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For the 1D sediment transport problem we have the following coupled system,
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where h is the water height, q the discharge, zb a fixed topography, zs the sediment height and Sf is
the friction term modeling the drag effects between the fluid and the bed. Moreover, ξ = 1/(1− ψ0),
being ψ0 the porosity of the sediment layer. qs is the solid transport discharge. In this test we consider
Grass formula:
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This test consists on comparing a numerical solution with an asymptotic and analytical solution
obtained by Hudson and Sweby in [2], for Grass model when interaction constant Ag (2) is smaller
than 10−2. In this case, the layer sediment z̃b is over all computational domain and fluid is moving
slowly with a constant discharge q = q0 ≤ 10. Then, we use the hypothesis that the water surface is
flat. That is,

h = Ar − zb(x, t), and q = q0

being Ar a fixed level of reference and q0 ≤ 10 a constant value.
If the water surface, Ar, is constant and the discharge q0 is contant, we have that the fluid velocity

is
u(x, t) =

q0
Ar − zb(x, t)

. (3)

So, from the continuity equation for the bed evolution,
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and Grass formula (2), using (3), we can rewrite (4) as
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Then, it can be solved by using the method of characteristics.
We consider the following data for the numerical test. We set a computational domain whose

length is L = 1000 meters, discretized with 250 nodes. CFL condition is set to 0.8. The sediment
porosity is set to ρ0 = 0.4 and the constant Ag of Grass formula (2) is set to 0.001 which corresponds
to a weak interaction.

∗See: [1]
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The initial conditions are (see Figure 1),

h(x, 0) = 10− zb(x, 0), q(x, 0) = 10,

zb(x, 0) =

 0.1 + sin2

(
π (x− 300)

200

)
if 300 ≤ x ≤ 500,

0.1 otherwise.
(6)

As boundary condition, the flux and the depth of the sediment is imposed upstream, while free
boundary conditions are imposed downstream.

From (5), we obtain that the analytical solution can be expressed as
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0 otherwise,
(7)

where xo is the solution of equation
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The usual value of mg = 3 is considered.
This solution is valid to t < t0, being t0 the instant in which characteristics cross. In [2] it is

estimated t0 = 238079.124×A−1
g .

In the same way, it is verified that

z̃b(x, t) = zb(x, t) + c0,

where c0 is a constant value, it is also a solution of the problem.

Figure 1: Initial condition.

To be able to compare numerical solution with analytical solution obtained in [2], without con-
sidering the behavior of numerical scheme in zones with-without sediment, we have compared the
solution for the case,

z̃b(x, t) = zb(x, t) + 0.1.
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The following numerical numerical results can be seen in [1]
In Figures 2, 3, 4 we compare analytical solution (continuous line) and numerical solution obtained

with the different schemes proposed in [1], corresponding to sediment layer evolution at instant t =
238080 s; that is smaller than the maximal time in which analytical solution (8) is valid.

We can observe that all numerical schemes show a good sediment layer localization, being Roe
scheme the most diffusive (Figure 2(a)). Moreover, the scheme that gives the best approximation is
high order generalized Roe scheme with Weno state reconstructions of order 3, where time approxi-
mation is made using Runge-Kutta of order 3(Figure 4(a)).

In Figure 2 it is shown comparison between Roe method and linearized Lax-Wendroff method
with flux limiters. In both methods we use Euler scheme for time discretization. In Figure 2(a), that
describes layer sediment evolution, it is observed that Roe method is more diffusive than method
with flux limiters, that is of second order in space and time for linear problems. In Figure 2(b) the
discharge is presented. We observe that it is near 10 in both cases and almost constant in all domain,
that is one of the hypothesis used to develop the analytical solution (8).

In Figure 3 it is compared flux limiter scheme with Roe-Weno of order 2. For time evolution it is
used Euler for flux limiter scheme, because Lax-Wendroff scheme ensures order 2 in space and time.
For scheme with Weno2 state reconstructions it is used TVD Runge-Kutta method of order 2. It must
be observed that approximation of thickness sediment layer is similar in both schemes.

Finally in Figure 4 schemes with Weno2 and Weno3 state reconstructions are compared. For time
evolution it is used Runge-Kutta2 and Runge-Kutta3, respectively. Higher order scheme approximates
better the sediment layer thickness as expected.

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

t = 238080

sol exact

roecl

roesl

(a) Sediment layer thickness.
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(b) Mass-flow.

Figure 2: Roe-Flux limiters (dotted line). Euler-Roe (dash line).
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(a) Sediment layer thickness.
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(b) Mass-flow fluid.

Figure 3: Roe-Flux limiters (dash line). Weno2-Rk2 (dotted line).

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

t = 238080

sol exact

rk2w2sl

rk3w3sl

(a) Sediment layer thickness.
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Figure 4: Weno2-Rk2 (dotted line). Weno3-Rk3 (dash line).
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