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Introduction
Geophysical water flows such as lakes and estuarine
waters typically exhibit a significant density stratification
related to chemical composition. In these water bodies
effects related to small density gradients may strongly
affect the hydrodyniamics. Density stratification process
are therefore often important in environmental flows, and
are a key feature in the biogeochemical mechanisms.

Objectives
The simulation of those flows requires stable, accurate,
conservative schemes able to sharply resolve density
gradients, to handle efficiently complex topographies
and free surfaces deformations, and to capture robustly
dry fronts..

The present work is aimed to build a computational
model endowed with these properties.

The model
We consider the one-dimensional multi-layer shallow waterequations

∂t (ρ jh j)+∂x (ρ jh ju j) = 0,

∂t (ρ jh ju j)+∂x

(

ρ jh ju
2
j +

1
2

gρ jh
2
j

)

= −gρ jh j

(

∂xZ+
j−1

∑
k=1

∂xhk

)

−gh j

M

∑
k= j+1

∂x (ρkhk) ,

where j = 1, . . . ,M with M is the total number of layers,ρ j is the water density.
We assume that a sediment transport takes place such that thedensity depends on space
and time variables,i.e., ρ j = ρ j(t,x)
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whereρs j is the sediment density, andc j is the depth-averaged concentration.
The equation for mass conservation of species is modeled by
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An equivalent system can be obtained by using the physical variables
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whereD( j)
t ω = ∂tω+u j∂xω, j = 1, . . . ,M.

A new finite volume scheme (FVC)
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whereF n
i±1/2 = F(Wn

i±1/2) are the numerical fluxes atx = xi±1/2 and timetn.

Wn
i±1/2 is constructed withthe method of characteristics applied tothe advective ver-

sion of the considered system.

the characteristic curves associated with the equation (1)are solutions of the initial-
value problems
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X j,i+1/2(tn+∆t/2) = xi+1/2, j = 1, . . . ,M.
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Once the characteristics curvesX j,i+1/2(tn) are known, a solution at the cell interface
xi+1/2 is reconstructed as
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is the solution at the characteristic foot computed by inter-
polation from the gridpoints of the control volume where thedeparture point resides
i.e.
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whereP represents the interpolating polynomial.
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Mnonlayer density dam-break problem with a single initial discontinuity
(left) and two initial discontinuities (right) on a flat bottom

Two-layer density dam-break problem with two initial discontinuities
on the strait of Gibraltar. (left) : initial state, (right) :steady state.

Comparison between computational times for monolayer density dam-break pro-
blem with a single initial discontinuity (example1) and twoinitial discontinuities
(example 2) on a flat bottom att = 200s using different gridpoints.

example 1 example 2

Gridpoints FVC Runsanov Roe SRNH FVC Runsanov Roe SRNH

100 0,21 0,06 0,78 0,81 0,61 0,17 2,67 2,7
200 0,4 0,19 3,1 3,17 1,33 0,6 10,36 10,6
400 0.94 0,67 12,18 12,58 3,36 2,22 41,37 42,46
800 2,58 2,66 48,83 50,34 9,64 8,73 164,86 172,34
1600 8,48 10,25 193,5 206,58 31,29 34,46 656,72 705,67

Conclusions
•A new model for shallow water flows with variable densities.

•A new finite volume scheme based on the method of characteristics which can be
used for solving non hyperbolic systems of conservation laws.

•Combined finite volume characteristics methods perform well.

•Aplication of the method to resolve complicated systems.

•Extension to systems of conservation laws in two space dimensions.

•Application of the method to unstructured grids.


