdec

e is an edge of the co-volume Cy.. and n,. the axial component of
the outer normal vector to e.

For an edge ¢ of the diamond cell, let us note N; and N its two
ends, one then writes: P, ~ +(Pn, + Py,), where Py, and Py, are
the values of the pressure P at the points N; and N5. Hence one
has:

O ~ ) P P e
0 | meS(C’dec) Z 2( Ny T Nz) /n do

€€8Cdec €




In an analogous way, one has:

oP 1
— & —(P P e
oy y mes(Caoe) Z 2( N, + Pn,) /ny do

e€0Cyec €

The values of P at the centers W and F are Py and Pg while the
values at the nodes N and S are interpolated or deduced from
boundary conditions and are noted Py and Pg. For a node /N one

= 2 ox(N

KeV(N)

has:

where V() is the set of triangles having in common the node N,
Py the value of P at the center of cell K and ax (V) the

interpolation weights.




These weights must verify the following conditions for the scheme

to be consistant:




NUMERICAL EXPERIMENTS

Two test cases have been performed. A homogeneous isotropic

tank and a non homogeneous anisotropic one.

e In both cases, the initial condition u", the porosity ® and the

pressure P are the same.

lifx € Iy
Oif x € Q\Fl

u’(z) =

® = 0.2 and P, = 0, the mobilities and the capillary pressure

are given by:




e homogeneous isotropic case:
the tank 2 =]0,0.1[x]0,0.1] is discretized with 3826 triangles.
A constant time step has been used: At =1,3.107%, g4 = 1.4,

K = Id where Id is the 2 x 2 identity matrix

o =1, o =3, 11 =5 and ry = 3.

The following figures show the evolution of water saturation
with time as well as velocity field distribution in the thank.
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Figure 4: uw at t = 0.176 s




Velocity field in the ho-

Figure 5

1c case

trop

mogeneous 1so



¢ non homogeneous anisotropic case:
() =]0,1[x]0, 1], is discretized using 3662 triangles, time step is
At =2,46.107%, g4 = 0.5, ptyy =1, o =10, 71 =3 et 9 = 3,
permeabilities tensor is defined as follows:
Kq{six e Z4

K(x)
K5 sinon

1 0.3
0.3 1

Ky =

and Z; is a part of €2 defined on the figure (6).




Figure 6: The tank () with different permeability zones




Saturation de 'eau a t =0.0492 s




Saturation a t = 7.38 s
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COMPARAISON OF DIFFERENTS SCHEMES FOR

THE ELLIPTIC OPERATOR




Here we make a comparison between the diamond scheme

presented above and two other schemes suggested respectively by:
Pascal OMNES and al. and G. MANZINI and al.

The test case:

( Ou(x,t) B |
ot — Au(x,t) = f(x,t) in 2x]0,T]

’LL(X, t)|3Q =0Vt E]O,T]
u(x,0) =0Vx e

r(l—x)y(l —y)cost + 2(x(1 —x) +y(1 —y))sint
(z,y)

u(x,t) =x(1 —2)y(1 —y)sint V(x,t) € 2x]0,T]




P. OMNES SCHEME [7]

It consists of the construction of (V},), the discrete gradient
operator, and (V},.) the discrete divergence operator.

The discrete gradient:

The construction of the gradient is made in the same way as in the
diamond scheme, with the difference that the values on the nodes
are no more interpolated but are calculated as unknown of the
problem. For this purpose one integrates on two grids, the primal
triangular grid M”, and a dual grid M* obtained by joining the
centers of the cells around a node of M?*". This gradient is given by

its values on the diamond cells:

(Vhu);j : } meS(A;-)n;- + [u), — u; | mes(A;)n;

11




Sk, Sk, are the ends of the edge j corresponding to the centers
of the cells of M Py, Py,

T;,, Ty, are the 2 cells of M* having in common the edge j,
G, , G;, their gravity centers

D; the diamond cell,

ul ~ u(G;, ) and ukPa ~ u(Sk, )

la

Aj — [S/ﬂaSkQ] and A; — [Gil’ Gw]

—
. the normal to A; such that G;,G;,.n; >0

-

. the normal to A’ such that Sk, Sk,.n’; >0




The discrete divergence:
It is defined by its values on the two meshes Vj,. := (VI. V¥.) as

follows:

(Vi-V)i

(Vi Vi

1 .
Z §meS(A;-)Vj.nj
jee(k)N[J—Jbord41 J]

mes( P )




where:

e J :is the total number of edges of the primal mesh M? and
Jbord

is the number of edges on the boundary

V € (R7)?, such that Vip, =V

v(i) = {Jj, such that A; is an edge of T} },
e(k) = {j, such that Si is a node of A,}
n;; the normal to A; out of 17,

n’, the normal to A} out of Py
For the test case (4) an explicit version of the scheme is:

u; + At (Vi (Vyu")), + At f}
up + At (Vi (Vyu")), + AL fy




G. MANZINI SCHEME [6]

It is an alternative of the diamond scheme. It is distinguished from
this one by the conditions imposed on the weights for the
interpolation on the nodes, and a nonlinear approximation of the
gradient on the diamond cell.

Conditions on the weights

o Cpria <ag(P)<1VKeV(P)

¢ ZKEV(P) ag(P)=1

o ZKEV(P) CL/K<P>(CCK —ZCP> =0

Approximation of the gradient
The gradient G;;(up) on the interface f;; = T; N1} is approximated
as follows:

~ ~

Giji(up) = wij(up)Gij(up) +wji(up)Gji(up)




U
%nzj + {the tangential term},

u(z;),

w(®@ij),

the normal tof;; out of 1;,

(@5 — @4).1ij,

the gravity center of the cell T3,

orthogonal projection of z; on f;;
The explicit version of this scheme for the problem (4) writes:

P =l oy 2 G magmes (i) + A}

jev(i)




COMPARISON BETWEEN EXACT SOLUTION AND
THE SOLUTION GIVEN BY THE DIFFERENT
SCHEMES

For T' = 1.5 and on the same grid we implement the 3 schemes.

Figure 7 represents a cut in Y = 0.5 of each of the calculated

solutions and that of the exact solution. The solution calculated by
the schem of OMNES is the closest one to exact solution.




—— Sol-manzini
-0~ sol-Omnes
— sol exacte

= sol-coudiere

Figure 7: Comparison between exact solution and numerical so-
lutions at T'= 1.5




COMPARISON OF CPU TIME

In the table bellow CPU times are marked for each scheme on the

same mesh and for the same final time 7' =1,

Schemes Coudiere | Manzini

Temps CPU | 3.024s 5.264 s




BEHAVIOUR OF L! ERREOR IN TIME

For a fixed grid we mark the L' error for different times of

simulation: 0.3, 0.6, 0.9, 1.2, 1.5, and we observe the evolution of

the error for each scheme:




log(erreur)

1
Temps

Figure 8: L! error as a function of time




ORDER OF CONVERGENCE

We fix the final time T to 0.1, the spatial domain (2 is refined 5

times.
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Figure 9: the initial mesh (coarse) and the mesh refined two times
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The following figures represent the log of the L? error as a function
of the log of the step h = ml?xc? (K') where 6(K) indicates the

diameter of K. They show that the diamond scheme has the
highest order of convergence.




log(err)

Figure 11: L? error as a function of h

for the 3 schemes




—— erreur L2 pour schl
— droite de pente 1

log(err)

Figure 12: L? error plot as a function

of h for Diamond scheme
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Figure 13: L? error plot as a function

of h for Omnes scheme
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Figure 14: L? error plot as a function
of A for Manzini scheme




CONCLUSION

e Treatment of the elliptic and parabolic equation by a Finite

Volume scheme

e Robust scheme able to deal with heterogeneities and anisotropy

e The compared numerical study shows that the scheme of

Coudiere seems to be a good compromise of the different

schemes




References

1] Y. COUDIERE, J. P. VILA AND P. VILLEDIEU,
Convergence rate of finite volume scheme for a two

dimensional convection-diffusion problem, M2AN, Vol.33 N3,
p.493-516,1999.

G. CHAVENT, J. JAFFRE, Mathematical Models and
Finite Element for Reservoir Simulation, North-Holland, 1986.

MOHAMED AFIF, Schémas Volumes Finis pour une Classe
d’Equations de Type Convection-Diffusion Issue des Milieux
Poreux, These d’Etat UNIVERSITE CADI AYYAD
MARRAKECH, 2002.

M. AFIF, Convergence of finite volume schemes for
degenerate convection-diffusion equation arising in flow in
porous media, Comput. Methods Appl. Mech. Engrg,192, 2002.




5] GERARD L.G. SLEIJPEN AND DIEDERIK R.
FOKKEMA, Bicgstab(l) for linear equations involving
unsymmetric matrices with complex spectrum, Electronic

Transaction on Numerical Analysis, Vol. 1, pp 11-32,
September 1993.

ENRICO BERTOLAZZI AND GIANMARCO

MANZINI,A second-order maximum principle preserving
finite volume method for steady convection-diffusion
problems,SIAM J. NUMER. ANAL., Vol. 43 No. 5 pp.
2172-2199, 2005.

KOMLA DOMELEVO AND PASCAL OMNES, A finite
volume method for the laplace equation on almost arbitrary
two-dimensional grids, M2AN, vol. 39, No. 6, 2005, pp.
1203-1249.

8] R. EYMARD, T. GALLOUET AND R. HERBIN, Hand book of




Numérical Analysis Vol. 7, P.G. Ciarlet and J.-L. Lions, Eds.,
North-Holland /Elsevier, Amsterdam (2000) 713-1020.

9] R. EYMARD, Two-phase flow in porous media and finite
volume schemes, in F. Benkhaldoun and R. Herbin eds Finite
Volumes for Complex Application III 2001.




MERCI POUR VOTRE ATTENTION




