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1 Presentation of the test case

This is a standard test-case used in [5, 1, 2, 7] among others.
For weak interactions between the bed and the flow, it is very demanding in
term of CPU time due to the large discrepancy between the time scales of the
bed evolution and those of the water flow. Therefore, it is a good test to judge
the practical usefulness of numerical schemes with respect to a balance between
accuracy and robustness/cost.

1.1 The Mathematical model

The mathematical model is composed of the standard two-dimensional shallow
water equations
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completed by an Exner morphodynamical equation modeling the evolution of
the sediment bed
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where p is the (constant) sediment porosity and Qx and Qy are the bed-load
sediment transport fluxes in the x and y directions. This benchmark uses the
Grass model [4] to define these fluxes
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where A and 1 ≤ m ≤ 4 are experimental constants depending on the particular
problem under consideration.

1.2 Parameters

We consider both weak and strong interactions of the bed and the flow and the
parameters appearing in the Grass model are :
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• Strong interaction : m = 3 , p = 0.4, A = 1

• Weak interaction : m = 3 , p = 0.4, A = 0.001,

1.3 Initial conditions

The initial bottom topography is defined by
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where Qh = [300, 500]×[400, 600]. Initial condition for the flow height and veloc-
ity fields can be generated running a simulation without bed evolution (standard
Shallow Water) until a steady state is reached with the initial conditions:

h(0, x, y) = 10− Z(0, x, y) u(0, x, y) =
10

h(0, x, y)
v(0, x, y) = 0 (5)

1.4 Boundary conditions

Let η be the exterior unit normal to the computational domain. At inflow
the flux (hu, hv).η = 10 and the sediment layer height Z = 0.1 are imposed,
free boundary conditions have to be used at the outflow while slip conditions
(hu, hv).η = 0 are imposed on the lateral boundaries.

1.5 Meshes

The domain of interest is a square of 1000 × 1000 m2. In order to allow a fair
comparison between the schemes, this square have to be meshed with regular
space steps ∆x = ∆y = 20m. However in order to minimize the possible influ-
ence of the boundary conditions on the results, larger computational domains
are allowed provided the central part respects the above requirement.

2 Required results

According to the classification proposed in [6], the formulations for approximat-
ing the mathematical model (1-2) can be classified as

• Steady approach (SA) consisting of a :

– a fixed bottom stage where the shallow water equations (1) are iter-
ated to an equilibrium while the bed is kept fixed

– a changing bottom stage where the bed is updated whilst keeping all
other variables fixed.

The time steps used in the two stage can be different.

• Operator splitting (OS) approach using the same time step for the shallow
water and bed evolution equations and where the systems (1) and (2) are
iterated sequentially. This approach is similar to the previous one except
that the water flow is no longer iterated to an equilibrium after each bed
update.
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• Strongly coupled approach (SC) : The two systems (1) and (2) are written
as a single first order system and approximated simultaneously.

The required results for this benchmark are :

• the classification of the method used as Steady approach (SA), Operator
splitting (OS) or Strongly coupled (SC).

• The contour plot of the bottom elevation, contour or elevation plot of the
total water level h + Z and velocity at t = 500s for A = 1 and t = 100h
for A = 0.001.

• The total number of time steps (including the time steps needed to reach
equilibrium in approach SA) and CPU time needed to reach t = 500s for
A = 1 and t = 100h for A = 0.001.

• The sediment layer evolves towards a star-shaped pattern expanding along
the time with a given spreading angle. Assuming that the interaction
between the sediment layer and fluid is small, the following theoretical
approximation of this angle is proposed in [3]

tanθ =
3
√

3(m− 1)
9m− 1

For m=3 this corresponds to a spreading angle of θ = 21.786789o. For the
weak interaction case A = 0.001, the contributors should give an estimate
of this angle.
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