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Exact Solutions for non Linear Conservation Laws

Non Linear Systems Considered

We are intersted by fluid flow problems described by such non linear
systems :

∂W
∂t

+
∂F (W )

∂x
+
∂G (W )

∂y
+
∂H(W )

∂z
= 0 (1)

Examples :
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Euler equations in one space dimension



∂ρ

∂t
+

∂(ρu)

∂x
= 0

∂(ρu)

∂t
+

∂
(
ρu2 + P

)
∂x

= 0

∂E
∂t

+
∂ [u (E + P)]

∂x
= 0

(2)

with ideal gas equation of state : p = (γ − 1)

(
E − 1

2
ρu2
)
, where

ρ is fluid density, u the veocity, E the energy, and p : the pressure.
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Shallow Water Flow

We consider water flow in a configuration where the water depth is
neglectible when compared to the characteristic length of the
domain. [3]).
If the bottom is flat, and the friction neglectible, the problem is
described by the following system :

∂h
∂t

+
∂(hu)

∂x
= 0

∂(hu)

∂x
+

∂

∂x

(
hu2 +

1
2
gh2
)

= 0

(3)

h being the water depth, u the velocity, and g the gravity constant.
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Exact solution for 1D scalar problems

Introduction
Consider the scalar problem :

∂u
∂t

+
∂f (u)

∂x
= 0 in IR×]0,T [

u = u(x , t) ∈ IR

u(x , 0) = u0(x)

(4)

In the sequel, note X = IR× [0,T [.

Example, Burger’s equation :
∂u
∂t

+
∂

∂x

(
u2

2

)
= 0
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Weak solution and jump condition

Smooth solution

If u ∈ C 1(X ), one has : (4) =⇒ ∂u
∂t

+ f ′(u)
∂(u)

∂x
= 0

then in the frame (x , t), u is constant on the characteristic curve
given by : 

dx(t)

dt
= f ′ [u (x(t), t)]

x(t = 0) = x0

(5)

One deduce the solution u :

u (x(t), t) = u (x(0), 0) = u (x0, 0) = u0(x0)
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Note f ′(u) = a(u), the characteristic system considered is then :
dx
dt

= a (u0(x0))

u(x , t) = u0(x0)

which gives : 
x0 = x − ta (u0(x0))

u(x , t) = u0(x0)
(6)

Applications :
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1. Linear case

f (u) = cu :
∂u
∂t

+ c
∂u
∂x

= 0 =⇒ a(u) = c

characteristic curve : x = x0 + tc ⇔ x0 = x − ct

Solution : u(x , t) = u0(x − ct)
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2. Burger’s equation
Consider the non linear equation :
∂u
∂t

+
∂

∂x
u2

2
= 0,

here f (u) =
u2

2
, then a(u) = f ′(u) = u

The characteristic curve is given by : x = x0 + tu0(x0)
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Consider the different initial conditions :
case 1

u0(x) =

{
0 if x < 0
x if x ≥ 0

case x0 < 0, x = x0, u1(x , t) = u0(x)

case x0 ≥ 0, x = x0 + tx0, u1(x , t) = u0(x0) = u0

(
x

1 + t

)
=

x
1 + t

case 2

u0(x) =

{
1 if x < 0
0 if x ≥ 0

case x0 < 0, x = x0 + t, u2(x , t) = u0(x − t) = u0(x0) = 1
case x0 ≥ 0, x = x0, u2(x , t) = u0(x) = 0
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Discontinuous solution and jump condition :

Theorem

The 3 following assertions are equivalent :
i) u is a weak solution of problem (4) , i.e :
∞∫
0

∫
IR

(
u
∂ϕ

∂t
+ f (u)

∂ϕ

∂x

)
dxdt +

∫
IR

u0(x)ϕ(x , 0)dx = 0,

∀ϕ ∈ D (IR× [0,+∞[)
ii) ∀R = [x1, x2]× [t1, t2] ⊂ Ω = IR× [0,T ] ,∫
∂R

[u.nt + f (u).nx ] dσ = 0
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Theorem

iii) If u is C 1, u is classical solution of
∂u
∂t

+
∂

∂x
f (u) = 0 , and on a

shoc curve Γ (ul , ur ), the solution is governed by the jump
condition : [f (u)] = s [u].
One defines the jump [u] = ur − ul , and the curve Γ (ul , ur ), which

equation is :
dx
dt

= s, separates the left and right states ul and ur

The jump condition is called the Rankime-Hugoniot condition in
gas dynamics.
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Example : Consider the Burger’s equation :

∂u
∂t

+
∂

∂x
u2

2
= 0 (7)

and the initial condition : u0(x) =

{
0 if x < 0
1 if x ≥ 0

First possibiliy : a weak solution with the shoc Γ (0, 1).
The jump condition gives :

[f (u)] = s [u] =⇒
[
u2
r
2
−

u2
l
2

]
= s [ur − ul ] =⇒ s = 1

2 =⇒

u(x , t) =


0 si

x
t
<

1
2

1 si
x
t
≥ 1

2
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Second possibility : a continuous weak solution.

u(x , t) =


0 si

x
t
< 0

x
t

si 0 ≤ x
t
< 1

1 si
x
t
≥ 1

We come to the fact that one needs a specific criterium to select,
among the above two weak solutions, the unique real solution.
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Physical validation of the solution : the entropy condition

The entropy solution

Definition
A smooth convex function U, is said to be an entropy of the
problem, if there exists an entropy flux F such that :
U ′(u)f ′(u) = F ′(u).

Definition
a weak solution u of (4) is said entropy solution if

∀ϕ ∈ D (IR×]0,T ]) :

T∫
0

∫
IR

(
U(u)

∂ϕ

∂t
+ F (u)

∂ϕ

∂x

)
dxdt ≥ 0, where

U is an entropy of the problem, and F its entropy flux.
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Remark 1 : An entropy solution respects the entropy condition with
the convex (though non derivable) function, U(u) =| u − k |, and
the associated entropy flux : F (u) = sgn(u − k)(f (u)− f (k)),
where k ∈ IR

Remark 2 : Reciprocally, since every convex function belongs to the
convex hull of all affine functions, and functions of the form
x −→| x − k |, a weak solution which respects the entropy condition
with the convex function U(u) =| u − k |, is an entropy solution.

Theorem
(Kruzkov 1970) Under some regularity assumptions on u0, there
exists a unique entropy weak solution of problem (4).
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About Entropy
Lemme : There exists a function U which is transported in regions

where u is C 1. i.e.
∂

∂t
U(u) +

∂

∂x
F (u) = 0

proof : If u is C 1 : U ′(u)

(
∂u
∂t

+ f ′(u)
∂u
∂x

)
= 0, if there exists F

such that U ′(u)f ′(u) = F ′(u), then
∂

∂t
U(u) +

∂

∂x
F (u) = 0
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Consider the regularized problem :
∂u
∂t

+
∂f (u)

∂x
= ε

∂2u
∂x2

u(x , 0) = u0(x)

(8)

Proposition
There exists a unique smooth solution uε of the problem (8)

Proposition
The solution of problem (4) is the limit in the distribution sens of
the solution of problem (8), as ε tends to 0
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Proposition

A piecewise C 1 function u, is an entropy weak solution of (4) if and
only if :
i) u is a classical solution in (x , t) regions where u is C 1

ii) On an shoc curve Γ, u satisfies [F (u)] ≤ s [U(u)] , ∀ (U,F ) a
couple of entropy and antropy flux.

Corollaire

1) If f is strictly convex, then a shoc is entropic if and only if :
f ′(ur ) < s < f ′(ul )

Corollaire
2) If f is strictly convex, then a shoc is entropic if and only if :
ur < ul
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Application : the first weak solution in example (7) is non entropic,
and hence non admissible.
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