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Introduction

Goal

m Solve Ax = b, where A is a large sparse matrix, on a distributed
platform

How?

m Use Domain Decomposition (DD)

Focus of the talk

m DD is relevant for linear algebra applications
m Can a high performance algebraic solver compete with
problem-dependent solvers?
m Coarse Space for Additive Schwarz on the Schur and MaPHyS

m Only in the SPD case
m Need access to local matrices



Outline

Additive Schwarz on the Schur (AS/S)
m AS/S step by step
m Comparison with other DD preconditioners

MaPHyS solver

m Software Framework

m Distributed Subdomain Interface
m Two-level Parallelism

Two-level preconditioner for AS/S
m Need for Coarse Correction

m Coarse Space for AS/S

m Experimental results
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Outline

Additive Schwarz on the Schur (AS/S)
m AS/S step by step



Step 1: Analysis

Global Matrix A

m A is a general sparse matrix. We want to solve Ax = b.



Step 1: Analysis

Global Matrix A Adjacency graph G

m The adjacency graph of A (nxn) is used as an algebraic mesh:
G= ({17""”}’ {(i,j), ajj #0 | aji 7&0})
m On the first row of .A, ai,1, ai2 and ai,11 75 0
= (1.1), (1,2) and (1,11) € G



Step 1: Analysis

Global Matrix A Adjacency graph G

m A graph partitioner is used to split the graph



Step 1: Analysis

Global Matrix A Adjacency graph G
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Step 1: Analysis

Global Matrix A Adjacency graph G

m A7z has a block diagonal structure suitable for parallel computation



Step 1: Analysis

Global Matrix A Adjacency graph G

m How do we distribute Arr?



Step 1: Analysis

Local Matrix A; Adjacency graph G

m We assign each interface node to a neighboring subdomain
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Step 1: Analysis

Local Matrix A; Adjacency graph G

m We assign each interface node to a neighboring subdomain

N
- (Azz Azr, _ T AP,
A’ o (.Ar,-I,- Ar,-l',-> A N ; R’ A’Rl



Step 2: Factorization

Local Matrix A; Adjacency graph G

m We factorize Az,z, and compute S; = Ar,r, — Ar,z,.Af_lz_Az,.r,

L AI,'I,‘ AIiri
Ai = (AriIi Ariri>



Step 2: Factorization

Local Matrix A; Adjacency graph G

m We factorize Az,z, and compute S; = Ar,r, — Ar,z,.Af_lz_Az,.r,

L AI,'I,‘ AIiri
Ai = (AriIi Ariri>



Step 2: Factorization

Local Schur S; Adjacency graph G

-
i

m We factorize Az,z, and compute S; = Ar,r, — Ar,z,.Af_lz_AI,.r,

m Now, on each subdomain, the whole local problem is condensed onto
the interface (dense matrix)



Step 2: Factorization

Local Schur S; Adjacency graph G

m We solve the interface problem Sxr = f = by — ArIAE%bI
with a preconditioned Krylov method



AS Preconditioner

Local Matrix A; Adjacency graph G

= No overlap in A; : A=YV RTAR;



AS Preconditioner

Assembled Loc. Mat. A; Adjacency graph G

= No overlap_in A A= Efvzl RIAR;
m Assemble A; = R; AR/ using neighbor-to-neighbor communications

N _
B Mus = RIT-A,'_lRi

i=1



AS Preconditioner

Assembled Loc. Mat. A; Adjacency graph G

= No overlap in A; : A= vazl RIAR;
m Assemble A; = R; AR/ using neighbor-to-neighbor communications

N
" Mas/a= S RIAR; Not what we do

i=1



Step 3: Preconditioner Setup (AS/S)

Local Schur S; Adjacency graph G

m No overlap in S,' = Ar,.r,. - AF,—I,-AE,.%AI;F; . S= vazl R;—’;S,"Rr,



Step 3: Preconditioner Setup (AS/S)

Assembled Local Schur S; Adjacency graph G

m No overlap in S,' = Ar,.r,. - Ar,-I,AE—I_%ALri . S= vazl R;—’;S,'Rr,
m Assemble S; = Rr,SRr,

N _
[ MA5/5 = ZR;S,-_IRQ
i=1



Step 3: Preconditioner Setup (AS/S)

Assembled Local Schur S; Adjacency graph G

-
i

m Share not only the Ar,r, part, but also .Ar,.z,.Afl_lIiAz,r,.
m The neighbor's interiors are condensed on the subdomain’s interface
too.



Step 4: Solve

Local Schur S; Adjacency graph G

m on 1 Krylov method
m Sxr=f preconditioned with Mys,s



Step 4: Solve

Local Matrix A; Adjacency graph G

m on [: Krylov method

m Sxr=f preconditioned with Mys,s
m on Z: Direct method

B X7, = Ailz, (in - AIirini)



Step by step

Step 1: Analysis

m Graph partitioning and data distribution

Step 2: Factorization

m Computation of -Af,-lz,- and §; = Ar;r;, — Ar,z,Ai_lIiAz,r,

Step 3: Preconditioner Setup

m Assembly and factorization of S;

Step 4: Solve

m on I': Krylov method
m Sxr=f preconditioned with Mas/s = SN, RS Rr,
m on Z: Direct method

_ g1
B X1, = -AI,-I,- (bz; — Azyr;xr;)
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m Comparison with other DD preconditioners



Related DD preconditioners

m Neumann-Neumann (NN)
where D; is a partition of unity

N
= Mwy =Y RL DS/ D; Ry,
and S; = Ar;r; — AF;I;AE,-ll,--AI;F;

i=1

m Schur of Additive Schwarz (S—AS)
N ~n —
" Ms_as =3 RIS Ry, whereArr—ZRrR Ar;r; ReR]
i=1 ' A
and S; = -Ar,-r - Ar.z; AI 7, AI r; is the Schur of .A,

m Additive Schwarz on the Schur (AS/S)

B Mps/s = Z RT S Rr where S; = Rr, S R}r,

N
Z 'RFJ- (-AF,-F,- —.Arl.II.Ai]i—fALri) RrerTi



3D Test problem

Heterogeneous diffusion
m V(KVu) =1
m Alternating conductivity layers of 3 elements
(ratio K = Kmax/Kmin between layers)
Domain decomposition
m Constant subdomain size: 10 x 10 x 10 elements

m N subdomains

m N x1x1 (1D decomposition)
m N/2x2x1 (2D decomposition)

Boundary conditions

m Dirichlet on the left

m Neumann elsewhere
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m Software Framework



Step by step

Step 1: Analysis

m Graph partitioning and data distribution

Step 2: Factorization

m Computation of -Af,-lz,- and §; = Ar;r;, — Ar,z,Ai_lIiAz,r,

Step 3: Preconditioner Setup

m Assembly and factorization of S;

Step 4: Solve

m on I': Krylov method
m Sxr=f preconditioned with Mas/s = SN, RS Rr,
m on Z: Direct method

_ g1
B X1, = -AI,-I,- (bz; — Azyr;xr;)



Software Framework

Graph Partitioner

m Scotch [F. Pellegrini et al.]
m Metis [G. Karypis and V. Kumar]

Sparse Direct Solver

= MUMPS [P.R. Amestoy et al.]
m PaStiX [P. Ramet et al.]

Dense Direct Solver
m MKL library (Intel)

lterative Solver
m CG/GMRES/FGMRES [V.Fraysse and L.Giraud]



Use it! project.inria.fr/maphys/

Installing MaPHyS

m MaPHyS and its dependencies can be installed through spack in
< 15 minutes + coffee break

morse.gforge.inria.fr/spack/spack.html
m From a laptop to an heterogeneous supercomputer

morse.gforge.inria.fr/maphys/install-maphys-cluster.html

Using MaPHyS
m Documented test cases
m Centralized/Distributed input
maphys.gforge.inria.fr/maphystp.html

m CeCILL-C license


https://project.inria.fr/maphys/
http://morse.gforge.inria.fr/spack/spack.html
http://morse.gforge.inria.fr/maphys/install-maphys-cluster.html
http://maphys.gforge.inria.fr/maphystp.html

Outline

MaPHYyS solver

m Distributed Subdomain Interface



Interfaces for MaPHyS

Application
Analysis
Factorization
Preconditioner Setup
Solve

—
e
R
e
e

Centralized Matrix Interface

m Application provides global matrix A on one process

m MaPHyS performs algebraic domain decomposition and data
distribution



Interfaces for MaPHyS

Application
Analysis
Factorization
Preconditioner Setup
Solve

D
P T
e
DD T
D R

Distributed matrix interface

m Application provides global matrix A in a distributed way

m MaPHyS performs parallel algebraic domain decomposition and data
redistribution



Interfaces for MaPHyS

Application AP A A
Factorization P A N A
Preconditioner Setup P A N A
Solve A

Distributed subdomain interface

m Application performs domain decomposition and provides subdomain
connectivity and local matrices A; in a distributed way

m Analysis is bypassed



Interfaces for MaPHyS

Application

Factorization
Preconditioner Setup
Solve

R R
=
D
=

e

Distributed subdomain interface

m Application performs domain decomposition and provides subdomain
connectivity and local matrices A; in a distributed way

m Analysis is bypassed

m A request from users
m Naturally compliant with FEM, but also FV, DG, HDG...

m provides more relevant local information: A; is the true matrix of the
local problem!



Outline

MaPHyS solver

m Two-level Parallelism



Two-level Parallelism [S. Nakov]

Factorization step mmmmm
16 Setup of the preconditioner s
Solve step m—

1.4

100 1.2

time (s)

0.8
0.6

Normalized elapsed time

0.4
0.2

768 1536 3072 6144 12288 24576 768 1536 3072 6144 12288 24576
#cores #nodes

Nachos4M
N 4.1M
Nnz 256.4M




Two-level Parallelism [S. Nakov]

(OMPI process ¢ Thread (Domain

Node 17 » Node 2}

Node 3 Node 4

1 thread per process (32 domains in total)

m One subdomain per core leads to a huge number of subdomains on
modern architectures

m Lack of robustness



Two-level Parallelism [S. Nakov]

(MPI process ¢ Thread JDomain
Node 1 ) Node 2
Node 3 Node 4

2 threads per process (16 domains in total)
m Multithreaded subdomains — fewer and bigger subdomains

m Bigger local problem to solve ®
m Smaller and better-conditioned interface problem ©



Two-level Parallelism [S. Nakov]

COMPI process ¢ Thread JDomain
Node 1 Node 2
Node 3 Node 4

4 threads per process (8 domains in total)
m Multithreaded subdomains — fewer and bigger subdomains

m Bigger local problem to solve ®
m Smaller and better-conditioned interface problem ©



Two-level Parallelism [S. Nakov]

C)MPI process ¢ Thread JDomain
Node 1 Node 2
Node 3 Node 4

8 threads per process (4 domains in total)
m Multithreaded subdomains — fewer and bigger subdomains

m Bigger local problem to solve ®
m Smaller and better-conditioned interface problem ©



Results (2-level parallelism)

Hopper Platform (NERSC)

m Two twelve-core AMD "MagnyCours' 2.1-GHz
= Memory: 32 GB GDDR3

m Double precision

Matrix

Nachos4M
N 4.1M
Nnz 256.4M




Results (2-level parallelism)
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time (s)

768 1536 3072 6144 12288 24576
#cores



Results (2-level parallelism)

Factorization step mmmmm
16 Setup of the preconditioner s
Solve step m—
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Results (2-level parallelism)
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Context

Goal

m Stabilize the iterative solve time

m Improve the method’s scalability

How?

m Add some coarse correction in our preconditioner
= No change to the API

My contribution

m Convergence proof
m Only in the SPD case
m Need A; to be Symmetric Positive Semi-Definite (SPSD)
(e.g. through Distributed Subdomain Interface)
m Experimental results
m Python/MPI prototype
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Two-level preconditioner for AS/S
m Need for Coarse Correction



2D Test problem

Heterogeneous diffusion Boundary conditions

m V(KVu)=g m Dirichlet on the left

m 7 alternating conductivity m Neumann elsewhere
layers m Source: g=1

m Subdomain: 20 x 20 elements

Conductivity K (N = 8 subdomains)



2D Test problem

Heterogeneous diffusion Boundary conditions

m V(KVu)=g m Dirichlet on the left

m 7 alternating conductivity m Neumann elsewhere
layers m Source: g=1

m Subdomain: 20 x 20 elements

Conductivity K (N = 8 subdomains)

Solution x* (N = 8 subdomains)



Convergence Behavior

Xr, N = ].28, Niter = 0



Convergence Behavior

xr, N =128, njte, = 10



Convergence Behavior

xr, N =128, njte, = 20



Convergence Behavior

Xr, N = ].28, Niter = 30



Convergence Behavior

xr, N =128, njte, = 40



Convergence Behavior

Xr, N = ].28, Niter = 50



Convergence Behavior

Xr, N = ].28, Niter = 60



Convergence Behavior

xr, N =128, njte, = 70



Convergence Behavior
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Problem

m No global exchange of information
m Algebraic bound on Apax(Mas/sS), but problem with Apin



Convergence Behavior

xr, N =128, njte, = 70

Problem

m No global exchange of information
m Algebraic bound on Apax(Mas/sS), but problem with Apin

Solution

m Use an exact direct solve on a coarse space Vj



Coarse Correction for AS

Coarse space V,

m Should contain the problematic modes

m Often problem-dependent

Notations
Vo
Ro = Vg
So =RoSRT

Mo =RISyRo
Po = MoS

Basis of the coarse space
Restriction to the coarse space
Coarse matrix

Coarse solve

S-orthogonal projection on Vg



Coarse Correction for AS

2-level Additive Preconditioner
Mpso = Mo+ Mas
Deflated Preconditioner

Mas.p = Mo+ (T —Po) Mas (T — Po)T



Coarse Correction for AS

2-level Additive Preconditioner

Mauso = Mo+ Mas

Deflated Preconditioner

Masp = (T —Po) Mas



Outline

Two-level preconditioner for AS/S

m Coarse Space for AS/S



GenEO coarse space [N. Spillane 2014]

Robust Solvers

m Bound on the condition number independent of the "difficulty" of
the problem and the number of subdomains

m Coarse space for Additive Schwarz (AS), Neumann (NN) and Finite
Element Tearing and Interconnecting (FETI)

Context
m A Symmetric Positive Definite (SPD)

m Element matrices a,

Method

m Solve a generalized eigenproblem in each subdomain
m keep eigenvalues below a threshold 7 in the coarse space

m Use a two-level preconditioner



GenEO coarse space [N. Spillane 2014]

Local Eigenproblem and Global Coarse Space
= Let (pf),~, be the eigenvectors of
aq,(p,v) = A ane (5(p), 5i(v)) Vv € V()

corresponding to the m; smallest eigenvalues.
V= span{RjTEj(p}‘) ck=1,...,m; j=1,...,N}

Convergence Theorems

r(MaA) < (1+ ko) [2+k0(2k0+1)1max <1+ 1 )}

<j<N )\mj+1

1
kK(MpA) < ko [1 + ko max, (1 + )}

)\mj+1



GenEO coarse space [N. Spillane 2014]

Local Eigenproblem and Global Coarse Space
= Let (pf),~, be the eigenvectors of
aq,(p,v) = A aoe (5(p), 5i(v)) Vv € Vi(%)

corresponding to the m; smallest eigenvalues.
V= span{RjTEj(p}‘) ck=1,...,m; j=1,...,N}

Convergence Theorems

r(MaA) < (1+ ko) [2+k0(2k0+1)1max <1+ 1 )}

<j<N )\mj+1

1
kK(MpA) < ko [1 + ko max, (1 + )}

)\mj+1



My contribution (1/2)

Partition of Unity

Local Coarse Space

Global Coarse Space
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My contribution (1/2)
Partition of Unity
-1
= D = Rr, (ZJ.N:I RrTerj) R
Local Coarse Space
m V) =span{pl, S:pj=\ D:S:D;p, with M\ <n}
(S: is SPSD)

Global Coarse Space



My contribution (1/2)

Partition of Unity

s D =Rr, (Z,-“Ll R,-TJRFI_>_1R|-T,

Local Coarse Space
m V) =span{pl, S:pj=\ D:S:D;p, with M\ <n}
(S: is SPSD)
Global Coarse Space
Vo= RIDV



My contribution (2/2)

Number of colors
Let N. be the minimal number of colors needed to assign a color ¢; to each subdomain i, such
that:

G=¢ <+ RrSR{ =0

Convergence of the additive operator

N.+2
K(Masss2S) < (14 N) <NC +14 * >

Convergence of the deflated operator

1
k(Masss.pS) < Ne <1 + 5)



Outline of the proof: Fictitious Space Lemma

m Upper bound: coloring techniques
m Lower bound:

m Existence of splittings (ui)i1<i<n and (vi)i<i<n such that:

N N
u=TRouo+ Y RIu=Rgvo+(L—Po)> Riv.

i=1 i=1

m Control the local norms of (u;) through the norm of u:

N

N+ 2
>l < (Wt 1+ M2 g,
i=0

N 1

2 2
E [|vills, < <1+ *) lulls-
i=0 n

m Use a Cauchy-Schwarz inequality to conclude.
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m Experimental results



3D Test problem

Heterogeneous diffusion

m V(KVu)=1
m Alternating conductivity layers of 3 elements (ratio K between
layers)

m Dirichlet on the left, Neumann elsewhere

Domain decomposition

m N x1x1(1D decomposition)
m N/2x2x1 (2D decomposition)

m Constant subdomain size: 10 x 10 x 10 elements

Implementation

m MPI4+Python code (< 200 lines)












m The number of iterations is stabilized independently of K and N



m More difficult problems require a bigger coarse space



Net2 S)<N(1+12
K(Masss28) < (1+ Ne) (Nc +1+ 7 ) K(Mas;s.pS) ( ,,)






Perspectives

GenEO in MaPHyS
m Loosening the assumptions (A; SPSD and .A SPD)

m Implementation and test of the 2-level preconditioner on real
applications

Other recent/ongoing efforts in MaPHyS

m Partioning/balancing both interface and interior vertices
(A. Casadei)

m Parallel analysis and dist. sub. APl (M. Kuhn)

m H-arithmetic for local solve (H-PaStiX) and preconditioner
(A. Falco, G. Pichon, Y. Harness)

m Numerical resilience policies (M. Zounon)

m Task-based implementation (S. Nakov)



Thanks for your attention |

Questions ?

Funded by the Dedales ANR Project
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= ANR

m 2-level parallelism

m Subdomain Interface
m Figures



Outline

= ANR



ANR DEDALES project

Goal:

m High performance software for the simulation of two phase flow in
porous media

Challenges:

m Very large problems

m Highly heterogeneous medium, widely varying space and time scales

Solution:

m Improved Domain Decomposition algorithms

m Parallel hybrid linear solver

Partners:

JAVAN



Outline

m 2-level parallelism



MPI Parallelism in MaPHyS

Factorization
Preconditioner Setup
Solve

e

e

R

e

D



MPI + threads Parallelism in MaPHyS

Factorization
Preconditioner Setup
Solve

EEE
EEE

EEE
EEE
EEE
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m Subdomain Interface



Distributed Subdomain Interface [M. Kuhn]

Global data

m myndof: number of degree of freedom

m mysizeintrf: number of interface nodes

Local data
m A b
m myinterface(:): interface node list in global ordering
B mynbvi: number of neighbor processes
m myindexVi(:): list of neighbor processes (MPI ranks)
m myptrindexVi(:): pointer to common interface nodes of neighbors
m mynindexintrf (:): common interface node list of neighbors



Outline

m Figures



)\max(MAS/S,ZS) S Nc + 1 Amax(MAS/S,DS) S Nc



)\min(MAs/&ZS)

>__ 1
= Ne+14 82
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1
1+

S|



	Additive Schwarz on the Schur (AS/S)
	AS/S step by step
	Comparison with other DD preconditioners

	MaPHyS solver
	Software Framework
	Distributed Subdomain Interface
	Two-level Parallelism

	Two-level preconditioner for AS/S
	Need for Coarse Correction
	Coarse Space for AS/S
	Experimental results

	Appendix
	ANR
	2-level parallelism
	Subdomain Interface
	Figures



