
INTRODUCTION À L’HOMOTOPIE

GRÉGORY GINOT

Résumé. Nous allons présenter un introduction aux théories modernes de l’homo-
topie, en particulier basées sur les catégories de modèle. Ces notions proviennent
des travaux de Daniel Quillen dans les années 1960-70. Nous verrons enfin com-
ment ces idées ont abouti à (et permis de définir) la notion d’∞-catégories qui sont
une notion en un sens plus universelle que celle de catégorie de modèle. Nous nous
appuierons sur trois exemples que nous traiterons plus ou moins parallèlement :
les espaces topologiques, l’algèbre homologique, et les algèbres commutatives. Ce
dernier exemple nous permettra de caractériser le type d’homotopie rationnel des
espaces en termes de dg-algèbres commutatives. Les techniques de catégorie de
modèles, en plus de leur vertu unificatrice, permettent notamment de faire de l’al-
gèbre homologique dans un cadre non-abélien et ont un rôle important dans les
développements récents de la topologie algébrique mais aussi certains aspects de
la géométrie algébrique.
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2.1. Définitions et axiomatique 39
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I. Notions d’homotopie, algèbre homologique et (r)appels

Dans ce premier chapitre, nous donnons une vue d’ensemble rapide de la théorie de
l’homotopie pour les espaces topologiques, de groupes d’homotopie et des concepts
clés afférants, en particulier celui d’équivalence d’homotopie faible. En parallèle, nous
donnerons également des bases d’algèbre homologique.

Commençons par préciser quelques
Conventions et notations.

(1) On désignera respectivement par Top la catégorie des espaces topologiques,
dont les flèches sont les applications continues, et par Top∗ celle des espaces
topologiques pointés (dont les flèches sont les applications continues envoyant
le point base de la source sur celui du but).

(2) On notera, pour tout anneau R, R-Mod la catégorie des R-modules (dont les
flèches sont les applications R-linéaires) et Ch(R) la catégorie des complexes
de R-modules (cf 2.3 pour des notations précises).

(3) On notera I le segment compact [0, 1], Sn la sphère de dimension n.
(4) On notera Cat la catégorie (large) des catégories et cat la catégorie des

petites catégories.
(5) Sauf mention du contraire un (co)produit (quelconque) d’espaces topolo-

giques sera muni de la topologie (co)produit (cf. 6.1.3).
(6) Nous appelerons pullback un produit fibré et pushout un coproduit fibré dans

toute catégorie (cf. 6.2) sans ressentir le besoin d’utiliser une terminologie
française.

1.1. Homotopie entre fonctions, entre espaces

Définition 1.1.1. Deux applications continues f0, f1 : X → Y entre espaces topolo-
giques sont dites homotopes s’il existe une application continue F : X × [0; 1]︸︷︷︸

I

→ Y

telle que F |X×{0} = f0 et F |X×{1} = f1.

Définition 1.1.2. Deux espaces topologiques X et Y sont dit homotopes s’il existe
deux morphismes f : X → Y et g : Y → X tels que f ◦ g est homotope à idY et
g ◦ f est homotope à idX .

Notation 1.1.3. (1) Si deux morphismes f0, f1 : X → Y sont homotopes, on
notera : f0 ' f1.

(2) Si deux espaces topologiques X et Y sont homotopes, on notera : X ' Y .
(3) Si deux espaces topologiques X et Y sont isomorphes (homéomorphes), on

notera : X ∼= Y .

La relation d’homotopie entre deux applications continues (et par suite entre es-
paces) est une relation d’équivalence. Par ailleurs, si f ' g alors p ◦ f ◦ q ' p ◦ g ◦ q
pour toute paire d’applications continues p, q (telle que les composées existent bien
sûr).

Exercice 1.1.4. Démontrer ces affirmations.

Définition 1.1.5. Un espace contractile est un espace homotope à un point.
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Exemple 1.1.6. Un point, une boule, Rn.
Contre-exemples : Deux points, un cercle, Rn \ {0}, l’ensemble vide . . .

Définition 1.1.7. Soit X, Y deux espaces topologiques, A ⊆ X un sous-espace, et
f0, f1 : X → Y tels que f0 |A = f1 |A. On dit que f0 est homotope à f1 relativement
à A s’il existe une application continue F : X × [0; 1]︸︷︷︸

I

→ Y telle que F |X×{0} = f0,

F |X×{1} = f1, et F |A = f0 |A = f1 |A.

Les propriétés et notations précédentes s’étendent sans difficulté au cas relatif. On
notera '

A
la relation être homotope relativement à A.

Définition 1.1.8. Un sous-espace A
i
↪→ X est un rétract par déformation (resp.

déformation forte) s’il existe p : X → A telle que p ◦ i = idA et i ◦ p ' idX (resp.
relativement à A).

Exemple 1.1.9. L’exemple standard est la sphère Sn qui est un rétracte par défor-
mation forte de Rn+1 \ {0}.

1.2. Groupes d’homotopie d’un espace topologique

Définition 1.2.1. Si X est un espace topologique, on note π0(X) l’ensemble de ses
composantes connexes par arcs. Si x0 ∈ X, et n ≥ 1, on note πn(X, x0) l’ensemble
des classes d’homotopie relatives (au point base) d’applications (Sn, ∗) → (X, x0)
(autrement dit les applications continues de Sn dans X qui envoient le point base ∗
sur x0 modulo les homotopies H telles que H(∗,−) = x0).

Notation 1.2.2. On note [X, Y ] (resp. [(X, x0), (Y, y0)]) l’ensemble des classes d’ho-
motopie (resp. relatives) de morphismes X → Y .

Remarque 1.2.3. a) Si X 6= ∅, la définition reste valable pour π0(X, x0) quel que
soit x0 ∈ X.

b) On peut de manière équivalente définir πn(X, x0) comme étant les classes
d’homotopie relative d’applications (In, ∂In)→ (X, x0), c’est à dire les classes
d’homotopie d’applications envoyant le bord de In sur x0 (et on impose qu’en
tout temps t ∈ [0, 1], l’homotopie H(−, t) : In × {t} → X vérifie aussi cette
propriété).

Définition 1.2.4 (Suspension). La suspension d’un espace topologique X est l’espace
topologique :

ΣX := X × I/(x,0)∼(x′,0),(x,1)∼(x′,1)

Définition 1.2.5 (Suspension réduite). La suspension réduite d’un espace topologique
pointé (X, x0) est l’espace topologique pointé :

Σ(X, x0) :=
(
X × I/(x,0)∼(x′,0),(x,1)∼(x′,1),(x0,t)∼(x0,t′), [(x0, 0)])

)
où [(x0, 0)] est la classe d’équivalence du point (x0, 0).

Exemple 1.2.6. Les sphères sont des suspensions réduites :

Σ(Sn, ∗) ∼= (Sn+1, ∗).
Ainsi, (Sn, ∗) ∼= Σn(S0, 1).
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Σ(X, x0)

0

1

g

f

(x, 1
2 ) ∼ (x0,

1
2 )

Y

Σ(X,x0) ∨ Σ(X,x0)

Figure 1. La suspension réduite, à gauche, la classe du point base
étant représentée en bleu et la définition de f ∗ g.

Lorsque X est pointé par un point x0, on a une application quotient canonique
SX � Σ(X, x0). Cette application n’est pas toujours une équivalence d’homotopie.
Elle l’est cependant dés que (X, x0) est bien pointé 1, voir la feuille de TD 1. C’est en
particulier le cas si X est un CW-complexe ou une variété topologique quelconque.

Définition 1.2.7 (Structure produit sur les morphismes de source une suspension).
Soient f, g : Σ(X, x0) → (Y, y0). On définit f ∗ g : Σ(X, x0) → (Y, y0) comme étant
la composée :

Σ(X, x0)� Σ(X, x0)/X×{ 1
2
}
∼= Σ(X, x0) ∨ Σ(X, x0)

f∨g−→ (Y, y0)

voir figure 1. En termes de coordonnées on a donc

f ∗ g(x, t) :=

{
f(x, 2t) si t ≤ 1/2
g(x, 2t− 1) si t ≥ 1/2.

Proposition 1.2.8. a) La classe d’homotopie de f ∗ g ne dépend que des classes
d’homotopie de f et de g.

b) Le produit ∗ est associatif à homotopie près :

(f ∗ g) ∗ h ' f ∗ (g ∗ h)

c) L’application constante c : (X, x0) → (Y, y0) (définie par c(x) = y0) est une
unité pour ∗ à homotopie près :

f ∗ c ' c ∗ f ' f

d) Tout f ∈ [Σ(X, x0), (Y, y0)] admet un inverse pour ∗ : Posons f−1(x, t) :=
f(x, 1− t). Alors f ∗ f−1 ' c ' f−1 ∗ f .

Ainsi, ([Σ(X, x0), (Y, y0)], ∗) est un groupe, et, en particulier, pour tout n ≥ 1, on
a que πn(Y, y0) est un groupe.

On a une représentation graphique pratique standard pour un élément de πn(X, x0)
donné par la figure 2 où l’on représente également le produit.

1. c’est à dire que l’inclusion du point dans X est une cofibration au sens de la définition 1.8.1
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f x0

x0
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x0 x0
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x0
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g(s, 2t− 1)

f(s, 2t)

0

1

0

0

1

1

Figure 2. La représentation graphique d’une application dans
π2(X, x0) à gauche, et la représentation graphique du produit f ∗ g
à droite.

Proposition 1.2.9. a) Si n ≥ 2, πn(Y, y0) est abélien. Plus généralement, si
(X, x0) = Σ(X ′, x′0), alors ∗ est commutatif sur [Σ(X, x0), (Y, y0)].

b) Si f : (X, x0)→ (Y, y0), on définit un morphisme de groupes :

f∗ : πn(X, x0) → πn(Y, y0)

[γ] 7→ [f ◦ γ]

De plus, si f est une équivalence d’homotopie, alors f∗ ci-dessus est un
isomorphisme. On définit de même une application f∗ : π0(X) → π0(Y ),
[x] 7→ [f(x)].

Exercice 1.2.10. Démontrer les deux propositions précédentes. On peut faire un des-
sin (cf figure 3) pour illustrer la preuve de la commutativité des groupes d’homotopie
supérieurs (ou double suspensions).

Remarque 1.2.11. On a représenté dans la figure 3 une homotopie H entre f∗g et g∗f
pour des applications f, g : (S2, ∗) → (X, x0) obtenue en faisant passer f au dessus
de g en “contractant et en les faisant tourner dans le sens anti-trigonométrique”
f et g. On aurait pu construire une autre homotopie H ′ entre f ∗ g et g ∗ f en
tournant dans l’autre sens, c’est à dire le sens trigonométrique. Les applications
H,H ′ : (S2, ∗) × I → (X, x0) ne sont pas homotopes l’une à l’autre en général, et
donc une telle homotopie est un choix non canonique même à homotopie près.

Notons qu’en dimension supérieure n ≥ 3, la même construction peut se faire
en faisant le produit H × idIn−2 : (In, ∂In) × I → (X, x0). Dans ce cas H × id et
H ′ × id deviennent homotopes (car on peut prendre une homotopie similaire, mais
en jouant sur les coordonnées dans la direction supplémentaire, pour passer de H
à H ′). Mais il y a plusieurs choix non-homotopes de telles homotopies ! De manière
générale, l’existence de ces choix donne une structure très riche et intéressante en
homotopie, ayant donné naissance à la notion de En-algèbre (aussi appelée algèbre
sur les cubes de dimension n) cruciale en homotopie et qui a des ramifications dans
de nombreuses autres branches des mathématiques ; elle sera étudiée dans le cours
de Y. Harpaz.

Remarque 1.2.12. Si x0 et x′0 sont dans la même composante connexe par arcs, alors
on a des isomorphismes πn(X, x0)→ πn(X, x′0) pour tout n ≥ 1. Un tel isomorphisme
est induit en conjuguant des lacets (ou sphères) par un chemin de x0 à x′0. Cet
isomorphisme n’est pas canonique en général. Il le devient, pour n = 1, si par
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g(s, 2t− 1)

f(s, 2t)

g(s, 2t− 1)

f( 3s2 , 2t)

g(2s− 1, 2t− 1)

f(2s, 2t)

f(2s, 2t− 1)

g(2s− 1, 2t)

f(s, 2t− 1)

g(s, 2t)

f(2s, 6t−1
3

)

g(2s− 1, 6t−2
3

)

⇒ ⇒

⇓

⇐⇐

Figure 3. La représentation graphique d’une homotopie entre f ∗ g
(en haut) et g ∗ f (en bas), les symboles ⇒ désignant des homotopies
modifiant affinement l’une des coordonnées (s ou t) de chaque fonction.
Les parties bleues désigne l’application constante qui vaut x0.

exemple π1(X, x0) est abélien, et pour n ≥ 1 si l’action induite de π1(X, x0) sur
πn(X, x0) est triviale 2.

1.3. Espaces topologiques à homotopie et à homotopie faible près

La topologie algébrique étudie certainement les espaces topologiques à équivalence
d’homotopie près, mais elle s’intéresse encore plus à celle d’espace topologique à
équivalence d’homotopie faible près. Cette notion est en fait celle qui donne lieu à
plus de généralisations et analogues en mathématiques 3.

Définition 1.3.1 (équivalence d’homotopie faible). Une application f : X → Y est
une équivalence d’homotopie faible si f∗ : π0(X) → π0(Y ) est une bijection et si
pour tout x0 ∈ X et tout n ≥ 1, f∗ : πn(X, x0)→ πn(Y, f(x0)) est un isomorphisme.

Notation 1.3.2. On notera X
∼→ Y une équivalence d’homotopie faible.

Remarque 1.3.3. Une équivalence d’homotopie est une équivalence faible d’homoto-
pie. La réciproque n’est pas vraie, en effet, a priori, une équivalence faible n’a par
exemple pas d’inverse homotopique, c’est à dire qu’il n’y a pas d’application continue
g : Y → X telle que g∗ est l’inverse de f∗ sur les groupes d’homotopie.

Exemple 1.3.4. X = N et Y = { 1
n
, n > 0} ∪ {0} sont faiblement homotopiquement

équivalents mais pas homotopiquement équivalents.

Exercice 1.3.5. Démontrer le résultat énoncé.

2. un espace pour lequel les actions induites sont toutes triviales est dit simple. C’est évidemment
le cas si l’espace est simplement connexe.

3. comme nous le verrons avec le modèle purement combinatoire donné par les ensemble ssim-
pliciaux, ou les algèbres différentielles graduées commutatives
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La relation X et Y sont reliés par une équivalence d’homotopie faible n’est pas
une relation d’équivalence, puisque rien ne garantit qu’une application inverse existe
et donc la symétrie de cette relation (l’exemple précédent le démontre...). On va
donc considérer la relation engendrée par cette relation.

Définition 1.3.6. Deux espaces topologiquesX et Y seront dits faiblement homotopes
si il existe une suite finie

X
∼→ Z1

∼← Z2
∼→ Z3

∼← Z4 . . . Zn
∼→ Y

dont toutes les flèches sont des équivalences d’homotopie faible.

Remarque 1.3.7. On prendra garde qu’être faiblement homotope implique évidem-
ment avoir des groupes d’homotopie isomorphes (sur les composantes connexes par
arcs) mais que la réciproque n’est pas vraie en général. En effet, deux espaces topo-
logiques peuvent avoir des groupes d’homotopie deux à deux isomorphes sans être
faiblement équivalents. Par exemple, RP 2 et RP∞×S2 ont les mêmes groupes d’ho-
motopie. Il ne peut en revanche pas exister de morphisme f : RP 2 → RP∞×S2 qui
induise un isomorphisme en homotopie, car sinon, le théorème 1.3.10 assurerait que
f est un quasi-isomorphisme, ce qui ne peut être le cas, car ces deux espaces n’ont
pas les mêmes groupes d’homologie.

Nous disposons donc de deux notions naturelles que l’on souhaite étudier :

• les espaces topologiques à homotopie près, donnant lieu à la catégorie homo-
topique forte Hostrong := Top[H−1]
• les espaces topologiques à homotopie faible près, donnant lieu à la catégorie

homotopique forte Ho := Top[WH−1].

Ici on a noté H et WH les équivalences d’homotopie, respectivement les équivalences
d’homotopie faibles ; les catégories homotopiques sont donc les catégories obtenues
en rajoutant formellement des inverses aux équivalences d’homotopie (respective-
ment d’homotopie faible). Voir la définition 2.2.1 ci-dessous pour une définition plus
prècise. Que de telles constructions donnent lieu à des catégories n’est pas évident a
priori ; et par ailleurs l’étude de ces catégories, ne serait-ce que de leurs morphismes,
n’est pas aisée. En effet, n’importe quel zigzag X → Z1

∼← Z2 → Z3
∼← Z4 . . . Zn →

Y de longueur finie définit un morphisme entre X et Y dans Ho (puisque les équiva-
lences faibles ont par définition un inverse dans cette catégorie) et plusieurs zigzags
de longueurs distinctent peuvent définir des morphismes égaux dans cette catégo-
rie. Il n’est pas évident qu’une telle construction donne une catégorie au sens usuel
(c’est à dire que les morphismes entre objets forment des ensembles). Nous verrons
dans le chapitre 2.2 que c’est bien le cas et que le structures de modèle donnent une
description de ces morphismes.

Remarque 1.3.8. En général, les espaces que l’on rencontrera seront relativement
“gentils”. Par exemple, ce seront des complexes cellulaires ; ces derniers ont pour
propriété que les notions d’homotopie et d’homotopie faibles sont équivalentes pour
eux comme démontré par Whitehead.

Théorème 1.3.9 (Whitehead, 1949). Si f : X → Y est une application continue (non-
nécessairement cellulaire) entre deux CW-complexes, alors f est une équivalence
faible d’homotopie si et seulement si c’est une équivalence d’homotopie.

Démonstration. Voir la feuille de TD 1 et sa solution. �
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Notons que les équivalences d’homotopies faibles sont cependant suffisantes pour
identifier les invariants homologiques de deux espaces topologiques :

Théorème 1.3.10. Si f : X → Y est une équivalence faible d’homotopie, alors, pour
tout groupe abélien G, les applications induites :

f : Hn(X,G)→ Hn(Y,G)

sont des isomorphismes.

On renvoit à [18, 3, 10, 21] pour une preuve. Le résultat est vrai en cohomologie et
pour toute théorie (co)homologique extraordinaire (au sens des axiomes d’Eilenberg-
Steenrod ou donnée par un spectre) et pour la (co)homologie à coefficient local (voir
la remarque 1.3.15). Ce dernier résultat est une autre manifestation de l’importance
de la notion d’homotopie faible.

Un autre très beau résultat de Whitehead affirme que

Théorème 1.3.11. Si f : X → Y est une application continue entre espaces simple-
ment connexes 4 telle que f∗ : Hi(X,Z) → Hi(Y,Z) est un isomorphisme pour tout
i < n et un épimorphisme pour i = n, alors il en va de même pour f∗ : πi(X, x) →
πi(Y, f(x)) (quel que soit x ∈ X).

En particulier, si f∗ : Hn(X,Z)→ Hn(Y,Z) est un isomorphisme pour tout n ≥ 0,
alors f est une équivalence d’homotopie faible.

Démonstration. Voir [3, Théorème 11.2]. �

Remarque 1.3.12. On peut remarquer que le premier point est une sorte de réciproque
partielle du théorème de Hurewicz

Si f : X → Y est une application continue entre espaces connexes par arcs et que
πi(f) : πi(X, x) → πi(Y, f(x)) est un isomorphisme pour tout i < n et un isomor-
phisme ou épimorphisme pour i = n, alors il en va de même pour f∗ : Hi(X,Z) →
Hi(Y,Z).

Remarque 1.3.13. Le théorème 1.3.11 n’est pas vrai si on ne suppose pas X et Y
simplement connexes en général, voir [21] pour un contre-exemple (par exemple
S2 ∨ S1 !). On peut cependant modifier les hypothèses pour gérer néanmoins ce cas.

Toute application continue f : X → Y induit une application continue f̃ : X̃ → Ỹ
au niveau des revêtements universels de X et Y (s’ils existent) par propriété des
revêtements.

Théorème 1.3.14. Si f : X → Y est une application continue telle que pour tout
x ∈ X, f∗ : π1(X, x) → π1(Y, f(x)) est un isomorphisme et que f̃∗ : Hn(X̃,Z) →
Hn(Ỹ ,Z) est un isomorphisme pour tout n ≥ 0, alors f est une équivalence d’homo-
topie faible.

Esquisse de la preuve : L’isomorphisme H0(X) ∼= Z[π0(X)]
∼=→ H0(Y ) ∼= Z[π0(Y )]

implique que f∗ : π0(X) → π0(Y ) est une bijection. Ceci permet de se ramener à
démontrer le résultat sur les composantes connexe par arcs. La condition sur le π1

fait partie de l’énoncé. En passant aux revêtements universels, la longue suite exacte
d’homotopie d’un revêtement (cas particulier de celle d’une fibration de Serre) cf

4. c’est à dire que π0(X) = {0} = π1(X)
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Théorème 1.6.14 permet de se ramener à démontrer que f̃∗ : π∗(X̃, x̃)→ π∗(Ỹ , f̃(x̃))
est un isomorphisme. Ce qui est exactement le Théorème 1.3.11.

Cet énoncé nécessite de pouvoir prendre des revêtements universels ; ce n’est en
fait pas un problème car tout espace est faiblement homotope à un CW-complexe (cf
la Remarque 3.2.19), et donc à équivalence d’homotopie faible près, tout espace à un
tel revêtement universel (évidemment le calcul de cet espace peut être compliqué...).

Remarque 1.3.15. L’hypothèse que les applications induites sur l’homologie des re-
vêtements universels est un isomorphisme peut se tester au niveau de l’homologie à
coefficient local de X, Y ; c’est d’ailleurs l’énoncé correct lorsque les espaces n’ont
pas un tel revêtement universel.

Si X est un espace connexe par arcs, un système local de groupes abéliens est une
représentation Z-linéaire de π1(X, x0), autrement dit un Z[π1(X, x0)]-module.

Un résultat standard est que la catégorie de ces représentations linéaires du groupe
fondamental est équivalente à la catégorie des faisceaux de groupes abéliens locale-
ment constant sur X (et est indépendante du choix du point base x à équivalence
près). Pour tout système local M, la (co)homologie (singulière) à coefficient local 5 est
la (co)homologie du complexe C∗(X̃,Z)⊗Z[π1(X,x0)]M ; on peut donner une construc-
tion directe de ce complexe sans passer par le revêtement universel et qui est définie
pour tout espace topologique. Un système local non-trivial canonique est donné par
Z[π1(X, x)].

Pour un espace non connexe par arcs, on peut généraliser la notion de système
local, définie alors comme foncteur du groupoide fondamental π(X) dans Ab la
catégorie des groupes abéliens, et de sa cohomologie.

Théorème 1.3.16. Si f : X → Y est une application continue telle que pour tout x ∈
X, f∗ : π1(X, x)→ π1(Y, f(x)) est un isomorphisme et que f̃∗ : Hn(X,Z[π1(X, x)])→
Hn(Y,Z[π1(X, x)]) est un isomorphisme pour tout n ≥ 0, alors f est une équivalence
d’homotopie faible.

L’équivalence entre les théorèmes 1.3.16 et 1.3.14 se déduit d’un argument stan-
dard de suite spectrale (appliqué à celle de Leray-Serre du revêtement universel).

Les constructions usuelles (quotient, tiré en arrière, . . .) ne préservent pas en
général les homotopies ou les homotopies faibles.

Exemple 1.3.17. Considérons les deux poussés en avant définis par les diagrammes
a)

{∗, ∗} //

��

{∗}

��
{∗} // {∗}

∐
{∗,∗}{∗} ' {∗}

5. il est également standard que pour des espaces paracompacts cette cohomolgie est celle du
faisceau localement constant associé
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b) Mais

{0, 1} //

��

{∗}

��
[0, 1] // S1.

On constate que ces poussés en avant ne sont pas homotopes (ni faiblement homo-
topes) alors que pourtant [0, 1] est homotope au point. Ainsi, on voit que les poussés
en avant d’applications homotopes ne sont pas homotopes en général, c’est donc à
fortiori le cas des quotients 6. En particulier le quotient de l’application X → {∗}
est trivial et ne contient aucune information sur X. On pourrait facilement faire des
constructions similaires avec toutes sortes de limites et colimites (y compris le cas
d’une réunion) pour montrer que ces (co)limites ne se comportent pas bien vis à vis
de l’invariance par homotopie ou homotopie faible.

Cet exemple se généralise bien sûr aux tirés en-arrière et à la plupart des (co)limites.

Pour palier ce défaut, et pour étudier les recollements d’espace topologiques à
homotopie près, en d’autres termes pour comprendre la structure de Ho, Hostrong,
on doit construire des versions “homotopiques” de ces (co)limites. Ces constructions
permettent de relier les groupes d’homotopie, de (co)homologie et autres invariants
topologiques de la (co)limite homotopique à ceux des différentes composantes. On
donnera un exemple de poussé en avant homotopique ci-dessous 1.8.9 et la théorie
des catégories de modèle permettra de définir et étudier ces notions de manière
générale (cf 2.6).

1.4. Algèbre Homologique, foncteurs dérivés

On fixe un anneau R commutatif.

Définition 1.4.1. Un complexe de châınes est un diagramme de R-modules :

. . .
d−→ Ci

d−→ Ci−1
d−→ Ci−2 . . .

tel que d ◦ d = 0.
Un complexe de cochâınes est un diagramme de R-modules :

. . .
∂←− Ci

∂←− Ci−1
∂←− Ci−2 . . .

tel que ∂ ◦ ∂ = 0.

Définition 1.4.2. un morphisme de complexes de châınes f : A→ B est une suite de
morphismes fn : An → Bn compatible avec la différentielle : d ◦ fn = fn−1 ◦ d.

Notation 1.4.3. On notera Ch(R) la catégorie des complexes de chaines deR-modules
et Ch≥0(R), Ch≤0(R) ses sous-catégories pleines des complexes concentrés en degrés
positifs ou négatifs (c’est à dire tels que Ci<0 = 0 ou Ci>0 = 0).

Définition 1.4.4 (Suspension d’un complexe de châınes). Soit (C, d) un complexe
de chaines de R-modules. On définit sa suspension, notée C[1] comme la suite de
R-modules (C[1]i := Ci−1)i∈Z munie de la différentielle −d.

6. qui ne sont qu’un cas particulier de poussé en avant où Y = {∗}
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La suspension itérée C[n] = C[1] · · · [1] est donc le complexe C[n]i = Ci−n muni
de la différentielle (−1)nd. On peut voir tout R-module M comme un complexe
concentré en degré 0, c’est à dire de la forme . . . 0→M → 0→ . . . , que l’on notera
tout simpelment M sans autre forme de procès, et donc aussi comme un complexe
concentré en degré i noté bien évidemment comme la suspsension M [i]. Le foncteur
R−Mod→ Ch(R) ainsi obtenu est pleinement fidèle.

Définition 1.4.5 (quasi-isomorphisme). Un morphisme de complexes de châınes f :
A → B est appelé un quasi-isomorphisme, (ou une équivalence faible), s’il induit

des isomorphismes en tout degré en homologie. On notera parfois
∼→ les quasi-

isomorphismes.

Cette notion est fondamentale ; par exemple l’équivalence entre les différentes
théories homologiques entre les complexes simplciaux, leurs triangulations ou l’ho-
mologie singulière est induite par des quasi-isomorphismes. De manière générale,
l’algèbre homologique est l’étude des complexes de chaines à quasi-isomorphisme
près.

Définition 1.4.6. Une homotopie de chaines entre deux morphismes f, g : A → B
est une suite d’applications Hn : An → Bn+1 telle que pour tout n ∈ Z, on ait

d ◦Hn +Hn−1 ◦ d = fn − gn.
On dira que f est homotope à g.

Lemme 1.4.7. Si f, g : A∗ → B∗ sont des morphismes de complexes de chaines
homotopes, alors f∗, g∗ : H∗(A∗)→ H∗(B∗) sont égales.

On déduit facilement du lemme précédent que si f est homotope à l’identité (ou
tout isomorphisme ou tout quasi-isomorphisme), c’est un quasi-isomorphisme.

Définition 1.4.8. On dit que deux complexes de chaines sont quasi-isomorphes s’il
existe un zigzag de quasi-isomorphismes entre eux. On dit que deux complexes A,B
sont homotopes s’il existe des morphismes de complexes f, A→ B et g : B → A tels
que f ◦ g et g ◦ f soient homotope au sens des chaines à idB et idA.

Tout comme pour les espaces topologiques, on a deux catégories “homotopiques”
induites par ces notions.

• on a la catégorie K(R) := Ch(R)/ ' obtenue en quotientant les morphismes
de Ch(R) par la relation d’homotopie de chaines, appelée parfois catégorie
homotopique de R ;
• la catégorie dérivée D(R) := Ch(R)[qiso−1] où on a formellement inversé les

quasi-isomorphismes.

On a donc défini deux catégories K(R) et D(R) dont les objets sont les complexes de
châınes de R-modules, et telles que pour tous complexes M et N , HomK(R)(M,N) =
HomR(M,N)/', (où' est la relation d’homotopie entre morphismes,) et oùHomD(R)

est obtenue en ajoutant formellement àHomR un inverse à chaque quasi-isomorphisme.
Notons que l’on a une “factorisation ” D(R) ∼= K(R)[qiso−1].

Terminologie 1.4.9. On dit qu’un complexe de châınes est acyclique si son homologie
est nulle en tout degré.

Autrement dit un complexe de châınes (C∗, d) est acyclique si et seulement si la

suite . . . Ci
d→ Ci−1 → . . . est exacte.
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Exemple 1.4.10. Si X est un espace topologique contractile, alors son complexe des
châınes singulières réduites ker(C∗(X)→ C∗({∗}) est acyclique.

On réunit dans le lemme suivant les deux lemmes fondamentaux/fondateurs de
l’algèbre homologique :

Lemme 1.4.11. a) (Lemme du serpent) Si A
f
↪→ B

g
� C est une suite exacte

courte de complexes de châınes 7, on obtient une suite exacte longue naturelle 8

en homologie :

. . . Hn(A)
f∗−→ Hn(B)

g∗−→ Hn(C)
∂−→ Hn−1(A)

f∗−→ Hn−1(B) . . .

b) (Propriété 2 pour 3) Étant donné un diagramme commutatif :

A �
� //

��

B // //

��

C

��
A′ �
� // B′ // // C ′

Si les deux lignes sont exactes, et si deux des morphismes verticaux sont des
quasi-isomorphismes, le troisième l’est aussi.

Tout comme dans Top, les constructions de (co)limites dans les complexes ne sont
pas préservées par les équivalences faibles.

Exemple 1.4.12. Soit M un R-module. On a un complexe concentré en degré ≥ 0

M+
∗ := . . . // M

id // M
0 // M

id // M
0 // M

id // M // 0 // . . .

qui vérifie donc M+
i = M pour tout i ≥ 0. L’homologie de ce complexe est nulle

en tout degré et le morphisme canonique vers le complexe nul 0 est donc un quasi-
isomorphisme. De même on a le complexe

M−
∗ := . . . // 0 // M

id // M
0 // M

id // M
0 // M

id // M // . . .

qui vérifie donc M−
i = M pour tout i ≤ 0 et est aussi quasi-isomorphe à 0.

On a aussi un morphisme de complexe φ : M−
∗ →M+

∗ donné par

. . . // M
0 // M

id // M // 0 // 0 // 0 // . . .

. . . // 0 //

OO

0 //

OO

M

id

OO

id // M

OO

0 // M

OO

id // M

OO

// . . .

et on en déduit un diagramme commutatif de quasi-isomorphismes M−
∗

0
��

φ // M+
∗

0
��

0
0 // 0

.

On a que le noyau et le conoyau de 0→ 0 sont encore 0. En revanche le noyau de φ

est = . . . // 0 // M
0 // M

id // M
0 // M

id // M // . . . où le premier
0 est en degré 0 dont l’homologie est M en degré −1 et triviale en tout autre degré.

7. par défintion cela veut dire que f, g sont des morphismes de complexes et que en tout degré
n les suites induites de modules sont exactes

8. autrement dit on a un foncteur de la catégorie des suites exactes courtes de complexes dans
celle des suites exactes longues de modules
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De même le conoyau a une homologie qui vaut M en degré 1 et 0 ailleurs. Dans les
deux cas le noyau et le conoyau de φ ne peuvent pas être quasi-isomorphes à celui
de 0 → 0 ce qui montre que même dans un cas simple, le noyau et le conoyau ne
sont pas préservé par quasi-isomorphisme.

Cet exemple se généralise au poussé en avant et tiré en arrière bien entendu.

Remarque 1.4.13. Soit N un R-module et (A, d) un complexe. On peut étendre la
différentielle d linéairement en d⊗R idN sur chaque Ai⊗RN . Il est clair que la suite
obtenue (Ai ⊗R N, d⊗R idN) est un complexe de châınes.

Si f : A → B est un morphisme de complexe de R-modules, alors l’application
induite f ⊗R idN est un morphisme de complexe. De même, une homotopie H entre
deux morphismes de complexes f , g induit une homotopie H ⊗R idN entre les appli-
cations f ⊗R idN et g ⊗R idN .

En revanche, un quasi-isomorphisme f : A→ B n’induit pas un quasi-isomorphisme
A⊗R idN → B ⊗R idN en général (sauf si N est plat). Ce phénomène est du au fait
que le produit tensoriel −⊗R idN ne préserve pas les suites exactes courtes en général
et est responsable du théorème des coefficients universels.

De même les foncteurs HomR(−, N) et HomR(N,−) ne sont pas invariants par
quasi-isomorphisme. Il convient d’étudier quelques exemples et exercice d’algèbre
homologique sur ce sujet dans votre référence préférée (ou consulter celles données
sur la page web du cours).

La construction du cône d’un morphisme de complexe est importante en algèbre
homologique. Nous verrons (proposition 2.6.21) qu’ils sont un modèle très simple
pour les colimites homotopiques de complexes de châınes.

Définition 1.4.14. Soit f : (P∗, dP ) → (Q∗, dQ) un morphisme de complexes de
châınes. Le cône de f est le complexe de châınes C(f) qui en degré n est donné par
C(f)n = Pn−1 ⊕ Qn et est muni de la différentielle d(x, y) = (−d(x), d(y) + f(x))
(pour x ∈ Pn−1, y ∈ Qn).

L’inclusion canonique et la projection canonique donne une suite exacte courte de
complexes de châınes

0→ Q∗
i
↪→ C(f)

p
� P∗[1]

(où on a suivi la définition 1.4.4 pour la convention sur la suspension d’un complexe
de châınes). Un calcul rapide montre que la longue suite exacte associée en homologie
(lemme 1.4.11) est

· · · → Hn(P∗)
f∗→ Hn(Q)

i∗→ Hn(C(f))
p∗→ Hn−1(P∗)→ . . . .

En particulier, on a

Lemme 1.4.15. Soit f : P → Q un morphisme de complexes de châınes. Alors f est
un quasi-isomorphisme si et seulement si cone C(f) est acyclique.

Remarque 1.4.16. On appellera cocône d’un morphisme f : P → Q le complexe
coC(f)) qui en degré n vaut Pn ⊕ Qn+1 et est muni de la différentielle d(x, y) =
(d(x),−d(y) + f(x)) pour x ∈ Pn, y ∈ Qn+1. On a que Hi(coC(f)) ∼= Hi+1(C(f))
(bien que C(f) ne soit pas exactement la désuspension du cône). On a évidement
une suite exacte courte de complexes

0→ Q∗[−1]
i
↪→ C(f)

p
� P∗.
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Exercice 1.4.17. Reprendre l’exemple 1.4.12 et vérifier que le cône de M
id→ M est

trivial. Calculer l’homologie du cône et du cocône de M
0→ N pour deux R-modules

M et N .

1.5. Résolutions, foncteurs exacts, construction de Tor et Ext

On a vu que les (co)limites usuelles ou les opérations de prendre Hom ne sont
pas invariantes par quasi-isomorphisme. En algèbre homologique, on a une façon
standard de réparer ce problème par l’utilisation de résolutions. Nous (r)appelons
ces notions maintenant qui seront en un sens généralisé dans le cadre de catégories
de modèle plus loin.

Dans cette section, nous énonçons des résultats pour des catégories abéliennes
(cf [20] ou toute autre référence). Le lecteur qui ne sait pas ce que c’est peut n’avoir
en tête que deux types d’exemples : les catégorie des R-modules ou leurs catégories
opposées ou R est un anneau associatif unitaire quelconque. Les catégories de com-
plexes, l’homologie et toutes les notions précédentes ont un sens dans ce cadre plus
général mais il suffit de garder l’intuition précédente en tête si on ne connait pas ces
notions. Notons que les morphismes entre R-modules forment un groupe abélien et
que ceci se généralise à toute catégorie abélienne.

Définition 1.5.1. Un foncteur F : C→ D entre deux catégories abélienne est

(1) additif si F (f + g) = F (f) + F (g) et F (0) = 0 ;
(2) exact à gauche (resp. à droite) si pour toute suite exacte 0 → A → B →

C → 0, la suite 0 = F (0)→ F (A)→ F (B)→ F (C) (resp. F (A)→ F (B)→
F (C)→ 0) est exacte ;

(3) est exact si il envoie toute suite exacte courte sur une suite exacte courte
(autrement dit est exact à gauche et à droite).

Le lemme suivant fournit des exemples fondamentaux de ces notions.

Lemme 1.5.2. Soit M un R-module, alors le foncteur M ⊗R − est exact à droite, et
HomR(−,M) et HomR(M,) sont exacts à gauche.

Ceci conduit à regarder des modules rendant ces suites toujours exactes. Il s’agit
respectivement des modules plats, projectifs et injectifs.

Définition 1.5.3. (1) Un R-module P est dit projectif si, pour tout morphisme
f : P → N de R-modules et tout morphisme surjectif p : M � N de
R-modules, il existe un morphisme f̃ tel que f = p ◦ f̃ :

P

f
��

f̃

}}
M p

// // N.

(2) Un R-module I est dit injectif si, pour tout morphisme f : N → I de R-
modules et tout morphisme injectif i : N ↪→ M de R-modules, il existe un
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morphisme f̃ tel que f = f̃ ◦ i :

I

N �
�

i
//

f
==

M.

f̃

OO

(3) un R-module est dit plat si pour toute suite exacte 0 → A
f→ B

g→ C → 0,
la suite 0→ P ⊗R A→ P ⊗R B → P ⊗R C → 0 est exacte.

(4) Un objet P d’une catégorie abélienne C est dit projectif (resp. injectif) si il
vérifie les mêmes conditions de relèvement que (1) (resp. (2)) dans la catégorie
C (ou surjectif est remplacé par épimorphisme, injectif par monomorphisme)

Les modules projectifs et injectifs vérifient bien la propriété annoncée.

Proposition 1.5.4. (1) Un R-module P est projectif si et seulement si pour toute

suite exacte 0 → A
f→ B

g→ C → 0, la suite 0 → HomR(P,A)
f◦−−→

HomR(P,B)
g◦−−→ HomR(P,C)→ 0 est exacte.

(2) Un R-module est injectif si et seulement si pour toute suite exacte 0 →
A

f→ B
g→ C → 0, la suite 0 → HomR(C,P )

−◦g−→ HomR(B,P )
−◦f−→

HomR(A,P )→ 0 est exacte.

Notons que cette proposition est vraie dans toute catégorie abélienne.

Démonstration. Soit A
f→ B

g→ C une suite exacte courte. Pour tout module P , on
a un complexe

0→ HomR−Mod(P,A)
f◦−−→ HomR−Mod(P,B)

g◦−−→ HomR−Mod(P,C)

où la première application est (φ : M → A) 7→ (f ◦ φ;P → B) et la deuxième est
(ψ : P → B) 7→ (g ◦ ψ;P → C). Comme f ◦ g = 0, on a bien que la composée de
deux applications linéaires est nulle. Montrons que le premier morphisme f ◦ − est
injectif. En effet si f ◦ φ : P → B est nulle, alors φ est nulle puisque f est injective.
Montrons maintenant que ker(g ◦ −) = Im(f ◦ −). Puisque on sait déjà qu’on a un
complexe, il suffit de montrer l’inclusion du noyau de g ◦ − dans l’image de f ◦ −.
Soit g ◦ ψ = 0, alors pour tout m ∈ P , on a que φ(m) ∈ ker(g), donc il existe a ∈ A
tel que φ(m) = f(a) car la suite A → B → C est exacte. Mais comme en plus f
est injective, ce y est unique. On le note ψ(m). L’unicité garantit que l’application
m 7→ ψ(m) est bien linéaire et par construction on a φ = f ◦ ψ.

Jusqu’à présent nous n’avons pas utilisé d’hypothèse sur P et nous avons que

pour que la suite HomR−Mod(P,A)
f◦−−→ HomR−Mod(P,B)

g◦−−→ HomR−Mod(P,C) soit

exacte il faut et il suffit que le dernier morphisme HomR−Mod(P,B)
g◦−−→ HomR−Mod(P,C)

soit surjectif. Or ce morphisme est surjectif précisément si pourtout morphisme
ψ : P → C, il existe un morpisme ψ̃ rendant commutatif le diagramme suivant :

P

ψ
��

ψ̃

~~
B g

// // C.
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Donc si P est projectif, on a bien que ce dernier morphisme est surjectif pour toute
suite exacte A → B → C. Réciproquement, si ce résultat est vrai pour toute suite
exacte, alors pour toute surjection p : M � N , on a une suite exacte ker(p) ↪→
M � N et la condition de surjectivité assure donc que pour toute f : P → N , on a
l’existence de f̃ telle que p ◦ f̃ = f .

Le résultat pour les modules injectifs est complétement dual et se démontre mu-
tatis mutandis. �

Exemple 1.5.5. Un module libre est toujours projectif, car pour construire une ap-
plication linéaire issue d’un module libre, il suffit de choisir les images de sa base
librement. Plus généralement :

Lemme 1.5.6. Un R-module P est projectif si et seulement si il est facteur direct
d’un module libre : il existe Q tel que P ⊕ Q soit libre. par ailleurs, un module
projectif est plat.

Il est malheureusement plus compliqué de caractériser les modules injectifs. mais
on a le critère suivant

Lemme 1.5.7. Un R-module E est injectif si et seulement si il satisfait à la condi-
tion (1) :

pour tout idéal I de R, HomR(R,E) −→ HomR(I, E) est surjective.(1)

Exemple 1.5.8. Si R est un corps, tous les modules sont projectifs et injectifs.

Exercice 1.5.9. Démontrer le résultat énoncé dans l’exemple précédent.

Exercice 1.5.10. Démontrer que Z/mZ n’est pas projectif sur Z. Puis que Z/mZ est
projectif dans Z/mnZ lorsque m et n sont premiers entre eux.

Exercice 1.5.11. Soit 0 → A → B → P → 0 une suite exacte avec P projectif.
Montrer que la suite est scindée. Si de plus B est aussi projectif, montrer qye A est
également projectif.

Exemple 1.5.12 (Les cas de Q). Les nombres rationnels Q sont un Z-module plat
mais qui n’est pas projectif. C’est aussi un module injectif.

En effet par le Lemme de Baer 1.5.7, il suffit de montrer que pour tout n ∈ N∗ l’ap-
plication HomZ(Z,Q) → HomZ(nZ,Q) est surjective. Soit donc f ∈ HomZ(nZ,Q)

et posons g : Z→ Q définie par g(k) = k f(n)
n

. Clairement g|nZ = f . Notons que cette
preuve s’applique à tout Z-module M dans lequel on peut diviser par tout entier.

Que Q n’est pas projectif découle du fait que l’application surjective g :
⊕

N∗ Z =
Z(N∗) → Q définie par g

(
(nk)k∈N∗

)
=
∑

k∈N∗
nk
k

n’admetpas de section.
Pour la platitude on renvoit à l’exercice 1.5.21

Exemple 1.5.13. Le quotient Q/Z est un Z-module injectif mais n’est pas plat (ni pro-
jectif donc). En effet, la preuve de l’injectivité se fait comme dans l’exemple 1.5.12.

Montrons que Q/Z n’est pas plat. Considérons l’application f : Z ×n−→ Z qui est in-
jective. L’application f⊗id : (Q/Z)⊗ZZ→ (Q/Z)⊗ZZ n’est autre que l’application

Q/Z ×n−→ Q/Z qui n’est pas injective car f(1/n) = 1 = 0 dans Q/Z.

Un des intérêts de ces notions est que tout module peut être approché par de tels
modules, c’est à dire est quasi-isomorphe à un complexe formé de tels modules.
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Définition 1.5.14. Soit M un R-module.

(1) Une résolution projective la même chose qu’un quasi-isomorphisme de com-
plexes de chaines η : P∗ →M où chaque Pi est projectif. Autrement dit c’est
la donnée d’un complexe de châınes concentré en degré positif (Pn)n∈N tel
que chaque Pn est projectif et vérifiant Hi>0(P∗) = 0, H0(P∗) = M .

(2) Une résolution injective de M est un quasi-isomorphisme de complexes de
cochaines concentré en degré positif β : M → I∗ où chaque Ij est injectif.
Autrement dit c’est la donnée d’ un complexe de cochâınes (In)n∈N tel que
chaque In est injectif et vérifiant H i>0(I∗) = 0, H0(I∗) = M .

Proposition 1.5.15. Tout module admet des résolutions projectives et injectives.

Démonstration. On commence par choisir une surjection f0 : P0 → M où P0 est
projectif (on peut même prendre P0 libre : il suffit de prendre P0 =

⊕
S R où S

est un système de générateurs de M). Soit alors M0 = ker(P0
f0→ M . Soit alors

P1
f1→ M0 une surjection avec P1 projectif et on note d0 : P1

f1→ M0 ↪→ P0. On
a par construction que P0/ Im(d0) ∼= M . On continue la construction comme suit.

Supposons avoir construit inductivement une suite exacte Pn−1
dn−2→ Pn−2

dn−3→ . . . P0

tel que les Pi soient projectifs. On note Mn−1 = ker(dn−1) et on choisit Pn
fn→ Mn−1

une surjection R-linéaire. On a alors que la composée dn : Pn →Mn−1 ↪→ Pn−1 vérifie
que Im(dn) = ker(dn−1) de telle sorte que l’on a étendu la suite exacte précédente.
On obtient ainsi en itérant une résolution projective (P∗, d).

Pour les résolutions injectives, on remarque tout d’abord que pour tout anneau R,
on a que HomZ(R, I) est injectif pour tout Z-module injectif (par exemple I = Q/Z)
ce qui découle du fait que le foncteur HomZ(R, I) est adjoint à droite du foncteur
oubli R-mod→ Z-mod (tout comme un R-module libre est adjoint à gauche du fonc-
teur oubli). On en déduit une inclusion canoniqueM ↪→

∏
φ:M→HomZ(R,Q/Z)

HomZ(R,Q/Z).

De plus le membre de droite est injectif car produit d’injectif. On a construit
β0 : M → I0 avec I0 injectif et le reste de la preuve est dual du cas projectif. �

Exemple 1.5.16. Le complexe · · · → 0 → 0 → Z ∗m→ Z est une résolution projective
(car libre) de Z/mZ.

Lemme 1.5.17 (Relèvement des morphismes à une résolution projective). Soient M ,
N des R-modules, η : P∗ → M une résolution projective de M et α : Q∗ → N un
quasi-isomomorphisme quelconque. Pour tout morphisme de R-modules f : M → N ,
il existe un morphisme de complexes de chaines de R-modules f̃∗ : P∗ → Q∗ rendant
le diagramme suivant

P∗

' η

��

f̃ // Q∗

' α
��

M
f
// N

commutatif. De plus le morphisme f̃ est unique à homotopie de châınes près.

Démonstration. On construit f̃n : Pn → Qn par récurrence sur n. On pose par
convention f̃−1 = f : M → N . On suppose que l’on a construit, pour tout i tel que
−1 ≤ i ≤ n− 1 un morphisme f̃i : Pi → Qi tel que df̃i = f̃i−1d.
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Par définition, le module P est projectif si et seulement si, pour tout morphisme
f : P → B et tout épimorphisme p : A → B, il existe un morphisme f̃ tel que
f = p ◦ f̃

P

f

��

f̃

��
A p

// // B

Or, par hypothèse, df̃n−1 = f̃n−2, ce qui implique que f̃n−1(Zn−1(P )) ⊆ Zn−1(Q) :=
Ker(d : Qn−1 → Qn−2). On a donc un diagramme :

Pn // Zn−1(P ) �
� //

f̃n−1|
Zn−1(Q)

Zn−1(P )

��

Pn−1

f̃n−1

��
Qn

// Zn−1(Q) �
� // Qn−1

De plus, d : Qn → Zn−1(Q) est surjective, car ψ : Q∗ → N est une résolution. Donc,

puisque Pn est projectif, il existe une application f̃n : Pn → Qn qui fait commuter
le diagramme précédent.

Étant donné deux relèvements, on construit une homotopie entre eux par récur-
rence de la même manière. �

Exercice 1.5.18. On peut en réalité reformuler le lemme précédent de la façon sui-
vante : Soient P∗ un complexe dont les modules sont tous projectifs, et f : Q∗ → N∗
un quasi-isomorphisme surjectif en tout degré. Alors on a la propriété de relèvement :

0 //

��

Q∗

f

��
P∗ //

>>

N∗

On a aussi un résultat dual avec les complexes de modules injectifs et les quasi-
isomorphismes injectifs en tout degré.

En appliquant la proposition à f = id : M →M et à deux résolutions projectives
on obtient

Corollaire 1.5.19. Deux résolutions projectives P∗, Q∗ d’un même module M sont
homotopes et deux résolutions injectives sont également homotopes.

Exercice 1.5.20. Montrer que si M est projectif alors son dual HomA(M,A) est
injectif.

Exercice 1.5.21. Si M est un Z-module, on note S−1M le Z-module formé des
éléments x

n
avec x ∈ M et n ∈ S et dans lequel x

n
= y

m
si et seulement si

∃k ∈ S : k(mx − ny) = 0 (c’est à dire si et seulement si mx − ny est un élé-
ment de torsion de M). En particulier x

n
= 0

(
= 0

1

)
si et seulement si x est un

élément de torsion.

(1) Vérifier que Q = S−1Z.
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(2) Démontrer que tout élément de Q ⊗Z M s’écrit sous la forme 1
n
⊗ x avec

x ∈M , et en déduire un isomorphisme Q⊗Z M
'→ S−1M .

(3) Démontrer que si M ′ f→ M une application injective alors Q ⊗Z M
′ id⊗f−→

Q⊗Z M est également injective et en déduire que Q est plat.

Le lemme de comparaison 1.5.17 permet d’associer des complexes de (co)châınes
canoniques à au produit tensoriel ou aux foncteurs de morphismes. Et plus généra-
lement à tout foncteur exact à droite ou gauche.

Notons que si F est un foncteur additif, F envoie un complexe de (co)chaines
(C, d) sur le complexe de (co)chaines (F (C), F (d)).

Pour simplifier, dans le théorème qui suit on suppose que C = R−Mod ou
R−Modop, mais le résultat se généralise sans difficulté à toute catégorie abélienne
qui admet des résolutions projectives et injectives pour tout objet.

Théorème 1.5.22. Soit F : C→ S−Mod un foncteur exact à droite (resp. à gauche).

(1) Si P∗, Q∗ sont deux résolutions projectives (resp. injectives) de M , alors
il existe un quasi-isomorphisme canonique (à homotopie de châınes près)
F (P∗)→ F (Q∗).

(2) La construction M 7→ F (P∗(M)) où P∗(m) est une résolution projective
(resp. injective) de M induit un foncteur D(C) → D(S) et en particulier
les i-ièmes groupes de (co)homologie M 7→ Hi(F∗(P∗(M)), s’étendent en un
foncteur C→ S−Mod.

Par D(C) on entend la catégorie dérivée de C, c’est à dire Ch(C)[q− iso−1.

Démonstration. Nous faisons le cas des foncteurs exacts à droite.

(1) D’après le lemme de relèvement 1.5.17, il existe un morphisme P∗
f→ Q∗ tel

que le diagramme P∗

' η

��

f // Q∗

' α
��

M
id
// M

soit commutatif et de plus si f ′ : P∗ →

Q∗ est un autre tel morphisme, alors il existe une homotopie de chaines
(définition ??) entre f et f ′. En inversant les rôles de P∗ et Q∗, on obtient
g : Q∗ → P∗ un morphisme de complexes relevant idM (également unique à
homotopie de chaines près). Il suit que les composées f ◦g : Q∗ → Q∗ et g◦f :

P∗ → P∗ sont des morphismes de complexes relevant idM : P∗

' η

��

g◦f // P∗

' η

��
M

id
// M

. Or

l’identité idP∗ en est un autre relèvement. Il suit encore et toujours de l’unicité
à homotopie de chaines près dans le théorème 1.5.17 que f ◦ g et g ◦ f sont
homotopes à l’identité : f ◦ g = idQ∗ + dh+ hd, g ◦ f = idP∗ + ds+ sd. Il suit
de l’additivité ?? et de la fonctorialité de F que F (f) ◦ F (g) = F (idQ∗) +
F (d)F (h) +F (h)F (d) et F (g) ◦F (f) = F (idP∗) +F (d)F (s) +F (s)F (d) sont
homotope à F (id) = id et donc induisent des isomorphismes en homologie.
Autrement dit ce sont des quasi-isomorphismes.
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Ceci nous donne l’existence d’un quasi-isomorphisme F (f) := F (P∗) →
F (Q∗) et par ailleurs, ce dernier est indépendant du choix de f à homotopie
près par le même argument.

(2) Soit M
f→ N et N

g→ P deux morphismes dans C. Soient P∗(M), P∗(N) et

P∗(P ) des résolutions projectives respectives de M , N , P et f̃ : P∗(M) →
P ∗ (N) et g̃ : P∗(N) → P∗(P ) données par le théorème 1.5.17 tout comme

˜g ◦ f : P∗(M)→ P ∗(P ). On note comme dans le point (1) LF (f) := F (f̃) et

LF (g) := F (g̃). Comme les composées g̃◦ f̃ et ˜g ◦ f sont deux relèvements de
g◦f entre les mêmes résolutions, ils sont reliées par une homotopie de chaines
et donc leur image par F également. L’argument s’applique à l’identité de
même.

Puisque des morphismes homotopes induisent exactement le même mor-
phisme sur les groupes d’homologie, il suit que si f : P∗ → Q∗ est homotope
à f ′ on a que Hi(F (f)) = Hi(F (f ′) : Hi(L(F (P∗))) → Hi(L(F (Q∗))). Ainsi
Hi(LF (f)) est indépendant du choix du relevé f (dans le point (2)) et il
découle des points (1) et (2) que Hi(LF (−)) est bien un foncteur.

�

Ces constructions s’appelent les foncteurs dérivés de F et seront étudiés dans un
cadre général plus loin 2.6. On note donc dans la suite LF (M) ∼ F (P∗(M)) et
RF (N) = F (I∗(N)) les foncteurs donnés par le point (2) du théorème 1.5.22 dans
les cas où F est exact à droite ou à gaucge respectivement.

Le “foncteur dérivé” d’un foncteur exact à droite devient exact

Proposition 1.5.23. Soit F un foncteur exact à droite. Si 0 → A
f→ B

g→ C → 0
est une suite exacte, alors on peut choisir une résolution projective de B telle que

0 → LF∗(A)
LF (f)→ LF∗(B)

LF (g)→ LF∗(C) → 0 est une suite exacte de complexes de
châınes. En particulier on a une suite exacte longue naturelle en (co)homologie :

(2) · · · → Hi(LF (A))
LF (f)→ Hi(LF (B))

LF (g)→ Hi(LF (C))
δ→ Hi−1(LF (A))

LF (f)→ Hi−1(LF (B))→ · · · → H1(LF (B))
LF (g)→ H1(LF (C))

δ→ F (A)
F (f)→ B

F (g)→ C → 0

Ce résultat est encore vrai pour les foncteurs dérivés RF d’un foncteur exact à
gauche.

Exercice 1.5.24. Démontrer la proposition 1.5.23 et sa version duale.

Si on spécialise le théorème 1.5.22 à nos deux exemples fondamentaux : le produit
tensoriel et les homomorphismes, on retrouve les foncteurs Tori et Extj classiques
qui apapraissent dans le théorème des coefficients universels.

Définition 1.5.25. Soit M un R-module.

(1) On note M
L
⊗
R
− le foncteur dérivé à gauche de M ⊗

R
− et TorRi (M,−) =

Hi(P∗(M)⊗R −) ses i-ièmes groupes d’homologie.
(2) On note RHomR(−,M) le foncteur dérivé à gauche de HomR(−,M) et

ExtiR(N,M) = H i(HomR(N, I∗(M))) ∼= H i(HomR(P∗(N),M)) ses i-ièmes
groupes de cohomologie.



22 GRÉGORY GINOT

Les foncteurs Tor∗ sont des foncteurs d’homologie alors que les Exti sont des
foncteurs de cohomologie.

Le mot Tor vient de l’expression “produit de torsion” (car ces groupes n’appa-
raissent et ne mesurent que la torsion) alors que Ext vient de extension car ces
groupes encodent le nombre d’extensions de M par N .

Exemple 1.5.26 (Ext et Tor de Z/nZ). La résolution projective de l’exemple 1.5.16
permet de calculer facilement Tori(Z/nZ,M) et Exti(Z.nZ,M). En effet, par défi-
nition nous obtenons que

Z/nZ
L
⊗M = · · · → 0→ 0→M

∗n→M

puisque Z⊗M ∼= M et que n⊗m = 1⊗ nm. De même

RHom(Z/nZ,M) = M
∗n→M → 0→ . . .

car Hom(Z,M) ∼= M où l’isomorphisme est donné par f 7→ f(1).
Ainsi, ces groupes de (co)homologie sont nuls en degré ≥ 2.
Regardons maintenant le cas de M = Z, puis de M = Z/nZ. Pour M = Z, comme

celui-ci est projectif, on a immédiatement que

Tori≥1(Z/mZ,Z) = 0 et Tor0(Z/mZ,Z) = Z/mZ ∼= Z ∼= Z/mZ.
En revanche on a que

Ext0(Z/mZ,Z) = 0 mais Ext1(Z/mZ,Z) ∼= Z/mZ est non-nul.

Regardons maintenant M = Z/nZ. Alors toutes mes flèches dans les complexes
dérivées deviennent nulles et il suit

Tori≥2(Z/mZ,Z/mZ) ∼= 0, et Tori≤1(Z/mZ,Z/mZ) ∼= Z/mZ;

Exti≥2(Z/mZ,Z/mZ) ∼= 0, et Exti≤1(Z/mZ,Z/mZ) ∼= Z/mZ;

Remarque 1.5.27. De manière plus générale, les arguments donnés au-dessus donnent
directement que si P∗ est un complexe gradué positivement de modules R-projectifs,
alors le foncteur P∗ ⊗R − est exact.

En particulier, une suite exacte courte L ↪→ M � N de R-modules induit une
suite exacte courte de complexes P∗ ⊗R L ↪→ P∗ ⊗RM � P∗ ⊗R N et, si P∗ est une
résolution projective de Q, par le lemme 1.4.11 une suite exacte longue

. . . −→ TorR2 (Q,M) −→ TorR2 (Q,N) −→ TorR1 (Q,L)

→ TorR1 (Q,M) −→ TorR1 (Q,N) −→ Q⊗R L −→ Q⊗RM −→ Q⊗R N −→ 0.

Les constructions précédentes suggèrent qu’on a envie d’identifier des résolutions
d’un même objet, et, plus généralement, des complexes quasi-isomorphes.

Remarque 1.5.28. On a donc défini des “objets globaux” :

M
L
⊗R N et RHomR(M,N),

qui sont des foncteurs définis sur les catégories dérivées ci-dessus, dont les groupes
de (co)-homologie sont les TorRi (M,N) et ExtiR(M,N). Pour se faire on définit les
deux foncteurs dérivés :

·
L
⊗R ·,RHomR(·, ·) : D(R)⊗D(R)→ D(Z).
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Nous verrons que ces constructions classiques de l’algèbre homologique sont des cas
particuliers des foncteurs dérivés des catégories de modèles.

La propriété suivante est souvent utile.

Proposition 1.5.29.

ExtnR(M,N) ' HomD(R)(M,N [n])

où N [n] est le complexe concentré en degré −n

On pourra consulter [20, 17] pour des rappels/preuves plus détaillés d’algèbre
homologique.

1.6. Les notions classiques de fibrations pour les espaces
topologiques

A-t-on des notions analogues de “suite exacte longue associée à une suite exacte
courte en homotopie” et de “résolution projective” pour les espaces topologiques ?
La réponse est oui, et nous allons présenter ces objets, fondamentaux dans l’étude
des espaces topologiques à homotopie près, notions qui sont cependant un petit peu
plus compliqué que pour les complexes de chaines, notamment cas ces objets en sont
plus linéaires 9.

Définition 1.6.1. Une fibration de Hurewicz 10 est une application continue p : E → B
vérifiant la propriété de relèvement :

X × {0} //
� _

'

��

E

p

��
X × I //

<<

B

Cela signifie que, pour tout espace topologique X, pour tous morphismes, X×{0} →
X × I et X × I → B faisant commuter le cadre du diagramme précédent, (où
X × {0} → X × I est l’inclusion,) il existe un morphisme X × I → E faisant
commuter le diagramme précédent.

Définition 1.6.2. Une fibration de Serre est une application continue p : E → B
vérifiant la condition de relèvement précédente pour X = In, n ≥ 0.

Remarque 1.6.3. Une fibration de Hurewicz est une fibration de Serre, mais la réci-
proque est fausse.

Exemple 1.6.4.
a) Un revêtement est évidemment une fibration de Serre. L’unicité des relève-

ments des homotopies permet même de montrer que c’est en fait une fibration
de Hurewicz(cf. [18]).

b) Une projection F × B → B, (f, b) 7→ b, est une fibration de Hurewicz (et
donc de Serre).

9. par exemple une application linéaire surjective X → Y vérifie que f−1(y) ∼= f−1(y′) pour
tout couple de points y, y′, mais ce n’est évidemment pas le cas, pas même à homotopie faible près,
pour une application continue

10. on dira souvent fibration sans autre adjectif
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c) Soit p : E → B une fibration (de Hurewicz ou de Serre), et g : X → B.
L’application g∗(p) : X ×B E → X du pullback de p et g vers X est une
fibration.

Pour rappel, le pullback de deux applications continues f : B → A et g : C → A
est l’ensemble {(b, c) ∈ B×C : f(b) = g(c)}. Il est souvent noté B×AC et est muni
de deux applications de projection : f ∗ : B×AC → B et g∗ : B×AC → C. Il vérifie
la propriété universelle que toute paire d’applications i : Z → B, j : Z → C telle
que f ◦ i = g ◦ j il existe une unique application Z → B ×A C rendant commutatifs
les diagrammes évidents.

Proposition 1.6.5.
a) “Être une fibration de Serre” est une propriété locale, c’est-à-dire :

p : E → B est une fibration de Serre si et seulement si il existe un recou-
vrement (Ui)i∈I de B par des ouverts tels que p |p−1(Ui)

est une fibration de
Serre pour tout i ∈ I.

b) p : E → B est une fibration de Hurewicz si et seulement si il existe un
recouvrement dénombrable (Ui)i∈I de B par des ouverts tels que p |p−1(Ui)

est
une fibration de Hurewicz pour tout i ∈ I.

Démonstration. Pour la première propriété, voir la feuille de TD 1. Pour la deuxième,
voir [18, Chapitre II, Section 7]. �

Exemple 1.6.6 (Espaces fibrés). La proposition précédente permet d’obtenir les exemples
importants suivants.

d) Un espace fibré 11 (appelé aussi fibré localement trivial), est une fibration de
Serre.

e) Un espace fibré p : E → B au dessus d’une base B paracompacte et Hausdorff
(=séparé) est une fibration de Hurewicz.

La dernière propriété provient du fait qu’un espace paracompact séparé vérifie pré-
cisément l’hypothèse que de tout recouvrement ouvert on peut extraire un recouvre-
ment dénombrable. On rappelle qu’elle est évidemment satisfaite si B est une variété
topologique.

Exemple 1.6.7 (Espace des chemins). L’exemple suivant est fondamental et en un
sens universel.

f) Soit f : X → Y . On définit Pf = Y [0,1]×Y X = {(γ, x) ∈ Y [0,1]×X : γ(0) =
f(x)}. On appelle Pf l’espace des chemins au dessus de f . L’application :

ev1 : Pf → Y

(γ, x) 7→ γ(1)

11. c’est à dire une application continue p : E → B telle qu’il existe un recouvrement ouvert

(Ui)i∈I de B tel que la restriction de p |Ui

p−1(Ui)
à Ui est homéomorphe à la projection canonique,

c’est à dire qu’il existe un diagramme commutatif : p−1(Ui)

p

��

∼= // Ui × Fi

proj0
yy

Ui

.
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Figure 4. Un homéomorphisme entre paires (quitte à composer par
la symétrie évidente à droite)

est une fibration de Hurewicz. En effet, supposons que l’on ait un diagramme
commutatif :

Z × {0}
z 7→(γz ,xz)

//

��

Pf

ev1

��
Z × I ϕ

// Y

Alors, pour tout z ∈ Z, γz(1) = ϕ(z, 0). On pose alors ϕ̃(z, t) = (γz ∗
ϕ |{z}×[0,t], xz), où ∗ désigne la concaténation des chemins.

Remarque 1.6.8. On a factorisé f : X → Y :

X
'
↪→ Pf

ev1−→ Y
x 7→ (cf(x), x) 7→ f(x)

en une équivalence d’homotopie et une fibration

(de Hurewicz). La première flèche est bien une homotopie car on peut contracter
tout chemin sur son point base par l’homotopie évidente H(f, t)(u) = f((1− t)u).

Lemme 1.6.9 (Propriété de relèvement des fibrations par rapport aux rétracts forts
de paires cellulaires). Si p : E → B est une fibration de Serre, alors pour tout rétract
par déformation forte i : L ↪→ K où L est un sous-CW-complexe de K il existe un
relèvement du diagramme :

(3) L //
� _

i

��

E

p

��
K //

>>

B

Remarque 1.6.10. On a un homéomorphisme de paires

(In+1, In × {0}) ∼= (In+1, ∂In+1 \ In × {0})

Voir figure 4

Preuve du Lemme. Soit r : K → L une rétraction de i, et H : K × I → K une
homotopie relativement à L entre idK et i ◦ r. On a une factorisation du diagramme



26 GRÉGORY GINOT

3 :

L �
� //
� _

i

��

L× [0, 1] ∪K × {1} Proj∪r //
� _

��

L� _

��

// E

��
K // K × [0, 1]

H
//

f

55

K // B

Il suffit de montrer qu’il existe un f qui fasse commuter ce diagramme. L’existence
de f vient du fait que L est un sous-complexe cellulaire de K. On peut construire f
par récurrence sur la filtration du CW-complexe K × [0, 1] \ (L× [0, 1] ∪K × {1}),
c’est-à-dire qu’il suffit de construire un f faisant commuter le diagramme :

In−1 × [0, 1] ∪ In × {1}
� _

��

// E

p

��
In+1 //

f

88

B

Qui est homéomorphe à :

In × {0}
� _

��

// E

p

��
In+1 //

f

<<

B

Or, p étant une fibration de Serre, ce diagramme admet bien un relèvement. �

Notation 1.6.11. Si p : E → B est une fibration (de Hurewicz), on notera souvent
F ou Eb la fibre de b ∈ B le long de l’application p, c’est-à-dire le sous-ensemble
p−1({b}) ⊆ E.

Lemme 1.6.12. Si p : E → B est une fibration (de Hurewicz), et si B est connexe
par arcs, alors pour tous b, b′ ∈ B, Eb ' Eb′ .

Autrement dit, à homotopie près, les fibres d’une fibration de Hurewicz sont les
mêmes partout.

Démonstration. Voir [18] chapitre 2 section 8 corollaire 13.
On peut relier b a b′ par un chemin γ : I → B. Puisque p est une fibration, on a

un relèvement γ̃ du diagramme :

Eb� _

��

// E

p

��
Eb × I γ◦proj1

//

γ̃

<<

B

où la flèche du haut est l’inclusion. Puisque p(γ̃(e, 1)) = γ(1) = b′ pour tout e ∈ Eb,
on en déduit que l’image de l’application γ̃(·, 1) est contenue dans Eb′ . On note
γ̃1 : Eb → Eb′ l’application continue ainsi obtenue.

Montrons, qu’à homotopie près, l’application γ̃1 ainsi obtenue ne dépend de la
classe d’homotopie de γ (dans les chemins à extrémités fixées). SoitH : I×I → B une
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homotopie entre γ et β, deux chemins entre b et b′ (avec H(0,−) = b et H(1,−) = b′).
Puisque p est une fibration, on trouve un relèvement H̃ du diagramme suivant :

Eb × (I × {0, 1} ∪ {0} × I) //
� _

��

E

p

��
Eb × I2

H◦(proj1×proj3)
//

H̃

77

B

où la flèche du haut est donnée par β̃, α̃ et la projection Eb × I → Eb suivie de
l’inclusion. (qui a servi pour construire γ̃ et β̃. Pour tout t, on a donc que H̃(1, t) ∈
Eb′ et H̃(1,−) est une homotopie entre γ̃1 et β̃1.

Soit alors maintenant une application Eb′ → Eb obtenue en partant de γ−1.
Puisque γ ∗ γ−1 ' cb (où cb est le chemin constant en b), le résultat précédent

implique qu’il existe une homotopie entre ˜γ ∗ γ−1
1 et n’importe quel relevé de cb. On

peut évidemment choisir un tel relevé constant égal à l’identité de Eb. Il suit que
( ˜γ ∗ γ−1)1 est homotope à l’identité. Par ailleurs, par construction, ( ˜γ ∗ γ−1)1 est ho-

motope à la composition γ̃1 ◦ ˜γ−1
1. On démontre de même l’équivalence d’homotopie

dans l’autre sens.
�

Exemple 1.6.13. Soit X connexe par arcs, x0 ∈ X et P∗X := P{x0}↪→X = {x0} ×X
X [0,1] l’espace des chemins de X qui partent de x0. Pour tout x ∈ X, et tout choix
de chemin γx0,x reliant x0 à x, la fibre P∗Xx = ev−1

1 ({x}) de la fibration standard

ev1 : P∗X → X est homéomorphe à l’espace Ωx(X) := {f : S1 C0

−→ X, /f(1) = x}
des lacets en x. L’homéomorphisme est obtenu en recollant le chemin ainsi obtenu,
parcouru dans le sens contraire avec γx,x0 . Le lemme 1.6.12 nous donne alors que
les espaces de chemins Ωx sont tous homotopes entre eux. Ceci entraine (et même
renforce) le fait que les groupes d’homotopie de X ne dépendent, à isomorphisme
près, pas du choix du point base.

Le résultat suivant est fondamental et en un sens énonce qu’une fibration est un
analogue pour les espaces topologiques d’une suite exacte courte de complexes de
châınes.

Théorème 1.6.14. Soit p : E → B est une fibration de Serre, avec B connexe par
arcs, b0 un point de B, F := p−1(b0) la fibre de b0, et f0 ∈ F . On a alors une suite
exacte longue :

· · · → πn(F, f0)
i∗−→ πn(E, f0)

p∗−→ πn(B, b0)
∂−→ πn−1(F, f0) . . .

Remarque 1.6.15. Les π0 ne sont pas des groupes. On peut néanmoins définir les

noyaux de π0(F, f0)
i∗−→ π0(E, f0) et de π0(E, f0)

p∗−→ π0(B, b0) comme étant les
égalisateurs de i∗ et p∗ avec les applications constantes.

Lemme 1.6.16. Si p : E → B est une fibration de Serre avec B connexe par arcs,
alors les fibres de p sont faiblement homotopiquement équivalentes.

Démonstration. Rappelons que Pp dénote l’espace des chemins de p, c’est-à-dire :

Pp = E ×BI = {(e, γ : I → B) : γ(0) = p(e)}
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On factorise l’application p comme dans l’exemple 1.6.7 :

f : E
'
↪→ Pp

fibration−→ B

Pour tout b ∈ B, on obtient donc un morphisme :

Eb → (Pp)b

Puisque Pp → B est une fibration, on en déduit, d’après le lemme précédent, que, si
b′ ∈ B, (Pp)b ' (Pp)b′ . Il ne reste alors plus qu’à prouver que f est une équivalence
faible d’homotopie. En effet, on aura alors le zigzag :

Eb
∼→ (Pp)b ' (Pp)b′

∼← Eb′

On dispose du diagramme de suites exactes longues :

. . . // πn(B, b) //

'
��

πn(Eb, ∗)

��

// πn(E, ∗)

'
��

// . . .

. . . // πn(B, b) // πn((Pp)b, ∗) // πn(Pp, ∗) // . . .

On déduit du Lemme des cinq (1.4.11.b) que le morphisme πn(Eb, ∗)→ πn((Pp)b, ∗)
est un isomorphisme. �

Exemple 1.6.17. On prendra garde, qu’une submersion surjective entre variétés n’est
pas forcément une fibration de Serre (ni donc d’Hurewicz). Par exemple, considérons
l’application p : R2 \{0} → R donnée par la projection (x, y) 7→ x. Les fibres en tout
point x 6= 0 sont données par une droite alors que la fibre en 0 n’est pas connexe par
arcs. Par conséquent, les fibres n’ont pas les mêmes groupes d’homotopie et donc p
n’est pas une fibration de Serre en vertu du lemme 1.6.16.

1.7. Groupes d’homotopie relatifs et suites exactes longues en
homotopie

Définition 1.7.1 (groupes d’homotopie relatifs). Soit (X,A) une paire d’espaces topo-
logiques, et a0 ∈ A un point base. Pour n ≥ 1, on définit πn(X,A, a0), l’ensemble des
classes d’homotopie d’applications (In, ∂In) → (X,A) qui envoient In−1 × {0, 1} ∪
In−2 × {1} × [0, 1] = ∂In \ ({0} × In−1) (le “n-cornet”), sur le singleton {a0}. Les
homotopies doivent également respecter les conditions précédentes sur le bord (autre-
ment dit leur restriction au bord ∂In doit rester à image dans A et celle à l’adhérence
de ∂In \ ({0} × In−1) doit être constante, égale à a0).

Remarque 1.7.2. π0(X,A, a0) n’a pas, en général, de structure de monöıde.

Pour n = 0, on peut définir 12 π0(X,A) comme l’ensemble des composantes connexes
par arcs de X qui ne rencontrent pas A.

Proposition 1.7.3. Pour n ≥ 2, on munit πn(X,A, a0) d’une structure de groupe, qui
est abélienne si n ≥ 3.

12. on prendra garde qu’il n’y a pas de définition universellement acceptée et que certains pré-
fèrent ne pas considérer le cas n = 0 tout simplement.
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f a0

a0

a0

A A

a0

a0

a0

a0

g(2t− 1, s)

f(2t, s)

0

1

Figure 5. La représentation graphique d’une application dans
π1(X,A, a0) à gauche, et la représentation graphique du produit f ∗ g
à droite.

On va définir le produit (cf. figure 5). Posons :

α : In−1 × {1} → In−1 × {0}
(t1 . . . , tn, 1) 7→ (t1 . . . , tn, 0)

remarquons que In ∼= In
∐

α I
n, que cet homéomorphisme envoit ∂In sur [(∂In

∐
∂In)\

(In−1 × {1}
∐
In−1 × {0})], et qu’on peut le choisir de manière à ce que {0} × In−1

soit envoyé sur [{0} × In−1
∐
{0} × In−1].

Si [f ], [g] ∈ πn(X,A, a0), alors pour tout t ∈ In−1, f(t, 1) = a0 = g(t, 0). On peut
donc définir une application continue f

∐
α g : In → X par recollement. Elle vérifie :

f
∐
α

g(∂In) = f(∂In
∐

∂In \ In−1 × {1}) ∪ g(In−1 × {0}) ⊆ A

et :

f
∐
α

g(∂In\({0}×In−1)) = f(∂In\(In−1×{1}∪{0}×In−1))∪g(∂In\(In−1×{0}∪{0}×In−1))

⊆ f(∂In \ ∪{0} × In−1) ∪ g(∂In \ {0} × In−1) ⊆ {a0}
On vérifie que l’application :

∗ : πn(X,A, a0)× πn(X,A, a0) → πn(X,A, a0)

([f ], [g]) 7→ [f
∐
α

g]

est bien un produit associatif muni d’un élément neutre (l’application constante
au point base), commutatif si n ≥ 3, de la même manière que pour les groupes
d’homotopie absolus.

Le lemme suivant est fort utile pour comprendre les applications dont la classe est
nulle dans πn(X,A, a0).

Lemme 1.7.4. Soit [f ] ∈ πn(X,A, a0). Alors :

[f ] = 0⇐⇒ f est homotope relativement à ∂In a une application à valeur dans A

Démonstration. Montrons le sens ⇐ de l’équivalence. Supposons qu’il existe g :
In → A telle que f '

A
g. Alors la classe de f dans πn(X,A, a0) est la même que

celle de g, qui est à valeur dans A, et on a que nécessairement g∂In \ {0} × In−1 est
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A A A A
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5 1

Figure 6. L’homotopie dans πn(X,A, a0) déformant une application
à valeur dans A sur l’application constante.

A A

a0

a0

f

a0

a0
a0

a0 a0

a0

A
A

A

X

Figure 7. La représentation graphique (à gauche) d’une homotopie
entre f représentant la classe nulle dans π0(X,A, a0) et le chemin
constant a0, et, sa déformation, via une homotopie relativement au
bord ∂I (les points bleus et rouges), vers un application à valeur dans
A.

l’application constante a0. Mais une telle application est homotope à l’application
constante qui vaut a0 (c’est à dire l’élément neutre de πn(X,A, a0)). En effet on peut
la déformer simplement sur a0 en rétractant In sur {1} × In−1, voir figure 5.

Montrons maintenant le sens⇒ de l’équivalence. Soit H : In+1 → X une homoto-
pie relative entre f et l’application constante en a0. L’adhérence ∂In+1 \ ({0} × In)
est un rétract par déformation (forte) de In+1, il existe donc une homotopie R entre
In+1 et ∂In+1 \ ({0} × In) relativement à ce dernier. Ainsi, H ◦R |{0}×In est une

homotopie entre f et H |∂In\{0}×In relativement à ∂In. Or H |∂In\{0}×In est à valeur
dans A. �

Les groupes d’homotopie relatives sont reliés entre eux par une longue suite exacte,
analogue à celle de l’homologie d’une paire.

Théorème 1.7.5. Soit (X,A) une paire d’espace topologique, a0 ∈ A un point base.
On a une suite exacte longue :

· · · → πn(A, a0)
i∗−→ πn(X, a0)

p∗−→ πn(X,A, a0)
∂−→ πn−1(A, a0)→ . . . π0(X)→ π0(X,A).
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En pratique, on sera intéressé par le cas où toutes les composantes connexes par
arcs de X rencontrent A. Dans ce cas le dernier terme est nul.

Démonstration. La dernière flèche est simplement induit par la décomposition de
π0(X) entre les composantes connexes qui rencontrent A (et la flèche π0(A)→ π0(X)
est une surjection sur ce sous-ensemble) et les autres (qui sont en bijection avec
π0(X,A) par définition). On regarde maintenant le reste de la suite. Le morphisme
∂ : πn(X,A, a0)→ πn−1(A, a0) est défini par :

∂([f ]) = [f |{0}×In−1 ].

Par définition, l’application f restreinte à {0}×In−1 est à valeur dans A et son bord 13

et dans a0 ; ainsi ∂([f ]) est bien un élément de πn−1(A, a0) (qui ne dépend que de la
classe d’homotopie de f par construction). Que cette flèche soit un morphisme de
groupes est immédiat par définition du produit, voir la figure 6

Montrons que la suite est exacte : si [f ] ∈ πn(X, a0), alors f |{0}×In−1 est l’applica-

tion constante. Donc Im(p∗) ⊆ Ker(∂). Réciproquement, si ∂([f ]) = 0, cela signifie
qu’il existe une homotopie H : (In, ∂In) → (X,A) entre f |{0}×In−1 et le chemin

constant en a0. Supposons par exemple que H |{0}×In−1 est le chemin constant et

que H |{1}×In−1 = f |{0}×In−1 . En posant :

α : {0} × In−1 → {1} × In−1

(0, t1 . . . , tn) 7→ (1, t1 . . . , tn)

On peut recoller H et f de la façon suivante :

In ∼= In
∐
α

In
H

∐
α f−→ X

De plus, {1} × In−1 est un rétract par déformation (forte) de In, donc il existe une
homotopie r de In vers {1} × In−1 relativement à ce dernier. H ◦ r

∐
α f est une

homotopie entre f et H
∐

α f relative à ∂In, et H
∐

α f envoit ∂In sur a0. Donc
[f ] = p∗([H

∐
α f ]).

Par le lemme 1.7.4, on obtient que la composée p∗◦ i∗ est nulle (puisque elle envoie
un représentant d’une classe de πn(A, a0) sur une application à valeur dans A, qui
avut a0 sur le bord). Par ailleurs, par le même lemme, si p∗([f ]) = 0, alors f est
homotope relativement au bord à une application g à valeur dans A. Comme sur son
bord, f est constante et égale à a0, il suit que g définit bien un élément de πn(A, a0)
et i∗[g] = [f ].

Enfin, on a i∗ ◦ ∂([f ]) est la classe, relativement au bord, dans πn−1(X, a0) de
f |{0}×In−1 . Or f : In → X définit pécisément une homotopie entre f |{0}×In−1 et son

bord opposé a0. Ainsi cette composée est nulle. Réciproquement, si i∗([g] = 0, cela
veut dire que g est homotope dans X à une application In−1 × I → X qui, sur la
composante ∂In−1 × I du bord est a0 et vaut g sur In−1 × {0} et a0 sur In−1 × {1}.
Cela définit précisément un élément de πn(X,A, a0) dont l’image par ∂ est [g]. �

On peut maintenant démontrer le théorème de la longue suite exacte asscoiée à
une fibration de Serre.

13. on fait attention que cela définit encore pour n = 1 un élément de π0(A)
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Preuve du Théorème 1.6.14 . Il faut commencer par définir ∂ : πn(B, b0)→ πn−1(F, f0).
Prenons f : (In, ∂In)→ (B, b0) une application représentant une classe dans πn(B, b0).
Montrons qu’on peut relever f en une application de In dans E. Comme p : E → B
est une fibration de Serre, d’après le lemme 1.6.9, le diagramme suivant admet un
relèvement f̃ :

∂In \ {0} × ∂In−1 //
� _

��

E

p

��
In

f
//

f̃

99

B

où la flèche du haut est l’application constante sur le point base f0. Par commuta-
tivité du diagramme la restriction de f̃ au bord Sn−1 ∼= ∂In est dans F et envoie
∂{0} × In−1 sur le point base f0. . On définit alors

∂([f ]) =
[
f̃ |{0}×In−1

]
.

On vérifie que l’application ne dépend pas du choix du représentant de la classe
α = [f ]. C’est la même preuve que celle vérifiant que le relèvement d’un chemin est
indépendant des choix dans le lemme 1.6.12 (ou ici on ne travaille que sur des cubes
et rétractes de cubes à gauche). Que l’application p : πn(B, b0)→ πn−1(F, f0) soit un
morphisme de groupes, découle des définitions des produits : On a [f ] ∗ [g] = [f ∗ g]
où pour tout (t, s) ∈ In−1 × [0, 1], on a f ∗ g(s, t) = f(s, 2t) si t ∈ [0, 1/2] et vaut
g(s, 2t − 1) sinon. On obtient alors immédiatement que ∂([f ∗ g]) est donné par la
même formule (avec s ∈ {0} × In−2) désormais et donc ∂([f ∗ g]) = ∂([f ]) ∗ ∂([g]).

La fibration (de Serre) p : E → B envoie F sur b0 par définition. Il suit qu’elle
envoie une classe [f ] ∈ πn(E,F, f0) sur une classe dans πn(B, b0) ; on note p̃∗ :
πn(E,F, f0) → πn(B, b0) l’application ainsi obtenue, qui est pour les raisons précé-
dentes un morphisme de groupes. la construction de ∂ montre que le diagramme
suivant est commutatif :

. . . // πn(F, f0)
i∗ // πn(E, f0) // πn(E,F, f0)

p̃∗
��

∂ // πn−1(F, f0)
i∗ // . . .

. . . // πn(F, f0)
i∗ // πn(E, f0)

p∗ // πn(B, b0)
∂ // πn−1(F, f0)

i∗ // . . .

Pour terminer la preuve, en vertu du Théorème 1.7.5, il suffit de montrer que p̃∗ est
une bijection.

On a en fait déjà montré la surjectivité : en effet le relèvement f̃ : In → E de
f : (In, ∂In)→ (B, b0) que nous avons construit est précisément une application qui
envoie {0} × In−1 dans F et son complémentaire dans ∂In sur le point base. Ainsi

il définit une classe [f̃ ] ∈ πn(E,F, f0) telle p̃∗([f̃ ]) = [p ◦ f̃ ] = [f ] dans πn(B, b0).
Pour l’injectivité : supposons avoir deux applications f, g : In → E qui envoie le

bord dans F et ∂In\{0}×In−1 sur f0 et qui, en outre, vérifient que p̃∗([f ]) = p̃∗([g]) ;
c’est à dire p ◦ f '

∂In
p ◦ g. Comme p : E → B est une fibration de Serre (et que

la flèche de gauche est un rétract par déformation fort d’une paire CW) on a un
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relèvement dans le diagramme suivant :

In × {0, 1} ∪ In−1 × {1} × I //
� _

��

E

p

��
In × I

H
//

H̃

77

B

où H est l’homotopie entre p ◦ f et p ◦ g, et la flèche du haut est donnée par
f
∐
g : In × {0, 1} → E et l’application constante sur f0 sur {1} × In. Comme

H(−, 0) = b0, on a que H̃(−, 0) est à valeur dans F . Il suit que H définit bien une
homotopie entre f et g identifiant leur classes dans πn(E,F, f0). �

Exemple 1.7.6. La fibration de Hopf est une application p : S3 → CP 1 ∼= S2 dont la
fibre en tout point de S2 est un cercle S1. On obtient une suite exacte longue :

· · · → π3(S1) −→ π3(S3)
p∗−→ π3(S2) −→ π1(S1) −→ π1(S1) −→ π1(S3) −→ π1(S2) . . .

Rappelons que :

πk(Sn) =

{
0 si k < n
Z si n = k

et qu’en particulier :

πk(S1) =

{
0 si k 6= 1
Z si k = 1

Notre suite exacte longue devient alors :

· · · → 0 −→ Z p∗−→ π3(S2) −→ 0 −→ 0 −→ 0 −→ Z . . .

On en déduit que π3(S3) ∼= Z

Remarque 1.7.7. Les groupes d’homotopie des sphères ne sont pas tous connus !

Exemple 1.7.8.
π12(S2) = Z/2Z × Z/2Z

π11(S8) = Z/24Z

On a πk<n(Sn) = 0 par une application aisée du lemme de Sard et πn(Sn) ∼= Z
par la théorie du degré (voir [3, 18] par exemple). Serre a démontré le théorème
remarquable suivant.

Théorème 1.7.9 (Serre ∼ 1953).
Si k > n, alors πk(Sn) est de torsion, sauf π4n−1(S2n) = Z⊕ torsion.

Remarque 1.7.10. (Une mise en garde.) Considérons la paire donnée par S1 ∼=
∂I2 ⊂ I2 ∼= D2. La longue suite exacte de groupes d’homotopie relatifs donne
π≥3(D2, S1, ∗) = 0 et la suite exacte

0→ π1(D2, S1, ∗) ∂−→ Z→ 0→ π0(D2, S1, ∗)→ {∗}
d’où on déduit que πn(D2, S1, ∗) = 0 sauf pour n = 2 où on trouve Z. Remar-
quons que ces groupes d’homotopie 14 sont donc différents de ceux du quotient

14. contrairement aux groupes d’homologie d’une paire qui sont bien équivalents à ceux du cone
Cone(A ↪→ X)
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D2/S1 ∼= S2 qui est pourtant un “bon ”quotient au sens où D2/S1 est homotope
au cone Cone(S1 ↪→ D2). Ceci montre que la suite exacte n’a pas d’interpréta-
tions en termes de quotient homotopique de la forme X/A ou quotient homotopique
Cone(A ↪→ X) (voir la suite du cours pour les notions de quotients homotopiques)
lorsque l’application quotient X → X/A n’est pas une fibration. En fait cette longue
suite d’exacte ne correspond pas à l’homotopie d’un espace de manière naturelle
(contrairement donc à l’homologie relative H∗(A,B) qui correspond bien à celle du
cone CA ↪→ X)) Cette propriété montre en fait que les groupes d’homotopie ne
satisfont pas de propriété du type “Mayer Vietoris”.

1.8. La notion classique de cofibration pour les espaces
topologiques

Nous allons maintenant définir une notion duale de celle de fibration (de Hure-
wicz).

Définition 1.8.1 (Cofibration). Une application i : A→ X est appelée une cofibration
si pour tout espace topologique Y , tout diagramme commutatif du type suivant
admet un relèvement f̃ :

A //

i

��

Y I

ev0

��
X

f
//

f̃

>>

Y

Remarque 1.8.2. De manière équivalente, puisque le foncteur “objet en chemin” est
adjoint à droite au foncteur “objet cylindre”, i : A → X est une cofibration si le
diagramme commutatif suivant admet un relèvement :

(4) A× {0} � � //

i

��

A× [0, 1]

i

��

zz
Y

X × {0} � � //

f
::

X × [0, 1]

dd

Proposition 1.8.3. a) Si i : A → X est une cofibration, alors i est un homéo-
morphisme sur son image 15.

b) Si X est séparé (Hausdorff), alors i(A) est un fermé de X.
c) Si A ⊆ X, alors l’inclusion A ↪→ X est une cofibration si et seulement si
X × {0} ∪ A× [0, 1] est un rétract de X × [0, 1].

Démonstration. Les deux premiers points sont dans la feuille de TD 1. Le dernier est
essentiellement une retraduction de la définition : en prenant Y = A× I ∪X × {0}
on obtient directement ⇐. Réciproquement, si X × {0} ∪ A × [0, 1] est un rétract
de X × [0, 1] et qu’on a un diagramme commutatif comme (4), alors on construit le
relèvement X× [0, 1]→ Y comme la composée X× [0, 1]→ X×{0}∪A× [0, 1]→ Y
où la première flèche est la rétraction. �

15. ce qui permet de se ramener au cas où A est un sous-espace en pratique
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Lemme 1.8.4. Si K ⊆ L est une inclusion d’un sous-complexe cellulaire, alors c’est
une cofibration.

Démonstration. Il suffit de construire une rétraction de L × [0, 1] dans L × {0} ∪
K × [0, 1] par récurrence sur L(n) × [0, 1]. En ayant déjà construit une rétraction
r(n) : L(n)× [0, 1]→ L(n)×{0}∪K(n)× [0, 1] on l’étend à L(n+1)× [0, 1] de la manière
usuelle : pour construire r(n+1) il suffit de le faire sur chaque cellule de L(n+1) qui n’est
pas dans K(n+1). On est donc ramené à contruire un relèvement dans le diagramme
commutatif :

Sn × {0} � � //

i

��

Sn × [0, 1]

i

��

tt

L(n+1) × {0} ∪K(n+1) × [0, 1]

In+1 × {0} � � //

44

In+1 × [0, 1]

jj

où les applications sont induites par l’inclusion canonique et r(n) qui est bien défini
sur la partie de bord Sn × [0, 1] de la cellule I(n+1) × [0, 1] → L(n+1) × [0, 1]. Mais
comme Sn → In+1 est une cofibration par la proposition 1.8.3.c), le résultat en
découle. Comme un CW-complexe a la topologie réunion, on peut recoller les r(n)

pour obtenir la rétraction voulue. �

Remarque 1.8.5 (complexes cellulaires relatifs). Le lemme précédent se généralise 16

en fait à une inclusion X → L cellulaire généralisée 17 (aussi appelé complexe cellu-
laire relatif) : c’est à dire une inclusion X ⊂ L où L est obtenu comme la colimite
dans les espaces topologiques 18 L =

⋃
i∈I Li de sous-espaces contenant X et tels que

chaque Li est obtenu à partir de X par recollement de cellules.

Exemple 1.8.6 (Le cylindre d’une application). L’exemple suivant est fondamen-
tal. Soit f : X → Y . On définit le cylindre de f comme l’espace Cyl(f) :=
X × [0, 1]

∐
f×{0} Y ×{0} = X × [0, 1]

∐
Y/(x,0)∼f(x) (faire un dessin !). L’application

X ↪→ Cyl(f) (donnéee par x 7→ (x, 1)) est une cofibration comme on le voit par une
preuve “duale” de celle de l’espace des chemins.

On obtient alors une factorisation de f en

X ↪→ Cyl(f)
'−→ Y

en une cofibration suivie d’une équivalence d’homotopie (donnée par l’homotopie
rétractant le cylindre X × [0, 1] sur X × {0}).

Lemme 1.8.7. Si X est un espace métrisable (ou seulement normal 19), et si i : A ↪→
X est fermé, alors i est une cofibration si et seulement si il existe un voisinage ouvert
U ⊆ X qui se rétracte par déformation sur A dans X (autrement dit il existe une
application H : U × [0, 1]→ X telle que H(a, t) = a, H(u, 1) ∈ A, H(u, 0) = u).

16. en appliquant la preuve à chaque Li et en recollant les rétractions obtenues en utilisant la
topologie réunion

17. cette dernière généralise la notion de CW -complexe relatif qui est la même définition si ce
n’est qu’on immpose en plus de recoller les cellules par degré croissant

18. autrement dit L est muni de la topologie réunion des Li
19. c’est à dire un espace dans lequel deux fermés disjoints peuvent être séparés par des ouverts



36 GRÉGORY GINOT

Remarque 1.8.8. Les constructions usuelles (quotient, tiré en arrière, . . .) ne pré-
servent pas en général les homotopies.

Nous avons vu précédemment que le poussé en avant (et autres colimites) ne
préserve pas les équivalences faibles. Pour palier ce défaut, on doit construire des
versions “homotopiques” de ces (co)limites, qui sont des constructions analogues à
celle des objets globaux associés à Tor et Ext. Ces constructions permettent de
relier les groupes d’homotopie, de (co)homologie et autres invariants topologiques
de la (co)limite homotopique à ceux des différentes composantes.

Donnons un exemple élementaire qui sera jsutifié plus avant dans la partie 2.6, à
savoir la construction des poussés en avant homotopiques :

Définition 1.8.9. Le pushout homotopique de A
i→ X, A

j→ Y est l’espace topolo-
gique

X

h∐
A

Y := Y
∐
A

Cyl(i) =

(
Y
∐

A× [0, 1]
∐

X

)
/(

(a,0)∼j(a),(a′,1)∼i(a′)
).

On notera que X
h∐
A

Y est naturellement homéomorphe à Cyl(j)
∐

Cyl(A)

Cyl(i). Par

ailleurs, les inclusions de X et Y dans leurs composantes donne un diagramme
canonique

A
i //

j

��

X

��

Y // X
h∐
A

Y

qui n’est pas commutatif, mais est commutatif à homotopie près 20.

Remarquons que l’on a une application continue naturelle

X
h∐
A

Y −→ X
∐
A

Y

qui est simplement induite par la projection A × [0, 1] → A. Il n’y a en revanche,
pas d’application naturelle de X ∪A Y dans X ∪hA Y en général. Par ailleurs, si on a
un diagramme commutatif

(5) Y

f
��

A
joo i //

φ
��

X

g
��

Y ′ A′
j′oo i′ // X ′

alors on a une flèche naturelle f
∐h

φ g : X
h∐
A

Y → X ′
∐

A′ Y
′ donnée par y 7→ f(y),

(a, t) 7→ (φ(a), t) et x 7→ g(x).

20. c’est à dire que les deux flèches A → X
h∐
A

Y déduites du diagramme sont homotopes. L’ho-

motopie étant évidemment celle ramenant A× {0} sur A× {1} dans le cylindre
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Lemme 1.8.10. Le pushout homotopique est un “invariant homotopique”.

Les guillemets et l’énoncé sont volontairement vagues. Cela est du au fait que
cette construction n’est pas un pushout ou une colimite de X ← A → Y ni même
si on considère ces objets dans la catégorie homotopique des espaces (l’analogue de
la catégorie dérivée, cf le chapitre suivant). On peut montrer qu’une transformation
constituée d’équivalences d’homotopies faibles induit une équivalence d’homotopie
faible entre les pushouts homotopiques, mais selon les cas on peut avoir des résultats
plus forts. Cette notion de colimite homotopique sera précisé dans la suite du cours,
voir section 2.6 et exemple 2.6.19.

Démonstration. On va seulement démontrer que si f : X
'→ X ′ est une équivalence

d’homotopie au dessus de A, elle induit, pour tous les pushouts de cette forme,
l’application :

f ∪hA Y : X ∪hA Y → X ′ ∪hA Y
qui est une équivalence d’homotopie. Il existe des améliorations de cela, voir par
exemple la feuille de TD 1 où on traite le cas où Y = {∗}.

Pour cela on va montrer que si g : X ′ → X est un inverse homotopique de f ,
alors g ∪hA Y est un inverse homotopique de f ∪hA Y . On remarque que X

∐h
A Y est

le pushout :

A �
� //
� _

��

A× [1/2, 1] ∪X/(a,1)∼i(a) ' Cyl(i)

��
Cyl(j) ' A× [0, 1/2] ∪ Y/(a′,0)∼j(a′) // X ∪hA Y

Or les injections A ↪→ Cyl(i) et A ↪→ Cyl(j) sont des cofibrations (d’après 1.8.3),
donc, d’après la propriété universelle du pushout, les morphismes Cyl(j)→ X ∪hA Y
et Cyl(i)→ X ∪hA Y sont aussi des cofibrations, ce qui implique que ι : A ↪→ X ∪hA Y
est une cofibration.

Par hypothèse, on a une homotopie H entre g ◦ f et idX . Cela nous donne une

application H |A×[0,1] : A × [0, 1] → X. On a aussi une application A × [0, 1]
j×[0,1]−→

Y ×[0, 1]
proj0−→ Y . On en déduit une application A×[0, 1]→ X∪hAY , auquel correspond

un morphisme ϕ : A→ (X ∪hA Y )[0,1]. On relève alors le diagramme

A
ϕ //

ι(a)

��

(X ∪hA Y )[0,1]

ev0

��
X ∪hA Y id

X∪h
A
Y

//

H̃

99

X ∪hA Y

H̃ correspond à une homotopie entre g ◦ f
∐
A

idY et idX
h∐
A

idY .

On peut démontrer également que si on a des équivalences faibles A→ A′, X →
X ′, Y → Y ′ tels que le diagramme 5 soit commutatif, alors, l’application induite
X ∪hA Y → X ′ ∪hA′ Y ′ est une équivalence d’homotopie faible. C’est une conséquence
de l’exemple 2.6.19 et de la proposition 2.6.11.
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Sans utiliser la machinerie du reste du cours, on note que le fait que cette applica-
tion induise un isomrophisme pour les groupes fondamentaux résulte du Théorème
de Van-Kampen (en choisissant les images de Y

∐
A × [0, 3/4[ et A × [1/4, 0]

∐
X

comme ouverts). De même Mayer-Vietoris appliqué aux mêmes ouverts induit des
isomorphismes sur les groupes d’homologie. Il découle alors, si nos espaces sont sim-
plement connexes, du Théorème 1.3.11 que l’application est une équivalence d’ho-
motopie faible. �

Exemple 1.8.11. Un autre exemple classique de telle colimite est donné par la construc-
tion de “bon quotient”. Plus précisément, soit A ⊂ X un sous-espace. Il est classique
que le quotientX/A n’a pas de très bonnes propriétés : par exemple, sa (co)homologie
(réduite) diffère de celle de la (co)homologie relative H(X,A) de la paire en géné-
ral 21 et n’est pas un invariant d’homotopie. En revanche, le Cone C(A ⊂ X) est
un invariant homotopique qui a les bons groupes de (co)homologie et dont on peut
remarquer qu’il est homotope au pushout homotopique du diagramme ∗ ← A ↪→ X.

Proposition 1.8.12. Si l’on a un diagramme commutatif :

A �
� i //

'

��

X

'

��
A′

i′
// X ′

où i et i′ sont des cofibrations d’image fermée, alors l’application induite X/A →
X ′/A′ est aussi une équivalence d’homotopie.

Démonstration. Voir les solutions du TD 1. �

On crée de manière analogue les pullbacks homotopiques en remplaçant Cyl(f)
par Pf .

De manière générale, on peut créer des (co)limites homotopiques en remplaçant
les applications par des (co)fibrations comme ci-dessus. Cela demande un petit peu
d’attention, car il faut faire cela tout en conservant la commutativité des diagrammes
servant à définir notre (co)limite. En général, c’est plus compliqué que simplement
remplacer les applications par des (co)fibrations même si cela reste l’idée clé.

L’intérêt des (co)limites homotopiques est qu’il donne des constructions inva-
riantes à homotopie (faible) près. Elles ont la vertu d’être beaucoup plus facilement
calculables (du point de vue de l’homologie ou de l’homotopie) que leurs construc-
tions non-homotopiques et correspondent aux foncteurs dérivés Tor et Ext de l’al-
gèbre homologique. Par ailleurs, très souvent, pour identifier des espaces topologiques
à homotopie (faible) près, on peut se ramener à les identifier avec certaines construc-
tions de (co)limites homotopiques et utiliser leur meilleure calculabilité. Enfin, ces
constructions interviennent partout en topologie algébrique et leurs analogues plus
généraux que nous verrons dans les catégories de modèles sont des constructions
fondamentales dans les applications en dehors de la topologie algébrique.

21. un exemple standard est donné par A = {0} ∪ {1/n} ⊂ [0, 1] dont le quotient est constitué
des anneaux Hawaiens qui n’est pas homotope à un bouquet de cercles, et a une homologie un peu
plus compliquée.
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II. Catégories de Modèle

On va définir un cadre abstrait pour les équivalences faibles et la dualité fibra-
tions/cofibrations. Ce cadre nous permettra par ailleurs de construire proprement et
efficacement la catégorie des espaces topologiques à équivalence faible près (ou la ca-
tégorie dérivée en algèbre homologique) et les constructions homotopiques/dérivées
que nous avons esquissé dans le premier chapitre. Bien que la définition soit très axio-
matique, elle s’est montrée redoutablement efficace et les exemples 22 et constructions
associées abondent.

Remarque 2.0.1. Ici ce que l’on appellera “catégorie de modèle” est souvent appelé
“catégorie de modèle fermée” dans la littérature, plus particulièrement dans la ter-
minologie originelle de Quillen.

Commençons par donner la définition générale d’un rétract entre morphismes.

Définition 2.0.2. Soit C une catégorie. Un morphisme q ∈ HomC(A,B) est appelé
un rétract de f ∈ HomC(X, Y ) s’il existe un diagramme commutatif :

A //

idA

))

q

��

X

f

��

// A

q

��
B //

idB

55Y // B

Si les applications verticales sont l’identité (et A → X l’inclusion d’un sous-
espace topologique), on retrouve le cas d’un rétracte entre objets (resp. espaces
topologiques).

2.1. Définitions et axiomatique

La définition qui suit est longue, mais centrale dans ce cours !

Définition 2.1.1. Une catégorie de modèle est une catégorie C munie de trois classes
de morphismes :

• La classe W dont les éléments, appelés équivalences faibles, sont notés
∼→.

• La classe C dont les éléments, appelés cofibrations, sont notés �.
• La classe F dont les éléments, appelés fibrations, sont notés � (Attention à

ne pas les confondre avec les épimorphismes).

vérifiant les 5 axiomes suivants :

(MC1) C est complète et cocomplète 23.

22. même s’il y en a fort peu d’élémentaires
23. c’est à dire l’existence de toutes petites limites et colimites, c’est à dire celles indicées par

une catégorie dont les objets forment un ensemble
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(MC2) (2 parmi 3) Dans tout diagramme commutatif :

B

��
A //

??

C

Si deux des trois flèches sont des équivalences faibles, alors la troisième est
aussi une équivalence faible.

(MC3) (Stabilité par rétracts) Si q est un rétract de f ∈ W (resp f ∈ C, f ∈ F)
alors q ∈W (resp q ∈ C, q ∈ F).

(MC4) (Relèvements) Pour tout diagramme commutatif

A //
��

i

��

B

p

����
C //

??

D

il existe un relèvement (symbolisé par la flèche en pointillé) rendant les deux
triangles commutatifs dès que i ∈ W ou p ∈ W (on prendra garde qu’on a
déjà supposé que i est une cofibration et p une fibration).

(MC5) (Factorisations) Tout morphisme f : X → Y admet deux factorisations
naturelles :

X
∼
� Pf � Y et X � Cf

∼
� Y

Remarque 2.1.2 ((co)fibrations acycliques). Les éléments de W ∩C (resp. W ∩F)
sont appelés les cofibrations acycliques (resp. fibrations acycliques) 24.

Remarque 2.1.3. L’axiome (MC4) est en fait constitué de deux axiomes : l’un concerne
le cas où la flèche de gauche est une cofibration acyclique et celle de droite seule-
ment une fibration, alors que la deuxième concerne le cas où la flèche de gauche est
n’importe quelle cofibration mais celle de droite est une fibration acyclique.

Terminologie : On dit d’une flèche A→ C comme dans le diagramme de (MC4)
qu’elle admet la propriété de relèvement à gauche par rapport à la flèche p : B → D.
Et on dit que la flèche p : B → D admet la propriété de relèvement à droite par
rapport à la flèche A→ C.

Remarque 2.1.4. L’hypothèse que les factorisations sont naturelles (on peut aussi dire
fonctorielles) n’est pas indispensable 25, mais pratique, pour démontrer les résultats
dont on a besoin et est souvent satisfaite en pratique. Elle signifie que si on a un

24. dans la littérature, on trouve aussi la terminologie de (co)fibrations triviales pour la même
notion

25. et souvent non-demandée dans la littérature
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diagramme commutatif X
f //

p
��

Y

q
��

X ′
f ′ // Y ′

alors on obtient des diagrammes commutatifs

X //
' //

p

��

Pf

P (p,q)

��

// // Y

q

��
X ′ //

' // Pf ′ // // Y ′

et X // //

p

��

Cf

C(p,q)

��

' // // Y

q

��
X ′ // // Cf ′

' // // Y ′,

et par ailleurs P (p′ ◦ p, q′ ◦ q) = P (p′, q′) ◦ P (p, q) ainsi que C(p′ ◦ p, q′ ◦ q) =
C(p′, q′) ◦ C(p, q). Autrement dit, les factorisations de l’axiome (MC5) sont en fait
des foncteurs

Arr(C)→ Arr(C)× Arr(C)

où Arr(C) est la catégorie dont les objets sont les morphismes de C et les flèches
sont les diagrammes commutatifs (la composition dans Arr(C) étant donnée par la
superposition verticale de deux diagrammes).

Par ailleurs, il existe des variantes où on demande seulement les (co)limites finies
pour (MC1).

Remarque 2.1.5. D’après (MC1), toute catégorie de modèle C admet un objet initial
0 et un 26 objet terminal {∗} (c’est-à-dire, pour tout objet X de C, HomC(0, X) et
HomC(X, {∗}) sont des singletons). En effet, ces objets correspondent aux (co)limites
vides, c’est à dire indicées par l’ensemble vide.

Exemple 2.1.6. Si C est additive, 0 = {∗} est l’objet nul.
Si C = Top, 0 = ∅ et {∗} est un singleton. L’objet initial est alors différent du

terminal.

La définition suivante sera importante. On verra dans ce cours que les objets
cofibrants (resp. fibrants) ont un peu le même role que les modules projectifs en
algèbre homologique ou CW-complexe en homotopie (resp. injectifs).

Définition 2.1.7. Un objet X de C est dit :

• cofibrant si 0→ X est une cofibration.
• fibrant si X → {∗} est une fibration.

Remarque 2.1.8. Soit X un objet de C. D’après (MC5), il existe toujours une facto-
risation de 0→ X :

(6) 0� L(X)
∼
� X

Donc tout X est faiblement équivalent à un objet cofibrant (via une fibration).
De même, tout objet Y de C est faiblement équivalent (via une cofibration) à un

objet fibrant, par exemple donné par la factorisation

(7) Y
∼
� R(Y )� {∗}.

26. déterminé à unique isomorphisme près
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Terminologie 2.1.9. On appelle 27 une fibration acyclique L
∼
� X, où L est cofibrant,

une “résolution cofibrante”, ou un “remplacement cofibrant” de X.

On appelle une cofibration acyclique Y
∼
� R, où R est fibrant, une “résolution

fibrante” ou un “remplacement fibrant”.

On peut noter l’analogie de cette terminologie et de ces constructions avec celles
de résolution projectives et injectives 1.5.14. De manière générale les axiomes (MC3)
et (MC5) permettent de construire de nombreuses (co)fibrations.

Notons que la naturalité des factorisations de (MC5) assure que l’on peut obtenir
des remplacements fibrant et cofibrant fonctoriels donnés par L et R ci-dessus (6),
(7).

Remarque 2.1.10. Si A est un objet cofibrant, alors pour toute fibration acyclique

Y
∼
� X, tout morphisme A→ X se relève :

0 //
��

��

Y

o

����
A //

??

X

On a aussi le résultat dual pour les objets B fibrants :

X
��

o

��

// B

��
Y // //

>>

{∗}

On peut remarquer une analogie certaine avec des résultats obtenus pour les com-
plexes de modules projectifs et injectifs dans les rappels d’algèbre homologique.

Exemple 2.1.11. Soit L
∼
� X et P

∼
� X deux résolutions cofibrantes de X. Alors,

les axiomes MC4 appliqués au diagramme ∅ //
��

��

L

∼
����

P

??

∼ // // X

induise une flèche P → L

qui est une équivalence faible par la propriété 3 pour 2. Et de même symétriquement
bien-sûr.

Nous avons un résulat 28 analogue pour les résolutions fibrantes.

Exercice 2.1.12. (1) Montrer que si C est une catégorie complète et cocomplète
et que l’on choisit W = Isomorphismes, C,F = tous les morphismes alors
on obtient une catégorie de modèle.

(2) Montrer que le produit de 2 catégories de modèle a une structure de modèle
obtenue en prenant les produits 2 à 2 des classes (W,C,F).

27. certains auteurs utilise la terminologie suivante sans supposer que les flèches sont des
(co)fibrations mais seulement des équivalences faibles

28. ces résultats sont l’intérêt du choix d’exiger des fibrations/cofibrations pour définir les réso-
lutions cofibrantes/fibrantes
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(3) Montrer que si (C,W,C,F) est une catégorie de modèle, alors (Cop,Wop,Fop,Cop)
est une catégorie de modèle. Autrement dit, les fibrations et cofibrations
jouent un rôle dual.

La proposition suivante est cruciale, et justifie le caractère “fermé” des catégories
de modèle.

Proposition 2.1.13. Soit (C,W,C,F) une catégorie de modèle.

a) f est une cofibration ⇐⇒ elle vérifie la propriété de relèvement (à gauche)
le long de toutes les fibrations acycliques.

b) f est une cofibration acyclique ⇐⇒ elle vérifie la propriété de relèvement (à
gauche) le long de toutes les fibrations.

c) f est une fibration ⇐⇒ elle vérifie la propriété de relèvement (à droite) le
long de toutes les cofibrations acycliques.

d) f est une fibration acyclique ⇐⇒ elle vérifie la propriété de relèvement (à
droite) le long de toutes les cofibrations.

e) f est une équivalence faible si et seulement si elle se factorise p ◦ i avec i une
cofibration acyclique et p une fibration acyclique.

Corollaire 2.1.14. On déduit de ce qui précède :

a) Dans une catégorie de modèle (C,W,C,F), la donnée de deux des classes
W,C et F détermine entièrement la troisième.

b) W, C et F sont clos par composition.
c) Les cofibrations et cofibrations acycliques sont stables par pushouts ; les fi-

brations et fibrations acycliques sont stables par pullbacks.
d) Les isomorphismes sont à la fois des cofibrations, fibrations et équivalences

faibles.

Aucun des deux exemples suivants ne sont triviaux. Le premier est néanmoins
fondamental. Il peut se démontrer pour une bonne partie en utilisant les résultats du
chapitre I, une méthode similaire (via l’argument du petit objet) à celle utilisée dans
la partie 2.3 pour les propriétés de factorisation. Une partie un peu plus technique est
la caractérisation des cofibrations données. Il est cependant assez aisé de montrer que
les inclusions cellulaires généralisées sont bien des cofibrations pour cette structure de
modèle qui est le sens utile en pratique. Voir la feuille de TD 3 pour la démonstration
de l’exemple 2.1.15.

Exemple 2.1.15 (Catégorie de modèle de Quillen sur les espaces topologiques).
Quillen a démontré que Top, munie des équivalence faibles d’homotopie, des fibra-
tions de Serre et des rétractes d’inclusions cellulaires généralisées (cf 1.8.5) est une
catégorie de modèle.

Dans cette structure, tout objet est fibrant. Une variante 29 du lemme 1.8.4 permet
de montrer que toute inclusion d’un cellulaire est une cofibration. On peut en fait
montrer que les cofibrants sont exactement les rétractes de complexes cellulaires.

Exemple 2.1.16 (Catégorie de modèle de Strøm sur les espaces topologiques).
Strøm a démontré que Top, munie des équivalences d’homotopie, des fibrations de
Hurewicz et des rétractes de cofibrations d’image fermée, est une catégorie de mo-
dèle. Tout objet est encore fibrant.

29. ou plus exactement une identification des cofibrations génératrices de cette structure, voir 2.4
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On notera que les deux exemples précédents ont des équivalences faibles différentes
et que leurs notions de cofibrations différent, en particulier dans le cas de la structure
de Quillen, de celle de la section 1.8 (mais en sont des cas particuliers).

Démonstration de la proposition 2.1.13. a) ⇒ vient de (MC4). Montrons ⇐ :
soit i : A → B un morphisme admettant la propriété de relèvement (à
gauche) le long de toutes les fibrations acycliques. D’après (MC5), on peut

factoriser i : A� E
∼
� B. D’après la propriété de relèvement (comme dans

(MC4)) satisfaite par i : A→ B, on a un relèvement h du diagramme :

A // //

i

��

E

o

����
B

h

??

B

Ainsi on a le diagramme :

A

i

��

A
��

��

A

i

��
B

h //

idB

55E
∼ // // B

D’après (MC3) on en déduit que i ∈ C.
b) ⇒ vient de (MC4). ⇐ se montre comme précédemment.
c) et d) sont duales de a) et b).

e) ⇒ Soit f : X → Y . On factorise f : X
i
� E

∼
� Y . D’après (MC2), i ∈W.

⇐ est une application directe de (MC2).
�

Démonstration du corollaire 2.1.14. Notons qu’il découle immédiatement de (MC2)
que les équivalences faibles sont stables par composition.

Démontrons a). Si on a fixé W et F, alors, on connait aussi les fibrations acycliques
et le a) de la Proposition 2.1.13 définit les cofibrations. De même la donnée de W

et C détermine les cofibrations acycliques et par suite les fibrations par le c) de la
Proposition 2.1.13.

Si maintenant on a la donnée de F et C, les b) et d) de la Proposition 2.1.13
déterminent les fibrations acycliques et cofibrations acycliques de C. Par suite, le e)
de Proposition 2.1.13 détermine les équivalences faibles.

Démontrons b). Si on compose deux applications admettant la propriété de relè-
vement à gauche par rapport aux fibrations acycliques, alors en superposant deux
diagrames du type de (MC4) : on obtient successivement un relevé dans le diagramme
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commutatif suivant

A

i

��

// B

o

����

C

ψ

??

j

��
E // D

puis en remplaçant la flèche A → B par la flèche ψ : C → B obtenue un relevé
supplémentaire

A

i

��

// B

o

����

C

j

��

ψ

??

E //

ψ̃

GG

D

tel que le diagramme reste commutatif. Cela prouve que la composée de deux appli-
cations admettant la propriété de relèvement par rapports aux fibrations acycliques
admet encore la propriété de relèvement par rapports aux fibrations acycliques. Et
encore une fois la Proposition 2.1.13 permet bien de conclure que la composée de
deux cofibrations est une cofibration.

De même, en appliquant la propriété de relèvement au diagramme

A

i

��

// B

o

����
D

o

����
E //

ψ

??

F
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on obtient un relevé ψ et en appliquant alors la propriété de relèvement au dia-
gramme obtenu en remplaçant E → F par ψ on obtient un relevé :

A

i

��

// B

o

����
D

o

����
E //

ψ

??
φ

GG

F

qui laisse le diagramme complétement commutatif. Ceci prouve que la composée de
fibrations acycliques est encore une fibration acyclique. En appliquant la Proposi-
tion 2.1.13 on en déduit que fibrations acycliques sont closes. On démontre de même
les deux autre cas (cofibrations acycliques et fibrations).

On démontre la stabilité par pushout et pullback exactement de la même façon en
“décomposant” des diagrammes de relèvement (voir le corrigé de la feuille de TD 1
où l’on a établi que les fibrations de Hurewicz sont stables par pullback. La preuve
utilisée là est rigoureusement la même pour les fibrations générales et se dualise sans
peine pour les cofibrations).

Notons que dans la preuve des résultats de stabilité par composition et pushout
ou pullback, nous n’avons utilisé que les propriétés de relèvement. Ainsi la preuve
utilisée démontre le lemme suivant qui est souvent utile pour vérifier qu’une structure
est bien de modèle :

Lemme 2.1.17. Soit S une sous-classe de morphismes d’une catégorie C. On note
LLP (S) la classe des morphismes de C vérifiant la propriété de relèvement à gauche
par rapport à tous les morphismes de S et RLP (S) la classe des morphismes de C
vérifiant la propriété de relèvement à droite par rapport à tous les morphismes de
S.

(1) La classe LLP (S) est stable par composition et pushouts.
(2) La classe RLP (S) est stable par composition et pullbacks.

Passons au dernier point du corollaire. Il est clair que les isomorphismes admettent
les propriétés de relèvement à droite et à gauche (en les inversant pour déterminer les
relevés). On déduit encore de la proposition qu’elles sont donc des fibrations, fibra-
tions acycliques, cofibrations et cofibrations acycliques et en particulier également
des équivalences faibles. �

2.2. Catégorie homotopique d’une catégorie de modèle

Comme on l’a déjà dit au début, la notion de catégorie de modèle sert à définir
une notion d’homotopie et à travailler avec. Précisément, on s’intéresse à regarder
les objets de C à équivalences faibles près. Les notions de fibration et cofibration
vont nous aider à étudier les morphismes dans C à équivalence près, à donner une
bonne notion d’équivalence d’homotopie, à étudier des foncteurs entre théories ho-
motopiques etc...

On commence par la définition de la catégorie homotopique d’une catégorie de
modèle (qui devrait rappeler celle de catégorie dérivée associée à un anneau).
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Soit C une catégorie et W une classe de morphismes dans C.

Définition 2.2.1 (Localisation de Gabriel-Zisman). Une localisation de C par rapport
à W est la donnée d’une catégorie C[W−1] et d’un foncteur ` : C→ C[W−1] tel que
` satisfasse la propriété universelle suivante : pour toute catégorie D, le foncteur

`∗ : Fun(C[W−1],D)→ Fun(C,D) : F 7→ F ◦ `
est pleinement fidèle et son image essentielle est constituée des foncteurs qui envoient
la classe W dans les isomorphismes de D.

Remarque 2.2.2. En particulier, le foncteur ` envoie les équivalences faibles sur des
isomorphismes (cela découle en prenant D = C[W−1] et F = Id).

Notons que si F,G : C→ D sont deux foncteurs naturellement équivalents, alors
pour toute flèche f dans C, F (f) est un isomorphisme si et seulement si G(f) est

un isomorphisme d’après le diagramme F (X)

∼=ηX
��

F (f)
// F (Y )

∼= ηY
��

G(X)
G(f)

// G(Y )

.

En particulier, la définition 2.2.1 se traduit par le fait que si un foncteur F : C→
D envoie les flèches de W dans des isomorphismes alors il s’écrit sous la forme G ◦ `
et ceci pour un unique G.

Notation 2.2.3 (Catégorie homotopique). On notera

Ho(C) := C[W−1]

et on appelera cette localisation la catégorie homotopique de C. Lorsque (C,W,C,F)
est une catégorie de modèle, cette notation sera évidemment utilisée en prenant pour
W les équivalences faibles.

On prendra garde que par définition, pour une catégorie de modèle (C,W,C,F),
Ho(C) ne dépend pas de (C,F).

Proposition 2.2.4. Il existe une localisation ` : C → C[W−1] de (C,W) et celle-
ci est unique, à équivalence de catégorie près, l’équivalence étant unique à unique
isomorphisme près.

La proposition précédente et plus de détails sur cette construction sont donnés
dans la feuille de TD 2 et ses solutions.

Remarque 2.2.5 (multivers). Dans cette proposition garantissant l’existence, il convient
de considérer que l’on s’autorise à changer d’univers, c’est à dire que l’on ne sup-
pose plus que les morphismes entre objets forment encore un ensemble, mais appar-
tiennent à un univers plus large. Nous verrons que dans le cas d’une catégorie de
modèle, nous avons bien toujours un ensemble de morphismes ; c’est le cas pour de
nombreux autres exemples lorsque W est par exemple un bon système multiplicatif.
Certaines constructions sont détaillées en TDs.

La preuve de la proposition 2.2.4 peut se faire en donnant une description explicite
de cette localisation. L’unicité étant elle une conséquence immédiate du fait qu’on a
justement une propriété universelle.

Notons PathW(C) la catégorie ayant les mêmes objets et comme morphismes
les chemins (finis) dans la catégorie C

∐
Wop obtenue à partir de C en rajoutant
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formellement la classe Wop aux flèches de C. Ici la composition est donnée par la
concaténation des chemins, l’identité est le chemin vide •X .

Lemme 2.2.6. La catégorie Ho(C) a les mêmes objets que C. Les morphismes de

HomHo(C)(X, Y ) = HomPathW(C)(X, Y )/ '

sont le quotient de PathW(C) par la relation ∼ est engendrée par X
σ→ Y

σ← X ∼ •X
pour tout σ ∈W, X

f→ Y
g→ Z ∼ X

g◦f−→ Z et X
id→ X ∼ •X .

Cette description explicite permet de vérifier que la catégorie construite est bien
solution de la propriété universelle de la définition 2.2.1.

Exercice 2.2.7. Démontrer le lemme et la proposition 2.2.4.

Remarque 2.2.8. Il suit du lemme que les morphismes de Ho(C), entre 2 objets X
et Y , sont donnés par des zigzags de la forme

X → X1 ← X2 → X3 ← ...→ Xn → Y,

où toutes les flèches allant vers la gauche sont dans W. La composition est donnée
par la concaténation de zigzags (et la composition des deux flèches de même direction
consécutives au milieu). Précisément, Ho(C) est la catégorie dont les morphismes
sont des classes de tels zigzags modulo la relation d’équivalence (dont on demande
qu’elle soit stable par composition) engendrée par la relation identifiant 2 zigzags
s’il existe un diagramme commutatif

X1

��

X2
oo

��

// X3

��

· · ·oo

��

// Xn

��

  
X

>>

  

Y

X ′1 X ′2oo // X ′3 · · ·oo // X ′n

>>

où les flèches verticales sont dans W et où on identifie . . . Xk
f→ Xk+1

f← Xk+2 = Xk

avec l’objet Xk.

Remarque 2.2.9. La construction donnée par le lemme 2.2.6 ne donne pas forcément
un ensemble de morphismes entre deux objets (nous avons évoqué ce problème dans
la remarque 2.2.5), puisque ce n’est (sauf cas particulier) pas le cas de PathW(C).
On va voir (Théorème 2.2.26) qu’en fait, dans le cas d’une catégorie de modèles,
les données supplémentaires de F, C garantissent que c’est le cas et que l’on peut
exprimer ces morphismes sans recourir à des zigzags.

Commençons par comparer les catégories homotopiques de C et de ses sous-
catégories d’objets (co)fibrants.

Notation 2.2.10. On note respectivement Cc, Cf et Ccf les sous-catégories pleines
de C formées respectivements des objets cofibrants, des objets fibrants, et des objets
à la fois fibrants et cofibrants.
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Remarque 2.2.11. On peut se demander s’il y a beaucoup d’objets à la fois fibrants et
cofibrants. On va voir que oui. En effet, soit A un objet cofibrant. Son remplacement
fibrant R(A) s’insère dans le diagramme

0� A
∼
� R(A)� {∗}

d’où il suit que R(A), qui est fibrant par définition, est aussi cofibrant (par stabilité
de la composition de cofibrations). De même, si X est fibrant, son remplacement
cofibrant L(X) est à la fois cofibrant et fibrant. Par conséquent, pour tout objet X,
R(L(X)) et L(R(X)) sont des objets à la fois fibrants et cofibrants.

La naturalité des factorisations dans l’axiome (MC5) nous assure que les rempla-
cements (co)fibrants sont des foncteurs et nous donne plus précisément le lemme
suivant (cf remarque 2.1.4).

Lemme 2.2.12. On a que L et R définissent respectivements des foncteurs L(−) :
C→ Cc, R(−) : C→ Cf munis de transformations naturelles.

De plus le foncteurs composé C
L(−)→ Cc ↪→ C (resp. C

R(−)→ Cf ↪→ C est muni
d’une transformations naturelle vers le foncteur identité (resp. admet une transfor-
mation naturelle provenant du foncteur identité) dont toutes les flèches sont respec-
tivement des fibrations acycliques (resp. cofibrations acycliques).

Il suit que R(L(−)) et L(R(−)) induisent aussi des foncteurs C→ Ccf . Ces deux
foncteurs sont en fait reliés par une transformation naturelle dont toutes les flèches
sont des équivalences faibles.

Exercice 2.2.13. Démontrer qu’il existe une équivalence faible R(L(X))→ L(R(X)
(on pourra commencer par démontrer que les axiomes (MC5), (MC2) induisent une
équivalence faible R(L(X))→ R(X) puis utiliser (MC4)).

Lemme 2.2.14. Les inclusions canoniques Cc

  
Ccf

==

!!

C

Cf

??

induisent des équi-

valences de catégories en passant aux catégories homotopiques :

Ho(Cc)

'

%%
Ho(Ccf )

'

88

'

&&

Ho(C)

Ho(Cf )

'

99

.

Démonstration. Démontrons le cas du foncteur I : Cf → C donné par la sous-
catégorie des objets fibrants. Puisque une équivalence faible entre objets fibrants
est une équivalence faible, la composée Cf → C → Ho(C) envoie les équivalences
faibles sur des isomorphismes et par propriété universelle de Ho(Cf ) ce foncteur se

factorise au travers d’un foncteur Ho(Cf )
Ĩ→ Ho(C). Pour montrer que ce foncteur
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est une équivalence, on construit son “inverse” (voir l’appendice 6.2). Pour cela il
suffit de prendre le foncteur de remplacement fibrant R : C → Cf , X 7→ R(X)
donné par (MC5). La propriété (MC2) assure que R envoie une équivalence faible sur
une équivalence faible et passe donc encore à la catégorie homotopique pour donner

Ho(C)
R̃→ Ho(Cf ). Il ne nous reste plus qu’à montrer qu’il y a des équivalences

naturelles entre les foncteurs R̃ ◦ Ĩ (resp. Ĩ ◦ C̃) et les foncteurs identité de Ho(Cf )
(resp. Ho(C)).

On on a vu (c’est le lemme 2.2.12) que les applications canoniques X
∼
� R(X)

données par (MC5) définissent une transformation naturelle entre les foncteurs IdC
et I ◦R qui passe aux catégories homotopiques pour donner un isomorphisme natu-

rel 30 entre IdHo(C) et Ĩ ◦ R̃ (puisque X
∼
� R(X) est un isomorphisme dans Ho(C)).

On construit de même un isomorphisme naturel entre IdHo(Cf ) et R̃ ◦ Ĩ. �

On va introduire une notion générale d’homotopie pour une catégorie de modèle.
On dispose déjà d’une notion d’équivalence faible (comme relation engendrée par les
flèches de W), qui imite et généralise celle dans les espaces topologiques. On aura
besoin de plusieurs notions différentes, adaptées au type d’objet à la source et au
but. On va utiliser les notions usuelles de coproduit 31 A

∐
B (dans le cas A = B)

et de produit 32 X × Y (cf Appendice 6.2).

Définition 2.2.15 (Relations d’homotopie dans les catégories de modèle). Soit une
catégorie de modèle (C,W,C,F).

-Un cylindre d’un objet X: c’est une factorisation

idX
∐

idX : X
∐

X � C
∼→ X

de l’application canonique au travers d’une cofibration et d’une équivalence

faible. On notera i0, i1 : X
ĩj→ X

∐
X � C les inclusions canoniques respec-

tives sur les composantes suivie de la flèche vers C.
-Un objet en chemins de Y : c’est une factorisation

idY × idY : Y
∼→ P � Y × Y

de l’application diagonale. On notera proj0, proj1 : P � Y × Y
pj→ Y les

flèches induites par les projections canoniques sur chaque facteur.
-Une homotopie à gauche entre f , g : X → Y : c’est une flèche H : CX → Y , où

CX est un cylindre de X, telle que H ◦ i0 = f et H ◦ i1 = g. On notera f
l∼ g.

-Une homotopie à droite entre f , g : X → Y : c’est une flèche K : X → PY , où PY
est un objet en chemin de Y , telle que proj0 ◦ K = f , proj1 ◦ K = g. On
notera f

r∼ g
-Une homotopie entre f et g : c’est la donnée d’une homotopie à droite et d’une

homotopie à gauche entre f et g. On notera f ' g lorsque f et g sont
homotopes.

30. on pourrait, et devrait, dire que ces applications définissent une équivalence faible naturelle
entre les foncteurs aux niveaux des catégories de modèles

31. on rappelle que le coproduit vient avec deux applications canoniques ĩA : A → A
∐
B et

ĩB : B → A
∐
B que nous appelons abusivement “inclusions canoniques”

32. on rappelle que le produit vient avec deux applications canoniques pX : X × Y → X et
pY : X × Y → Y que nous appelons abusivement “projections canoniques”
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-Équivalence d’homotopie: on dira que f : X → Y est une équivalence d’homotopie
si il existe g : Y → X telle que f ◦ g ' idY et g ◦ f ' idX . Auquel cas on
dira aussi que X et Y sont homotopes.

Remarque 2.2.16. L’axiome de factorisation garantit bien entendu qu’il existe des
cylindres (resp. des objets en chemin) pour tout objet X et qu’on peut de plus les
choisir de telle sorte que l’équivalence faible soit de plus une fibration (resp. une
cofibration). On appelera un tel cylindre (resp. objet en chemin) fort

Mais attention, pour définir les homotopies, on considère de tels objets arbitraires,
et en général, on ne peut pas imposer un choix ; autrement dit il peut exister une
homotopie entre f, g : X → Y associée à un cylindre de X (ou objet en chemins) C
sans qu’il n’y ait une telle homotopie pour un autre choix de cylindre C ′ de X.

On pourra remarquer que si on note 33 X×I la factorisation fonctorielle X
∐
X �

X × I
∼
� X de idX

∐
idX , alors, par (MC4), il existe, pour tout cylindre C de X,

une équivalence faible C
∼→ X × I rendant commutatif le diagramme suivant :

X
∐
X
��

��

// // X × I
∼
����

C
∼ //

∼
99

X.

En particulier une homotopie pour X × I en induit une pour C. En revanche, il n’y
a en général pas d’équivalence dans l’autre sens, d’où la nécessité d’autoriser des
objets en cylindre généraux dans la définition d’homotopie. Lorsque cependant tous
les objets de C sont fibrants, on peut toujours se ramener à des homotopies données
par X × I ou tout autre cylindre fort 34, voir l’exercice 2.2.30.

On a évidemment un résultat dual pour les objets en chemin.

Remarque 2.2.17. Puisque la composée X
ĩ0→ X

∐
X � C

∼→ X est l’identité,
qui est une équivalence faible, l’axiome (MC2) nous assure alors que la composée

X
i0→ X

∐
X � C est une équivalence faible. Un argument similaire s’applique aux

objets en chemins et on obtient ainsi le lemme suivant.

Lemme 2.2.18. Pour tout cylindre C et tout objet en chemin P de X, on a que les
applications

ij : X
ĩj→ X

∐
X � C, projj : P � X ×X pj→ X

sont des équivalences faibles (pour j = 0, 1).

Exemple 2.2.19. On peut constater que si X est un expace topologique, le cylindre
X × I (muni des inclusions id×{i}, i = 0, 1) est bien un objet en cylindre essentiel-
lement en vertu de l’exemple 1.8.6 (il s’agit du cylindre de l’identité de X) et que
de même, l’espace des chemins XI (muni des évaluations en 0 et 1) est un objet en
chemin de X, en vertu de l’exemple fondamental des fibrations associé à l’identité
de X.

33. X × I est une notation pour un objet qui n’a en général pas de raison d’être le produit de
X avec un autre objet I. Ce choix de notation provient de l’analogie avec un cylindre évidemment
due au cas des espaces topologiques

34. c’est à dire tel que C → X soit une fibration acyclique et pas seulement une équivalence
faible



52 GRÉGORY GINOT

Ce sont même respectivement un cylindre fort et un objet en chemin fort et on
retrouve que la notion d’homotopie usuelle X × [0, 1] → Y suffit pour définir l’ho-
motopie à gauche. De même l’homotopie à droite est complétement déterminé par
des applications continues X → Y [O,1] et les 2 notions sont adjointes l’une de l’autre
via l’adjonction entre −× [0, 1] et l’espace des chemins.

La proposition suivante explique comment ces notions d’homotopie interagissent
efficacement avec les objets (co)fibrants. On pourra en retenir que ces notions se
comportent agréablement (et s’identifient) si la source est cofibrante et le but fibrant.

Proposition 2.2.20. a) On a que f
l∼ g implique h ◦ f l∼ h ◦ g, autrement

dit l’homotopie à gauche est stable par composition à gauche (soit post-
composition).

b) Si A est cofibrant alors la relation d’homotopie à gauche
l∼ est une relation

d’équivalence sur Hom(A,X). Si de plus h : X
∼
� Y ou si X, Y sont fibrants

et h : X
∼→ Y , alors la post-composition h∗(f) = h ◦ f induit une bijection

h∗ : Hom(A,X)/
l∼ ∼= Hom(A, Y )/

l∼

sur le quotient.

c) Si Y est fibrant et f, g : X → Y , alors f
l∼ g implique f ◦h l∼ g◦h (pour tout

W
h→ X). Autrement dit, l’homotopie à gauche est stable par composition à

droite (soit précomposition) si le but des flèches est fibrant.

d) On a que f
r∼ g implique f ◦ h r∼ g ◦ h, autrement dit l’homotopie à droite

est stable par composition à droite.
e) Si Y est fibrant alors la relation d’homotopie à droite

r∼ est une relation

d’équivalence sur Hom(B, Y ). Si de plus h : A
∼
� B ou si A, B sont cofibrants

et h : A
∼→ B, alors la précomposition h∗(f) = f ◦ h induit une bijection

h∗ : Hom(B, Y )/
r∼ ∼= Hom(A, Y )/

r∼

sur le quotient.
f) Si A est cofibrant et f, g : A→ Y , alors f

r∼ g implique h ◦ f r∼ h ◦ g (pour

tout Y
h→ Z). Autrement dit, l’homotopie à droite est stable par composition

à gauche si la source des flèches est cofibrante.

On peut ne retenir que les 3 premiers résultats. Les 3 suivants en sont les “duaux”.
Un point clé de la preuve sera le suivant qui sert souvent :

Lemme 2.2.21. Soit A un objet cofibrant et Y un objet fibrant.

(1) pour tout X, on a que l’application canonique X → X
∐
A est une cofibra-

tion. De même, l’application canonique X × Y → X est une fibration.
(2) Soit CA un cylindre de A. Les deux applications canoniques ij : A →

A
∐
A � CA sont des cofibrations acycliques. De même si PY est un objet

en chemin de Y , les deux applications canoniques projj : PY � Y ×Y −→ Y
sont des fibrations acycliques.
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Démonstration. Pour les cofibrations cela provient du diagramme 0 //
��

��

X

id
��

A // A
∐
X

et de la stabilité des cofibrations par poussé-en-avant. L’argument dual s’applique
pour les fibrations.

Pour le point (2), le lemme 2.2.18 assure déjà que les applications sont des équiva-
lences faibles. Par ailleurs le premier point assure lui que ĩj : A→ A

∐
A est une cofi-

bration et que pj : Y ×Y → Y une fibration. Donc par stabilité des (co)fibrations par
composition, les applications en question sont bien des (co)fibrations acycliques. �

Démonstration de la proposition 2.2.20. - a et d) C’est immédiat : soit H : CX → Y
une “homotopie à gauche” entre f, g : X → Y et h : Y → Z. Alors la composée
h ◦H : CX → Z vérifie bien que h ◦H ◦ i0 = h ◦ f et h ◦H ◦ i1 = h ◦ g. Ainsi h ◦H
est une “homotopie à gauche” entre h ◦ f et h ◦ g. Le même raisonnement s’applique
pour les homotopies à droite et la pré-composition.

- b et e) On commence par remarquer que f
l∼ g ⇒ g

l∼ f ce qui est immédiat
en remarquant que si on a un cylindre A

∐
A � CA alors on a aussi un cylindre

A
∐
A ∼= A

∐
A � CA où l’isomorphisme du milieu est obtenu en échangeant les

deux composantes 35. On a alors que si H : CA → X était l’homotopie à gauche entre
f et g, alors H est aussi une homotopie à gauche entre f et g via l’objet en cylindre
A
∐
A ∼= A

∐
A� CA (la seule différence étant justement qu’on a inversé i0 et i1).

Par ailleurs, si on remarque que la composée CA → A
f→ X définit une homotopie à

gauche entre f et f , donc f
l∼ f . On note que les deux points précédents sont vrai

même si A n’est pas cofibrant.
Pour la transitivité, en revanche, on va utiliser que A est cofibrant et en particulier

le point (2) du Lemme 2.2.21 précédent. Si f
l∼ g et g

l∼ h, on dispose de deux
cylindres CA et C ′A de A et de morphismes H : CA → X et H ′ : C ′A → X réalisant ces
homotopies à gauche. On veut construire un autre cylindre et un morphisme réalisant
l’homotopie à gauche entre f et h. L’idée, comme dans les espaces topologiques, est
de coller les cylindres le long d’une face (faire un dessin !) pour les construire. Dans le
cadre général, on regarde donc le pushout CA∪AC ′A donné par le carré cocartésien :

A ∼
i′0 //

��

i1 ∼

��

C ′A

��
CA // CA ∪A C ′A.

Par stabilité des cofibrations acycliques par pushout, on note que les morphismes
C ′A → CA ∪A C ′A et CA → CA ∪A C ′A dans le diagramme sont des cofibrations
acycliques.

Par ailleurs, les applications A
i0→ A

∐
A� CA

∼
� CA ∪A C ′A et A

i′1→ A
∐
A�

C ′A
∼
� CA ∪A C ′A donnent un morphisme canonique

A
∐

A→ CA ∪A C ′A.

35. c’est à dire en échangeant i0 et i1
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Les équivalences faibles CA
∼→ A et C ′A

∼→ A induisent, par propriété universelle du
pushout, un morphisme CA ∪A C ′A → A. Ce morphisme est une équivalence faible :

en effet la composée CA
∼→ CA ∪A C ′A → A en est une par définition d’un cylindre

et le résultat suit alors de la propriété 2 parmi 3 (MC2). On a par ailleurs que

les composées A
i0→ CA → CA ∪A C ′A → A et A

i′1→ C ′A → CA ∪A C ′A → A sont

l’identité de A puisque c’est le cas de A
i0→ CA → A et A

i′1→ C ′A → A (et puisque
nécessairement id ∪A id = id par unicité dans la propriété universelle du pushout).
Enfin, les applications H : CA → X et H ′ : C ′A → X induisent une application

H̃ = H ∪AH ′ : CA ∪A C ′A → X car H ◦ i1 = g = H ′ ◦ i′0. On a alors que la composée

A
i0→ CA

∼
� CA∪AC ′A

H̃→ X vaut H ◦ i0 = f (par définition du pushout) et de même

H̃ ◦ i′1 = H ◦ i′1 = h. Ainsi, pour conclure que H̃ est une homotopie à gauche entre f
et h, il suffirait de vérifier que i0

∐
i′1 : A

∐
A→ CA ∪A C ′A est un cylindre de A, et

plus précisément que c’est une cofibration (le reste à déjà été montré). Ce n’est pas
évident ni nécessairement vrai mais heureusement pas non plus nécessaire car il nous

suffit en fait de factoriser cette construction sous la forme A
∐
A� D

∼
� CA∪AC ′A.

Alors la composée D
∼
� CA∪AC ′A

∼→ A est une équivalence faible et on a déjà obtenu
que les précompositions de cette application avec i0 et i′1 sont des identités. Ainsi D

est un cylindre de A et la composée D
∼
� CA ∪A C ′A

H̃→ X est bien une homotopie à
gauche entre f et h !

Démontrons le deuxième point de b). Par le a), on a que pour tout morphisme

h : X → Y , l’application f 7→ h◦f passe au quotient par la relation d’équivalence
l∼.

Ainsi h∗ : Hom(A,X)/
l∼ ∼= Hom(A, Y )/

l∼ est bien définie. Vérifions la bijectivité
dans le cas où h : X → Y est une fibration acyclique. Commençons par l’injectivité :

soit f, g : A→ X tels que h◦f l∼ h◦g et H : CA → Y réalisant cette homotopie. On
voudrait relever cette homotopie àX et on utilise donc l’axiome de relèvement (MC4)
appliqué au diagramme

A
∐
A
f
∐
g
//

��

��

X

oh
����

CA
H //

<<

Y

ce qui nous fournit immédiatement une homotopie à gauche entre f et g. Il reste à
voir la surjectivité. Celle-ci est assez facile : en effet, pour tout morphisme q : X → Y ,
il suffit d’appliquer, par cofibrance de A, l’axiome de relèvement dans le diagramme

0 //
��

��

X

oh ����
A

q //

>>

Y

pour trouver un antécédent par h∗.

Le cas où X , Y sont fibrants et f : X
∼→ Y se déduit du précédent par le lemme de

Brown 2.5.8 appliqué au foncteur Hom(A,−) : C→ Set où Set est la catégorie de
modèle des ensembles (munie des isomorphismes comme équivalence faibles comme
dans l’exercice 2.1.12). Ceci termine la preuve de b) et la proposition e) se démontre
dualement.

- c et f) Soit h : W → X et f, g : X → Y tels que f
l∼ g. Prenons donc

H : CX → Y une homotopie à gauche entre f et g. Il faut remonter cette homotopie
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à un objet en cylindre de W . Prenons en un W
∐
W � CW

∼→ W (on en choisit un
quelconque). On veut évidemment utiliser l’axiome de relèvement pour construire

l’homotopie. Pour cela, on se ramène d’abord au cas où le morphisme CX
∼→ X dans

la définition du cylindre est une fibration acyclique. C’est là qu’on va utiliser que Y

est fibrant : en effet on factorise l’équivalence faible CX
∼→ X sous la forme CX

∼
�

C ′X
∼
� X par (MC5) ((MC2) garantissant que chaque flèche est une équivalence

faible). Alors le relèvement dans le diagramme

CX
��
o
��

H // Y

����
C ′X

//

H′
==

{∗}

fournit une homotopie C ′X → Y pour l’objet en cylindre C ′X de X.

Maintenant qu’on s’est ramené à un objet en cylindre X
∐
X � C ′X

∼
� X dont

la dernière flèche est une fibration acyclique, on applique l’axiome (MC4) au carré
commutatif

W
∐
W
��

��

i′◦(h
∐
h)

// C ′X

o
����

CW
h◦p //

H̃

66

X

où p : CW → W et i : X
∐
X → C ′X sont les applications données par la structure

des cylindres. Finalement, la composée H ′ ◦ H̃ fournit l’homotopie voulue. Ceci
termine la preuve de c). Celle de f) est duale comme d’habitude. �

La proposition implique que si on se restreint à des objets cofibrants à la source et
fibrants au but, les relations d’homotopie se comportent agréablement comme nous
l’avons souligné. On obtient d’ailleurs le

Corollaire 2.2.22. a) SiA est cofibrant et Y fibrant, alors
l∼=

r∼=' sur Hom(A, Y ).
b) La relation d’homotopie est une relation d’équivalence sur la sous-catégorie

Ccf des objets à la fois cofibrants et fibrants.

Démonstration. On suppose que f
l∼ g ; montrons que f

r∼ g. On a donc une homo-

topie à gauche CA
H→ Y où CA est un objet en cylindre de A. On veut trouver un

objet en chemin Y
∼→ PY � Y × Y et K : A→ PY une homotopie à droite. Fixons

un tel objet en chemins quelconque pour Y . Par le lemme 2.2.21 précédent, on a
que l’application canonique i0 : A� A

∐
A� CA est une cofibration acyclique. On

note j la composition j : CA → A
f→ Y et on a un diagramme commutatif :

A
��

oi0

��

f // Y // PY

����
CA

K̃

66

(j,H)
// Y × Y

(car H ◦ i0 = f = j ◦ i0) qui fournit le relèvement K̃. On note alors K : A→ PY la
composée K̃ ◦ i1 (attention on prend i1 et pas i0 contrairement au diagramme). Par
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commutativité du diagramme, on a proj0 ◦K = j ◦ i1 = f ◦ idA = f et proj1 ◦K =
H ◦ i1 = g. Ainsi, on a bien que K est une homotopie à droite. On peut remarquer
que l’on a utilisé le caractère cofibrant de A, et que par ailleurs ceci nous a permis de
prendre un objet en chemin quelconque. Pour démontrer qu’une homotopie à droite
est une homotopie à gauche, on fait une preuve duale en utilisant cette fois-ci que Y
est fibrant et en prenant un cylindre quelconque de A. Ceci termine la preuve de a).

Par le a) et la proposition 2.2.20.b) et d), on obtient l’énoncé b). �

Exercice 2.2.23. Soit q : P
∼
� X une résolution cofibrante de X et f : P → P un

morphisme tel que le triangle suivant P
f //

p     

P

p~~~~
X

soit commutatif.

(1) Rappeler pourquoi f est une équivalence faible, puis démontrer que f est ho-
motope à gauche à l’identité. (indic : considérer, pour un cyclindre P

∐
P �

C
i→ P de P , le diagramme P

∐
P
��

��

f
∐

id
// P

����
C

q◦i // X

).

(2) En déduire que deux résolutions cofibrantes d’un même objet sont homotopes
à gauche en général, et homotopes plus généralement si X est fibrant.

(3) Quel résultats analogues peut on énoncer pour les résolutions fibrantes ?

Une autre corollaire est le suivant :

Théorème 2.2.24 (Théorème de Whitehead pour les catégories de modèle). Si f :
X → Y est une flèche dans Ccf , c’est une équivalence faible si et seulement si c’est
une équivalence d’homotopie.

On notera que ce résultat implique en particulier le théorème de Whitehead 1.3.9
classique en prenant la structure de modèle de Quillen sur Top (Exemple 2.1.15)
(en notant que tout objet est fibrant et que tout CW-complexe est cofibrant).

Démonstration. voir la feuille de TD 2. �

Un autre exemple de ce Théorème est dans la catégorie de modèle des complexes
de châınes C≥0(R). Il implique alors que 2 résolutions projectives d’un module (ou
d’un complexe de châınes) sont homotopes (au sens des châines).

Exercice 2.2.25. Le montrer (après avoir lu la partie sur les structures de modèles
sur les complexe de châınes)...

On obtient le théorème principal de cette section :

Théorème 2.2.26. Soit (C,W,C,F) une catégorie de modèle.

a) L’inclusion Ccf ↪→ C induit une équivalence de catégories

Ccf/'
∼=−→ Ho(Ccf ) ∼= Ho(C)

où Ccf/' est la catégorie Ccf où l’on a quotienté les ensembles de morphismes
par la relation d’équivalence donnée par la relation d’homotopie.

b) On a des isomorphismes naturels

HomHo(C)(X, Y ) ∼= HomC(L(X), R(Y ))/'
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c) Si f : A → B est un morphisme qui devient un isomorphisme dans Ho(C),
alors f est une équivalence faible.

Remarque 2.2.27. Le théorème identifie la catégorie homotopique avec un quotient
de la catégorie Ccf . En particulier, c’est une catégorie sans avoir besoin de changer
d’univers et a les mêmes “cardinalités ensemblistes” que C. Par ailleurs, le point
b) assure que pour calculer les morphismes dans la catégorie homotopique il suffit
de calculer ceux entre un remplacement cofibrant et un remplacement fibrant de la
source et du but respectivement ; il permet donc de calculer les morphismes de la
catégorie dérivée en se ramenant à un ensemble de morphismes entre objets fixés (et
ainsi d’éviter le passage aux zigzags).

Evidemment, si l’objet source est déjà cofibrant et le but fibrant, on n’a pas besoin
de faire ce remplacement d’après le a). Notons d’ailleurs que si A est cofibrant et

Y est fibrant, on a des équivalences faibles L(A)
∼→ A entre objets cofibrants et

Y
∼→ R(Y ) entre objets fibrants. Il découle alors de la proposition 2.2.20.b) et e.) et

du corollaire 2.2.22.a) que l’on a des isomorphismes naturels :

HomHo(C)(A, Y ) ∼= HomC(L(A), R(Y ))/ '
∼=←− HomC(A,R(Y ))/ '

∼=←− HomC(A, Y )/ ' .

Une preuve similaire permet de démontrer le résultat suivant simplifiant le calcul
des morphismes.

Corollaire 2.2.28. Soit A
∼→ X une équivalence faible avec A cofibrant et Y

∼→ Z
une équivalence faible avec Z fibrant. Alors

HomHo(C)(X, Y ) ∼= HomHo(C)(A,Z).

Preuve du corollaire. Par fonctorialité, on a un diagramme commutatif

L(A)
` //

��

L(X)

��
A ∼

// X

dont les flèches verticales sont des équivalences faibles. Ainsi la propriété 3 pour 2
nous donne que ` est une équivalence faible aussi, entre objets cofibrants. D’où en
appliquant la proposition 2.2.20, on obtient un zigzag de bijections

HomHo(C)(L(X), Z)
∼=−→̀
∗

HomHo(C)(L(A), Z)
∼=←− HomHo(C)(A,Z).

En raisonnant symétriquement sur Z, on le complète en un zigzag de bijections
reliant HomHo(C)(L(X), R(Y )) avec HomHo(C)(A,Z). �

Exemple 2.2.29. Un cas particulier de l’équivalence ci-dessus est si A
∼
� X est

une résolution cofibrante et Y
∼
� Z une résolution fibrant de Y . Dans ce cas, (cf

Exemple 2.1.11) on a des équivalences faibles α : L(X) → A et β : Z → R(Y ) de
sorte que l’on a une bijection

α∗ ◦ β∗ : HomHo(C)(A,Z) = HomC(A,Z)/ '
∼=−→ HomHo(C)(L(X), R(Y )).

Il est temps de paeer à la preuve du théorème fondamental sur la catégorie homo-
topique.



58 GRÉGORY GINOT

Démonstration du théorème 2.2.26. On a déjà vu que Ho(Ccf ) ∼= Ho(C) (Lemme 2.2.14).
Il reste à montrer que le foncteur Ccf → Ccf/ ' vérifie la propriété universelle de
la localisation Ccf → Ho(Ccf ) = Ccf [W

−1]. Soit D une catégorie et F : Ccf → D
un foncteur qui envoie les équivalences faibles sur les isomorphismes. On veut mon-

trer qu’il existe un unique foncteur F̃ rendant le diagramme Ccf
F //

$$

D

Ccf/ '

F̃
;;

commutatif. Par définition, sur les objets, on doit avoir F̃ (X) = F (X) et sur les
morphismes on doit avoir que F̃ ([f ]) = F (f) où [f ] désigne la classe d’équivalence
d’un morphisme f : X → Y . Le foncteur quotient Ccf → Ccf/ ' étant plein, on en

déduit déjà l’unicité. Il reste à voir que F̃ est bien défini, c’est à dire que si f ' g
alors F (f) = F (g). L’idée (qui revient souvent) est de montrer que pour tout cy-
lindre F (i0) = F (i1) et d’en déduire que deux applications homotopes à gauche ont
donc même image par f .

Pour faire cela concrètement, on considère une homotopie H : CX → Y à gauche
entre f et g où X

∐
X � CX

∼→
p
X est un cylindre de X. Pour pouvoir appliquer F

à ce diagramme on se ramène au cas où CX ∈ Ccf par un procédé déjà vu. Comme X
est cofibrant, CX aussi (car X → X

∐
X est une cofibration également). On factorise

CX → X sous la forme CX
∼
� C ′X � X. Comme X est aussi fibrant, on obtient que

C ′X aussi et il reste cofibrant par construction. Par ailleurs, le relèvement H ′ dans

le diagramme CX
��
o��

H // Y

����
C ′X

H′
<<

// {∗}

permet de remonter l’homotopie H à C ′X . On est donc

ramené au cas où CX est fibrant et cofibrant et on peut appliquer F à p. Comme
p ◦ i0 = p ◦ i1, on a F (p) ◦ F (i0) = F (p) ◦ F (i1). Or F (p) est un isomorphisme de
D puisque p est une équivalence faible. Il suit que F (i0) = F (i1). Mais maintenant
nous avons aussi H ◦ i0 = f et H ◦ i1 = g d’où,

F (f) = F (H) ◦ F (i0) = F (H) ◦ F (i1) = F (g)

ce qui conclut la preuve de a).

Pour b), on rappelle de la preuve du Lemme 2.2.14 que l’équivalence réciproque de
Ho(Ccf )→ Ho(C) est donnée par le foncteur induit par L◦R : X 7→ L(R(X)) où L
etR sont les foncteurs de remplacement cofibrants et fibrants. D’où HomHo(C)(X, Y ) ∼=
HomC(L(R(X)), L(R(Y )))/ ' par le a). On a deux flèches naturelles αY : L(Y )

∼
� Y

et βZ : Z
∼
� R(Z) pour tous objets. Rappelons que par le Corollaire 2.2.22, on a

que HomC(A, Y )/ '= HomC(A, Y )/
l∼= HomC(A, Y )/

r∼ dès que A est cofibrant
et Y fibrant. On déduit alors une application

HomC(L(X), R(Y ))/ ' L(βX)∗←− HomC(L(R(X)), R(Y ))/ '
αR(Y )∗←− HomC(L(R(X)), L(R(Y )))/ '

qui est une bijection car chaque application l’est en vertu de la proposition 2.2.20.b)
et e). Ceci prouve b).
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Il reste à démontrer c). Par définition une équivalence faible devient un isomor-

phisme dans Ho(C). Réciproquement, supposons que [A
f→ B] ∈ Ho(C) soit un

isomorphisme. En prenant les remplacements fibrants et cofibrants on obtient un dia-

gramme commutatif L(R(A))
L(R(f))

//

o��

L(R(B))
o��

A
f // B

dont on déduit qu’il suffit de mon-

trer que L(R(f)) est une équivalence faible (par l’axiome (MC2)). Sachant qu’une
équivalence faible devient un isomorphisme dans Ho(C), on a que [L(R(f))] est un
isomorphisme dans Ho(C) et on est ramené au cas d’un morphisme f entre objets
fibrant et cofibrant. Par le a) que nous avons déjà montré, on en déduit qu’il existe
g tel que les composées f ◦ g et g ◦ f soient homotopes à l’identité. Autrement dit, f
est une équivalence d’homotopie et le Théorème 2.2.24 nous dit que ce morphisme
est une équivalence faible. �

Exercice 2.2.30. Soit C une catégorie de modèle dans laquelle tous les objets sont

fibrants. Pour tout objet X, on fixe X
∐
X � X × I

∼
� X un objet en cylindre de

X déduit de l’axiome (MC5) appliqué à id
∐
id : X

∐
X → X.

(1) Montrer que dans la définition d’homotopie à gauche on peut toujours sup-

poser que le cylindre est donné par X × I. C’est à dire que si f
l∼ g (avec

f, g : X → Y ), alors il existe un morphisme H : X×I → Y tel que H ◦i0 = f
et H ◦ i1 = g.

(2) On munit Top de la structure de modèle de Quillen (exemple 2.1.15). Dé-
montrer que deux applications continues (de source un espace cofibrant) sont
homotopes à gauche si et seulement si elles sont homotopes au sens usuel (dé-
finition 1.1.1).

(3) On note [X, Y ] l’ensemble des classes d’homotopie (pour la définition 1.1.1
usuelle) d’applications continues X → Y dans Top. Démontrer que si X est
un CW-complexe, alors

[X, Y ] ∼= HomHo(Top)(X, Y ).

En déduire que pour tout x ∈ X, on a πn(X, x) ∼= HomHo(Top)(S
n, X)x où

ce dernier est l’ensemble des morphismes de Sn → X dans Ho(Top) dont
la restriction ∗ → Sn → X dans Ho(Top) est (la classe d’équivalence de)
∗ 7→ x.

2.3. Exemples des complexes de châınes et argument du petit objet

Soit R un anneau (ou une k-algèbre) commutatif, unitaire. Rappelons que Ch(R)
est la catégorie des complexes (Ci∈Z, d) de châınes de R-modules non-bornés et
Ch≥0(R) sa sous-catégorie des complexes de chaines concentrés en degrés positifs
(Ci = 0 si i < 0). Enfin on note Ch≤0(R) la sous-catégorie des complexes de chaines
concentrés en degrés négatifs (Ci = 0 si i > 0) ; cette sous-catégorie est isomorphe
(via Ci = C−i) à celle des complexes de cochâınes concentrés en degrés positifs.

Définition 2.3.1 (Structure de modèle projective). Soit C = Ch(R) ou Ch≥0(R). On
définit la structure, dite projective, sur C en posant

Équivalences faibles W: ce sont les quasi-isomorphismes (c’est à dire les morphismes
de complexes induisant des isomorphismes en homologie).
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Fibrations F: ce sont les morphismes de complexes surjectifs (en tout degré) dans
Ch(R) et les morphismes de complexes surjectifs en tout degré > 0 dans
Ch≥0(R).

Cofibrations C: ce sont les morphismes de complexes qui ont la propriété de relève-
ment par rapport aux fibrations acycliques.

Théorème 2.3.2. Les structures projectives ci-dessus munissent Ch(R) et Ch≥0(R)
d’une structure de catégorie de modèles. De plus,

(1) Les cofibrations de Ch≥0(R) sont exactement les inclusions en tout degré
dont le conoyau est projectif en tout degré.

(2) Les cofibrations de Ch(R) sont les morphismes de complexes, qui sont injec-
tifs et de conoyau projectif en tout degré, et dont le conoyau est cofibrant.

(3) Tout morphisme de complexe de Ch(R), injectif en tout degré, dont le co-
noyau est un complexe borné inférieurement 36 de modules projectifs est une
cofibration.

Remarque 2.3.3 (les cofibrations sont scindées degré par degré). Tout morphisme
de R-modules injectif A ↪→ B de conoyau P = B/A projectif est nécessairement

scindé : c’est-à-dire qu’il existe s : P → B tel que la composée P
s→ B

π
� B/A = P

soit l’identité. Ce morphisme est donné par l’application en pointillé donné par le

relèvement de la projection canonique dans le diagramme P
s

��
B

π // // P

. En particulier,

l’application R-linéaire A⊕P → B définie par (a, y) 7→ a+ s(y) a un inverse donné
par le morphisme x 7→ (x−s◦π(x), π(x)) et définit donc un isomorphisme B ∼= A⊕P .

D’après le Théorème 2.3.2, cette propriété est vraie degré par degré pour toute
cofibration dans les structures de modèles projectives. Autrement dit

Une cofibration i : A∗ → B∗ pour la structure projective est nécessairement injec-
tive et scindée en tout degré : Bi

∼= Ai ⊕ (Bi/Ai).
Attention, ce scindement n’est cependant pas forcément un scindement de com-

plexes de châınes ! L’inclusion de A∗ et la projection B∗ → P∗ sont bien des mor-
phismes de complexes mais il se peut que dans la décomposition B∗ ∼= A∗ ⊕ P∗ la
restriction de la différentielle de B à P∗ ait une composante non-nulle à valeur dans
A∗ (ce qui est équivalent à dire que la section s∗ : P∗ → B∗ construite degré par
degré n’est pas un morphisme de complexe).

Remarque 2.3.4. Bien que le conoyau d’une cofibration, dans le cas Ch(R), soit
constitué en tout degré de modules projectifs on prendra garde, que pour les com-
plexes non-bornés, un complexe acyclique formé de projectifs n’est pas forcément
cofibrant (contrairement au cas de Ch≥0(R)).

Exemple 2.3.5. Par exemple, prenons Ci = k[x]/(x2) muni de sa structure de k[x]/(x2)
module canonique. On a une différentielle d donnée par la multiplication par x. On
a immédiatement que ce complexe est acyclique (c’est à dire d’homologie nulle en
tout degré). D’après le théorème, si il était cofibrant, on pourrait remonter tout
morphisme de C vers X le long de toute surjection Y � X. Prenons X = k et
p : Y = k[x]/(x2)→ k la projection canonique. Soit f∗ : C → X donnée par l’appli-
cation triviale en degré i 6= 0 et la projection k[x]/(x2) → k en degré 0. C’est bien

36. c’est à dire que Ci = 0 pour i << 0
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un morphisme de complexes. Si il existait une factorisation f∗ = p ◦ f̃∗ de f∗, on
aurait pour x = x · 1 ∈ k[x]/(x2) pris dans C0, par linéarité, que

x · f̃0(1) = f̃0(x) = f̃0(d(1)) = df̃1(1) = 0

mais p◦ (x · f̃0(1)) = x ·p◦ f̃0(1) = x ·f0(1) = x ·1 = x 6= 0 ce qui est contradictoire.

On peut définir des structures de modèles duales qui font apparâıtre le role par-
ticulier des modules injectifs.

Définition 2.3.6 (Structure de modèle injective). Soit C = Ch(R) ou Ch≤0(R). On
définit la structure, dite injective, sur C en posant

Équivalences faibles W: ce sont les quasi-isomorphismes.
Cofibrations C: ce sont les morphismes de complexes injectifs (en tout degré) dans

Ch(R) et les morphismes de complexes injectifs en tout degré < 0 dans
Ch≤0(R).

Fibrations F: ce sont les morphismes de complexes qui ont la propriété de relève-
ment à droite par rapport aux cofibrations acycliques.

On peut démontrer le résultat suivant, par des méthodes essentiellement similaires
à celle de 2.3.2.

Théorème 2.3.7. Les structures injectives ci-dessus munissent Ch(R) et Ch≤0(R)
d’une structure de catégorie de modèles. De plus,

(1) Les fibrations de Ch≤0(R) sont exactement les morphismes qui, en tout degré,
sont des surjections dont le noyau est un R-module injectif.

(2) Les fibrations de Ch(R) sont les morphismes de complexes, qui sont surjectifs
en tout degré, de noyau constitué de modules injectifs en chaque degré, et
dont le noyau est fibrant.

(3) Tout morphisme de complexe de Ch(R), surjectif en tout degré, dont le
noyau est un complexe borné supérieurement 37 de modules injectifs est une
fibration.

Remarque 2.3.8. Dans la structure projective, tout complexe de chaines est fibrant,
alors que dans la structure injective tout complexe de chaines est cofibrant.

Nous expliquons maintenant les différentes étapes de la preuve du Théorème 2.3.2.
Cet exemple est symptomatique d’une grande catégorie d’exemples appelées caté-
gories de modèles cofibrement engendrées ; le point essentiel de ces catégories est
qu’on peut caractériser les fibrations et fibrations acycliques en termes de propriété
de relèvement par rapport à une famille très simple de cofibrations, les cofibrations
acycliques de taille petite, voir la définition 2.3.18 ci-dessous pour plus de précisions
sur “petite”.

Preuve des axiomes MC1, MC2, MC3. L’existence des limites et colimites, et donc
l’axiome (MC1), pour les complexes de châınes est standard. Elle consiste à vérifier
que les (co)limites calculées dans les espaces gradués 38 héritent de différentielles
naturelles.

37. c’est à dire que Ci = 0 pour i >> 0
38. on prendra garde qu’on définit les limites et colimites pour les espaces gradués degré par degré

(ce qui est possible puisque on regarde des morphismes de complexes qui préservent donc le degré),
c’est à dire que le sous-espace des éléments homogènes de degré i d’une (co)limite de modules se
calcule en prenant la (co)limite des parties homogènes de degré i. On ne calcule pas les limites
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L’axiome (MC2) s’obtient en passant aux groupes d’homologie. Il devient alors que
si deux flèches parmi H∗(f), H∗(g) et H∗(g) ◦ H∗(f) = H∗(g ◦ f) sont des isomor-
phismes alors la troisième l’est, ce qui est une propriété immédiate des morphismes
inversibles.

Pour l’axiome (MC3), soit

A
i

//

idA

))

q

��

X

f

��

α
// A

q

��
B

j //

idB

55Y
β // B

un rétracte. Puisque les flèches horizontales sont l’identité, on a automatiquement
que i : A→ X et i∗ : H∗(A)→ H∗(X) sont injectives en tout degré et que β : Y → B
et β∗ : H∗(Y )→ H∗(B) sont surjectives en tout degré.

Supposons maintenant que f soit un quasi-isomorphisme, alors f∗ = H∗(f) est un
isomorphisme et donc la commutativité du diagramme implique que j∗◦q∗ = f∗◦i∗ est
injective. En particulier q∗ est injective. De même, de la surjectivité de β∗◦f∗ = q∗◦α∗
suit la surjectivité de q∗. Ainsi q∗ est un isomorphisme et donc q est un quasi-
isomorphisme.

On voit par ailleurs que le même argument assure que q est surjective en tout
degré (resp > 0) si f l’est. Ce qui démontre que le rétracte d’une fibration est une
fibration.

Enfin supposons que f est une cofibration et montrons que q est une cofibration,
c’est à dire, par définition des cofibrations dans la structure projective, qu’elle a
la propriété de relèvement par rapport à toute fibration qui est aussi un quasi-

isomorphisme P
∼
� Q. La rétraction et le fait que f soit une cofibration nous fournit

un diagramme commutatif

A
i

//

idA

))

q

��

X
��

f

��

α
// A

q

��

// P

'

����
B

j //

idB

55Y
β //

h

77

B // Q.

Le relèvement cherché est alors la composée h ◦ j précisément grace au fait que les
composées des flèches horizontales de la rétraction sont des identités.

Notons que la preuve que l’on vient de faire montre directement la propriété
suivante :

de modules gradués (R∗,i)i∈I en considérant la limite des sommes directes (
⊕

n≥0Rn,i)i∈I car ces
dernières limites n’ont pas forcément une décomposition en somme directe de partie homogène
compatible avec celles des objets de départ (par exemple on peut avoir un produit infini de parties
homogènes).
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Lemme 2.3.9. Soit S une sous-classe de morphismes d’une catégorie C, LLP (S)
(resp. RLP (S)) la classe des morphismes de C vérifiant la propriété de relèvement
à gauche (resp. à droite) par rapport à tous les morphismes de S. Les classes LLP (S)
et RLP (S) sont stables par rétract.

�

Expliquons maintenant d’où viennent les conditions (1), (2) et (3) du théorème 2.3.2
(en utilisant uniquement la définition de la structure projective, pas qu’elle forme
une catégorie de modèle). Cela nous aidera aussi pour établir la propriété (MC4).
Pour cela on commence par exhiber des complexes de châınes canoniques qui vont
nous aider à caractériser nos (co)fibrations.

Définition 2.3.10. Soit M un R-module.

• On définit le complexe

Dn(M) := . . . // 0 // M
id // M // 0 // 0 // . . .

n n− 1

donné, en degré i, par Dn(M)i = 0 si i 6= n, n − 1 et Dn
i (M) = M si

i = n, n− 1, la différentielle étant l’identité au seul endroit non trivial.
• On définit le complexe Sn(M) comme le complexe Sni (M) = M si i = n et
Sni (M) = 0 si i 6= n muni de la seule différentielle possible...

Il est clair que Dn(M) est acyclique, donc que Dn(M)→ 0 est une fibration acy-
clique, et on a par ailleurs un morphisme de complexe injectif Sn−1(M) ↪→ Dn(M)
canonique

(8) . . . // 0 // M
id // M // 0 // 0 // . . .

. . . // 0 //

OO

0

OO

// M

id

OO

// 0 //

OO

0

OO

// . . .

ainsi qu’une fibration canonique Dn(M)→ Sn(M)

. . . // 0 //

��

M

id
��

id // M //

��

0

��

// 0

��

// . . .

. . . // 0 // M // 0 // 0 // 0 // . . .

Ce dernier morphisme est bien défini dans Ch≥0(R) dés que n ≥ 1.

Remarque 2.3.11. La notation est précisément faite pour rappeler l’inclusion du bord
d’un disque Dn et le recollement d’un disque Dn → Sn sur un point. On notera que
ces (morphismes de) complexes s’identifient d’ailleurs avec ceux des complexes de
châınes cellulaires réduits des disques et sphères.

Remarquons qu’un morphisme de complexes C∗ → Dn(M) est trivial en degré
i 6= n, n+ 1 et que de plus on a fn+1(x) = fn(d(x)) pour tout x ∈ Cn+1. Il suit que

Lemme 2.3.12. Les morphismes de complexes de C∗ dans Dn(M) sont en bijection
avec les applications R-linéaires Cn →M .
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Démonstration des propriétés (1), (2), (3) du Théorème 2.3.2. On commence par le
sens direct. Soit f : A � B une cofibration dans Ch(R) (resp. Ch≥0(R)), c’est à
dire une application vérifiant la propriété de relèvement à gauche par rapport à une
fibration acyclique. Considérons le morphisme de complexe canonique ϕnA : A →
Dn+1(An) donné par

. . . // An+1
d //

��

An+1

d
��

d // An
d //

��

An−1

��

// An−2

��

// . . .

. . . // 0 // An
id // An // 0 // 0 // . . .

On en déduit (comme dans le lemme 2.3.12) un diagramme commutatif

A //
��

f
��

Dn+1(An)

o
����

B

h
::

// 0

et l’existence du relèvement h. Ce relèvement nous donne donc un diagramme com-

mutatif Bn+1

hn+1 //

d
��

An

Bn
hn // An

satisfaisant de plus hn ◦ fn = idAn . Ceci prouve à la fois

l’injectivité de f et le fait que le conoyau est scindé en tout degré.
Que le poussé en avant d’une cofibration soit une cofibration découle immédia-

tement du lemme 2.1.17 puisque les cofibrations sont définies par une propriété de

relèvement à gauche. Il suit du poussé en avant A
��

f
��

0 // 0

��
B // P∗

que le complexe P∗ des

conoyaux est cofibrant.
Montrons maintenant qu’en tout degré, le conoyau Pn := Bn/An est projectif 39.

Pour cela il faut montrer qu’il a la propriété de relèvement par rapport à toute
surjection u : M � N de morphismes de R-modules. Soit q : Pn → N un morphisme.
Pour cela on considère encore le morphisme canonique ϕnP∗ : P∗ → Dn+1(Pn), la
surjection induite Dn+1(f) : Dn+1(M) → Dn+1(N) qui est une équivalence faible
puisque les deux complexes sont acycliques, et le diagramme commutatif

0
��

��

// Dn+1(M)

o
����

P∗
Dn+1(q)◦ϕnP∗

//

66

Dn+1(N).

Le relèvement en pointilé dans ce diagramme fournit précisément un relèvement de
q (en degré n).

Il reste à montrer les réciproques. On commence par celles dans les affirmations (1)
et (3), c’est à dire que les morphismes de complexes vérifiant les conditions énoncées
ont bien la propriété de rélèvement par rapport à toutes les fibrations acycliques. Le

39. la preuve marchant et pour Ch≥0(R) et pour Ch(R)
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résultat est similaire dans les deux cas (le cas borné inférieurement se traitant comme
le cas concentré en degré positif). Il faut montrer que pour tout quasi-isomorphisme
f : X → Y qui est sujectif en degré ≥ 1, alors, pour tout diagramme commutatif

A

��

φ // X

o����
B

ψ
//

h
>>

Y

un relèvement h existe rendant les deux triangles commutatifs. Ceci est l’exercice
6 du TD 1 et c’est essentiellement la même chose que l’exercice 1.5.18. En fait,
on peut remarquer que comme f est un quasi-isomorphisme, on a que f0 : X0 →
Y0 est aussi surjective et donc f est surjectif en tout degré. On construit alors
le relèvement par récurrence en partant d’un choix du relèvement en degré 0 en
utilisant la décomposition B0 = A0 ⊕ P0 que nous avons vu, le fait que le noyau
Ker(f∗ : X∗ → Y∗) est acyclique (par une utilisation directe de la suite exacte
longue d’homologie associée à la suite exacte Ker(f∗)→ X∗ � Y∗) ; l’argument est
une variante un peu plus sophistiqué que celui du lemme 1.5.15 et a été vu en TD.

La réciproque de (2) est aussi similaire, en effet, par projectivité des Pn que
nous avons établi, on a une application linéaire κn : Pn : Bn/An → Xn rele-
vant la restriction de ψ : Bn → Yn à la composante Pn en utilisant qu’on a vu
que Bn

∼= An ⊕ Pn. Cette dernière identité assure que la différentielle de B s’écrit
d(a, p) = (dA(a)+t(p), d(p)) où dA est la différentielle sur A, d la différentielle induite
par celle de B sur le quotient P = B/A (on a forcément dAt + td = 0). On a alors
une application dκ− κd− φt : Pn → Ker(fn−1 : Xn−1 → Yn−1). En utilisant que P
est cofibrant et le noyau Ker(f) acyclique, on peut montrer que cette application
est homotope à 0.

Lemme 2.3.13. Soit P∗ un complexe de châınes cofibrant et K∗ un complexe acy-
clique. Alors tout morphisme f : P∗ → K∗ est homotope (au sens des complexes de
châınes) à 0.

Preuve du lemme. Soit C∗(K) = K∗ + 1 ⊕K∗ le cocone of K∗. Sa différentielle est
donc donnée par d(x, y) =

(
− d(x) + y, d(y)

)
et en particulier H∗(C∗(K)) = 0

en tout degré. La projection (x, y) 7→ y est un morphisme de complexes. Donc
π : C∗(K) → K est surjective en tout degré et un quasi-isomorphisme puisque que
K∗ a une homologie triviale. C’est donc une fibration acyclique et puisque P est
cofibrant, par définition, nous avons un relevé H dans le diagramme

0 //
��

��

K∗+1 ⊕K∗
∼
����

P

H
99

f
// K.

Ce morphisme de complexes H se décompose comme H(p) = (h(p), f(p)) où h =
(hn : Pn → Kn+1)n∈Z puisque π◦H = f . Comme H est comaptible aux différentielles
on a d ◦ H(p) = H(d(p)) qui, sur le premier facteur, implique −d ◦ h(p) + f(p) =
h ◦ d(p). Ainsi f − 0 = d ◦ h + h ◦ d et f : P → K est homotope à l’application
nulle. �
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En notant H l’homotopie donnée par ce lemme, nous avons que la somme (f, κ+
H) : Bn

∼= An ⊕ Pn → Xn est le relèvement cherché. �

Preuve de la propriété (MC4). Par définition, on a déjà la propriété de relèvement
des cofibrations par rapports aux fibrations acycliques. Il faut montrer que toute

cofibration i : A
∼
� B qui est une équivalence faible a la propriété de relèvement par

rapport aux fibrations.
Comme on a déjà vu qu’une cofibration est injective en tout degré, on a déjà que

le conoyau P∗ est acyclique (par la longue suite exacte d’homologie associée à la
suite exacte courte de complexes A ↪→ B → P∗ → 0).

Dans le cas de Ch≥0(R), on peut utiliser alors le lemme suivant (qui se démontre
encore une fois par récurrence).

Lemme 2.3.14. Soit P∗ un complexe acyclique dans Ch≥0(R), constitué de modules
projectifs. Alors les cycles Zk(P∗) sont aussi projectifs et de plus on a un isomor-
phisme de complexes de chaines

P∗ ∼=
⊕
k≥0

Dk+1(Zk(P∗)).

Le résultat découle alors du fait que chaque Dk+1(M) est projectif en tant que
complexe de chaines, c’est à dire qu’il à la propriété de relèvement par rapport aux
fibrations, c’est le sens de la proposition 2.3.16.

Dans le cas de Ch(R) (la preuve s’appliquant aussi à Ch≥0(R)), le résultat découle
du

Lemme 2.3.15. Soit P∗ un complexe de chaines cofibrant de Ch(R) qui est de plus
acyclique. Alors P∗ est un objet projectif dans la catégorie des complexes de chaines
(c’est à dire vérifie la propriété de relèvement par rapports à toutes les fibrations).

Preuve du Lemme 2.3.15. On commence par remarquer que P est contractile, c’est à
dire que l’identité de P∗ est homotope à 0. La preuve est un argument que l’on a déjà
vu : soit P∗+1⊕P∗ le cocone de l’identité. C’est à dire le complexe donné par la somme
de P∗ et P∗+1 et dont la différentielle est définie par d(w, x) = (−d(w) + x, d(x)).
Ce complexe est contractile et on a la projection (w, x) 7→ x qui est donc une

fibration acyclique. Alors on dispose d’un relèvement 0 //
��

��

P∗+1 ⊕ P∗
o
����

P∗

H
::

P∗

puisque

P∗ est cofibrant. L’application linéaire H s’écrit sous la forme H(x) = (h(x), x)
par commutatitvité du diagramme, où h : P∗ → P∗+1. La condition que H est un
morphisme de complexe donne que −dh(x) + x = h(d(x), c’est à dire que h est
une homotopie entre 0 et l’identité. On en déduit que l’on a une décomposition
P∗ = Z∗ ⊕ R∗ où Z∗ est le sous espace des cycles et la différentielle de P∗ s’identifie
avec un isomorphisme entre R∗+1 et Z∗. Cette décomposition est donnée en prenant
R∗ = Im(h ◦ d) par x 7→

(
dh(x), hd(x)

)
: en effet la somme est directe car dh(x) =

hd(y) implique 0 = dhd(y) = d(y) et donc hd(y) = 0 et elle engendre puisque
x = dh(x)+hd(x) pour tout x ; de plus dhd(x) = dx montre la propriété énoncée sur
la différentielle puisque Z∗ est égal au sous-espace des bords d(P∗), l’homologie étant
nulle. Cette décomposition étant donnée, il devient facile de construire le relèvement.
En effet, les morphismes de complexe de Z∗⊕R∗ dans un complexe quelconque A sont
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donnés par les collections de morphismes linéaires (ψn : Rn → An)n∈Z sans aucune
condition. La bijection se faisant en définissant le morphisme de complexe sous la
forme (d(s), r) 7→ dψn+1(s) + ψn(r) (en se rappelant que les cycles sont des bords).
En particulier, on peut appliquer cette construction pour relever tout morphisme
surjectif en un diagramme commutatif. �

En effet, ce lemme permet d’abord de remarquer que si A
∼
� B est une co-

fibration qui est un quasi-isomorphisme, alors, en notant P le complexe quotient
B/A (qui est donc cofibrant et acyclique parce qu’on a vu avant), le relevé dans

le diagramme 0 //
��
o
��

B

����
P

H
??

P

assure que la projection B → P est scindée et donc

B ∼= A ⊕ P comme complexe de chaines. Par suite, un relèvement dans tout dia-

gramme A
��

o
��

f // X

����
B ∼= A⊕ P

99

// Y

se ramène à un relèvement de 0
��

o
��

f // X

����
P

>>

// Y

ce qui

existe par le lemme 2.3.15 précédent. �

Les propriétés de factorisation découlent de ce que l’on appelle l’argument du
petit objet. C’est une construction permettant de construire fonctoriellement des
objets ayant des propriétés de relèvement par rapport à une famille raisonnable de
flèches issus de “petits” objets. Avant de l’énoncer, on note une propriété clé de
cette structure projective : les fibrations et fibrations acycliques sont exactement les
morphismes de complexes ayant la propriété de relèvement à droite par rapport à
une certaine famille dénombrable de morphismes de complexes.

Proposition 2.3.16. Soit f : X → Y un morphisme de complexes dans Ch(R) (resp.
Ch≥0(R)).

(1) f : X → Y est une fibration si et seulement si il a la propriété de relèvement
à droite par rapport à tous les morphismes 0→ Dn(R) (resp. pour n ≥ 1) ;

(2) f : X → Y est une fibration acyclique si et seulement si il a la propriété de
relèvement à droite par rapport à tous les morphismes Sn−1(R) → Dn(R)
(resp. pour n ≥ 1)

Démonstration. La preuve est simplement une petite chasse au diagramme degré
par degré. La première remarque à faire est la suivante : un morphisme de complexe
de Dn(R) → Z∗ est équivalent à la donnée d’un élément z ∈ Zn en degré n (via
r = r · 1 7→ r · z en degré n et r 7→ r · d(z) = d(r · z) en degré n− 1 et nécessairement
0 en tout autre degré). Il suit immédiatement que si p : X → Y est un morphisme

de complexe, il existe un relèvement dans tout diagramme 0
��

o
��

0 // X

p

��
Dn(R)

<<

// Y

si et

seulement si tout élément de yn admet un antécédent par p, c’est à dire que p
est surjective en degré n. Ainsi (1) est démontré. Pour (2), on remarque qu’un
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diagramme commutatif Sn−1(R)
��

��

f // X

p

��
Dn(R)

g // Y

est équivalent à la donnée d’une paire

(xn−1, yn) ∈ Xn−1×Yn vérifiant p(xn−1) = d(yn) et d(xn−1) = 0 (autrement dit xn−1

est un cycle) (via f(r) = r · xn−1 en degré n − 1, 0 sinon et g est déterminée par
g(r) = r·yn comme ci-dessus). En vertu de la première remarque, un relèvement dans
ce diagramme est équivalent à la donnée d’un élément xn ∈ Xn tel que d(xn) = xn−1

et p(xn) = yn. Montrons maintenant (2). Si p est une fibration acyclique 40, alors
son noyau Ker(p) est un complexe de châınes qui a une homologie nulle en tout
degré par la longue suite exacte d’une suite exacte courte en homologie (associée
à Ker(p) ↪→ X � Y ). Par surjectivité, on peut trouver un élément x̃n ∈ Xn tel
que p(x̃n) = yn. Il suit que d(x̃n) − xn−1 ∈ Ker(p)n−1. C’est par ailleurs un cycle
de Ker(p) puisque d(xn−1) = 0. Ainsi il existe un élément w ∈ Ker(p)n tel que
d(w) = d(x̃n) − xn−1). On en déduit que l’élément xn := x̃n − w vérifie bien les
conditions voulues : d(xn) = xn−1 et p(xn) = yn. Il reste à voir la réciproque.

On suppose donc que p : X → Y vérifie la propriété de relèvement à droite par
rapport à toutes les diagrames avec Sn−1(R) ↪→ Dn(R) à gauche (où n ≥ 1 ou n ∈ Z
selon les cas) . Il est immédiat que p est surjective sur les n-cycles car, pour tout cycle
yn, la paire (0, yn) définit bien un diagramme commutatif et que le relèvement donne
donc un antécédent de yn. En passant au quotient, on obtient donc que Hn(p) est
également surjective. Montrons que p elle même est surjective : si yn ∈ Yn, comme
d(yn) est un cycle, par surjectivité pour n − 1 41, on obtient que d(yn) = p(xn−1)
avec xn−1 un cycle. C’est à dire que le couple (xn−1, yn) définit bien un diagramme.
L’existence du relèvement donne donc un antécédent xn de yn. On a bien obtenu
que p : X → Y est une fibration. Pour montrer qu’elle est acyclique, il reste à voir
que H∗(p) est injective. Supposons que p([xn]) = 0 ∈ Hn(Y ). Alors p(xn) est un
bord, c’est à dire p(xn) = d(yn+1) et la paire (xn, yn+1) fournit encore un diagramme
commutatif (associé à Sn(R)→ Dn+1(R)) pour lequel on a donc un relèvement, en
particulier un élément xn+1 tel que d(xn+1) = xn. Il suit que [xn] = 0 ∈ Hn(X) et
on a bien l’injectivité. �

Remarque 2.3.17. Comme on a déjà démontré les propriétés (1) et (3) du Théo-
rème 2.3.2 et l’axiome (MC4), on obtenait le sens direct en remarquant que les
morphismes 0 → Dn(R) et Sn−1(R) → Dn(R) sont respectivement des cofibrations
acycliques et des cofibrations.

Pour énoncer l’argument du petit objet on a besoin de la terminologie suivante :

Définition 2.3.18. Un objet A ∈ C est dit N-compact ou N-petit (ou parfois séquen-
tiellement petit) si, pour tout foncteur F : N→ C, on a que l’application canonique

colim
N

HomC(A,F (n)) −→ HomC(A, colim(F (n)))

est une bijection.
Si on remplace N par n’importe quel ordinal κ, on définit de même la notion de

κ-compact ou κ-petit.

40. on a vu qu’en particulier cela implique que p est surjectif même pour la structure de Ch≥0(R)
41. qui est automatique pour n− 1 < 0 dans le cas de Ch≥0(R)
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Enfin un objet A ∈ C est appelé simplement compact si l’application canonique

colim
j∈J

HomC(A,Cj) −→ HomC(A, colim
j∈J

Cj)

est un isomorphisme pour toute colimite filtrée.

Un objet compact est a fortiori κ-compact.

Exemple 2.3.19 (Modules et complexes de châınes). On peut vérifier qu’un R-module
est N-compact (et même compact) si et seulement il est de présentation finie.

Plus généralement un complexe X∗ ∈ Ch(R) de R-modules est compact si c’est
un complexe borné (c’est qu’il n’y a qu’un nombre fini de composantes non-nulles)
de R-modules de présentation finie.

Exemple 2.3.20 (Ens, sEns et Top). Dans la catégorie des ensembles, les objets
compacts sont les ensembles finis.

Dans la catégorie de tous les espaces topologiques généraux, les objets compacts
ne sont pas si intéressants car il s’agit des ensembles finis munis de la topologie
discrète (cela se voit en regardant des morphismes dans des espaces grossiers mais
ce n’est pas évident). En revanche, les complexes cellulaires compacts (au sens de
la topologie usuelle) sont bien des objets compacts de la sous-catégorie des espaces
cellulaires.

Les objets compacts de la catégorie sEns des ensembles simpliciaux (voir 2.6)
sont les ensembles simpliciaux finis (c’est à dire avec un nombre fini de simplexes
non-dégénérés ; il sa’git précisément de ceux dont la réalisation géométrique est un
espace compact au sens usuel et français de la topologie).

On va maintenant expliquer une méthode due à Quillen pour construire des appli-
cations ayant la propriété de relèvement par rapport à une famille de morphismes.

Soit I une famille de flèches (Ai
αi→ Bi)i∈I dans C. Soit f : X → Y une flèche

de C. Notre but est donc de construire une factorisation naturelle de f au travers
d’une flèche qui a la propriété de relèvement par rapport à toutes les applications
de la famille I. On procède comme suit. On introduit un nouvel ensemble

(9) SI(f) :=


Ai

αi
��

// X

f
��

Bi
// Y

, tel que le diagramme commute et i ∈ I


constitué de tous les diagrammes commutatifs dans C dont les flèches verticales de
gauche sont dans I et celle de droite est f . Si d ∈ SI(f) est un objet de SI(f), on

notera 42 le diagramme correspondant sous la forme Aid

αid
��

φd // X

f

��
Bid

γd // Y

.

42. cette écriture n’a pour but que de donner un nom aux flèches du diagramme, sauf f bien sur
qui est la seule fixée
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À partir de ce (gros) ensemble SI(f) on construit l’objet R1(f, I) comme le poussé-
en-avant X ∪∐

d∈SI(f)
Aid

∐
d∈SI(f) Bid . On a donc le diagramme commutatif suivant

(10)
∐

d∈SI(f)

Aid

∐
φd //

∐
αid

��

X

��

f

��∐
d∈SI(f)

Bid

∐
γd

99
// R1(f, I)

f1 // Y

où f1 : R1(f, I)→ Y est la flèche donnée par la propriété universelle du poussé-en-
avant.

On itère alors la construction en posant R2(f, I) := R1(f1, I) et en notant f2 :
R2(f, I) = R1(f1, I) → Y la flèche canonique (obtenue par propriété du poussé
en avant appliqué au diagramme obtenu à partir de SI(f1)). Par récurrence, plus
généralement, on définit

(11) Rn(f, I) := R1(fn−1, I) et on note fn : Rn(f, I)→ Y la flèche canonique.

Notons que l’on a, par définition du poussé en avant, des flèches canoniques X →
R1(f, I), R1(f, I) → R2(f, I), ..., Rn−1(f, I) → Rn(f, I) etc. On a donc un dia-
gramme commutatif

X //

f
��

R1(f, I) //

f1

��

. . . // Rn(f, I) //

fn
��

. . .

Y Y . . . Y . . . .

On note enfin

(12) R∞(f, I) := colimRn(f, I)

et f∞ : R∞(f, I) → Y la flèche canonique induite par le diagramme précédent. On

a donc une factorisation X → R∞(f, I)
f∞→ Y de f (qui se factorise au travers de

chaque Rn(f, I)).

Remarque 2.3.21. La construction a pour but de définir l’objet Rn+1(f) comme un
objet muni d’une flèche issue de Bi pour tout carré commutatif avec f (n) sur la
verticale droite et Ai → Bi à gauche. Cette flèche va être le relèvement dans le carré
en passant à la colimite comme l’énonce le résultat suivant.

Proposition 2.3.22 (Argument du petit objet de Quillen). Supposons que pour tout
i ∈ I, l’objet Ai est N-compact (définition 2.3.18). Alors f∞ : R∞(f, I) → Y a la
propriété de relèvement à droite par rapport à tous les morphismes de I.

Ce résultat se généralise par une preuve similaire au cas de tout ordinal κ > N
(ou R∞(f, I) doit être remplacé par une suite indicée par κ de poussés en avant).
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Démonstration. Comme chaque Ai est petit, toute flèche p : Ai → R∞(f, I) se facto-

rise au travers d’un Rn(f, I). Ainsi tout diagramme commutatif Ai
p //

αi
��

R∞(f, I)

f∞
��

Bi q
// Y

se factorise sous la forme

Ai
p //

αi

��

Rn(f, I)

fn
��

// Rn+1(f, I)

fn+1

��

// R∞(f, I)

f∞
��

Bi

q̃
44

q
// Y Y Y.

L’existence du relèvement q̃ provient de la définition de Rn+1(f, I). En effet, le

diagramme Ai
p //

αi
��

Rn(f, I)

fn
��

Bi q
// Y

est un objet de la catégorie SI(fn) et donc on a bien

une flèche Bi → R1(fn, I) = Rn+1(f, I) par construction du poussé-en-avant. Ceci
nous fournit en particulier un relèvement pour R∞(f, I). �

Remarque 2.3.23. Notons que par construction, l’objet R∞(f, I) est construit est
une colimite séquentielle (c’est à dire indicée par un poset totalement ordonné) à
partir de pushouts des morphismes de I. En particulier, c’est un objet cellulaire gé-
néralisé 2.4.1 construit à partir des morphismes de I. Notons qu’un objet I-cellulaire
a la propriété de relèvement à gauche par rapport à f∞ et plus généralement par
rapport à tout morphisme ayant la propriété de relèvement à droite par rapport
aux morphismes de I. En effet, c’est immédiat pour des poussés-en-avant par des
morphismes de I par le lemme 2.1.17 et une colimite séquentielle de tels pushouts se
réécrit comme un (gros) pushout. Alternativement, on peut simplement appliquer le

Lemme 2.3.24. Soit X0 → X1 → · · · ... une tour (indicée par un cardinal κ) de
morphismes de C et i : X → colimκXi le morphisme canonique. Si chaque Xi →
Xi+1 a la propriété de relèvement à gauche par rapport à un morphisme f , alors
i : X → colimκXi l’a aussi.

Démonstration. Par le lemme 2.1.17, chaque X0 → Xk a la propriété de relève-

ment. Il suit que pour tout diagramme X0
//

i
��

W

f
��

colimκXi
// Z

on a une factorisation

X0
//

��

W

f
��

Xk
//

hk

44

colimκXi
// Z

et l’existence de hk. La compatibilité des hk nous donne

alors le relèvement h = colimhk : colimκXi → W de f . �

Par ailleurs, la construction de la factorisation f 7→ (X → R∞(f, I), R∞(f, I)
f∞→

Y ) est fonctorielle puisque les morphismes en question sont construits par propriété
universelle des poussés-en-avant indicés par tous les diagrammes commutatifs avec
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f et que tout morphisme dans la catégorie des flèches de f vers g (c’est à dire
carré commutatif avec f et g parallèles) induit une application canonique entre les
diagrammes commutatifs.

Preuve de (MC5). On fait le cas de Ch(R), l’autre cas est complètement analogue.
Montrons que tout morphisme de complexes f : X → Y admet une factorisation

fonctorielle f : X � Z
∼
� Y . Pour cela on choisit la classe I = (Sn−1(R) ↪→

Dn(R))n∈Z. L’argument du petit objet (proposition 2.3.22, les Sn−1(R) étant com-
pacts) nous dit que l’on a une factorisation

f : X −→ R∞(f, I)
f∞−→ Y

telle que f∞ a la propriété de relèvement à droite par rapport à toutes les flèches
Sn−1(R) → Dn(R) et donc c’est une fibration acyclique par la proposition 2.3.16.
La première flèche est une cofibration car c’est une succession de coproduits et
poussés en avants de cofibrations (puisque Sn(R) → Dn(R) est une cofibration par
la preuve de la propriété (3) du théorème 2.3.2) 43, cf 2.3.24. Comme la construction
des Rn(f, I) est fonctorielle en f : X → Y , on en déduit sans difficulté que la
factorisation obtenue est fonctorielle.

Montrons maintenant l’autre factorisation. On prend cette fois ci I = (0 →
Dn(R))n∈Z et l’argument du petit objet nous donne une factorisation

f : X −→ R∞(f, I)
f∞−→ Y

telle que f∞ a la propriété de relèvement à droite par rapport à toutes les flèches
0→ Dn(R) et donc c’est une fibration par la proposition 2.3.16. La première flèche
est maintenant une succession de poussés en avant de X le long de cofibrations
acycliques. On en déduit que c’est encore une cofibration acyclique. La fonctorialité
du remplacement découle encore de celle de la construction des Rn(f, I). �

Remarque 2.3.25. La preuve montre que pour utiliser l’argument du petit objet, il
suffit que les Ai soient N-petits et même simplement petits par rapport à la famille
des applications qu’on peut construire en prenant des poussés-en-avant et coproduits
construits à partir des αi.

Par ailleurs, on note que la factorisation obtenu se fait au travers tout d’abord d’un
morphisme cellulaire généralisé construit sur notre famille I suivie d’un morphisme
ayant la proproété de relèvement à droite.

Exercice 2.3.26. On se place dans Ch(R) ou Ch≥0(R) munis de la structure projec-
tive.

(1) Démontrer que dans la structure de modèle projective, si X est cofibrant et

f, g : X → Y , alors f
r∼ g est équivalent à f et g sont homotopes au sens des

complexes de chaines : f − g = dh+ hd.
(2) Soit M un R-module vu comme un complexe de chaines concentré en degré

0. Démontrer qu’un remplacement cofibrant de M dans Ch≥0(R) est exacte-
ment une résolution projective de M .

43. On démontre comme dans la preuve du lemme 2.1.17 qu’une colimite séquentielle de mor-
phismes satifaisant une propriété de relèvement à gauche satisfait cette propriété aussi. Alternati-
vement, on peut aussir remarquer qu’on peut écrire cette colimite comme un pushout



INTRODUCTION À L’HOMOTOPIE 73

Exemple 2.3.27 (Cas des complexes bornés). Il existe d’autres sous-catégories de
complexes de châınes intéressantes et naturelles. En particulier on peut considérer
les sous-catégories (pleines 44) suivantes 45 de Ch(R) :

• la catégorie Chb(R) des complexes bornés constituée des complexes C∗ tel
que Ci est non-nul en un nombre fini de degré seulement (autrement dit il
existe n ≤ m ∈ Z tel que Ci = {0} si i > m ou i < n) ;
• la catégorie Ch+(R) des complexes bornés inférieurement constituée des com-

plexes C∗ tel qu’il existe n ∈ Z tel que Ci = {0} si i < n ;
• la catégorie Ch−(R) des complexes bornés supérieurement constituée des

complexes C∗ tel qu’il existe m ∈ Z tel que Ci = {0} si i > m.

Notons que ces sous-catégories sont stables par suspension et désuspension, c’est à
dire par les foncteurs C 7→ C[n] où C[n]i = Cn+i pour tout n ∈ Z. (et la différentielle
est (−1)ndC où dC est la différentielle de C). Ce n’est pas le cas de Ch≥0(R) qui
n’est stable que par suspension C 7→ C[n] où n ≥ 0.

La preuve du théorème 2.3.2 montre que la structure de modèle de Ch(R) se
restreint à Chb(R), Ch+(R) et Ch−(R) de manière suivante :

Corollaire 2.3.28. Les structures projective et injectives font de Ch+(R), Chb(R)
et Ch−(R) des catégories de modèle à(co)limites finies 46 et factorisations non-
fonctorielles. De plus

(1) Pour la structure projective, les cofibrations Ch+(R) sont exactement les
morphismes de complexes injectifs en tout degré, dont le conoyau est un
complexe de modules projectifs ;

(2) pour la structure injective, les fibrations Ch−(R) sont exactement les mor-
phismes de complexes surjectifs en tout degré, dont le noyau est un complexe
de modules injectifs.

(3) La proposition 2.3.16 reste vraie pour la structure projective et les structures
de modèle sont cofibrement engendrées (cf. Définition 2.4.5).

Ébauche de preuve. La preuve de la proposition 2.3.16 (avec n décrivant Z) s’ap-
plique verbatim aux catégories Chb(R), Ch+(R), Ch−(R). Les affirmations (1) (et
respectivement (2)) sur les (co)fibrations découlent immédiatement des conditions
(3) du théorème 2.3.2 (resp. 2.3.7) et du fait que les objets dans les catégories concer-
nées sont nécessairement bornés inférieurement (resp. supérieurement).

La seule subtilité pour appliquer directement la preuve du théorème 2.3.2 est dans
l’aplication de l’argument du petit objet pour garantir l’existence des factorisations
dans les sous-catégories concernées. Une fois fixé un morphisme de complexes f :
X → Y dans Chb(R).

On est alors ramené, dans l’argument du petit objet, à ne regarder que des
diagrammes commutatifs où les flèches verticales de gauche 0 → Di(R) (resp.
Si−1(R) → Di(R)) sont restreintes à i ∈ [n,m] (resp. [n,m + 1]) ce qui garantit

44. c’est à dire qu’on restreint les objets, mais pas les morphismes entre objets conservés
45. On pourra noter que via l’équivalence entre complexes de chaines et cochaines, on a que

Chb(R) est équivalente à celle des complexes de cochaines bornés, Ch+(R) est équivalente à celle
de complexes de cochaines bornés supérieurement et Ch−(R) est équivalente à celle de complexes
de cochaines bornés inférieurement

46. c’est à dire que (MC1) doit être remplacé par le fait que la catégorie a toute les (co)limites
finies
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que la factorisation se fait dans Chb(R). Le même argument s’applique pour les
autres catégories.

�

Notons que par définition des colimites, on a un quasi-isomorphisme Cb,f
∼→ Cf

où Cb,f , Cf sont les factorisation induites par l’argument du petit objet dans le
cas borné et l’autre dans le cas non-borné. De même, un remplacement (co)fibrant
calculé dans la catégorie bornée est encore (co)fibrant dans la catégorie bornée.

Ceci permet en fait en pratique de transférer essentiellement tous les résultats et
calculs que l’on fait de manière non-bornée au cas borné et de ne pas se soucier de
cette catégorie de modèle “non-bornée” mais de se contenter d’utiliser la propriété
(3) des Théorèmes 2.3.2 , 2.3.7 pour identifier des (co)fibrations et de l’existence
de remplacement borné (resp. supérieurement, inférieurement) pour les complexes
bornés (resp. supérieurement, inférieurement).

2.4. Catégories de modèles cofibrement engendrées

Les structures de modèles projectives font partie d’un type de structure très cou-
rant de catégorie de modèle, pour lesquelles l’argument du petit objet permet de
construire les factorisations. Ces structures sont caractérisées par le fait que les
fibrations et fibrations acycliques sont caractérisées par le fait qu’elles ont la pro-
priété de relèvement à droite par rapport à une famille “petite” de morphismes, cf.
la proposition 2.3.16. On peut remarquer que les fibrations de Serre ont été défi-
nies similairement. Cette propriété et l’argument du petit objet ont plein de consé-
quences agréables car elles donnent non seulement un moyen efficace de construire
des structures de modèles mais aussi qu’elles permettent de construire et étudier
leurs (co)limites homotopiques, cf. Remarque 2.6.17. Une telle catégorie de modèle
est d̂ıte cofibrement engendrée. Elles sont par ailleurs une source d’exemple primor-
diale de catégories de modèles. Avant de donner la définition précise, nous avons
besoin d’introduire encore un peu de terminologie...

La définition suivante est la généralisation, dans toute catégorie, de la notion de
complexe cellulaire relatif dans les espaces topologiques. Comme d’habitude la notion
topologique de recollement est remplacée par celle de poussé-en-avant.

Définition 2.4.1 (Morphisme cellulaire relatif). Soit I := (Ai
αi→ Bi)i∈I une famille

fixée de morphismes de C. Un complexe (ou morphisme) I-cellulaire relatif est un
morphisme X → Y où Y est une colimite colims∈κXs où κ est un ordinal 47 et

Xs+1 est obtenu comme un poussé en avant de la forme
∐

is∈Is Ais∐
αis

��

// Xs

��∐
is∈Is Bis

g // Xs+1

c’est

à dire de coproduits de flèches de I. On notera I−Cell la classe des morphismes
I-cellulaires relatifs.

Un complexe I-cellulaire est un objet Y tel que 0→ Y est I-cellulaire relatif.

47. De manière générale, c’est donc une suite transfinie de poussés-en-avant. On peut se contenter
de regarder que les cas de suite usuelle, c’est à dire pour κ = N ou un ensemble fini {1, . . . , n},
pour comprendre la théorie générale.
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Les isomorphismes sont des complexes I-cellulaires relatifs (correspondant à l’or-
dinal trivial).

Remarque 2.4.2. Les complexes cellulaires relatifs, correspondent exactement dans
Top à ceux associés à la famille (∂In ↪→ In)n≥0 de la définition précédente. La
définition peut s’interpréter comme un recollement d’une famille d’objets de la forme
Bi sur X le long de Ai (ou de son image dans X).

On considère encore une famille I := (Ai
αi→ Bi)i∈I .

Définition 2.4.3 (Objets I-injectifs et I-cofibrants). Une flèche f : X → Y est
I-injective si elle a la propriété de relèvement à droite par rapport à tous les mor-
phismes de I. On notera I−Inj la classe des morphismes I-injectifs (ou parfois
RLP (I)).

Une flèche g : A → B est dite I-cofibrante si elle a la propriété de relèvement à
gauche par rapport à toutes les flèches I-injectives. On notera I−Cof la classe des
morphismes I-cofibrants (ou parfois LLP (RLP (I))).

Remarque 2.4.4. On définit dualement des notions de I-projectifs et I-fibrations. On
peut remarquer alors que I−Cof =

(
I−Inj )

)
−Proj .

L’idée sous-jacente à la définition précédente est que les flèches I-injectives sont
précisément celles que l’on souhaite être les fibrations ou fibrations acyliques (comme
dans la proposition 2.3.16). Les I-cofibrations seront alors, par définition, ce que
doivent être les cofibrations acycliques ou cofibrations dans une catégorie de modèle.

Ceci est articulé précisément dans la définition suivante.

Définition 2.4.5. Une catégorie de modèle (C,W,C,F) est cofibrement engendrée

si il existe des ensembles de morphismes I := (Ai
αi→ Bi)i∈I et Jac := (A′j

βj→ B′j)j∈J
tels que

(1) les fibrations acycliques sont exactement les I-injectives,
(2) les fibrations sont exactement les Jac-injectives,
(3) Les domaines des flèches αi de I sont petits par rapport à la classe I−Cell ,
(4) Les domaines des flèches βj de Jac sont petits par rapport à la classe Jac−Cell .

Les deux dernières hypothèses techniques sont vérifiées si les domaines sont com-
pacts (et c’est souvent comme ça qu’on le vérifie). Le rôle de ces hypothèses est de
garantir que certaines constructions par colimites se comportent bien (comme l’ar-
gument du petit objet) dans ces catégories de modèles et de pouvoir caractériser les
cofibrations et cofibrations acycliques facilement, voir la proposition 2.4.8.

Remarque 2.4.6. Il suit de la définition que les flèches de I sont des cofibrations
et celles de Jac des cofibrations acycliques. On les appelle respectivement cofibra-
tions génératrices et cofibrations acycliques génératrices. La définition et la proposi-
tion 2.4.8 impliquent de fait que toute la structure des fibrations, cofibrations et les
variantes acycliques sont déterminées par les ensembles I et Jac par propriétés de re-
lèvement successives. Il suit alors aussi que les équivalences faibles sont déterminées
par elles aussi d’après le Corollaire 2.1.14.

Exemple 2.4.7. • On a vu (Proposition 2.3.16 et Théorème 2.3.2) que les struc-
tures de modèles projectives forment une structure de modèles cofibrement
engendrées.
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• La structure de Quillen sur les espaces topologiques est aussi une structure
de modèle cofibrement engendrée (cf la feuille de TD 3).
• La structure de modèle de Strøm n’en est pas une en revanche.

Un des avantages d’avoir une structure de modèle cofibrement engendrée est que
l’on peut caractériser facilement les cofibrations à partir de la famille génératrice.

Proposition 2.4.8. Soit C une catégorie de modèle cofibrement engendrée.

(1) Les cofibrations sont des rétractes de morphismes I-cellulaires,
(2) les cofibrations acycliques sont des rétractes de morphismes Jac-cellulaires
(3) les cofibrations sont exactement les flèches I-cofibrantes, c’est à dire C =

I−Cof ,
(4) Les cofibrations acycliques sont exactement les flèches Jac-cofibrantes, c’est

à dire C ∩W = Jac−Cof .

Démonstration. Les arguments pour démontrer cette proposition sont essentielle-
ment ceux de la preuve du théorème 2.4.9. Démontrons les point (2) et (4) par
exemple ; les autres étant similaires. Par définition, Jac−Cof = LLP (Jac − Inj) =
LLP (F) par la propriété (2) de la définition d’une catégorie de modèle cofibrante.
Ainsi le point (4) est juste la proposition 2.1.13. Passons à (2) : soit maintenant f une
cofibration acyclique. Par l’argument du petit objet 2.3.22 (valide par la propriété (4)
de la définition 2.4.5), un tel morphisme se factorise sous la forme f = p ◦ q où q est
Jac-cellulaire donc une cofibration acyclique (cf remarque 2.3.23) et p une fibration
(par la propriété (2) de 2.4.5). Comme f a la propriété de relèvement par rapport à

p : X

f

��

q // C

p

��
Y

h

>>

Y

, on en déduit que f est un rétracte de q : X

f

��

X

q

��

X

f

��
Y

h
// C p

// Y

et donc le point (2) est démontré. �

On en arrive au théorème important de cette sous-partie.

Théorème 2.4.9. Soit C une catégorie complète et cocomplète, et W une classe
de morphismes et I,Jac deux ensembles de morphismes de C. Alors il existe une
structure de catégorie de modèle cofibrement engendrée sur C, avec W comme équi-
valences faibles, I (resp. Jac) comme cofibrations (resp. cofibrations acycliques) gé-
nératrices, si et seulement si les conditions suivantes sont vérifiées :

(1) La classe W vérifie l’axiome (MC2) et est stable par rétracte.
(2) Les domaines des flèches de I sont petits par rapport à I−Cell ,
(3) Les domaines des flèches de Jac sont petits par rapport à Jac−Cell .
(4) On a Jac−Cell ⊂ W ∩ (I−Cof ).
(5) On a I−Inj ⊂W ∩ (Jac−Inj ).
(6) Soit I−Cof ∩W ⊂ Jac−Cof soit Jac−Inj ∩W ⊂ I−Inj .

Les propriétés 2 et 3 sont vérifiées si les objets sont compacts. Les propriétés 4)
et 5) énoncent que ce qui doit être une (co)fibration acyclique en est bien une. La
dernière permet de vérifier l’axiome de recollement.

Démonstration. On définit les fibrations comme étant celles qui sont Jac-injectives et
les cofibrations comme étant celles qui sont dans I−Cof . Notons que par définition
I et de même les I-cellulaires sont donc des cofibrations.
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Que les conditions soient nécessaires découle immédiatement de la définition d’une
catégorie de modèle et d’une catégorie de modèle cofibrement engendrée. Les condi-
tions (MC1) et (MC2) découlent de l’énoncé et de 1) tout comme la stabilité de W

par rétracte. Notons que (MC2) assure que W est une sous-catégorie. Les (co)fibrations
étant définies comme toutes les applications vérifiant certaines propriétés de relève-
ment, la stabilité par rétracte se démontre comme dans le cas des cofibrations pour la
structure projective. C’est donc aussi le cas pour les versions acycliques en combinant
les résultats.

Notons d’abord que l’argument du petit objet (tel que nous l’avons démontré)
donne des factorisations de tout morphisme f : X → Y sous la forme d’un mor-
phisme Jac-cellulaire suivi d’un morphisme Jac-injectif et de même avec I à la place
Jac.

Les conditions 5) et 4) garantissent que les morphismes de I−Inj sont des fibra-
tions acycliques, que ceux de Jac−Cell sont des cofibrations acycliques. Ainsi ces
factorisations fonctorielles données par l’argument du petit objet nous donne donc
bien l’axiome (MC5) (car I−Cell ⊂ C, I−Inj = F ∩W, Jac−Cell ⊂ W ∩ C et
Jac−Inj = F).

Il nous faut alors encore vérifier l’axiome (MC4). On utilise (6). Supposons que
l’on a I−Cof ∩W ⊂ Jac−Cof (l’autre cas se traitant de manière duale). Alors
les cofibrations acycliques ont bien la propriété de relèvement par rapport à toutes
les fibrations ce qui est la moitié de l’axiome. Si maintenant f : X → Y est une
fibration acyclique, on doit vérifier qu’il a la propriété de relèvement par rapport
à toutes les cofibrations. Par définition de ces dernières, il suffit de voir qu’il a la
propriété de relèvement par rapport à celles de I. On factorise alors f = p ◦ q
avec q une cofibration (car I-cellulaire) et p dans I-injective d’après l’argument
du petit objet ; en particulier p ∈ W par (5) et on déduit de l’axiome 2-pour-3
((MC2)) que q ∈ W aussi. En particulier, vu que l’on a la première partie de (6),
on a que f , qui est dans Jac−Inj , a la propriété de relèvement par rapport à q qui
est dans W ∩ I−Cof ⊂ Jac-Cof. Ainsi on a une factorisation dans le diagramme

X

q

��

X

f

��
W

p //
h

>>

Y

et on en déduit que f est un rétracte de p et donc dans IInj comme

souhaité : X

f

��

q // W

p

��

h // X

f

��
Y Y Y.

L’autre cas de figure se fait dualement.

Notons enfin que les points (1) et (2) de la définition 2.4.5 sont des conséquences
des définition choisies pour les (co)fibrations car RLP (LLP (RLP (I))) = RLP (I)
par double inclusion. �

2.5. Foncteurs de Quillen, foncteurs dérivés

On va étudier dans cette partie des foncteurs de Quillen qui permettent de com-
parer des catégories de modèles et en particulier leurs catégories homotopiques. Cela
va nous donner également un sens précis pour définir des ”foncteurs à équivalence
faible près“.
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Définition 2.5.1 (Foncteurs de Quillen). Soit C, D deux catégories de modèle.

(1) Un foncteur F : C→ D est de Quillen à gauche si c’est un adjoint à gauche 48

qui préserve les cofibrations et cofibrations acycliques 49.
(2) Un foncteur G : D → C est de Quillen à droite si c’est un adjoint à droite

qui préserve les fibrations et fibrations acycliques.

Remarque 2.5.2. Un foncteur de Quillen à gauche commute avec les colimites (comme
tout adjoint à gauche) et et un foncteur de Quillen à droite commute avec les limites
(comme tout adjoint à droite).

Par ailleurs, nos catégories étant supposées (co)complètes, cette dernière condition
est équivalente à celle d’avoir un adjoint si nos catégories sont d’une taille “raison-
nable” (voir 6.2.53 ou la feuille de TD 4 pour plus de détails). On peut noter aussi
que cette notion ressemble donc à celle d’être exact à droite et à gauche dans une
catégorie abélienne.

Un foncteur qui préserve les colimites préserve l’objet initial ∅ alors qu’un foncteur
qui préserve les limites préserve l’objet terminal {∗}. On en déduit alors que

(1) Un foncteur de Quillen à gauche préserve les objets cofibrants.
(2) Un foncteur de Quillen à droite préserve les objets fibrants.

Exercice 2.5.3. Démontrer les affirmations précédentes.

Définition 2.5.4 (Adjonction de Quillen). Une adjonction de Quillen est une adjonc-

tion F : C
**
Dii : R entre catégories de modèle telle que l’adjoint à gauche F

est de Quillen à gauche et l’adjoint à droite est de Quillen à droite.

Les adjonctions de Quillen sont les foncteurs idoines pour comparer des structures
de modèles.

Le lemme suivant nous dit qu’il suffit de vérifier qu’un seul des foncteurs de l’ad-
jonction est de Quillen.

Lemme 2.5.5. Soit F : C
**
Dii : R une adjonction entre catégories de modèles.

Alors F est de Quillen à gauche si et seulement si R est de Quillen à droite.

Démonstration. Supposons que F soit de Quillen à gauche. Montrons que R est
de Quillen à droite. Il faut montrer que si f : P � Q est une fibration alors
R(f) : R(P ) → R(Q) en est une, ce qui revient, d’après la proposition 2.1.13 à

montrer que pour tout diagramme commutatif A //
��

oi

��

R(P )

R(f)

��
C //

>>

R(Q)

la flèche poin-

tillée rendant le diagramme commutatif existe. Mais comme F : C
**
Dii : R est

une adjonction, le diagramme précédent (et l’existence de la flèche pointillée) est

48. cf l’appendice 6.2
49. c’est à dire qui envoie une cofibration sur une cofibration et une cofibration acyclique sur une

cofibration acyclique
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équivalent au diagramme L(A) //

L(i)

��

P

f

����
L(C) //

>>

Q

pour lequel la flèche pointillée existe

puisque L(i) est une cofibration acyclique étant donné que L est de Quillen à gauche.
Le cas d’une fibration acyclique ou la réciproque se démontre de même. �

Exemple 2.5.6. Soit f : A→ B un morphisme d’algèbres commutatives. Munissons
Ch(A) et Ch(B) de leur structure de modèle projective. Alors le foncteur B⊗A :
Ch(A) → Ch(B) est de Quillen à gauche. Son adjoint à droite est donné par le
foncteur qui à un (complexe de) B-module associe le même (complexe) mais muni
de la structure de A -module donnée par a ·m = f(a) ·m.

Un autre exemple standard est donné sous forme d’exercice :

Exercice 2.5.7. Soit Top∗ la catégorie des espaces topologiques pointés et U : Top∗ →
Top le foncteur oubli.

(1) Démontrer que c’est un adjoint à droite.
(2) On munit Top de la stucture de modèle de Quillen (Exemple 2.1.15). Trouver

une structure de modèle sur Top∗ telle que U soit de Quillen à droite.
(3) Même question que la question précédente en munissant Top de la stucture

de modèle de Strøm (Exemple 2.1.16).
(4) A-t-on une généralisation des résultats précédents pour toute catégorie de

modèle C ?

Le lemme suivant sera très pratique pour garantir que certains foncteurs passent
aux catégories homotopiques.

Lemme 2.5.8 (de Brown). Soit H : C → D, un foncteur entre deux catégories de
modèles.

(1) Si H envoie les cofibrations acycliques entre objets cofibrants sur des équiva-
lences faibles, alors H envoie toute équivalence faible entre objets cofibrants
sur une équivalence faible.

(2) Si H envoie les fibrations acycliques entre objets fibrants sur des équivalences
faibles, alors H envoie toute équivalence faible entre objets fibrants sur une
équivalence faible.

Remarque 2.5.9. Un foncteur de Quillen à gauche (resp. à droite) vérifie les hypo-
thèses du 1) (resp. 2)) et envoie donc tout équivalence faible entre objets cofibrants
(resp. fibrants) sur des équivalences faibles.

Preuve du Lemme de Brown. Les deux preuves sont duales et on ne prouve donc
que la première assertion. L’idée est de factoriser une équivalence faible f : A→ B
entre objets cofibrants de manière intelligente. Le fait que A et B soient cofibrants
nous dit que les morphismes canoniques iA : A → A

∐
B et iB : B → A

∐
B

sont des cofibrations (Lemme 2.2.21) et on a par ailleurs que f est la composée

A
iA
� A

∐
B

f
∐
id−→ B. On note A

∐
B

j
� C

p
∼
� B une factorisation de f

∐
id. Comme

f est une équivalence faible, il suit de la première factorisation et de (MC2) que j◦iA
est une équivalence faible, et une cofibration entre objets cofibrants (puisque A

∐
B
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l’est et que j est une cofibration alors C est bien cofibrant). Ainsi H(j ◦ iA) est
une équivalence faible. De même H(j ◦ iB) ∈ W. Mais H(f) = H(p ◦ j ◦ iA) =
H(p) ◦H(j ◦ iA) et il suffit de vérifier que H(p) est une équivalence faible. Or ceci
découle encore de (MC2) car H(p) ◦H(j ◦ iB) = H(p ◦ j ◦ iB) = H(idB) qui est une
équivalence faible ainsi que H(j ◦ iB). �

Donnons une notion de foncteur dérivé générale pour les catégories avec équiva-
lence faible : c’est à dire une catégorie C munie d’une classe de morphismes stable par
composition W (appelées les équivalences faibles). Nous notons encore, comme pour
les catégories de modèles qui seront notre principal exemple, Ho(C) : C[W−1] sa
localisée par rapport à W (Définition 2.2.1). On notera π : C→ C[W−1] = Ho(C)
le foncteur canonique.

Définition 2.5.10 (foncteurs dérivés). Soit (C,W) une catégorie avec équivalence
faible et F : C→ D un foncteur.

(1) Un foncteur dérivé à gauche de F est la donnée d’un foncteur LF : Ho(C)→
D et d’une transformation naturelle 50 LτF : LF ◦ π → F qui vérifient la
propriété universelle suivante : pour toute paire (G,α) où G : Ho(C) → F
est un foncteur et α : G ◦ π → F est une transformation naturelle, il existe
une unique transformation naturelle θGF : G → LF qui factorise α, c’est à
dire que

α = G ◦ π
θGF ◦π−→ LF ◦ π LτF−→ F.

(2) Un foncteur dérivé à droite de F est la donnée d’un foncteur RF : Ho(C)→
D et d’une transformation naturelle 51 RτF : F → LF ◦ π qui vérifient la
propriété universelle suivante : pour toute paire (G, β) où G : Ho(C) → F
est un foncteur et α : G ◦ π → F est une transformation naturelle, il existe
une unique transformation naturelle θFG : RF → G qui factorise β, c’est à
dire que

β = RF ◦ π
θFG◦π−→ G ◦ π β−→ F.

Lemme 2.5.11. Un foncteur dérivé à gauche (resp. à droite), si il existe, est unique
à unique isomorphisme naturel près.

Démonstration. C’est une conséquence habituelle de la propriété universelle, voir la
feuille de TD 4 également. �

50. c’est à dire, en suivant les notations de 2-catégories, qu’on a un diagramme

C
F //

π ##

D

Ho(C)

LF

;;

LτF

KS qui n’est pas commutatif, mais dont le défaut de commutativité est

contrôlé par la transformation naturelle LτF
51. c’est à dire, en suivant les notations de 2-catégories, qu’on a un diagramme

C
F //

π ##
RτF
��

D

Ho(C)

RF

;; qui n’est pas commutatif, mais dont le défaut de commutativité est

contrôlé par la transformation naturelle RτF
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Remarque 2.5.12. Un foncteur dérivé à gauche est la meilleure approximation par la
gauche de F . C’est par définition, ce qui s’appelle une extension de Kan à droite du
foncteur canonique C→ Ho(C).

Lorsque C est une catégorie de modèle, on dispose du critère suivant pratique
pour vérifier l’existence des foncteurs dérivés.

Proposition 2.5.13. Soit F : C→ D où C est de modèle.

(1) Si F envoie les cofibrations acycliques entre objets cofibrants sur des isomor-
phismes, alors son foncteur dérivé à gauche existe.

(2) Si F envoie les fibrations acycliques entre objets fibrants sur des isomor-
phismes, alors son foncteur dérivé à droite existe.

Démonstration. Les deux preuves sont duales. Montrons seulement la première af-
firmation. Rappelons que l’on a une équivalence Ho(C) ∼= Ho(Cc) données par le
foncteur de remplacement cofibrant X 7→ L(X) (voir le Lemme 2.2.14). On définit
alors le foncteur LF comme étant donné par X 7→ F (L(X)) et on a bien que l’équi-

valence faible L(X)
∼
� X induit une flèche naturelle F (L(X)) → F (X) qui définit

une transformation naturelle LτF . Il reste à vérifier que LF est bien définie. Par le
lemme de Brown 52, F envoie les equivalences faibles entre objets cofibrants sur des
isomorphismes. Ainsi, le foncteur Y 7→ F (Y ) se factorise bien au travers de Ho(Cc)
ce qui termine la construction de LF .

Il reste à voir la propriété universelle. Soit (G, β) comme dans l’énoncé ; c’est
à dire G : Ho(C) → F est un foncteur et α : G ◦ π → F est une transforma-

tion naturelle. Comme L(X)
∼→ X est un isomorphisme dans Ho(C), on a que

G(L(X))
∼=→ G(X) est un isomorphisme dans D. Par suite, le diagramme commu-

tatif G(X)
αX //

&&

F (X)

G(L(X))

∼=

OO

αL(X)

// F (L(X)),

LτFX

OO
montre d’une part que β se factorise au travers de

LτF et d’autre part que toute factorisation (symbolisée par la flèche en pointillé
rendant le triangle supérieur commutatif) est donnée par celle-ci (puisque, le carré
commutant, le triangle inférieur commute alors nécessairement aussi). �

Remarque 2.5.14. Il découle de la preuve de la proposition 2.5.13.(1), que si A est
cofibrant, alors, LτF : LF (A) → F (A) est un isomorphisme. De même, dans le cas
(2), si Y est fibrant alors RτF : F (Y )→ RF (Y ) est un isomorphisme.

Lorsque la catégorie but D est aussi une catégorie de modèle (ou même simplement
une catégorie avec équivalence faible), la notion de foncteur dérivé à valeur dans D
n’est plus forcément celle que l’on souhaite ; on peut souvent en pratique s’intéresser
aux foncteurs dérivés à équivalence faible près dans D. Cette notion est précisément
la suivante :

Définition 2.5.15 (foncteurs dérivés totaux ). Soit F : C → D un foncteur entre
catégories de modèles (ou avec équivalences faibles).

52. où on met la structure de modèle triviale sur D, c’est à dire celle dont les équivalences faibles
sont les isomorphismes, et les (co)fibrations des morphismes quelconques
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(1) Un foncteur dérivé total à gauche de F est la donnée d’un foncteur dérivé à

gauche du foncteur composé C
F→ D

π→ Ho(D).
(2) Un foncteur dérivé total à droite de F est la donnée d’un foncteur dérivé à

droite du foncteur composé C
F→ D

π→ Ho(D).

Notation 2.5.16. On notera (abusivement) en général LF : Ho(C) → Ho(D) et
RF : Ho(C) → Ho(D) les foncteurs dérivés totaux gauche et droite de F . C’est
à dire que si nous regardons un foncteur entre catégories de modèles, par défaut,
nous ne considérerons que des foncteurs dérivés totaux, sauf mention explicite du
contraire. Si on doit distinguer entre les deux notions, nous utiliserons la notation
LtotF et RtotF pour les foncteurs dérivés totaux

Lorsque C est une catégorie de modèle, on dispose du critère suivant pratique
pour vérifier l’existence des foncteurs dérivés.

Proposition 2.5.17. Soit F : C→ D où C et D sont de modèle.

(1) Si F envoie les cofibrations acycliques entre objets cofibrants sur des équiva-
lences faibles, alors son foncteur dérivé total à gauche existe.

(2) Si F envoie les fibrations acycliques entre objets fibrants sur des équivalences
faibles, alors son foncteur dérivé total à droite existe.

(3) En particulier si F est de Quillen à gauche, son foncteur dérivé total à gauche
existe et si G est de Quillen à droite, alors son foncteur derivé total à droite
existe.

Démonstration. Il suffit d’appliquer la proposition 2.5.13 au foncteur composé π ◦F
puisque π envoie des équivalences faibles en isomorphismes. La dernière remarque
découle de la remarque 2.5.9. �

Remarque 2.5.18. Il découle de la remarque 2.5.14 que, dans le cas (1), si A est
cofibrant, et, ans le cas (2), si Y est fibrant, alors les applications naturelles LτF :
LF (A) → π ◦ F (A) ou RτF : π ◦ F (Y ) → RF (Y ) sont des isomorphismes dans
Ho(D).

Exercice 2.5.19. SoitR un anneau commutatif unitaire etM unR-module (on pourra
choisir des catégories de modèles adéquats dans les différents cas).

(1) Démontrer l’existence et identifier les foncteurs dérivés totaux de M ⊗R − :
Ch≥0(R)→ Ch≥0(R). Les identifier avec les foncteurs dérivés et Tori(−,−)
de la définition 1.5.25.

(2) Démontrer l’existence et identifier les foncteurs dérivés totaux de HomR(−,M) :
Ch≥0(R)op → Ch≥0(R) et de Hom(M,−). Les identifier avec les foncteurs
dérivés et Extj(−,−) de la définition 1.5.25. On distinguera les cas de la
structure projective et injective et comment cela affecte les calculs.

(3) En déduire que pour calculer RHom(M,N) dans la catégorie homotopique,
on peut remplacer M par une résolution projective, N par une résolution
injective, ou les deux sans changer le résultat.

(4) Que se passe-t-il si on remplace Ch≥0(R) par Ch(R) ?
(5) Les foncteurs − ⊗ − : Ch≥0(R) × Ch≥0(R) → Ch≥0(R) et Hom(−,−) :

Ch≥0(R)op × Ch≥0(R)→ Ch≥0(R) ont-ils des foncteurs dérivés totaux ?

On va maintenant vérifier qu’une adjonction de Quillen induit une adjonction au
niveau des catégories homotopiques.
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D’après la remarque 2.5.9 et la proposition 2.5.17, les foncteurs dérivés totaux à
gauche (resp. à droite) de foncteurs de Quillen à gauche (resp. à droite) existent
toujours.

Théorème 2.5.20. Soit F : C
**
Dii : G une adjonction de Quillen. Les foncteurs

dérivés totaux de F , G, forment une adjonction

LF : Ho(C)
--
Ho(D)mm : RG

entre les catégories homotopiques.

Démonstration. Rappelons que la preuve de la proposition 2.5.13 nous dit que LF
se factorise sous la forme

LF : Ho(C)
'−→ Ho(Cc)

Ho(F )−→ Ho(D)

où Ho(F ) est foncteur induit par F entre les catégories homotopiques et le premier
foncteur est l’inverse de l’inclusion canonique Cc → C, explicitement donné par le
remplacement cofibrant X 7→ L(X).

De même RG se factorise sous la forme

RG : Ho(D)
'−→ Ho(Df )

Ho(G)−→ Ho(C)

où le premier foncteur est l’inverse de l’inclusion canonique Cf → C, explicitement
donné par le remplacement fibrant X 7→ R(X).

Il reste donc à vérifier que nous avons des isomorphismes fonctoriels

HomHo(D)(LF (X), Y ) ∼= HomHo(C)(X,RG(Y ))

c’est à dire, par construction des foncteurs dérivés et en vertu du Théorème 2.2.26,
des bijections naturelles

HomD(F (L(X)), R(Y ))/' ∼= HomC(L(X), G(R(Y ))/'.

Comme F etG sont adjoints, on a déjà des bijections naturelles φ(−) : HomD(G(L(X)), R(Y )) ∼=
HomC(L(X), G(R(Y )). Il faut donc voir que cette bijection naturelle passe au quo-
tient.

Montrons que si f, g : F (L(X) → R(Y ) sont homotopes, et que H : F (L(X) →
PR(Y ) est une homotopie à droite où PR(Y ) est un objet en chemin de R(Y ), alors
φ(f), φ(g) : L(X) → G(R(Y )) sont homotopes. Comme G préserve les fibrations
et produits, on a que G(PPR(Y )

) → G(R(Y ) × R(Y )) ∼= G(R(Y )) × G(R(Y )) est

une fibration et par ailleurs, R(Y ) étant fibrant, PR(Y ) l’est aussi et donc G envoie

l’équivalence faible R(Y )
∼→ PR(Y ) sur une équivalence faible. Conclusion :

G(Y )→ G(PR(Y ))→ G(R(Y ))×G(R(Y ))

est un objet en chemin de G(R(Y )). La fonctorialité, nous donne alors que φ(H) :
L(X)→ G(PR(Y )) est une homotopie à droite pour φ(f) et φ(g). Le sens réciproque
se fait de manière duale. �

Définition 2.5.21 (équivalence de Quillen). Une adjonction de Quillen F : C
**
Dii :

G est une équivalence de Quillen si l’adjonction induite LF : Ho(C)
--
Ho(D)mm :

RG est une équivalence de catégorie.
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On ne demande en revanche évidemment pas que l’adjonction F : C
**
Dii : G

soit une équivalence.
Le critère suivant permet de caractériser les équivalences de Quillen via la structure

de modèle.

Proposition 2.5.22. Soit une adjonction de Quillen F : C
**
Dii : G. Les trois

assertions suivantes sont équivalentes :

(1) L’adjonction F : C
**
Dii : G est une équivalence de Quillen.

(2) Les foncteurs F et G vérifient que : pour tout objet cofibrant A et tout objet
fibrant Y on a qu’une flèche f : F (A) → Y est une équivalence faible si et
seulement si son adjoint A→ G(Y ) est une équivalence faible.

(3) Pour tout objet cofibrant A et tout objet fibrant Y , on a que les flèches

A
η−→ G ◦ F (A)

G(RF (A))−→ G(R(F (A)))

et

F (L(G(Y ))
F (LG(Y ))−→ F ◦G(Y )

δ−→ Y

, induites par l’unité η et la counité δ de l’adjonction, sont des équivalences

faibles. Ici on a noté RC : C
∼
� R(C) et LD : L(D)

∼
� D les flèches données

par les remplacements fibrants et cofibrants.

Démonstration. Montrons que (2) ⇔ (3) : Le morphisme A
η−→ G ◦ F (A)

G(RF (A))−→
G(R(F (A))) est, par définition d’une adjonction, l’adjoint de RF (A) : F (A)

∼
�

R(F (A)) ∈ HomC(F (A), R(F (A)). Ce dernier est une équivalence faible entre un
objet cofibrant, car F préserve les cofibrants, et un objet fibrant donc (2) implique
que le premier morphisme est une équivalence faible. La preuve de la deuxième partie
de (3) est évidemment duale.

Réciproquement, supposons queA soit cofibrant, Y fibrant, (3) est vérifié et soit f :
F (A)→ Y ; on note φ(f) : A→ G(Y ) son adjoint. Par définition d’une adjonction,

on a que φ(f) = A
η−→ G(F (A))

G(f)−→ G(Y ). On a alors un diagramme commutatif

A
η // G(F (A))

G(f)
//

G(RF (A))

��

G(Y )

oG(RY )

����
A // G(R(F (A)))

G(R(f))
// G(R(Y ))

puisque R est fonctoriel. Si f est une équivalence faible, alors R(f) est une équiva-
lence faible entre objets fibrants et donc G(R(f)) est une équivalence faible car G
est de Quillen à droite. Il suit alors de la commutativité du diagramme et de (MC2)
que la première ligne, c’est à dire φ(f) est une équivalence faible. Si c’est A→ G(Y )
qui est une équivalence, alors on obtient que f l’est en dualisant cette preuve en
utilisant la counité à la place de l’unité.

Montrons que (1) ⇐ (2). L’unité de l’adjonction LF : Ho(C)
--
Ho(D)mm :

RG est, par définition, donnée par l’adjoint η̃ : A → RG ◦ LF (A) de idLF (A) ∈
HomHo(D)(LF (A),LF (A)). On a vu dans la preuve du Théorème 2.5.20 que cette
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adjonction est donnée par l’isomorphisme

φ(−) : HomD(F (L(A)), R(F (L(A)))) ∼= HomC(L(A), G(R(F (L(A))))

après passage au quotient par la relation d’homotopie. L’unité est donc φ(F (L(A)
∼
�

R(F (L(A)))). Si (2) est vérifiée, alors, comme L(A) est cofibrant, la flèche L(A)→
G(R(F (L(A))) est une équivalence faible si et seulement si F (L(A))→ R(F (L(A)))
en est une ce qui est le cas puisque il s’agit juste de celle donnée par le remplacement
fibrant. L’unité de l’adjonction est donc bien un isomorphisme dans Ho(D). On
monte dualement que la counité l’est.

Réciproquement, montrons que (1) ⇒ (3). Si l’unité de l’adjonction dérivée est
un isomorphisme, on a que L(A) → G(R(F (L(A))) est une équivalence faible

(par le théorème 2.2.26). Déduisons en que, pour A cofibrant, la flèche A
η−→

G ◦ F (A)
G(RF (A))−→ G(R(F (A))) est une équivalence faible. On a un diagramme com-

mutatif

L(A)
η //

o LA

����

G ◦ F (L(A))
G(RF (L(A))//

G◦F (LA)

��

G ◦R ◦ F (L(A))

G◦R◦F (LA)

��
A η

// G ◦ F (A))
G(RF (A)

// G ◦R ◦ F (A).

Comme A est cofibrant, L(A)→ A est une équivalence faible entre cofibrants et donc
son image par F est une équivalence faible (puisque F est de Quillen à gauche). En
appliquant le foncteur R on obtient une équivalence R ◦F (L(A))→ R ◦F (A) entre
objets fibrants et donc encore une équivalence faible en appliquant G. Finalement les
deux flèches verticales à droite et gauche sont des équivalences faibles, et la composée
horizontale supérieure aussi. Ainsi la composée horizontale inférieure l’est aussi ce
qui conclut. Evidemment la deuxième partie de la preuve est duale. �

On donne quelques exemples sous forme d’exercices.

Exercice 2.5.23. (1) Démontrer que les structures de modèles projectives et injec-
tives sur Ch(R) (resp. entre Ch≥0(R) et Ch≤0(R)) sont Quillen équivalentes.

(2) Démontrer que le foncteur identité induit une adjonction de Quillen entre les
structures de modèles de Quillen et de Strøm sur Top. Est-ce une équiva-
lence de Quillen ? Peut-on trouver une sous-catégorie pleine de Top sur la
restriction desquelles cette adjonction devient une équivalence ?

(3) On admet que les structures de modèles projectives sur les complexes de
chaines Ch(R), Ch≥0(R) s’étendent aux modules sur des algèbres commuta-
tives différentielles graduée. Démontrer que l’adjonction de Quillen de l’exemple 2.5.6
s’étend à ce cadre, et que cette adjonction est une équivalence de Quillen
si f : A → B est un morphismes d’algèbres qui est de plus un quasi-
isomorphisme.

2.6. Colimites et limites homotopiques

Nous allons utiliser les notions de foncteurs dérivés totaux pour donner un sens
précis aux limites et colimites à équivalence faibles près. Ces notions sont fondamen-
tales en topologie algébrique. Nous allons présenter ici sommairement les idées de
base, suivant les idées originales de Quillen et Bousfield-Kan. L’idée que nous allons
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suivre est que les limites et colimites homotopiques sont les foncteurs dérivés totaux
associées à limite et colimite. Pour cela précisons en quoi ce sont des foncteurs en
commençant par une remarque élémentaire

Soit D une petite 53 catégorie. Un foncteur D→ C est simplement un diagramme
de forme D dans C. C’est à dire, la donnée, pour tout objet i ∈ D d’un objet Xi ∈ C
et, pour toute flèche α : i→ j dans D, d’une flèche f(α) : Xi → Xj. Et ceci de telle
sorte que tout diagramme commutatif de D s’envoie sur un diagramme commutatif
dans C (en particulier f(α ◦ β) = f(α) ◦ f(β)) et que les identités s’envoient sur
l’identité.

Un morphisme de foncteurs, c’est à dire une transformation naturelle, est alors
simplement un système de flèches τi : Xi → Yi pour chaque objet i ∈ D tel que les

diagrammes Xi

f(α)
//

τi

��

Xj

τj

��
Yi

g(α)
// Yj

soient commutatifs.

Notation 2.6.1. On note CD := Fun(D,C) la catégorie des foncteurs de D dans C
(ses objets sont les foncteurs, ses flèches les transformations naturelles).

Si C est cocomplète, alors, pour toute catégorie D, la colimite définit un foncteur

colim
D

: CD −→ C

défini par F 7→ colim
i∈D

F (i). La propriété universelle des colimites définit le foncteur

sur les transformations naturelles (c’est à dire les flèches de CD). De même, si C est
complète, pour toute catégorie D, la limite donne le foncteur

lim
D

: CD −→ C

défini par F 7→ lim
i∈D

F (i).

Réciproquement, on dispose du foncteur constant cst : C −→ CD qui à tout objet
C ∈ C associe le foncteur constant cst(C) donné sur les objets de D par j 7→ C et

sur les flèches par α 7→ C
id→ C.

Lemme 2.6.2. S’il existe, le foncteur colim
D

: CD −→ C est adjoint à gauche du

foncteur constant et, s’il existe, le foncteur lim
D

: CD −→ C est adjoint à droite du

foncteur constant.

Démonstration. On peut consulter la feuille de TD 4. �

Remarque 2.6.3. L’unité de l’adjonction CD

colimD
**
C

cst
kk nous donne les morphismes ca-

noniques F (i)→ colimD F de la colimite et de même la counité de l’autre adjonction
nous donne les morphismes canoniques limD F → F (j).

Si, de plus, C est munie d’une classe W d’équivalences faibles, alors on peut
munir la catégorie CD des D-diagrammes dans C d’une classe d’équivalences faibles
induites. On dira qu’une flèche τ : X → Y de CD est une équivalence faible si chaque

53. c’est à dire qu’on a un ensemble d’objet
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τi : Xi → Yi est une équivalence faible. Autrement dit les équivalences faibles sont
définies objet par objet.

Notation 2.6.4. On note WD les équivalences faibles de CD.

Remarque 2.6.5. Bien entendu on peut imaginer des cas où on va se donner une
notion différente d’équivalences faibles, ce qui ne changera rien à la définition 2.6.6
ci-dessous ni à la première moitié de chaque énoncé du lemme 2.6.9. En revanche les
structures projectives et injectives 2.6.10 n’ont plus lieu d’être considéré dans ce cas
bien sûr.

Définition 2.6.6 ((co)limites homotopiques). Soit (C,W) une catégorie avec des équi-
valences faibles et D une petite catégorie.

(1) une colimite homotopique est un foncteur dérivé total à gauche Lcolim
D

:

Ho
(
CD
)
→ Ho(C) du foncteur colim

D
: CD → C.

(2) une limite homotopique est un foncteur dérivé total à droite Rlim
D

: Ho
(
CD
)
→

Ho(C) du foncteur lim
D

: CD → C.

S’ils existent, ces foncteurs de (co)limites homotopiques sont uniques à unique
isomorphisme naturel près.

Notation 2.6.7. Ces foncteurs sont souvent aussi dénotés hocolim = Lcolim et
holim = Rlim dans la littérature.

Remarque 2.6.8. On prendra garde que Lcolim n’est pas une colimite dans la ca-
tégorie homotopique en général et que Rlim n’est pas une limite dans la catégorie
homotopique non plus en général. Voir la feuille de TD 4. De manière générale, même
si C est complète et cocomplète, sa catégorie homotopique ne l’est pas forcément
et ses (co)limites n’ont pas forcément le sens voulu. la raison en est que passer à la
catégorie homotopique est une opération assez brutale qui oublie beaucoup d’infor-
mations et que les (co)limites dans cette catégorie perdent trop d’informations par
rapport à C. Un moyen de circonvenir à cet ennui (en dehors du cadre de ce cours)
est de travailler avec une version enrichie/supérieure des catégories homotopiques
appelées ∞-catégories et de définir des (co)limites dans ce contexte.

Comme on l’a vu dans la partie précédente, il est commode d’avoir des structures
de modèle pour garantir l’existence (et comprendre leur structure) des foncteurs dé-
rivés. Ainsi, on a envie, étant donné une structure de modèle (C,W,C,F), d’en
définir une sur CD. Rappelons qu’on a défini une structure de catégorie avec équi-
valences faibles sur CD.

On dira qu’une structure de modèle sur CD étend les équivalences faibles WD si
les équivalences faibles de CD contiennent WD.

Lemme 2.6.9. Soit C une catégorie de modèle.

(1) Si CD admet une structure de modèle étendant les équivalences faibles telle
que le foncteur constant cst : C → CD soit de Quillen à droite, alors la
colimite homotopique Lcolim

D
existe.

De plus si α : F → F ′ est une transformation naturelle entre diagrammes
qui est une équivalence faible objet par objet, alors la flèche naturelle Lcolim

D
(α) :

Lcolim
D

(F )→ Lcolim
D

(F ′) est un isomorphisme dans Ho(C).



88 GRÉGORY GINOT

(2) Si CD admet une structure de modèle étendant les équivalences faibles telle
que le foncteur constant cst : C → CD soit de Quillen à gauche, alors la
limite homotopique Rlim

D
existe.

De plus si α : F → F ′ est une transformation naturelle entre diagrammes
qui est une équivalence faible objet par objet, alors la flèche naturelle Rlim

D
(α) :

Rlim
D

(F )→ Rlim
D

(F ′) est un isomorphisme dans Ho(C).

Démonstration. C’est une conséquence immédiate de la proposition 2.5.17 et de la
définition des équivalences faibles sur les diagrammes. �

Il n’est cependant pas du tout évident de construire de telles structures de modèles
pour des paires D et (C,W,C,F) quelconques.

On a cependant des candidats évidents.

Définition 2.6.10. Soit (C,W,C,F) une catégorie de modèle et D une petite caté-
gorie.

(1) On appelle structure projective sur CD la classe dont les équivalences faibles
sont les équivalences faibles objets par objets (soit WD), les fibrations sont les
fibrations objets par objets (soit FD) et les cofibrations sont les transforma-
tions naturelles ayant la propriété de relèvement par rapport aux fibrations
acycliques.

(2) On appelle structure injective sur CD la classe dont les équivalences faibles
sont les équivalences faibles objets par objets (soit WD), les cofibrations
sont les cofibrations objets par objets (soit CD) et les fibrations sont les
transformations naturelles ayant la propriété de relèvement par rapport aux
cofibrations acycliques.

Proposition 2.6.11. Si la structure projective définit une structure de catégorie de
modèle, alors la colimite homotopique Lcolim

D
existe et est invariante par équivalences

faibles 54.
Si la structure injective définit une structure de catégorie de modèle, alors la limite

homotopique Rlim
D

existe et est invariante par équivalences faibles 55.

Démonstration. Si la structure projective existe, alors le foncteur constant préserve
les fibrations et fibrations acycliques (puisqu’elles sont définies objet par objet). On
applique alors le lemme 2.6.9. De même avec la structure injective. �

Remarque 2.6.12. Dans le cas de figure du lemme, d’après la remarque 2.5.18, si
la structure projective existe, pour calculer la colimite homotopique, il suffit de
remplacer le diagramme F : D → C par un remplacement cofibrant L(F ) et de
calculer colim

D
L(F ) pour calculer Lcolim

D
. Cela peut être plus ou moins dur. Mais

dans plusieurs cas simples (par exemple un poussé-en-avant ou une suite de flèches
composables), on peut faire des constructions plus simples. Voir l’exemple 2.6.19

54. c’est à dire qu’une transformation naturelle qui est une équivalence faible objet par objet
induit un isomorphisme entre les colimites homotopiques comme dans le lemme 2.6.9.

55. c’est à dire qu’une transformation naturelle qui est une équivalence faible objet par objet
induit un isomorphisme entre les limites homotopiques.



INTRODUCTION À L’HOMOTOPIE 89

Nous donnons maintenant un théorème (qui combine plusieurs théorèmes non-
triviaux...) garantissant l’existence de ces structures. Avant cela nous introduisons
la terminologie suivante.

Définition 2.6.13. Nous dirons qu’une catégorie D est très petite si elle a un nombre
fini d’objets, un nombre fini de morphismes et qu’il existe un entier N tel que toute

suite A0
f1→ A1 · · ·An−1

fn→ An de flèches composables ne contienne qu’au plus N
flèches qui ne sont pas l’identité.

Une classe d’exemple de très petite catégorie est donnée par un ensemble fini
partiellement ordonné 56. C’est en particulier le cas des diagrammes décrivant des
poussés-en-avant, tirès en arrières, (co)produits finis. On a bien entendu également
toute catégorie avec un nombre fini de flèches.

Définition 2.6.14. Une catégorie de modèle est dite combinatoire si elle est cofibre-
ment engendrée et qu’il existe un ensemble d’objets S qui sont compacts 57 tel que
tout objet est une colimite filtrée d’objets de S.

Ces hypothèses supplémentaires sont essentiellement des hypothèses garantissant
que la taille des structures de notre catégorie de modèle ne sont pas trop grandes.
On appelle parfois ces catégories de modèle présentables.

Exemple 2.6.15. Les catégories de modèles C = Ch(R), Ch≥0(R) (munie des struc-
tures projectives ou injectives), celle des ensembles simpliciaux sEns (voir Sec-
tion 2.6) sont combinatoires. La catégorie Top (munie de la structure de Quillen)
ne l’est pas, mais est Quillen équivalente (Théorème 3.2.18) à sEns qui l’est. Ceci
garantit que le résultat du Théorème 2.6.16.(3) s’applique à Top aussi.

Théorème 2.6.16. Soit C une catégorie de modèle et D une petite catégorie.

(1) Les structures projectives et injectives forment une catégorie de modèle si D
est très petite.

(2) Si C est une catégorie de modèle cofibrement engendrée alors les structures
projectives forment une structure de modèle pour toute petite catégorie D.

(3) Si C est de plus combinatoire, alors alors les structures injectives forment
aussi une structure de modèle pour toute petite catégorie D.

Remarque 2.6.17. En particulier, il suit des deux derniers points que les (co)limites
homotopiques sont toutes définies dans les complexes de chaines ou espaces topolo-
giques ou ensembles simpliciaux.

Par ailleurs, on peut montrer que si C est cofibrement engendrée (resp. combi-
natoire) alors les structures de modèle sur CD sont cofibrement engendrée (resp.
combinatoires).

Ainsi, lorsque C est combinatoire (par exemple donc si C = Ch(R) ou si C = sEns
est la catégorie de modèle des ensembles simpliciaux), alors la catégorie de modèle
Fun(Sop,C) des préfaisceaux, que l’on a muni de la structure de modèle projective
sur les préfaisceaux, est encore combinatoire. On peut donc définir ses (co)limites
homotopiques.

56. que l’on voit comme une catégorie avec une flèche i→ j, pour i 6= j, si et seulement si i < j
57. on peut se restreindre à κ-petit pour un cardinal κ à condition d’exiger que les colimites

filtrées que l’on prend pour engendrer tout objet soit de taille au plus κ
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Par ailleurs, il existe d’autres hypothèses sur D, par exemple être de Reedy, qui
garantissent l’existence de structures de modèles étendant les équivalences faibles
pour des catégories de modèles simpliciales.

Idée de la preuve de (2) et (3). Que les propriétés d’engendrement par une famille
de petits objets d’une catégorie C s’étendent aux catégories de foncteurs CD sont
des résultats généraux indépendants des catégories de modèle (mais pas du tout
évident). Pour (2) et (3), le reste de l’idée est en fait de montrer que la structure
de modèle est encore cofibrement engendrée. Dans le cas projectif, si on note I =

(Ai
αi→ Bi)i∈I (respectivement Jac = (A′j

βj→ B′j)j∈J) les cofibrations (resp. acycliques)

génératrices de C, alors on montre en fait que CD est cofibrement engendrée avec
comme cofibrations (resp. acycliques) génératrices l’ensemble(

F d(Ai)
F d(αi)−→ F d(Bi)

)
i∈I,d∈D

, (resp.
(
F d(A′j)

F d(βj)−→ F d(B′j)
)
j∈J,d∈D

).

Dans la définition ci-dessus, on a noté, pour tout objet d ∈ d et tout objet C ∈ C,
F d(C) : D → CD le foncteur D 3 x 7→

∐
{f :d→x}

C et agit sur une flèche φ : x → y

dans D en envoyant la “composante” C correspondant à f par l’identité sur celle
correspondant à φ ◦ f . Une flèche γ : C → C ′ dans C induit alors la transformation
naturelle F d(γ) : F d(C)→ F d(C ′) donnée, pour tout objet d′ ∈ D, par

∐
{f :d→d′}

γ. On

applique alors le Théorème 2.4.9. Démontrer (3) est un peu plus ardu et utilise le fait
que la “petitesse” de la catégorie donnée par l’existence des générateurs compacts
permet de garantir l’existence de générateurs pour les cofibrations de la structure
injective et à partir de là de reproduire le schéma précédent. �

Exemple 2.6.18. Dans Ch(R), la colimite homotopique d’un diagramme f : P → Q
(autrement dit le conoyau homotopique) est donné par le cône (définition 1.4.14)(
Pn−1⊕Qn, d(p, q) = (−d(p), d(q)− f(p))

)
du morphisme (voir la feuille de TD 4).

Exemple 2.6.19 (Poussé-en-avant homotopique). Par définition, pour calculer un
poussé-en-avant homotopique, c’est à dire la colimite d’un diagramme X ∈ CD

(avec D = x ← z → y), lorsque la structure projective est de modèle, on calcule
L colimD F = colimD L(F ) où L(F ) est un remplacement cofibrant de F := X ←
Z → Y dans CD. D’après le TD 4, un tel remplacement est donné par un diagramme

LX LZoooo // // LY , où LZ est cofibrant, et une équivalence faible L(F )
∼→ F .

Dans le cas de Top ou sEns ou des complexes de châınes Ch(R) et plus généralement
des catégories propres à gauche 58, il existe un moyen plus simple :

Proposition 2.6.20. Soit f : Z → Y une flèche dans Top ou sEns munie de leur
structure de Quillen ou Ch(R) munie de la structure projective. Si f̃ : Z � Ỹ est
un remplacement de f : Z → Y par une cofibration, c’est à dire que f se factorise

sous la forme f : Z
f̃
� Ỹ

∼→ Y , alors le poussé-en-avant X
∐

Z Ỹ est un modèle pour

le pushout homotopique de tout diagramme X ← Z
f→ Y . Plus précisément, on a

58. Plus précisément ce résultat est vrai pour toute catégorie de modèle d̂ıte propre à gauche,
c’est à dire telle que les poussés en avant d’équivalences faibles sont des équivalences faibles.
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une équivalence faible naturelle

L colim
D

(
X ← Z → Y

)
= colim

D

(
LX LZoooo // // LY

)
∼→ colim

D

(
X ← Z � Ỹ

)
= X

∐
Z

Ỹ .

Démonstration. Voir les solutions du TD 4. �

En particulier, étant donné deux applications continues A
i→ X et A

j→ Y , leur

pushout homotopique est donné par X
∐
A

Cyl(i) ∼= X
h∐
A

Y le poussé-en-avant ho-

motopique de la définition 1.8.9. On obtient donc bien que ce dernier est invariant
par homotopie faible et en particulier la proposition 1.8.12 en est une conséquence
directe.

La linéarité fait que l’exemple 2.6.18 du cône se généralise au poussé-en-avant
homotopique dans les complexes.

Proposition 2.6.21. Le quotient homotopique d’un complexe de châınes P
f→ Q, c’est

à dire la colimite homotopique L colim(P
f→ Q) 59 est équivalent au cône C(f) du

morphisme f . Plus généralement si A
f→ P et si A

g→ Q sont des morphismes de
complexes, alors le poussé-en-avant homotopique est équivalent au cône C(f −g) du
morphisme f − g.

Démonstration. Voir les solutions du TD 4. �

De manière duale, dans les catégories de modèles citées ci-dessus (ou celles qui
sont propres à droite), un tiré-en-arrière homotopique se calcule en rempaçant une
des flèches par une fibration et en prenant le tiré-en-arrière. Dans les complexes de
chaines, on calcule ceci par le cocône C(f)[1], qui n’est rien d’autre que le cône
décalé de 1.

Proposition 2.6.22. Le tirè-en-arrière homotopique de f : A→ X et g : A→ Y dans
les complexes de chaines est équivalent au cocône coC(f − g).

Exercice 2.6.23. Démontre le résultat cité ci-dessus sur le calcul du noyau homoto-
pique dans Ch(R), ainsi que le poussé-en-avant homotopique.

Exercice 2.6.24. On munit Top de la structure de Quillen (Exemple 2.1.15).

(1) Démontrer que le pushout homotopique X
∐h

A Y est bien le poussé-en-avant
homotopique au sens de la définition 2.6.6, c’est à dire est un objet représen-
tant cette colimite homotopique dans Ho(Top) (on commencera par montrer
que les cofibrations de la structure de modèle projective sur les diagrammes
1 ← 0 → 2 sont données par les cofibrations objets par objets, puis par
identifier la colimite homotopique associée).

(2) Quel est le tiré-en-arrière homotopique ?

59. qui est équivalente au pushout homotopique L colim
(
0← P

f→ Q
)
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III. Ensembles simpliciaux

Les ensembles simpliciaux sont un modèle combinatoire très puissant du type
d’homotopie faible des espaces. En topologie algébrique, et plus encore en théorie
de l’homotopie, le mot espace (en anglais ou en français) désigne très (voire le plus)
souvent un ensemble simplicial.

On pourra consulter [8] pour une introduction aux ensembles simpliciaux, [13]
pour une étude détaillée ainsi que les chapitres correspondants de [12] et de [20]. On
pourra aussi consulter [1, chapitre Polyèdres, applications et variétés PL]

3.1. Complexes simpliciaux et ensembles simpliciaux

La notion d’ensemble simplicial est provient (et est une abstraction) de la notion
de complexe simplicial, aussi connu comme polyèdres. Nous rappelons ici la notion
de complexe simplicial (plongé).

Définition 3.1.1 (Simplexes). Un simplexe σ de dimension r dans un espace euclidien
Rn, pour un certain n ≥ r, est l’enveloppe convexe de r + 1 points indépendants 60

s0, . . . sr. Les si sont appelés sommets de σ. Les faces de σ sont les simplexes de
dimension r − 1 dont les sommets sont des sommets de σ. Une orientation de σ est
le choix d’un ordre sur ses sommets modulo les permutations paires.

Exemple 3.1.2. (simplexes standards) Le simplexe standard de dimension n, ∆n ⊂
Rn+1, est le sous-espace

∆n = {(x0, . . . , xn) ∈ Rn+1/ xi ≥ 0 (pour tout i) et x0 + · · ·+ xn = 1}.
On peut aussi l’identifier canoniquement avec le sous-ensemble

∆n ∼= {(t1, . . . , tn) ∈ Rn / 0 ≤ t0 ≤ · · · tn ≤ 1}
via les relations ti = x0 + · · ·+ xi−1.

La notation ∆n suggère la forme du simplexe standard. On notera que ∆0 est
juste un point et que ∆1 ∼= [0, 1]. Plus généralement, ∆n ∼= [0, 1]n et son bord, c’est
à dire la réunion de ses faces, ∂∆n ∼= Sn−1.

Définition 3.1.3 (Complexe simplicial). Un complexe simplicial dans un espace eu-
clidien Rn est un ensemble K de simplexes dans Rn tel que :

(1) si σ ∈ K alors toute face de σ appartient également à K ;
(2) si σ, τ ∈ K et σ ∩ τ 6= ∅ alors σ ∩ τ est le simplexe dont tous les sommets

sont des sommets commun à σ et τ ;
(3) si x ∈ σ ∈ K, il existe un voisinage U de x dans Rn tel que U ne rencontre

qu’un nombre fini de simplexes de K.

On appelle polyèdre associé à un complexe simplicial K — ou réalisation de K —
la réunion |K| de ses simplexes :

|K| =
⋃
σ∈K

σ

que l’on munit de la topologie induite par celle de l’espace euclidien ambiant.

60. C’est-à-dire que les vecteurs v1 = s1 − s0, . . . , vr = sr − s0 sont linéairement indépendants.
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La dernière condition est une condition de finitude locale ; elle garantit que la
topologie de K est compatible avec celle de la réunion des simplexes. En particulier
un sous-espace est fermé si et seulement si son intersection avec tout simplexe est
fermée. On a en fait que le polyèdre |K| est un CW-complexe, pour lequel les appli-
cations de recollement sont en fait injectives. Un contre exemple à cette condition
est par exemple donné par la réunion d’intervalles dans R2 passant par (0, 1) et les
points (0, 0), (1/n, 0) (n > 0).

La dimension maximale d’un simplexe de K est appelée dimension de K. Noter
que les complexes simpliciaux forment une catégorie : un morphisme f : K → L est
un ensemble d’applications linéaires sur les simplexes compatibles sur les faces.

Par ailleurs un complexe simplicial K est fini si et seulement si le polyèdre associé
|K| est compact.

La définition ci-dessus est une définition concrète (et essentiellement géométrique)
des complexes simpliciaux, c’est à dire provenant d’un sous-espace de Rn avec une
topologie qui, localement, coincide avec celle des simplexes.

Il existe aussi une notion purement combinatoire, et plus générale, de complexe
simplicial abstrait. Cette dernière est définie comme un ensemble de sommets {vi, i ∈ I}
et un ensemble “abstrait” de faces, qui sont des sous-ensembles finis de {vi, i ∈ I},
vérifiant les propriétés 3.1.3.(1) et 3.1.3.(2). A un tel espace, on peut définir une
réalisation géométrique mais qui ne se plonge pas nécéssairement dans Rn (à moins
de supposer une condition analogue à 3.1.3.(3)) ; en général on peut cependant le
plonger dans un RI de la même manière que les complexes simpliciaux ci-dessus
en imposant la topologie de la réunion. On ne va pas s’attarder sur cette défini-
tion car nous donnerons directement la définition de la réalisation adéquate pour les
ensembles simpliciaux.

Cette version générale des complexes simpliciaux abstrait permet de traiter plus
d’exemples mais souffre de trois défauts majeurs des complexes simpliciaux. Premiè-
rement, le produit de deux complexes simpliciaux n’est pas un complexe simplicial.
Plus exactement, le produit de deux polyèdres est bien un polyèdre, mais sa struc-
ture de complexe simplicial ne se détermine pas directement à partir de la donnée
de la structure des complexes simpliciaux (regarder l’exemple de ∆1 × ∆1 est par-
lant). Par ailleurs, il existe un certain nombre de CW-complexes simples 61 que l’on
souhaite voir comme des objets triangulés mais qui ne sont pas des polyèdres. Par
exemple, la présentation d’un cercle comme la donnée d’un intervalle dont on a iden-
tifié les deux extrémités n’est pas un polyèdre. Ce dernier point est lié au fait qu’il
n’y a que trop peu d’applications “simpliciales” en tout cas dans un sens näıf. Enfin,
la donnée combinatoire donnée, n’est pas suffisante pour encoder toute la structure
homotopique d’un polyèdre. Un premier indice de ce point est que pour voir l’in-
variance par homotopie de l’homologie singulière, il faut décomposer des prismes
en sous-simplexes et que de même, l’invariance de l’homologie simpliciale n’est pas
aisée.

Ces problèmes peuvent être résolus par les ensembles simpliciaux, qui consistent
à rajouter aux complexes simpliciaux des simplexes “dégénérés”62, c’est à dire des

61. par exemple les ∆-complexes de [10]
62. plus précisément, on va autoriser dans un simplexe à avoir plusieurs fois un même sommet. En

particulier pour chaque i-simplexe on aura i+1 simplexes dégénérés de dimension i+1 correspondant
aux i+ 1 sommets qu’on peut doubler. Chacun de ces i+ 1-simplexes va lui même engendré i+ 2
simplexes de dimension i+ 2 etc...
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simplexes qu’on a écrasé sur des faces (voir des sous-faces), qui tiennent compte de
la structure cellulaire des produits et de données homotopiques.

Pour cela nous introduisons la catégorie suivante

Définition 3.1.4. La catégorie ∆ est la catégorie des ordinaux finis et des applica-
tions préservant l’ordre. Précisément, ses objets sont les ensembles ordonnés [n] :=
{0, 1 . . . , n} (munis de l’ordre naturel 0 < 1 · · · ...) et ses morphismes sont les appli-
cations croissantes (au sens large).

On a donc un objet par entier naturel.

Lemme 3.1.5. Toute application [n] → [m] dans ∆ se factorise uniquement sous la
forme de la composée d’une surjection croissante suivie d’une inclusion croissante.
De plus

• Les injections croissantes sont engendrées par les applications di : [n− 1]→
[n] (où i = 0, . . . , n) définies par

di(j) = j si j < i et di(j) = j + 1 si j ≥ i,

• les surjections croissantes sont engendrées par les sj : [n] → [n − 1] (où
j = 0 . . . n− 1) définies par

sj(k) = k si k ≤ j et sj(k) = k − 1 si k ≥ j + 1.

• Les relations entre les sj et di sont engendrées par

(13)


djdi = didj−1 (si i < j)
sjdi = disj−1 (si i < j)
sjdi = id (si i = j, j + 1)
sjdi = di−1sj (si i > j + 1)
sjsi = si−1sj (si i > j)

Les relations (13) sont appelées les relations cosimpliciales.

Définition 3.1.6 (ensemble (co)simplicial). Soit Ens la catégorie des ensembles.

• Un ensemble simplicial est un foncteur ∆op −→ Ens.
• Un ensemble cosimplicial est un foncteur ∆ −→ Ens.
• Plus généralement un objet simplicial dans une catégorie C est un un foncteur

∆op −→ C et un objet cosimplicial dans C est un foncteur ∆ −→ C.
• Les morphismes entre ensembles (co)simpliciaux sont les transformations na-

turelles.

Notation 3.1.7. On notera sEns la catégorie des ensembles simpliciaux ainsi définie,
et plus généralement sC la catégorie des objets simpliciaux de C.

Exemple 3.1.8 (le retour des simplexes standards). La collection des simplexes stan-
dards ∆n (exemple 3.1.2) forme un espace topologique cosimplicial 63. Plus précisé-
ment on définit le foncteur [n] 7→ ∆n sur les objets et, sur les flèches génératrices de
∆, on définit di∗ : ∆n → ∆n+1 et sj∗ : ∆n → ∆n−1 par les formules

di∗(x0, . . . , xn) = (x0, . . . , xi, 0, xi+1, . . . , xn)

sj∗(x0, . . . , xn) = (x0, . . . , xj−1, xj + xj+1, xj+2, . . . , xn).

63. autrement dit un objet cosimplicial dans Top
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En termes des coordonnées t = (t1 ≤ · · · ≤ tn), on a de manière équivalente :

di∗(t) = (t0 ≤ t1 ≤ · · · ≤ ti ≤ ti ≤ ti+1 · · · ≤ tn)

sj∗(t) = (t0 ≤ t1 ≤ · · · t̂j · · · ≤ tn).

(avec la convention t0 = 0, tn+1 = 1).
Cet exemple, outre qu’il est fondamental comme nous allons le voir, à la vertu

qu’il permet de se retrouver facilement les identités cosimpliciales.

Le lemme 3.1.5 implique

Proposition 3.1.9. Un ensemble simplicial est la même chose que la donnée d’une
suite (Xn)n≥0 d’ensembles et d’applications, appelées faces, di : Xn → Xn−1 (i =
0 . . . n) et sj : Xn → Xn+1 (j = 0 . . . n), appelées dégénérescences, soumis aux
relations

(14)


didj = dj−1di (si i < j)
disj = sj−1di (si i < j)
disj = id (si i = j, j + 1)
disj = sjdi−1 (si i > j + 1)
sisj = sjsi−1 (si i > j)

De même, un ensemble cosimplicial est la même chose que la donnée d’une suite
(Xn)n≥0 d’ensembles et d’applications, appelées cofaces, di : Xn−1 → Xn (i = 0 . . . n)
et sj : Xn+1 → Xn (j = 0 . . . n), appelées codégénérescences, soumis aux relations
13.

Un morphisme entre ensembles (co)simpliciaux est la donnée d’une suite d’appli-
cations fn : Xn → Yn qui commutent avec les (co)faces et (co)dégénérescences.

La même description s’applique pour les objets (co)simpliciaux dans C, en prenant
une suite d’objets et en imposant que les (co)faces, (co)dégénérescences soit des
flèches de C bien sûr.

On appelle un élément de Xn (dans le cas d’un ensemble ou objet simplicial X•),
un n-simplexe de X•. On qualifiera parfois n de dimension ou de degré du simplexe.

Notation 3.1.10. On rencontre souvent la notation suivante

· · · X3

d0

//

d1 //

d2 //

d3 //

X2

s2oo

s1oo

s0oo
d0

//

d1 //

d2 //

X1

s1oo

s0oo d0

//

d1 //

X0
s0oo

pour un objet simplicial (qui permet de se rappeler du nombre de faces et de dégé-
nérescences).

Les identités simpliciales 14 ont la conséquence suivante : on peut écrire toute
itération de dégénérescences sous la forme si0 · · · sik avec i0 ≤ i1 ≤ · · · ≤ ik et toute
composée de faces sous la forme dlm . . . dl0 avec l0 ≤ · · · ≤ lm.

Définition 3.1.11 (simplexes (non)-dégénérés). Soit X un ensemble simplicial et
x ∈ Xn. On dira que x est dégénéré s’il est dans l’image d’une dégénérescence (c’est
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à dire dans =(sj) pour un j quelconque). Dans le cas contraire on dira qu’il est
non-dégénéré.

On dira qu’un ensemble simplicial est fini s’il n’a qu’un nombre fini de simplexes
non-dégénérés.

Exemple 3.1.12 (le n-simplexe simplicial). On note ∆n
• l’ensemble simplicial Hom∆(−, [n])

c’est à dire
[k] 7→ Hom∆([k], [n]).

Le lemme de Yoneda donne

Lemme 3.1.13. On a un isomorphisme naturel

HomsEns(∆
n
• , X•)

∼= Xn

donné par f 7→ f([n]
id→ [n]).

Démonstration. Les identités simpliciales (14) assurent qu’il suffit de connâıtre un
morphisme d’ensembles simpliciaux sur les simplexes non-dégénérés pour le connâıtre
sur tout X•. Notons que ∆n

• a exactement un simplexe non-dégénéré en dimension

n, donné par l’identité de [n]
id→ [n] et aucun en dimension ≥ n+ 1. Il suit alors des

relations simpliciales que si f• : ∆n
• → X• est un morphisme d’ensemble simpliciaux,

alors f>n est déterminée par les f≤n. Par ailleurs, tous les simplexes non-dégénérés de

∆n
• en dimension < n sont des (itérations de) faces de [n]

id→ [n]. Ainsi en vertu des

identités simpliciales, il suffit de connâıtre l’image de [n]
id→ [n] pour connâıtre leur

valeur. Réciproquement étant donné xn ∈ Xn, on peut lui associer [n]
id→ [n] 7→ xn

et en vertu des relations simpliciales ceci s’étend bien en un morphisme d’ensemble
simpliciaux (on a pas d’autres relations à vérifier puisque ∆n

k est l’ensemble des
morphismes [k]→ [n] dans ∆ sans aucune autre condition. �

On déduit du lemme précédent que pour tout ensemble simplicial X•, on a un
isomorphisme naturel

(15) colim
∆n
• → X•

(n ≥ 0)

∆n
•
∼= X•.

Remarque 3.1.14. La collection des ensembles simpliciaux ∆n
• forme elle même un

objet cosimplicial dans les ensembles simpliciaux. C’est une instance du fait que
Hom∆(−,−) est un foncteur ∆op ×∆ → Ens et donc naturellement un objet sim-
plicial et cosimplicial.

Le lemme suivant explique pourquoi la connaissance des simplexes non-dégénérés
détermine canoniquement un ensemble simplicial.

Lemme 3.1.15. Un simplexe dégénéré est obtenu comme une composée de dégéné-
rescences d’un unique simplexe non-dégénéré.

Démonstration. La preuve est liée au fait que l’on peut scinder les dégénérescences.
Supposons qu’un simplexe dégénéré s’écrive a = si0 ◦· · · sik(x) = sj0 ◦· · ·◦sj`(y) avec
x, y non-dégénérés (les i et j étant en ordre croissant) ; notons |x| et |y| la dimension
de x et y. Alors, en vertu des identités simpliciales,

x = dik ◦ · · · di0(a) = dik ◦ · · · di0(sj0 ◦ · · · ◦ sj`(y).
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En utilisant les identités simpliciales, on peut faire passer tous les sjk à gauche dans
l’écriture de droite pour obtenir x = sj′1 ◦ · · · sj′mdi′1 ◦ · · · di′n(y). Mais comme x est
non-dégénéré par hypothèse, nécessairement m = 0 et donc x = di′1 ◦ · · · di′n(y) En
particulier |x| = |y| − n. Mais en inversant les rôles de y et x on obtient aussi que
|y| ≤ |x| ce qui prouve que |x| = |y| et donc n = 0 et x = y. �

Exemple 3.1.16 (complexes simpliciaux ). Tout complexe simplicial donne lieu
à un ensemble simplicial canonique 64 obtenu comme l’ensemble simplicial dont les
simplexes non-dégénérés sont exactement les simplexes de K auquel on a rajouté
“librement” toutes leur dégénérescences itérées (en respectant bien sûr les relations
simpliciales (14) ce qui détermine les faces des simplexes dégénérés ainsi ajoutés
et lesquels sont identifiés entre eux). Une formule précise est obtenue ainsi. On
choisit un ordre total (préservant l’orientation si on en a choisi une) sur les sommets
{vi, i ∈ I} de K et on considère l’ensemble simplicial K• donné par

Kn := {(vi0 ≤ vi1 ≤ · · · ≤ vin) / {vi0 , · · · , vin} est un simplexe de K}
les suites ordonnées de sommets (avec répétitions éventuelles) de longueur n + 1
dont la réunion des sommets distincts est un simplexe de K (de dimension forcément
inférieure ou égale à n). On définit les faces et dégénérescences par

dj(vi0 ≤ vi0 ≤ · · · ≤ vin) = (vi0 ≤ · · · ≤ vij−1
≤ vij+1

≤ · · · ≤ vin),

sj(vi0 ≤ vi0 ≤ · · · ≤ vin) = (vi0 ≤ vi0 ≤ · · · ≤ vij ≤ vij ≤ · · · ≤ vin),

c’est à dire en omettant le j-ième sommet ou en doublant le j-ième sommet respec-
tivement.

Un simplexe non-dégénéré de dimension n est donc précisément une suite stricte-
ment croissante (vi0 < vi0 < · · · < vin) qui correspond à un simplexe de dimension
n de K. Les faces d’un simplexe non-dégénéré sont alors exactement les restrictions
aux faces respectives du simplexe dans K.

Remarque 3.1.17. L’ensemble simplicial correspondant (via la construction précé-
dente) au simplexe standard ∆n (muni de l’ordre correspondant à la numérotation
des coordonnées) est exactement le n-simplexe simplicial ∆n

• de l’exemple 3.1.2.

Définition 3.1.18 (réalisation géométrique). Soit X• un ensemble simplicial. Sa réa-
lisation géométrique est l’espace topologique quotient

|X•| :=
∐
n∈N

Xn ×∆n / ∼

où Xn est muni de la topologie discrète et la relation d’équivalence est donnée par

(di(x), t) ∼ (x, di(t)), (sj(y), t) ∼ (y, sj(t)) pour .

L’ensemble singulier d’un espace topologique Y est l’ensemble simplicial

Sing•(Y ) := HomTop

(
∆•, Y

)
où la structure simpliciale est donnée par la structure cosimpliciale des simplexes
standards (voir exemple 3.1.8).

La réalisation géométrique et l’ensemble singuliers réalisent naturellement des
foncteurs sEns→ Top, Top→ sEns respectivement.

64. à un choix de bijection entre les sommets de K près
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Proposition 3.1.19.

(1) La réalisation géométrique est adjoint à gauche du foncteur ensemble singu-

lier : | − | : sEns
,,
Topll : Sing•(−).

(2) La réalisation géométrique |X•| d’un complexe simplicial est un CW-complexe
dont les cellules de dimension n sont en bijection avec les n-simplexes non-
dégénérés de X et les applications de recollement sont données par la réunion
des faces.

Remarque 3.1.20.

(1) En particulier la réalisation géométrique commute avec les colimites (comme
tout adjoint à gauche) et le foncteur ensemble singulier Sing•(−) commute
avec les limites (comme tout adjoint à droite).

(2) Si X• est fini, alors sa réalisation géométrique est un CW-complexe fini et
donc est compact.

(3) L’adjonction de la proposition s’étend aux catégories pointées.

Démonstration. Soit f· ∈ HomsEns(X•, Sing•(Y )). Par définition cela veut dire que
p on a des applications fn : Xn → HomTop(∆n, Y ) qui commutent avec les faces et

dégénérescences. On lui associe une application ψ(f•) :
∐

n∈NXn ×∆n → Y définie
sur chaque composante Xn×∆n par la formule (xn, t) 7→ fn(xn)(t). Cette application
est continue puisqueXn est discret et que fn(xn) : ∆n → Y l’est. Par ailleurs, puisque
f• est simpliciale, on a que fn(di(xn+1)(t) =

(
difn+1(xn+1)

)
(t) = fn+1(xn+1)(di∗(t))

et de même fn(sj(xn−1)(t) = fn−1(xn−1)(sj∗(t)). Il suit que ψ(f•) passe au quotient
pour définir une application continue ψ(f•) : |X•| → Y .

Réciproquement, si h : |X•| → Y est une application continue, on lui associe,
pour tout n ∈ N, l’application φ(h)n : Xn → HomTop(∆n, Y ) donnée par xn 7→
φ(h)n(xn) =

(
t 7→ h([xn, t])

)
où [xn, t] ∈ |X•| est la classe de (xn, t) ∈ Xn × ∆n

vu dans le quotient qu’est la réalisation géométrique. De manière analogue à ci-
dessus, on voit que pour tout xn ∈ Xn on a que φ(h)n(xn) est bien continue et
que la collection φ(h) = (φ(h)n)n∈N est un morphisme d’ensemble simpliciaux. Les
formules explicites nous donnent que φ ◦ ψ(f•) = f• et que ψ ◦ φ(h) = h et ce sont
donc des bijections. Leur naturalité se déduit des mêmes formules. Ainsi φ est un
isomorphisme naturel HomTop(|X•|, Y ) ∼= HomsEns(X•, Sing•(Y )) (d’inverse ψ). �

Remarque 3.1.21. De la preuve découle immédiatement que l’unité de l’adjonction
est le morphisme ηX• : X• → Sing•(|X•|) donné par Xn 3 x 7→

(
t 7→ [(x, t)]

)
où [−]

désigne la classe dans le quotient définissant la réalisation géométrique.
La counité de l’adjonction est l’application naturelle δY : |Sing•(Y )| → Y donnée

par
[(

∆n f→ Y, t
)]
7→ f(t).

Exemple 3.1.22 (le retour des complexes simpliciaux ). La réalisation géomé-
trique de l’ensemble simplicial K• associé à un complexe simplicial (exemple 3.1.16)
est canoniquement homéomorphe à la réalisation du complexe simplicial |K|. En
effet, il s’agit simplement du complexe cellulaire obtenu en identifiant en dimension
n les faces de chaque n-simplexe de K à leur image dans K(n−1) ! En fait, la réali-
sation |K| est un CW-complexe dont les applications de recollement sont injectives
(et affines une fois plongée).
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Exercice 3.1.23. Identifier la structure simpliciale de l’ensemble simplicial qui a exac-
tement deux simplexes non-dégénérés, un en degré 0 et 1 en degré 1. Démontrer que
sa réalisation géométrique est un cercle.

Donner un ensemble simplicial Snk modélisant une sphère de dimension n tel que
Snk est de cardinal 1 + kn.

Exemple 3.1.24 (ensemble simplicial constant). Un ensemble E donne lieu à un en-
semble simplicial constant E• défini par En = E avec les faces et les dégénérescences
données par l’identité. Sa réalisation géométrique est juste E muni de la topologie
discrète.

Plus généralement tout ensemble simplicial dont la réalisation géométrique est
homotope (faiblement homotope suffit en vertu du théorème de Whitehead) à un
espace topologique discret est appelé discret également.

Remarque 3.1.25. La construction de la réalisation géométrique utilise le fait qu’on
a un espace topologique cosimplicial “naturel”, donné par les ∆n. Cette construction
s’applique ainsi plus généralement pour des objets simpliciaux lorsque on a un objet
cosimplicial naturel, voir l’exercice 6 de la feuille de TD 5.

Une conséquence de la proposition 3.1.19 est que la réalisation géométrique a son
image essentielle dans la catégorie des CW-complexes et en particulier dans celle
des espaces Hausdorff compactement engendrés 65. On note CGH−Top cette sous-
catégorie de Top. La réalisation géométrique a la propriété remarquable suivante.

Proposition 3.1.26. Le foncteur de réalisation géométrique commute aux limites
(en particulier aux produits) finies dans CGH−Top. En particulier, la réalisation
géométrique d’un produit d’ensembles simpliciaux finis commute avec les produits.

Démonstration. Le point essentiel pour les produits est le fait que ∆n
• ×∆m

• est une
décomposition cellulaire de In+m ∼= ∆n+m ∼= |∆n+m

• |. Voir [13] pour une preuve. �

Des propriétés de finitude sont essentielles si on veut obtenir des limites dans Top.
En effet, le produit dans Top de deux CW-complexes non localement finis n’est pas
un CW-complexe en général.

Remarque 3.1.27 (Filtration canonique). On a vu que la réalisation géométrique d’un
ensemble simplicial est un CW-complexe. La filtration canonique de ce CW-complexe
provient en fait d’une filtration au niveau de l’ensemble simplicial. Soit X• un en-
semble simplicial. Le n-squelette de X• est le sous-ensemble simplicial X≤n• ⊂ X•
engendré par les simplexes non-dégénérés de X• de dimension ≤ n (autrement dit, on
retire tous les simplexes non-dégénérés de dimension > n et leurs dégénéréscences).
On a

(16) X• = colim
n

X≤n• .

Tout comme les CW-complexes s’obtiennent inductivement en recollant des cellules
de dimension de plus en plus grande, les ensembles simpliciaux se reconstruisent à
partir de leurs sommets. Soit X• ∈ sEns. Notons, pour tout n ∈ N, ND(X)n le
sous-ensemble des n-simplexes non-dégénérés de X•. Pour tout x ∈ ND(X)n, par
l’exemple 3.1.12, on obtient un morphisme d’ensemble simplicial x : ∆n

• → X≤n• . La

65. c’est à dire ceux qui sont Hausdorff et tels qu’un ensemble est fermé si et seulement si son
intersection avec tout compact est fermée. Par exemple un CW-complexe !
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Figure 8. La réalisation (en rouge) des 3 cornets possibles dans ∆2

(la face retirée est représentée en pointillé).

composition ∂∆n
• ↪→ ∆n

•
x→ X≤n• a son image dans X≤n−1

• puisque ∂∆n
• n’a que des

simplexes non-dégénérés en degré ≤ n− 1.

Lemme 3.1.28. Le carré commutatif suivant∐
ND(X)n

∂∆n
•

� _

��

// X≤n−1
• � _

��∐
ND(X)n

∆n
•

// X≤n•

est un poussé en avant ; autrement dit X≤n•
∼= (

∐
ND(X)n

∆n
• )

∐∐
ND(X)n

∂∆n
•

X≤n−1
• .

Démonstration. Cela suit du lemme 3.1.13 et du fait que les (co)limites se calculent
degré par degré dans sEns. �

3.2. Structure de modèle

On va ici définir une structure de modèle Quillen équivalente à celle de Top. On
commence par définir deux familles d’ensembles simpliciaux utiles.

Définition 3.2.1. On note ∂∆n
• le sous-ensemble simplicial déduit de ∆n

• en enlevant
le n-simplexe non-dégénéré.

Pour tout 0 ≤ r ≤ n, on définit aussi Λn
r,•, appelé le r-cornet, le sous-ensemble

simplicial de ∂∆n
• obtenu en retirant aussi la face opposée au sommet r. Autrement

dit Λn
r,m est le sous-ensemble des applications croissante f : [m] → [n] dont l’image

ne contient pas l’ensemble [n]− {r}.

Par définition, ∂∆n
• est l’ensemble simplicial correspondant au complexe simplicial

∂∆n obenu en prenant toutes les faces du complexe standard. Sa structure est donc
donnée par l’exemple 3.1.16 et sa réalisation géométrique est la sphère de dimension
n− 1. On a en particulier que ∂∆n

k = {f : [k]→ [n] ∈ ∆, f non-surjective}
De même, le r-cornet Λn

r,• est l’ensemble simplicial correspondant au complexe
simplicial obtenu en prenant toutes les faces sauf l’intérieur de la r-ième dans le
complexe simplicial standard. Sa réalisation géométrique est donc un cône de sommet
r. En particulier, |∂∆n

• | ∼= ∂∆n ↪→ ∆n = |∆n
• | est une cofibration et Λn

r := |Λn
r,•| ↪→
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0 = f(0)

1 = d0(0 < 1)

2 = f(1)

Λ2
0

0 = d1(0 < 1) = d1(0 < 2)

1 = f(2)

2 = d0(0 < 2)

0 2

1

id : Λ2
0• ↪→ ∆2

•f : Λ2
0• → ∆2

•

Figure 9. Deux morphismes de Λ2
0,• → ∆2

0. Celui de droite, qui est

l’identité admet évidement un relèvement depuis ∆2
• mais celui de

gauche n’en admet pas car f(1) > f(2).

∆n = |∆n
• | est une cofibration acyclique (et même un rétract par déformation forte,

homéomorphe à l’inclusion d’une face In−1 × {0} un cube In).

On notera aussi ∗• l’ensemble simplicial terminal qui est donné par le point {∗}
en tout degré n.

Définition 3.2.2 (Fibrations de Kan). Un morphisme f : X• → Y• d’ensemble sim-
pliciaux est une fibration de Kan si elle vérifie la propriété de relèvement à droite
par rapport aux inclusions Λn

r• ↪→ ∆n
• pour tout n et tout r = 0 . . . n. C’est à dire

qu’il existe un relèvement h dans le diagramme suivant

Λn
r,•� _

��

// X•

f

��
∆n
•

//

h
==

Y•

rendant les deux triangles commutatifs.
Un ensemble simplicial X• est fibrant (on dit aussi de Kan ou Kan-fibrant) si

X• → ∗• est une fibration de Kan.

De la définition des cornets comme sous-ensembles simpliciaux de ∆n
• et du lemme

de Yoneda 3.1.13 on déduit

Lemme 3.2.3. L’ensemble HomsEns(Λ
n
r,•, X•) est en bijection avec l’ensemble des n-

uplets de n− 1-simplexes (x0, . . . , x̂r, . . . xn) de X• vérifiants que pour tout i, j 6= r
et i < j, on a dixj = dj−1xi.

Démonstration. Voir le TD 5. �

Remarque 3.2.4. Un ensemble simplicial n’est pas toujours fibrant. Par exemple ∆n
•

n’est pas fibrant pour n ≥ 1 comme le montre la figure 9 ou l’exemple 3.3.4).

Lemme 3.2.5. Une application f : X → Y entre espaces topologiques est une fibra-
tion de Serre si et seulement si Sing•(f) : Sing•(X)→ Sing•(Y ) est une fibration de
Kan.

En particulier Sing•(X) est fibrant.
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Démonstration. L’adjonction 3.1.19 donnée par la réalisation géométrique donne une
bijection entre les diagrammes

Λn
r,•� _

��

// Sing•(X)

Sing•(f)

��
∆n
•

//

h
::

Sing•(Y )

et Λn
r� _

��

// X

f
��

∆n //

Φh

>>

Y.

Comme Λn
r est un rétracte par déformation de ∆n et un sous complexe, la propriété

de relèvement à droite caractérise les fibrations de Serre (cf lemme 1.6.9). Le résultat
en découle. �

Théorème 3.2.6 (Quillen). La catégorie sEns a une structure de modèle dont les

équivalences faibles: sont les morphismes f : X• → Y• tels que |f | : |X•| → |Y•|
sont des équivalences d’homotopie faibles,

fibrations : sont les fibrations de Kan,
cofibrations : sont les morphismes f : X• → Y• ayant la propriété de relèvement à

gauche par rapport aux fibrations acycliques.

Muni de cette structure de modèle, sEns est cofibrement engendrée, combinatoire,
avec les applications (∂∆n

• ↪→ ∆n
• )n∈N comme cofibrations génératrices et les applica-

tions Λn
r ↪→ ∆n

• (où 0 ≤ r ≤ n et n > 0) comme cofibrations acycliques génératrices.

Quillen démontre aussi la caractérisation très simple et remarquable suivante des
cofibrations : il s’agit de celles qui sont des inclusions en chaque degré, cf le corol-
laire 3.2.7 ci-dessous.

Nous renvoyons à [9], [12] et [14] pour une preuve détaillée. Nous nous bornons
ci-dessous à donner les grandes lignes et résultats intermédiaires principaux et im-
portants.

Corollaire 3.2.7. Un morphisme f : X• → Y• est une cofibration si et seulement si
c’est une inclusion en tout degré.

Démonstration. Cela découle essentiellement du point (1) de la proposition 3.2.6.
Notons que la propriété d’être une injection est stable par rétracte comme on l’a vu,
mais aussi par poussé-en-avant et colimite indicée par un ordinal. Il suit alors que,
comme les morphismes ∂∆n

• ↪→ ∆n
• sont injectifs et les cofibrations des rétractes

de compositions de poussés-en-avant par des cofibrations génératrices, que toute
cofibration est injective. La réciproque se voit ainsi : il suffit de montrer que tout
morphisme X• → Y• injectif est une colimite séquentielle de tels poussés en avant.
On pose Y 0 = X• et on construit inductivement Y n+1 ↪→ Y• comme le poussé
en avant Y n+1 = Y n

∐∐
NDn

∂∆n
•

∐
NDn

∆n où NDn est l’ensemble des n-simplexes

non dégénérés de Y• qui ne sont pas dans Y n ; chaque tel simplexe définissant un
morphisme simplicial x : ∆n

• → Y• par le lemme 3.1.13 dont la restriction à ∂∆n
•

a son image dans Y n. L’application Y n+1 ↪→ Y• est alors donné par le poussé en
avant. On peut vérifier que l’inclusion Y n+1 ↪→ Y• ainsi définie est un isomorphisme
en degré inférieur ou égal à n. La colimite colimn Y

n est égale à Y•. �

Remarque 3.2.8. En particulier, tout ensemble simplicial est cofibrant.

Les fibrations et fibrations acycliques sont caractérisées par le lemme suivant qui
est un point clé de la preuve..
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Lemme 3.2.9. Soit f : X• → Y• un morphisme dans sEns.

(1) On a que f est une fibration acyclique si et seulement si elle a la propriété
de relèvement par rapport aux applications ∂∆n

• ↪→ ∆n
• .

(2) On a que f est une fibration si et seulement si elle a la propriété de relèvement
par rapport aux applications L• × ∆1

• ∪ K• × {0} ↪→ K• × ∆1
• pour toute

inclusion (degré par degré) L• ↪→ K•.

(3) Si A•
∼
� B• est une cofibration acyclique, alors pour toute inclusion (degré

par degré) L• ↪→ K•, le morphisme L• ×B• ∪L•×A• K• ×A• ↪→ K• ×B• est
une cofibration acyclique.

Démonstration. Pour le point (1), on renvoie à [12] ou [9] pour une preuve complète
(et non-triviale ; les ingrédients sont la théorie des fibrations de Kan minimales et la
proposition 3.2.11).

Explicitons un peu la preuve de (2). L’idée est de montrer que la classe des ap-
plications stables par poussés-en-avant et rétractes à partir des inclusions de cornet
ou à partir des inclusions de type (2) sont les mêmes. En effet, si c’est le cas, les
applications définies par propriété de relèvement à droite seront bien les mêmes et
la première classe est par définition celle des fibrations.

Esquissons pourquoi L•×∆1
•∪K•×{0} ↪→ K•×∆1, avec L• ↪→ K• une inclusion,

est une composition (dénombrable) de pushouts par des applications du type Λn
r ↪→

∆n
• , on procède comme suit. Notons pour simplifier Y 0 := L•×∆1

•∪K•×{0}. On note
S0 les 0-simplexes de K• ×∆1

• qui ne sont pas dans Y 0. Un simplexe s ∈ S0 est un
simplexe de la forme k×{1} ∈ K•×∆1

• où k /∈ L0. On note Y 1 := Y 0
∐∐
S0

Λ1
1

(
∐
S0

∆1
•) le

poussé en avant obtenu en recollant les points de S0 comme l’extrémité d’un segment
∆1
• (faire un dessin). Par construction, tout sommet de K•×∆1

• est inclus dans Y 1,
de même que tout 1-simplexe de la forme v×id[1] où v ∈ K1 est dégénéré (autrement
dit l’image d’un sommet) et id[1] ∈ ∆1

1 est l’unique 1-simplexe non dégénéré. Soit
z ∈ Y1, un 1-simplexe de K• × ∆1

• qui ne soit pas dans Y 1. Alors z s’écrit sous
la forme z = k1 × {1} ou z = k1 × id[1] (avec k1 /∈ L1 et non dégénéré) (en effet
tous ceux de la forme z = k0 × id[1], avec k0 un simplexe dégénéré identifié avec
un sommet de K0 \ L0, ont été ajouté à la première étape et les autres sont déjà
dans Y 0). Soit S1 l’ensemble de ceux de la première forme. Considérons ce premier
cas : alors di(k1×{1}) = di(k1)×{1} et on est dans une situation correspondant au
diagrame suivant :

d0(k1)× {0}
d0(k1)×id[1] // d0(k1)× {1}

d1(k1)× {0}

k1×{0}

OO

d1(k1)×id[1]

//

k1×id[1]
44

d1(k1)× {1}

k1×{1}

OO

dans lequel les flèches solides représentent des 1-simplexes de Y 1, les pointillées et les
faces 66 sont dans (K•×∆1

•)
≤2. On a une application canonique de Λ2

1 → Y 1 donnée
par la flèche verticale de gauche et la fèche horizontale du dessus. Le poussé en
avant ∆2

•
∐
Λ2

1

Y 1 associé permet de rajouter le triangle supérieur du diagramme à Y 1.

66. ces faces sont précisément données par s0(k1)× s1(id[1]) et s1(k1)× s0(id[1]) qui ne sont pas

dégénérées
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Ce faisant, nous avons aussi nécessairement recollé tous les 1-simplexes de la forme
k1 × id[1] (puisque ceux-ci viennent nécessairement en compagnie d’un 1-simplexe
adjacent k1×{1}). On appelle Y 2 le recollement obtenu indicé par tous les éléments
de S1. On construit de même S2 et Y3 en recollant des prismes ouverts et ainsi de
suite. On renvoie à [9] pour une preuve détaillé.

Pour démontrer que les rétractes et compositions vis à vis des cornets sont bien
dans la classe des applications stables par poussés-en-avant et rétractes à partir
de celles données par (2), il suffit de remarquer que les inclusions de cornet sont
des rétracts d’applications simpliciales du type (2), plus précisément un rétract de
Λn
k,• ×∆1

• ∪∆n
• × {0} → ∆n

• ×∆1
• si k < n, et de Λn

n,• ×∆1
• ∪∆n

• × {1} → ∆n
• ×∆1

•
si k = n.

Pour (3), l’idée est similaire à (2). Ayant fixé L• ↪→ K•, on obtient que la classe
des morphismes de la forme L•×B′•∪L•×A′•K•×A′• ↪→ K•×B′• stables par poussés-
en-avant et rétractes des morphismes [13] ou [12]. �

Armé du lemme 3.2.9 on peut maintenant passer à la

Preuve du Théorème 3.2.6 sur la structure de modèle de sEns. Par définition, les fi-
brations de Kan sont exactement les applications avec la propriété de relèvement à
droite par rapport aux cofibrations acycliques génératrices énoncées. Puisque la don-
née des fibrations et équivalence fiable détermine toute la structure, il suffit donc de
vérifier les hypothèses du Théorème 2.4.9 pour vérfier que les cofibrations et cofi-
bration acycliques génératrices engendrent bien une structure de modèle sur sEns.
La vérification de la propriété (1) pour les équivalences faibles se ramène à celle
dans Top qui a déjà été vue (en TD). Il suit essentiellement du Lemme 3.1.13 que
les sources des cofibrations génératrices sont petites (et qu’en fait tout ensemble
simplicial est petit relativement au cardinal de l’ensemble de ses sommets comme
il suit de (16) et du lemme 3.1.28). Le reste des axiomes découle pour moitié de la
définition des fibrations comme étant exactement celles qui sont injectives par rap-
port aux cofibrations acycliques génératrices et le lemme 3.2.9.(3) garantit que les
Jac-cellulaires sont bien des cofibrations acycliques. Finalement le Lemme 3.2.9(1)
assure que les fibrations sont bien les applications injectives par rapport à l’ensemble
(∂∆n

• ↪→ ∆n
• )n∈N ce qui démontre l’autre moitié restante des propriétés énoncées dans

les hypothèses du théorème 2.4.9.
Sachant maintenant que la catégorie est cofibrement engendrée, qu’elle soit com-

binatoire découle du lemme 3.1.28 ; les objets (∂∆n
• ,∆

n
• )n≥0 sont en effet générateurs

de la catégorie (et compacts, en particulier petits). �

Exercice 3.2.10. (1) Démontrer qu’il existe des fibrations de Kan qui ne sont pas
surjectives en tout degré simplicial. A quelle autre structure de modèle ce
résultat vous-fait il penser ?

(2) Démontrer qu’une fibration de Kan acyclique est surjective en tout degré
simplicial.

La réalisation géométrique se comporte par ailleurs bien par rapport aux fibra-
tions :

Proposition 3.2.11 (Quillen). La réalisation géométrique d’une fibration de Kan est
une fibration de Serre.
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On renvoie à [12] pour une preuve 67.

SoitX•, Y• des ensembles simpliciaux. L’ensemble des morphismes HomsEns(X•, Y•)
peut être enrichi dans sEns (c’est à dire muni d’une structure d’ensemble simplicial
dont les sommets sont exactements les morphismes d’ensembles simpliciaux).

Définition 3.2.12. On note Map•(X•, Y•) l’ensemble simplicial dont les n-simplexes
sont

Mapn(X•, Y•) := HomsEns(X• ×∆n
• , Y•)

dont la structure simpliciale est donnée par la structure cosimpliciale de n 7→ ∆n
•

(voir remarque 3.1.14).

Terminologie 3.2.13. On appellera Map•(X•, Y•) l’espace des morphismes simpli-
ciaux de X• vers Y•.

Les 0-simplexes de Map•(X•, Y•) sont donc précisément les morphismes d’en-
sembles simpliciaux de X• vers Y•

68.

Remarque 3.2.14. Le lemme de Yoneda pour les ensembles simpliciaux 3.1.13 se
retraduit en termes d’espace des morphismes.

Lemme 3.2.15. Il y a un ismomorphisme naturel Map•(∆
0
•, X•)

∼= X• d’ensembles
simpliciaux.

Démonstration. Comme ∆0
•×∆n

•
∼= ∆n

• , le lemme 3.1.13 nous donne pour chaque n
un isomorphisme ψn : Mapn(∆0

•, X•)
∼= HomsEns(∆

n
• , X•)

∼= Xn, qui est défini par

f• 7→ fn
(
[n]

id→ [n]
)
. La structure simpliciale de Map•(Z•, X•) est déterminée par la

structure cosimpliciale de ([n] 7→ ∆n
• = Hom∆([•], [n]) donnée par composition au

but, notée h∗. Ainsi pour tout h : [n]→ [m] croissante et f• : Hom∆([•], [m])→ X•,
on a

ψn ◦ h∗(f•) = ψn(f• ◦ h∗) = ((f• ◦ h∗)n(id[n]) = fm(h) = h∗ ◦ ψm(f•)

ce qui nous donne bien que ψ• est un morphisme d’ensembles simpliciaux. �

Lemme 3.2.16. On a un isomorphisme naturel (en les 3 variables)

HomsEns

(
L•,Map•(K•, X•)

) ∼= HomsEns(L• ×K•, X•)

Démonstration. L’application ψ : HomsEns

(
L•,Map•(K•, X•)

)
→ HomsEns(L• ×

K•, X•) est donnée explicitement par

f = (fn)n≥0 7→
(
L• ×K•

f×id−→ Map•(K•, X•)×K•
eval−→ X•

)
où le morphisme d’évaluation eval = (evaln : Mapn(K•, X•) × Kn → Xn)n∈N est
donnée, en tout degré n ∈ N, pour hn ∈ Mapn(K•, X•) = HomsEns(K• ×∆n

• , X•)
69

et κn ∈ Kn, par

evaln(hn, κn) := hn(κn, [n]
id→ [n]).

67. si la fibration de Kan X• → Y • est acyclique, on peut démontrer plus facilement que sa
réalisation est un rétracte d’une projection |W•|× |Y•| → |Y•| (ce qui provient du résultat analogue
avant de passer aux réalisations) où W• est contractile et donc une fibration de Serre ; forcément
acyclique par définition des équivalencees faibles

68. et on doit penser à ses 1-simplexes comme les chemins ou homotopies entre morphismes etc
69. on a donc que chaque hn est une collection hn,i : Ki ×∆n

i → Xi (pour i ∈ N) qui commute
avec les opérateurs de face et dégénérescences. On omettra l’indice i dans la notation dans la suite
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On notera que dans la formule on utilise que la composante hn,n de de degré n dans
hn = (hn,i : Ki ×∆n

i → Xi)i≥0. On a que pour tout hn : K• ×∆n
• → X•, κn ∈ Kn,

di
(
evaln(hn, κn)

)
= di

(
hn(κn, [n]

id→ [n])
)

= hn(di(κn), [n− 1]
di→ [n]) car hn est simpliciale.

Mais, comme la face di(hn) : K• × ∆n−1
• → X• est donné, pour tout j ∈ N, par

di(hn)(κj, [j]
p→ [n− 1]) = hn(κj, [j]

di◦p→ [n]), on a aussi que

evaln−1

(
di(hn), di(κn)

)
= di(hn)

(
di(κn), [n− 1]

id→ [n− 1])
)

= hn(di(κn), [n− 1]
di→ [n])

ce qui assure que eval commute bien avec les faces. On montre de même qu’il com-
mute avec les sj et ainsi que eval est bien un morphisme d’ensembles simpliciaux.
Donc eval◦f×id est également un morphisme d’ensembles simpliciaux. la réciproque
de ψ est construite comme suit. Notons, pour tout morphisme f : [k]→ [m] dans ∆ et
tout ensemble simplicial Z•, f

∗ : Zm → Zk l’application induite par la structure sim-
pliciale de Z•. On définit ϕ : HomsEns(L• ×K•, X•)→ HomsEns

(
L•,Map•(K•, X•)

)
comme donné, pour tout morphisme simplicial h• : L• × K• → X• et pour tout
`n ∈ Ln, par l’élément ϕ(h•)(`n) : K• ×∆n

• → X•, défini par la formule, pour tout

κi ∈ Ki et [i]
f→ [n] ∈ ∆n

i , donnée par

ϕ(h•)(`n)(κi, [i]
f→ [n]) = hi

(
f ∗(`n), κi)

)
∈ Xi.

Que ϕ(h•)(`n) : K• ×∆n
• → X• soit un morphisme d’ensemble simpliciaux découle

du fait que h• en est un et que di = (di)∗. Par ailleurs, on vérifie comme pour ψ que
`n 7→ ϕ(h•) est un morphisme d’ensembles simpliciaux de L• dans Map•(K•, X•).

On vérifie alors que ϕ est bien un inverse de ψ (ce qui revient au même genre de
calcul que le dernier point). �

Le point suivant est un point important et a des variantes et généralisations dans
de nombreuses catégories de modèles. Notons que si i : L• → K• et f : X• → Y• sont
des morphismes simpliciaux, alors, la pré-composition par i et la post-composition
par f donne un diagramme commutatif

Map•(K•, X•)
f◦− //

−◦i
��

Map•(K•, Y•)

−◦i
��

Map•(L•, X•)
f◦− // Map•(L•, Y•)

dont on déduit un morphisme d’ensemble simplicial canonique Map•(K•, X•) −→
Map•(L•, X•)×Map•(L•,Y•) Map•(K•, Y•).

Lemme 3.2.17. Soit L• ⊂ K• une cofibration et f : X• � Y• une fibration de Kan.
Alors le morphisme canonique

Map•(K•, X•) −→ Map•(L•, X•)×Map•(L•,Y•) Map•(K•, Y•)

est une fibration de Kan.
Si de plus L• ⊂ K• est une cofibration acyclique 70 ou que f est une fibration

acyclique, alors c’est une fibration acyclique.

70. ce qui implique que sa réalisation géométrique est un rétracte par déformation
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Démonstration. Pour la première assertion, il faut montrer que Map•(∆
1
•, X•)→ X•

a la propriété de relèvement à droite par rapport aux inclusions Λn
r,• ↪→ ∆n

• . Pour
la deuxième partie, par la caractérisation des fibrations acycliques (lemme 3.2.9),
il faut montrer que Map•(∆

1
•, X•) → X• a la propriété de relèvement à droite par

rapport aux inclusions ∂∆n
• ↪→ ∆n

• . Démontrons la deuxième dans le cas L• ⊂ K•
est une cofibration acyclique.

De la propriété fondamentale de Map•(Z•,W•) donnée par le lemme 3.2.16, on
déduit qu’un diagramme commutatif

∂∆n
•� _

��

// Map•(K•, X•)

��
∆n
•

//

55

Map•(L•, X•) ×
Map•(L•,Y•)

Map•(K•, Y•)

est équivalent à un diagramme

∂∆n
• ×K• ∪∂∆n

•×L• ∆n
• × L• //

� _

��

X•

��
∆n
• ×K• //

55

Y•

La flèche de gauche est une cofibration acyclique, c’est à dire a la propriété de
relèvement par rapport à toutes les fibrations de Kan, d’après le lemme 3.2.9.(3). Le
relèvement existe donc puisque la flèche de droite est une fibration de Kan. Si on a
supposé que c’est f : X → Y qui est une fibration acyclique, alors on raisonne de la
même façon en utilisant seulement que la flèche de gauche est une cofibration (elle
est injective).

Pour la première assertion, par le même argument, on est ramené à étudier l’exis-
tence de relèvement dans le diagramme

Λn
r,• ×K• ∪Λnr,•×L• ∆n

• × L• //
� _

��

X•

��
∆n
• ×K• //

55

Y•

et on a encore que la flèche de gauche est une cofibration acyclique (cette fois ci car
Λn
r,• ⊂ ∆n

• l’est). �

La structure de modèle a pour conséquence le corollaire important suivant, qui
explique pourquoi les ensembles simpliciaux encodent les types d’homotopie faibles.

Corollaire 3.2.18 (Quillen). ) L’adjonction | − | : sEns
,,
Topll : Sing•(−). est

une équivalence de Quillen. En particulier les catégories homotopiques de Top et
sEns sont équivalentes.

Remarque 3.2.19. Comme la réalisation géométrique se factorise au travers des CW-
complexes et donc des espaces compactement engendrés de Hausdorff, cette équiva-
lence de Quillen identifie aussi les catégories homotopiques des ensembles simpliciaux
avec celle des types d’homotopies d’espaces homotopes à des CW-complexes.
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En particulier la counité de l’adjonction δY : |Sing•(Y )| → Y est donc une
équivalence d’homotopie faible pour tout espace Y . Comme |Sing•(Y )| est un CW-
complexe, cela prouve que tout espace topologique est fonctoriellement faiblement
homotopiquement équivalent à un CW-complexe.

Démonstration. Nous ne donnons que les grandes lignes de l’argument. Il faut com-
mencer par montrer que l’adjonction est de Quillen. Pour cela, il suffit de voir
que l’ensemble simplicial Sing• préserve fibrations et fibrations acycliques (d’où il
découlera immédaitement que la réalisation géométrique préserve cofibrations et
cofibrations acycliques Lemme 2.5.5). Or on a vu que Sing• préserve les fibra-
tions (lemme 3.2.5). Il préserve aussi les fibrations acycliques. En effet : par le
lemme 3.2.9.(1) et l’argument du lemme 3.2.5, on a que Sing• envoie les fibrations
acycliques sur les applications ayant la propriété de relèvement par rapport aux
inclusions Sn−1 ↪→ In. Or ces dernières sont exactement les fibrations de Serre acy-
cliques (voir la feuille de TD 3). Ainsi Sing• est de Quillen à droite et donc | − | de
Quillen à gauche.

Pour voir que c’est une équivalence de Quillen, en vertu de la Proposition 2.5.22, il
suffit de montrer que pour tout ensemble simplicial A• (nécessairement cofibrant) et
tout espace topologique Y (nécessairement fibrant), on a qu’une application continue
f : |A•| → Y est une équivalence d’homotopie faible si et seulement si le morphisme
adjoint φf : A• → Sing•(Y ) est une équivalence faible dans sEns, c’est à dire que
|φf | : |A•| → |Sing•(Y )| est une équivalence d’homotopie faible.

La counité de l’adjonction nous donne le diagramme commutatif :

|A•|
f //

|φf | %%

Y.

|Sing•(Y )|
δY

::

Ainsi il suffit de montrer que la counité δY : |Sing•(Y )| → Y est une équivalence
d’homotopie faible. Pour cela on va utiliser les groupes d’homotopie simpliciaux de
la section 3.3.

Comme Sing•(Y ) est fibrant, il résulte de la proposition 3.3.13 dans la section
suivante que pour tout v ∈ Y (également identifié avec l’application constante ∆n →
Y qui vaut v en tout point), on a πn(|Sing•(Y )|, |v|) ∼= πn(Sing•(Y ), v) où les groupes
d’homotopie à droite sont les groupes d’homotopie simpliciaux. Or on a vu dans le
lemme 3.3.9 que tout élément de πn(Sing•(Y ), v) est représenté par un morphisme
α : ∆n

• → Sing•(Y ) dont la restriction à ∂∆n
• est le morphisme constant v. Par

adjonction, on a que ces morphismes sont en bijection avec ceux de ∆n ∼= |∆n
• | → Y

qui envoie Sn−1 ∼= |∂∆n
• | sur v. De même,

HomsEns(∆
n
• ×∆1

•, Sing•(Y )) ∼= HomTop(|∆n
• ×∆1

•|, Y )

∼= HomTop(|∆n
• | × |∆1

•|, Y ) ∼= HomTop(∆n × I, Y )

car le produit d’ensembles simpliciaux finis commute avec la réalisation géométrique
(Proposition 3.1.26). �
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Figure 10. La relation de symétrie à gauche et de transitivité à droite.

3.3. Groupes d’homotopie simpliciaux

On explique ici une version purement combinatoire des groupes d’homotopie. Au
vu de la Proposition 2.2.20, les relations d’homotopie donnent une relation d’équi-
valence sur les morphismes si la source est cofibrante et la cible est fibrante. Dans
les espaces topologiques, pour étudier les groupes d’homotopie, cela ne pose aucun
problème puisque tout espace est fibrant et que les sphères sont cofibrantes (voir
par ailleurs exercice 2.2.30). En revanche cette hypothèse ne tient plus pour des
ensembles simpliciaux et va nous obliger à considérer des ensembles simpliciaux fi-
brants.

Commençons par la relation d’homotopie entre sommets.

Définition 3.3.1. Deux sommets x0, x1 dans X0 sont dits homotopes, noté x0 ∼ x1

si il existe un 1-simplexe H ∈ X1 tel que

d0(σ) = x1 et d1(σ) = x0.

Lemme 3.3.2. Si X• est fibrant, la relation d’homotopie entre les sommets est une
relation d’équivalence.

Notation 3.3.3. On note π0(X•) := X0 / ∼ le quotient de X0 par la relation d’ho-
motopie sur les sommets.

Démonstration. La réflexivité de ∼ est donnée par s0(x) et la relation d0s0(x) =
d1s0(x) = x. La symétrie et la transitivité sont exhibées par la figure 10 où on
a dessiné en rouge deux arêtes données et en pointillé bleu l’arête qui existe par
proprièté de relèvement d’un morphisme du 2-simplexe par rapport à un morphisme
défini seulement sur un cornet.

�

Exemple 3.3.4. Montrons que la relation d’homotopie n’est pas symétrique sur ∆n
•

(pour n ≥ 1). Ce qui en particulier prouve que ce dernier n’est pas fibrant. Consi-
dérons les sommets 0 et 1 (donné par les applications 0 7→ 0, 1), le 1-simplexe non
dégénéré f(0) = 0, f(1) = 1 donne une homotopie entre 0 et 1. Mais il n’y a aucune
arête de 1 vers 0 car une telle arête serait une application strictement décroissante
de [1] dans [n].

Lemme 3.3.5. Si X• est fibrant, on a un isomorphisme naturel π0(X•) ∼= π0(|X•|).

Démonstration. Notons, pour v ∈ X0, X•|v le sous-ensemble simplicial formés de
tous les simplexes dont l’une des faces itérées est v. Par le lemme précédent, on a
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que si v ∼ w, alors X•|v = X•|w. On en déduit que X• =
∐

[v]∈π0(X•)
X•|v. Puisque la

réalisation géométrique commute avec les colimites, on a |X•| ∼=
∐

[v]∈π0(X•)
|X•|v|.

Par ailleurs, tout simplexe de X•|v est relié à v par une suite de faces. Il suit de la
description explicite de la réalisation géométrique que |X•|v| est connexe par arcs.
Ce qui conclut la preuve. �

Il y a plusieurs façons équivalentes de définir les groupes d’homotopie supérieurs.
Nous allons en donner une qui généralise trivialement la précédente. Remarquons que
les groupes d’homotopie supérieurs πn(X, x) d’un espace topologique sont simple-
ment les classes d’homotopie de l’espace topologique (muni de la topologie compact-
ouverte) Ωn

xX := {f : In → X, / f(∂In) = x}. Cet espace étant la fibre de l’appli-
cation de restriction envoyant f : In → X sur f : ∂In → X, on généralise cette
définition comme suit. On définit

Notation 3.3.6. Soit v ∈ X0. On note

Ωn
v (X•)• := Fibrev

(
Map•(∆

n
• , X•)→ Map•(∂∆n

• , X•)
)

la fibre en l’application constante v de l’application de restriction.

Comme ∂∆n
• → ∆n

• est une cofibration (elle est injective), l’ensemble simplicial
Ωn
v (X•)• est fibrant par le lemme 3.2.17.

Définition 3.3.7. Soit X• un ensemble simplicial fibrant. Pour tout sommet v ∈ X•,
on définit, le nième groupe d’homotopie simpliciale en v de X• par

πn(X•, v) := π0

(
Ωn
v (X•)•

)
Remarque 3.3.8. Les 0-simplexes de Ωn

v (X•)• sont donc exactement les morphismes
d’ensembles simpliciaux ∆n

• → X• dont la restriction à ∂∆n
• est constante égale

à v. Leur réalisation est donc une application continue de In dans |X•| dont la
restriction au bord est constante égale au point |v|. En particulier un 0-simplexe
définit un élément de πn(|X•|, |v|).

Par ailleurs les 1-simplexe de Ωn
v (X•)• sont exactement les morphismes d’en-

sembles simpliciaux ∆n
• ×∆1

• → X• dont la restriction à ∂(∆n
• ) ×∆1

• est constante
égale à v. Ses restriction à ∆n

• × {0} et ∆n
• × {0} définissent deux 0-simplexes f•, g•

comme ci-dessus et sa réalisation géométrique définit une homotopie entre les réali-
sations de f• et g•.

Le lemme suivant donne deux autres caractérisations naturelles des groupes d’ho-
motopie supérieurs. Le premier point découle essentiellement de la remarque précé-
dente.

Lemme 3.3.9. Soit X• un ensemble simplicial fibrant et v ∈ X0. On a des bijections
naturelles entre πn(X•, v) et

(1) l’ensemble des classes d’équivalence {f ∈ HomsEns(∆
n
• , X•) / f(∂∆n

• ) = v}/ ∼
où la relation d’homotopie est la relation f ∼ g si il existe H : ∆n

•×∆1
• → X•

tel que H |∂∆n
•×∆1

•
= v, H |∆n

•×{0} = f et H |∆n
•×{1} = g 71,

71. on utilise la notation évidente {0} et {1} pour les deux sommets de ∆1
•, c’est à dire que

d0([1]
id→ [1]) = {1} et d1([1]

id→ [1]) = {0}
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(2) ainsi que l’ensemble des classes d’équivalences de {σ ∈ Xn / di(σ) = v}/ ∼
de n-simplexes dont toutes les faces sont (l’image par des dégénérescences
de) v et où la relation ∼ est donnée par σ ∼ τ si il existe un n+ 1-simplexe
K ∈ Xn+1 tel que dn+1(K) = σ, dn(K) = τ et di<n(K) = v.

Le fait que les relations sont bien des relations d’équivalence se démontre par des

méthodes similaires à celle du lemme 3.3.2. On peut remarquer que ∆n
• ×∆1

•
proj→ ∆n

•
est un cylindre fonctoriel pour ∆n

• (et utiliser une preuve similaire à celle de la
proposition 2.2.20 et l’universalité de ce cylindre pour en déduire le résultat).

Remarque 3.3.10. Si f : X• → Y• est un morphisme d’ensembles simpliciaux,
alors les morphismes induits Map•(∆

n
• , X•) → Map•(∆

n
• , Y•), Map•(∂∆n

• , X•) →
Map•(∂∆n

• , Y•) et par suite des applications f∗ : πn(X•, v) → πn(Y•, f(v)) (pour
n’importe quel modèle choisi) vérifiant évidemment f∗ ◦ g∗ = (f ◦ g)∗, id∗ = id.

Lemme 3.3.11. Soit f : X• → Y• une fibration de Kan acyclique entre ensembles
simpliciaux fibrants. Alors f∗ : π0(X•) → π0(Y•) est une bijection et, pour tout
v ∈ X0, n > 0, f∗ : πn(X•, v)→ πn(Y•, f(v)) est également une bijection.

Remarque 3.3.12. En utilisant le lemme de Brown 2.5.8, on en déduit que toute
équivalence faible entre ensembles simpliciaux fibrants induits des bijection sur les
πn.

Preuve du Lemme 3.3.11. Montrons l’injectivité de f∗. Soit α, β : ∆n → X• repré-
sentant des classes de πn(X•, v) ; on note encore α et β leurs restrictions, qui sont
constantes ègales à v, à ∂∆n

• . Supposons que α et β sont équivalentes dans Y•. Donc
qu’il existe H : ∆n

• × ∆1
• → Y• une homotopie entre f ◦ α et f ◦ β. On a un carré

commutatif

∆n
• × ∂∆1

•� _

��

α∪β // X•

o f
����

∆n
• ×∆1

• H
//

H̃

::

Y•

.

Le relèvement H̃ existe car la flèche verticale de gauche est une cofibration (elle est
injective) et donne que α ∼ β. La surjectivité est similaire en utilisant le relèvement :

∂∆n
•� _

��

t• 7→v // X•

o f
����

∆n
• α

//

α̃
==

Y•.

�

Les groupes d’homotopie d’un ensemble simplicial fibrant s’identifient avec ceux
de la réalisation géométrique.

Proposition 3.3.13. Soit X• un ensemble simplicial fibrant. On a une bijection na-
turelle

πn(X•, v) ∼= πn(|X•|, |v|)

Ceci démontre qu’en particulier les groupes d’homotopie simpliciaux sont bien des
groupes pour n ≥ 1.
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Exercice 3.3.14. Définir la structure de groupe de πn(X•, v) en utilisant les modèles
simpliciaux du lemme 3.3.9.

Une méthode pour démontrer la proposition précédente est d’utiliser la longue
suite exacte d’une fibration de Kan. Soit p : E• → B• une fibration de Kan entre
ensembles simpliciaux fibrants. Soit b ∈ B0 et v ∈ E0 tel que p(v) = b. On note
Fb,• la fibre en b de p, et i son inclusion dans E•. Cette fibre est fibrante puisque
le tiré en arrière d’une fibration est une fibration. On a une application naturelle
∂ : πn(B•, b)→ πn−1(Fb,•, v) donnée par la construction suivante. Soit f : ∆n

• → B•
un représentant d’une classe dans πn(B•, b). On a un carré commutatif

Λn
n,•

{v}
//

� _

��

E•

p

��
∆n
•

h
==

f
// B

et, comme p est une fibration de Kan, le relèvement h dans ce diagramme existe
et fait commuter les triangles. En particulier, p ◦ dn(h) = b implique 72 que dn(h) :
∆n−1
• → E• est à valeur dans Fb,• et vaut v sur ses faces (par la commutativité

du diagramme supérieur). Ainsi dn(h) définit une classe, que l’on note ∂([f ]) dans
πn−1(Fb,•, v). Une preuve similaire à celle du lemme 1.6.12 montre

Lemme 3.3.15. L’application [f ] 7→ ∂([f ]) est indépendante du choix du représentant
f dans πn(B•, b).

La proposition suivante peut se démontrer essentiellement comme son analogue
topologique (théorème 1.6.14) en introduisant des groupes d’homotopie simpliciaux
relatifs (en utilisant la définition 3.3.9.(1)).

Proposition 3.3.16. Soit p : E• → B• une fibration de Kan entre ensembles simpli-
ciaux fibrants. La suite longue suivante est exacte

· · · → πn(Fb,•, v)
i∗→ πn(E•, v)

p∗→ πn(B•, b)
∂→ πn−1(Fb,•, v)→ . . .

Démonstration de la proposition 3.3.13. La preuve se fait par récurrence en partant
du lemme 3.3.2 qui établit l’initialisation. Plus exactement supposons avoir démon-
tré que pour tout ensemble simplicial fibrant Z• on a, pour tout point z ∈ Z0 que
πi≤n−1(Z•, z) = πi≤n−1(|Z•|, |z|) et démontrons la bijection entre les groupes d’hom-
topies pour tout ensemble simplicial X• en degré n. On définit ensuite l’espace des
chemins Pv(X•)• en v ∈ X0 comme le tiré en arrière

Pv(X•)• //

π

��

Map(∆1
•, X•)

(d∗0,d
∗
1)

��
X•

v×id // X• ×X•
où la flèche verticale de droite est donnée par les deux restrictions aux inclusions
{0, 1} ∼= ∂∆1

• ↪→ ∆1
•. L’application verticale de droite est une fibration de Kan par le

lemme 3.2.17 et donc celle de gauche aussi. On a de plus que Ω1
v(X•)• est isomorphe

à la fibre en v de cette fibration π : Pv(X•)• → X•. Par ailleurs on peut montrer que

72. on utilise qu’un morphisme ∆m
• → Y• est la même chose qu’un élément, ici donné par une

face d’un élément, de Ym
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la composée : Pv(X•)• → X• → {v} est une fibration acyclique. Pour le voir, il suf-
fit de montrer que Map•(∆

1
•, X•)→ Map•(∆

0
•, X•)

∼= X• est une fibration acyclique
(puisque la précédente est un tiré en arrière de celle-ci) ce qui découle du lemme 3.2.9.
Le lemme 3.3.11 garantit alors que les πn(Pv(X•)•, v) sont triviaux. Il suit alors de
la longue suite exacte d’une fibration que πn−1(Ω1

v(X•)•)
∼= πn(X•, v). La réalisa-

tion géométrique d’une fibration (acyclique en l’occurence) est une fibration par le
lemme 3.2.11, et |Pv(X•)•| → |∆0

•| = {∗} est une équivalence faible (puisque c’est
la réalisation d’une fibration acyclique, donc d’une équivalence faible). Il suit qu’on
a aussi un isomorphisme πn−1(|Ω1

v(X•)•| ∼= πn(|X•|, |v|) qui provient de la longue
suite exacte d’une fibration de Serre (théorème 1.6.14). L’hypothèse de récurrence
nous permet alors de conclure. La difficulté dans les derniers arguments provient du
fait qu’on a pas que la réalisation géométrique de Ωn

v (X•)•) est Ωn(|X•|). La preuve
ci-dessus nous indique cependant que ces deux espaces topologiques sont faiblements
homotopiquement équivalents. �

Remarque 3.3.17. Pour tout ensemble simplicial X, on peut définir ses groupes d’ho-
motopie en considérant ceux d’un remplacement fibrant. Puisque deux remplacement
fibrants sont faiblement équivalents, et que leur groupes d’homotopie sont équiva-
lents à ceux de leur réalisation géométrique il suit que les groupes d’homotopie
simpliciaux ne dépendent pas du remplacement fibrants par la remarque 3.3.12.

Notation 3.3.18. Soit X• un ensemble simplicial et v ∈ X0 un sommet. On note
πn(X•, x) ∼= πn(R(X•), R(x)) le n-ième groupe d’homotopie simpliciale de X en x.
Ici on note R(v) l’image de v par le morphisme X0 → R(X•)0.

Par ailleurs, nous pouvons choisir un remplacement fibrant fonctoriel X 7→ R(X)
et pour tout morphisme f : X → Y un morphisme d’ensembles simpliciaux R(f) :
R(X) → R(Y ) qui par composition induit un morphisme de groupes f∗ := R(f)∗ :
π(R(X), x)→ π(R(Y ), R(f)(x)). On en déduit

Proposition 3.3.19. Les groupes d’homotopie simpliciaux 73 sont fonctoriels sur sEns
et f : X → Y est une équivalence faible si et seulement si f∗ : π0(X) → Π0(Y ) est
une bijection et f∗ : πn(X, x) → πn(Y, f(x)) est un isomorphisme pour tout n et
sommet x0 ∈ X0

3.4. Généralisations et application aux colimites homotopiques

La théorie homotopique des ensembles simpliciaux des sections précédentes s’adapte
à d’autres catégories algébriques. Elle permet de définir des structures de modèle
pour les objets simpliciaux dans un nombre important de catégories.

C’est en particulier le cas si les objets de C sont naturellement des ensembles. Soit
donc U : C→ Ens un foncteur (qui en pratique sera souvent un “oubli” de structure
supplémentaire) qui est un adjoint à droite. On note F son adjoint à gauche.

Exemple 3.4.1. Par exemple on pourra considérer les catégories Ab des groupes abé-
liens, Ch(R), Ch≥0(R), Ch≤0(R), les catéories de d’algèbres associatives, algèbres
commutatives, ou algèbres de Lie (et même leurs versiosn différentielles graduées),
où U est simplement le foncteur oubliant la structure additive/algébrique supplé-
mentaire. Dans le premier cas F (X) = Z < X > le Z-module libre de base les
éléments de X et pour les versions algébriques, le foncteur F est le foncteur algèbre
(de Lie, associative, commutative) libre associé à un ensemble.

73. défini comme ceux du remplacement fibrant
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Notons que l’adjonction F : Ens
**
Cll : U s’étend aux objets simpliciaux

en appliquant les foncteurs U , F en chaque degré (les bijections entre les Hom en
chaque degré étant automatiquement compatibles avec les opérations simpliciales

par naturalité) pour donner une adjonction F : sEns
++
sCll : U .

On définit une structure de modèle sur les objets simpliciaux sC comme suit :

les équivalences faibles: sont les f : X• → Y• tels que U(f) est une équivalence
faible dans sEns ;

les fibrations: sont les f : X• → Y• tels que U(f) est une fibration dans sEns ;
les cofibrations: sont les morphismes avec la propriété de relèvement à gauche par

rapport aux fibrations acycliques.

Soit l’hypothèse

(*) : les cofibrations définies par la propriété précédente et qui ont la propriété
de relèvement par rapport à toutes les fibrations sont des équivalences faibles.

Cette hypothèse est évidemment nécessaire pour que la structure précédente soit
bien une structure de modèle. Cette hypothèse est vérifiée par les exemples 3.4.1.

Corollaire 3.4.2. Supposons de plus que C soit complète et cocomplète, que la flèche
naturelle colimn∈N(U(Xn)) → U(colimNXn) soit un isomorphisme et que (∗) soit
vérifiée. Alors sC munie de la structure précédente est une catégorie de modèle
cofibrement engendrée et l’adjonction induite par U et F est de Quillen.

Démonstration. Comme les (co)limites de sC se calculent terme à terme, sC est
complète et cocomplète. Le résultat est alors un cas particulier du Théorème 5.2.3
où on prend la structure de modèle de sEns comme structure de base. �

Exemple 3.4.3 (Équivalence de Dold Kan). On peut identifier la structure projective
sur les complexes de chaines avec la précédente. Soit N : sAb→ Ch≥0(Z) le foncteur
défini par N(A•) est le complexe ⊕n≥0An/=(si(An−1)) (c’est à dire qu’on quotiente
les An par l’image des dégénérescences) muni de la différentielle d :=

∑n
i=0 di :

Nn(A•) → Nn−1(A•). On vérifie que d passe au quotient et est de carré nul (c’est
comme pour l’homologie singulière).

Théorème 3.4.4 (Dold-Kan + Quillen). Le foncteur N : sAb → Ch≥0(Z) est une
équivalence de catégorie qui est également une équivalence de Quillen entre les struc-
tures de modèle du Théorème 3.4.2 à gauche et la structure projective à droite.

Démonstration. L’inverse du foncteurN est donné, pour un complexe C = (
⊕

i≥0Ci, b),
par

F (C)• := [n] 7→ F (C)n =
⊕
p≤n

⊕
ϕ : [n]→ [p] ∈ sEns
tels que ϕ est surjective.

Cp.

La structure simpliciale est donnée, pour tout f : [n] → [m] dans ∆, de la façon
suivante. Pour tout ψ : [m] � [q], on considère les uniques factorisations, associées
à toute surjection ψ : [m]→ [q],

[n]

ϕ
����

f // [m]

ψ
����

[p] �
� // [q]
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en une surjection ϕ et une inclusion. Si p = q, alors l’application induite de la com-
posante Cp = Cq associée à ψ est l’isomorphisme naturel avec la même composante
associée à φ. Si q = p + 1 et que [p + 1] ↪→ [p] est la codégénérescence sp, alors on
envoie la composante Cp+1 correspondant à ψ sur la composante Cp correspondante

à ϕ par la différentielle Cp+1
b→ Cp. Dans les autres cas, on utilise l’application nulle.

Au total on a défini une application f ∗ : F (C)m → F (C)n. On vérifie ensuite que ce
foncteur est bien l’inverse de N . �

Remarque 3.4.5. Quillen a également montré une que si C est une catégorie com-
plète et cocomplète et qui possède suffisamment d’objets projectifs, alors on peut
construire une structure de modèle dont les équivalences faibles (resp. les fibrations)
sont les applications f : X• → Y• telles que, pour tout objet projectif P de C, le
morphisme induit d’ensembles simpliciaux 74

HomC(P,X•)
f◦−−→ HomC(P, Y•)

est une équivalence faible (resp. une fibration). Les cofibrations sont évidemment
définies par la propriété de relèvement à gauche.

Proposition 3.4.6 (Quillen). Si C vérifie que tout objet de sC est fibrant, alors la
structure précédente est de modèle.

L’hypothèse est notamment vérifiée pour les C = Ab (exercice). On peut alors
vérifier que la structure obtenue est Quillen équivalente à la précédente.

On peut utiliser les méthodes simpliciales pour calculer des colimites homotopiques
dans Top (et dans le cas de toute catégorie de modèle simpliciale, voir ci-dessous).
Soit F : D → Top un diagramme (autrement dit un foncteur issu d’une petite
catégorie D). On définit un espace topologique simplicial 75 N•(F ) comme suit :

Nn(F ) =
∐

i0
f1←−i0

f2←−···←−in−1
fn←−in

F (in).

Les faces dj : Nn(F ) → Nn−1(F ), pour j < n, envoie identiquement F (in) sur lui
même vu comme étant dans la composante associée à la suite de compositions

i0
f1←− i0

f2←− · · · ij−1
fj◦fj+1←− ij+1 ←− · · · ←− in−1

fn←− in

(c’est à dire qu’elles sautent l’objet ij) et la dernière face dn envoie F (in) vers F (in−1)
via l’application F (f) : F (in) → F (in−1), ce dernier étant vu dans la composante

de la suite de compositions i0
f1←− i0

f2←− · · · fn−1←− in−1. Enfin les dégénérescences
sj consistent à intercaler des identités, c’est à dire envoie F (in) identiquement sur
lui-même mais vu dans la composante associée à la suite de compositions

i0
f1←− i0

f2←− · · · fj←− ij
id←− ij

fj+1←− ij+1 · · · ←− in−1
fn←− in.

Identifions tout espace topologiqueX avec un objet simplicial constant (exemple 3.1.24).
Par définition, chaque F (in) s’envoie dans la colimite colimD F (i) et ceci produit un

74. Si X• est simplicial dans C, sa structure induit par fonctorialité une structure d’ensemble
simpliciaux sur les ensembles de morphismes HomC(A,X•) pour tout objet A

75. en utilisant le nerf de la catégorie D pour définir la structure simpliciale, voir la feuille de
TD 5.
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morphisme d’espace topologiques simpliciaux

N•(F )→ colim
D

F (i).

La réalisation géométrique s’étend des ensembles simpliciaux aux espaces topolo-
giques simpliciaux par exactement la même formule 76 (à la différence que cette fois
ci, Xn n’est plus discret).

Proposition 3.4.7. La réalisation géométrique |N•(F )| calcule la colimite homoto-
pique de F . C’est à dire qu’il y a un isomorphisme naturel

|N•(F )| ∼= LcolimF

dans Ho(Top).

On peut en fait montrer la chose suivante. Pour tout objet j ∈ D, on note D|j la
catégorie des objets au dessus de j, dont les objets sont les flèches f : i → j d’un

objet quelconque de D vers j, et les morphismes entre i
f→ j et i′

f ′→ j sont les

triangles commutatifs i
f //

��

j

i′
f ′

@@ dans D. On note alors F|j : D|j → Top le foncteur

induit par F , qui à un objet i
f→ j associe l’objet F (i). Notons que toute flèche

j → k dans D induit un foncteur naturel D|j → D|k par post-composition par cette
flèche.

Soit

Lj(F ) := |N•(F|j)|.
L’espace topologique simplicial N•(F|j) diffère de N•(F ) en ce que l’on a changé la
catégorie indiçant les coproduits. On a un morphisme naturel N•(F|j) → F (j) (vu

comme espace simplicial constant) donnée par les flèches i
f→ j dans la définition des

objets de la catégorie D|j. On en déduit une application Lj(F ) → F (j) en pasant
aux réalisations géométriques.

Lemme 3.4.8. L’application naturelle Lj(F )→ F (j) est une équivalence d’homoto-
pie faible.

Le lemme est essentiellement du au fait qu’on a un objet terminal dans la catégorie
D|j qui induit une homotopie entre son nerf et le point.

Comme la construction de D|j est fonctorielle, on obtient un foncteur L∗(F ) :
D→ Top qui à j associe Lj(F ).

Lemme 3.4.9. Le foncteur L∗(F ) est cofibrant dans la structure de modèle projective
pour les diagrammes à valeur dans Top.

Comme les flèches Lj(F ) → F (j) sont naturelles, on obtient une transformation
naturelle (c’est à dire une flèche de TopD)

L∗(F ) −→ F

76. dans le cadre des espaces topologiques simpliciaux, la réalisation géométrique n’est évidem-
ment plus forcément un CW-complexe, à moins que les dégénérescences ne soient des applications
cellulaires
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qui par le lemme 3.4.8 est une équivalence faible dans la catégorie des diagrammes.
Ainsi les deux lemmes précédents montrent que L∗(F ) −→ F est un remplacement
cofibrant dans la structure de modèle projective de TopD. La proposition 3.4.7 en
résulte car

|N•(F )| ∼= colim
D

L∗(F )

(voir la remarque 2.6.12).

Les résultats précédents sur les colimites homotopiques s’étendent à toute ca-
tégorie de modèle simpliciale, c’est à dire une catégorie de modèle dont les mor-
phismes sont enrichis dans sEns et vérifient les résultats du Lemme 3.2.17. La défi-
nition 4.4.26 précise de cette notion est donnée dans la partie 4.4.

Exemple 3.4.10. La catégorie sEns est simpliciale (grace au lemme 3.2.17). Les
catégories de préfaisceaux Fun(D, sEns) munie de la structure projective sont aussi
simpliciales.
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IV. Notions d’∞-catégories

Nous allons dans ce chap̂ıtre introduire la notion d’∞-catégorie 77. Une de nos mo-
tivations sera de voir les∞-catégories comme un relèvement des catégories homoto-
piques Ho(C) d’une catégorie de modèle, c’est à dire comme un objet qui n’inverse
pas seulement les équivalences faibles, mais retient une information “ homotopique”
supérieure. Cette information prendra la forme de “morphismes supérieurs”, c’est à
dire de morphismes entre les morphismes, à penser comme une généralisation de la
notion de transformation naturelle entre foncteurs, c’est à dire celle d’une catégorie
supérieure faible 78. Ainsi, une autre motivation provient des catégories supérieures
ainsi que celles enrichies dans (un modèle des) espaces.

Il y a de nombreuses présentations possibles pour les ∞-catégories, ou plus pré-
cisément pour la catégorie des ∞-catégories. Notons que l’on s’intéresse bien sûr
la notion de catégorie à équivalence naturelle près et qu’une telle catégorie des ∞-
catégories est elle même naturellement une∞-catégorie et pas une simple catégorie.
Comme on ne peut pas pousser à l’infini (sans faire de jeu de mot) cette notion, plus
précisément nous fixons la notion suivante.

Terminologie 4.0.1. Par modèle pour la théorie des ∞-catégories nous voulons dire
une catégorie de modèle des ∞-catégories et deux telles théories seront considérées
comme équivalentes si elles sont Quillen équivalentes.

Nos deux modèles de base seront la catégorie de modèle des catégories enrichies
simplicialement 4.3 et celle des quasicatégories 4.2, mais il en existe d’autres très
intéressants ayant leurs propres avantages et inconvénients.

4.1. Quelques motivations pour la théorie des ∞-catégories

Comme précédemment évoqué, une structure de catégorie de modèle nous donne
un moyen d’étudier une catégorie dont on veut rendre inversible une classe de mor-
phismes (les équivalences faibles). Déjà, il est très difficle de vérifier si la catégorie
homotopique est bien une catégorie en général ou simplement de calculer ses mor-
phismes en l’absence d’une structure de modèle. Pire, le passage brutal à la catégorie
homotopique Ho(C) = C[W−1] perd en fait beaucoup d’information :

• par exemple, les catégories homotopiques ont en général peu de (co)limites 79.
Une structure de modèle permet de définir et calculer des (co)limites homo-
topiques, mais ces dernières ne sont pas définies en terme d’une propriété
universelle de la catégorie homotopique bien que leur définition ne fasse in-
tervenir que les équivalences faibles.
• Les morphismes de la catégorie homotopique Ho(Top) donne bien les classes

d’homotopies (faibles) de morphismes entre deux espaces X et Y . Mais cette
donnée ne suffit pas à déterminer/encoder le type d’homotopie faible de l’es-
pace Map(X, Y ) des applications continues deX dans Y (muni de la topologie
compacte-ouverte 80) dont les classes d’homotopie faibles ne sont que le π0 :

77. à comprendre comme (∞, 1)-catégorie
78. a contrario d’une catégorie supérieure stricte pour lesquelles toutes les opérations entre flèches

sont strictement associatives etc..
79. voir la feuille de TD 2
80. c’est à dire si Y est métrisable de celle de la convergence uniforme sur tout compact
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HomHo(Top)(X, Y ) = π0(Map(X, Y )). Autrement dit, la catégorie homoto-
pique ne voit pas les (classes d’)homotopies supérieures. Le même problème
survient avec les ensembles simpliciaux ou les complexes de châınes 81 Il faut
se donner des résolutions (co)fibrantes de nos objets pour garder cette infor-
mation.

On peut par ailleurs se donner des structures de modèles différentes ayant les mêmes
équivalences faibles et donc déterminant la même notion homotopique (par exemple
les structures projectives et injectives dans les complexes de châınes).

La notion d’∞-catégorie va nous donner une notion de quotient de la catégorie
C où l’on inverse les équivalences faibles moins naive et brutale que la catégorie
homotopique résolvant notamment les problèmes ci-dessus. En particulier des struc-
tures de modèle Quillen équivalentes donneront des ∞-catégories équivalentes. Par
exemple, nous verrons aussi qu’il existe une notion naturelle et universelle d’∞-
(co)limite encodant les (co)limites homotopiques et que les morphismes d’une ∞-
catégorie contiennent des homotopies supérieures ; plus précisément sont des“espaces
à homotopie près”.

Essayons de préciser un peu cette dernière notion. Un exemple important-et à
la base des motivations pour les catégories supérieures-est donné par le groupôıde
fondamental d’un espace topologique.

Exemple 4.1.1. Rappelons que si X est un espace topologique, π(X) est la catégorie
dont les objets sont les points de X et les morphismes

Homπ(X)(x, y) = {f : [0, 1]
C0

→ X, f(0) = x, f(1) = y}/ '{0,1}
sont les classes d’homotopie relatives (à {0, 1}) de chemins continus de x vers y. Les
classes d’isomorphismes de π(X) sont exactement l’ensemble π0(X) et Homπ(X)(x, x) ∼=
π1(X, x). Supposons maintenant donné deux chemins continues f, g de x vers y et
soit H, K ; deux homotopies entre eux. Alors on peut recoller ces homotopies pour
former une application de S2 dans X qui peut ou pas être complétée en un mor-
phisme de D2 dans X. Mais cette donnée n’est pas visible dans π(X). Autrement
dit l’information contenue dans le groupoide fondamental ne nous dit pas si ces deux
homotopies sont elles mêmes homotopes entre elles où si elles définissent une classe
non-triviale dans π2(X, x) et encore moins dans πn≥3(X, x).

Dans cet exemple, une homotopie est vue comme un morphisme (inversible à
homotopie près qui plus est) entre deux chemins. Ainsi pour corriger le problème,
on aurait envie de considérer une catégorie avec les mêmes objets, où les chemins
seraient simplement les chemins continus, munis de morphismes ente eux constitué
par les homotopies relatives entre chemins ; et plus généralement, d’une notion de
morphismes ente les homotopies données par des homotopies entre homotopies et
ainsi de suite... Évidemment, ceci ne peut pas être une catégorie dans un sens strict
du terme : la composition des chemins n’est associative qu’à homotopie près, tout
comme la loi d’unité et ceci se propage à tous les n-morphismes.

Notons que l’exemple donné par le groupoide fondamental est en fait transposable
au cas de (C,W) de manière générale. La catégorie homotopique est obtenu en iden-
tifiant des morphismes à une relation d’équivalence sur des zigzags près (voir 2.2).

81. En effet, on peut munir HomR-Mod(C∗, D∗) d’une structure de complexes qui en degré i est
donné par les morphismes de degré homogène égal à i et de la différentielle δ(f) = dD◦f−(−1)|f |f ◦
dC . Alors, si A est un complexe borné de projectifs, HomCh(R)(A,D) ∼= H0(Hom(A,D), δ).
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Mais elle n’encode pas si deux façons d’identifier deux zigzags sont elle-mêmes na-
turellement équivalentes ou pas, et ainsi ne tient pas compte de diagrammes plus
compliqués que des“carrés”que l’on peut réaliser (par exemple des cubes) dans C où
on inverse W formellement. Elle correspond ainsi elle aussi à une notion de catégorie
où ne regarde les (zigzags) de morphismes qu’à “homotopie” près.

Philosophie 4.1.2. Ceci amène à considérer qu’une notion d’∞-catégorie doit consis-
ter en la donnée

• d’objets,
• de 1-morphismes entre les objets,
• pour tout n ≥ 2 d’une notion de morphismes entre les (n− 1)-morphismes
• pour tout n ≥ 1, de notions de compositions de n-morphismes (ayant des

extrémités 82 similaires) associatives à des n+ 1-morphismes près
• munis d’unités vérifiant un axiome de compatibilité avec les compositions à

des n+ 1-morphismes près.

Par ailleurs, on doit avoir des notions de foncteurs, transformations naturelles (et
transformations entre morphismes d’ordres supérieurs) entre ∞-catégorie. En parti-
culier un tel foncteur entre ∞-catégorie, doit

• envoyer des objets sur des objets, des n-morphismes sur des n-morphismes,
• doit envoyer la composée de n-morphismes sur la composée des images des
n-morphismes à des n+ 1-morphismes près
• une transformation entre foncteurs F,G doit consister en des flèches entre

les objets F (X), G(X) de sorte que tout diagramme induit par des 1-flèches
X → Y soit commutatif à un 2-morphisme près, etc.

Autrement dit, on souhaite avoir une notion de catégorie et même d’∞-catégorie des
∞-catégories.

Notons que dans notre point de vue, les n ≥ 2-morphismes sont “inversibles”
(car nos identifications proviennent de relations d’équivalences, donc symétriques).
Il s’agira donc techniquement d′(∞, 1)-catégorie. Il existe des notions d’(∞, n)-
catégories où on suppose seulement que les m ≥ n + 1-morphismes sont “inver-
sibles”. L’exemple hypothétique 4.1.1 du groupoide fondamental est donc lui une
(∞, 0)-catégorie, notion que l’on qualifie dans la littérature d’∞-groupoide.

L’idée d’une définition informelle comme ci-dessus est naturelle, mais assez peu
réalisable et ne serait de toutes façons pas manipulable aisément. En effet, il nous
faut une infinité d’opérations et d’axiomes devant satisfaire des cohérences très com-
pliquées combinatoirement. L’idée pour réaliser cela et d’utiliser la théorie de l’hom-
topie et des relèvements pour encoder ces cohérences.

Plus précisément, on va, pour reprendre l’idée des espaces fonctionnels Map(X, Y )
considérer des catégories dont les morphismes sont munies d’une strudture d’espace
topologique à homotopie près et encoder les n ≥ 2-morphismes comme des homoto-
pies (entre chemins ou homotopie).

Partant de ce point de vue il est naturel de vouloir transporter les structures de
modèle de Quillen sur des catégories dont les morphismes ont une strutcure d’espace
topologique ou ensemble simplicial compatible avec les ensembles simpliciaux ; c’est
ce qui est évoqué dans la partie 4.3.

82. cette notion pouvant se décliner sous plusieurs formes inductivement
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Plus généralement, on utilise des structures de modèle pour encoder cette notion
intuitive précédente et dont les objets fibrants cofibrants seront exactement ce que
l’on peut appeler ∞-catégorie. L’un des plus rapides de ces modèles à définir est
donné par les quasicatégories et est basé sur les ensembles simpliciaux.

4.2. Le modèle donné par les quasi-catégories

Le modèle des quasicatégories pour les ∞-catégories est du à Joyal et a été po-
pularisé et développé par Lurie entre autres. L’un des avantages de ce modèle est
qu’il donne une définition d’∞-catégorie qui généralise de manière très naturelle une
construction standard et importante : le nerf d’une catégorie.

4.2.1. Le nerf d’une catégorie.

Définition 4.2.1. Soit C une petite catégorie. Son nerfN•(C) est l’ensemble simplicial
donné, en degré simplicial n, par l’ensemble

Nn(C) = {X0
f1→ X1

f2→ X2 → . . .
fn→ Xn}

des n-uplets de morphismes de C qui sont composables (dans cet ordre). C’est à
dire les (f1, . . . , fn) tels que le but de fi est égal à la source de fi+1 pour tout
i = 1 . . . n− 1. Pour n = 0, on prend bien entendu l’ensemble des objets.

La structure simpliciale est donnée par

d0(X0
f1→ X1

f2→ X2 → . . .
fn→ Xn) = X1

f2→ X2 → . . .
fn→ Xn

dn(X0
f1→ X1

f2→ X2 → . . .
fn→ Xn) = X0

f1→ X1
f2→ X2 → . . .

fn−1→ Xn−1

et, pour i = 1 . . . n− 1, par

di(X0
f1→ X1 → . . .

fn→ Xn) = X0
f1→ X1 → . . . Xi−1

fi+1◦fi→ Xi+1
fi+2→ Xi+2 → . . .

fn→ Xn.

Autrement dit la première et la dernière face oublient un morphisme et un objet
alors que les autres composent deux morphismes successifs. Les dégénérescences
sont donnés par l’ajout d’identité :

sj(X0
f1→ X1 → . . .

fn→ Xn) = X0
f1→ X1 → . . . Xj

id→ Xj
fj+1→ Xj+1 → . . .

fn→ Xn.

Exercice 4.2.2. Vérifier que N•(C) muni de la structure donnée est bien un ensemble
simplicial

Remarque 4.2.3 (La catégorie cosimpliciale [•]). La construction du nerf est en fait
relier à celle de la réalisation géométrique au sens où elle est fait basée sur le fait
que l’on a un objet cosimplicial naturel dans les catégories. A savoir la donnée des
posets [n] := {0 < 1 < · · · < n} vu comme catégorie avec une unique flèche entre
toute paire d’entiers 0 ≤ i ≤ j ≤ n (en particulier il n’y a que le morphisme identité
dans Hom[n](i, i)).

Notons qu’un foncteur [n]→ [m] est par définition la donnée d’un diagramme

F (0)
F (0→1)→ F (1)

F (1→2)→ · · · → F (n)

dans [m]. Par définition des flèches de [m], il suit que i 7→ F (i) est donc une applica-
tion croissante. Et réciproquement, toute application croissante F : [n]→ [m] définit
un foncteur i 7→ F (i), F (i→ j) = F (i)→ F (j) (qui est bien défini car f(i) ≤ F (j).
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0

1

2

f = d2(σ)
g = d0(σ)

d1(σ) = g ◦ f

σ
0

1

2

3

f g

h
h ◦ g

g ◦ f

h ◦ (g ◦ f) = (h ◦ g) ◦ f

Figure 11. Un 2-simplexe du nerf à gauche et un 3 simplexe du nerf
(correspondant aux flèches bleues) à droite avec la détermination de
tous les 1-simplexes induit par le morphisme correspondant ∆3

• →
N•(C)

Comme les morphismes de la catégorie ∆ sont précisément les applications crois-
santes, on obtient ainsi que [n] 7→ {0 < 1 · · · < n}, (F : [n] → [m]) 7→ (F (i) →
F (j))i≤j) est un foncteur de ∆ dans cat. On a ainsi pouvé

Lemme 4.2.4. La collection ([n])n∈N est canoniquement un objet cosimplicial dans
les catégories.

On peut alors redéfinir le nerf comme l’ensemble des morphismes dans cat de [•]
dans C, c’est à dire des foncteurs de [•] dans C :

Proposition 4.2.5. On a un isomorphisme canonique d’ensemble simplicial N•(C) ∼=
Homcat([•],C) où la structure simpliciale à droite est induite par la structure cosim-
pliciale de [•].

Exercice 4.2.6. Prouver la proposition 4.2.5.

En particulier, tout foncteur F : C→ D induit un morphisme d’ensemble simpli-
cial par post-composition.

Lemme 4.2.7. La règle (F : C → D) 7→ F∗ : Homcat([•],C)
F◦−→ cat ([•],D) fait du

nerf un foncteur N•(−) : cat→ sEns.

Démonstration. Cela découle du fait que les opérations simpliciales sont obtenues
par précomposition et commutent donc avec la post-composition. �

En termes explicites, à un foncteur F : C → D on associe donc le morphisme

d’ensemble simplicial qui envoie (X0
f1→ X1 → . . .

fn→ Xn) sur la suite de flèches
composables

F (X0)
F (f1)→ F (X1)→ . . .

F (fn)→ F (Xn).

Terminologie 4.2.8. On appelle cornets internes les cornets Λn
k,• tels que 0 < k < n.

On appelera aussi cornet initial (resp. final) les cornets Λn
0,•, (resp. Λn

n,•).

Exemple 4.2.9 (Cornets internes, simplexes du nerf et propriétés d’extensions). Dé-
taillons la structure.
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Par définition, N0(C) = Obj(C) est constitué des objets de C et les 1-simplexes
de C sont l’ensemble des flèches de C ; on note que d0(f) est le but de f et d1(f)
est la source de f . Un 2-simplexe est constituté de la donnée de deux flèches (f, g)
composables c’est à dire que d0(f) = d1(g). Si on renomme α0 = g, α2 = f , on obtient
précisément que la donnée d’un 2-simplexe de N•(C), c’est à dire d’un morphisme
∆2
• → N•(C) (cf lemme 3.1.13), est exactement la même chose qu’un morphisme

Λ2
1,• → N•(C) (lemme 3.2.3). Précisément, si σ ∈ N2(C), on a que α0 = d0(σ),

α2 = d2(σ) et d1(σ) = α0 ◦ α2. On en déduit qu’un morphisme Λ2
1,• → N•(C) a un

relèvement unique ∆2
• → N•(C), donné par la composition des morphismes.

De même, un 3-simplexe du nerf est la donnée de 3 flèches composables (f, g, h)
obtenues en recollant deux cornets Λ2

1,• sur leur flèche commune. Une telle donnée

détermine de manière unique un morphisme ∆3
• → N•(C) comme montré sur la

figure 11. Notons que l’on voit que tous les 1-simplexes sont bien déterminés par
des compositions des flèches f, g, h et repose sur l’associativité de la composition.
On peut même réinterpréter l’associativité de la manière suivante. Étant donné un
3-simplexe (f, g, h) de N3(C), on obtient les 1-cornets (f, g), (g, h) de Λ2

1,• → N•(C),
on construit les 2-simplexes complétant ces 1-cornets, c’est à dire les parties grisées

de

3

0 2.

1
f

g◦f

h

h◦g

g

Notons que nous pouvons construire cette figure

juste à partir des deux cornets compatibles α = (f, g), β = (g, h) où compatible
signifie précisément que d2(β) = d0(α). Cette compatibilité permet de construire le
Λ2

1,•-cornet correspondant aux flèches composables 0→ 1 = d2(α) et 1→ 3 = d1(β)

pour obtenir le 3-cornet Λ3
1,• → N•(C) donné par la partie grisée du diagramme :

3

0 2.

1

(h◦g)◦f

f

g◦f

h

h◦g

g

Le fait que l’on puisse relever ce cornet en un 3-

simplexe est équivalent à l’associativité de la composition.
Notons que de manière réciproque, la donnée d’un cornet Λ3

1,• → N•(C) (ou bien

de Λ3
2,• → N•(C)) détermine complétement les flèches f , g, h et en particulier permet

d’étendre ce cornet à tout le simplexe comme nous l’avons fait. Ce n’est cependant
pas le cas de la donnée de Λ3

3,• → N•(C). qui ne contient pas la donnée des flèches

f, g. Notons également que dans le cas de Λ3
0,• → N•(C), la donnée donne bien f ,
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g, h mais n’assure pas que la flèche φ : 1 → 3 du cornet est la composition h ◦ g ;
seulement que sa composition φ ◦ g est égale à (h ◦ g) ◦ f .

Exemple 4.2.10 (Cornets initiaux et finaux et simplexes du nerf). On a vu que tout
2-cornet interne du nerf avait un unique (et donc canonique) relèvement en un 2-
simplexe. Regardons ce que veulent dire les propriétés de relèvements par rapports
aux 2-cornets initiaux et finaux. Un 2-cornet initial α : Λ2

0,• → N•(C) est donc la
donnée de deux flèches (h, f) = (α1, α2) telles que d1(f) = d1(h)), cf figure 12. Par
notre analyse précédente des 2-simplexes du nerf, un relèvement de ce morphisme
en un 2-simplexe σ : ∆2

• → N•(C) est la donnée d’une flèche g = d0(σ) telle que
g ◦ f = h. De même un relèvement d’un cornet final β = (g, h) = β0, β1) est la
donnée d’un morphisme f tel que f ◦ g = h. Notons que si on prend h = id, alors le
relèvement d’un cornet initial (id, f) correspond à l’existence d’un inverse à gauche
de f (une rétraction) et celui d’un cornet initial à un inverse à droite (une section).

0

1

2

f = d2(σ)
g = d0(σ)

d1(σ) = h

σ

0

1

2

d0(σ)

d1(σ) = h

σ
f

Figure 12. Un 2-cornet initial (à droite) et final (à gauche) dans
N2(C). Les flèches pointillées désignent la structure que donne un
relèvement à un 2-simplexe

Les exemples précédents conduisent à la proposition suivante.

Proposition 4.2.11. (1) Le nerf N•(C) d’une catégorie C est un complexe de
Kan si et seulement si C est un groupoide. Si c’est le cas, les relèvements des
cornets sont de plus uniques.

(2) Un ensemble simplicial X• est isomorphe au nerf d’une catégorie si et seule-
ment si, pour tout cornet interne Λn

r,• (n ≥ 2, 0 < r < n), tout morphisme
de Λn

r,• → X• a un unique relèvement.
(3) Le foncteur N•(−) : cat→ sEns est pleinement fidèle.

Le deuxième point permet d’identifier l’image du nerf et le dernier point d’ainsi
plonger les (petites) catégories dans les ensembles simpliciaux.

Démonstration. Le point (2) est fait en détail dans le TD 5. Cela a été essentiellement
fait dans les exemples 4.2.9, 4.2.10 ; le cas des cornets de dimension supérieure se
traitant comme pour l’associativité. Pour le sens direct on définit X0 comme objets
de la catégorie et les éléments f de X1 comme les morphismes, dont la source est
donnée par la face d1(f) et le but par d0(f). Par suite, la condition d’être un 2-cornet
interne donne exactement deux flèches (f, g) avec une source et un but en commun
et une extension σ donne la composition via la formule de g◦f := d1(σ). L’unicité de
l’extension garantissant que c’est non-équivoque ; l’associativité se traitant comme
on l’a vu dans les exemples. Pour le point (1), on note que par l’exemple 4.2.10, si
le nerf d’une catégorie a la propriété de relèvement par rapport aux cornets initiaux
et finaux, alors tout morphisme a un inverse à droite et à gauche et a donc un
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inverse. La réciproque est facile. En effet, si tous les morphismes d’un catégorie sont
inversibles, l’existence du relèvement d’un cornet initial comme dans la figure 12 est
donnée par d0(σ) = h ◦ f−1 (et est unique) et celui d’un cornet initial est donné par
d2(σ) = g−1 ◦ h. On traite les cas de cornets de dimension supérieure de manière
identique.

L’unicité des relèvements dans le point (1) est encore une conséquence des (ra-
sionnements des) exemples.

Pour le point (3), soit F• : N•(C)→ N•(D) est un morphisme d’ensemble simpli-
cial. Alors, comme N0(C) = Obj(C), F0 associe à tout objet de C un objet de D et

de même, à toute flèche X0
f1→ X1 de C, F1 associe une flèche F1(f1) qui va de F0(X0)

à F0(X1) puisque di ◦F1 = F0 ◦di (i = 0, 1). Notons que d0 ◦F2 = F1 ◦d0 et d2 ◦F2 =

F1 ◦ d2 implique que F2(X0
f1→ X1

f2→ X2) = F0(X0)
F(f1)
→ F0(X1)

F1(f2)→ F0(X2) et
ainsi que F1(f2 ◦ f1) = F1(f2) ◦F1(f1) car d1 ◦F2 = F1 ◦ d1. la compatibilité avec les
identités se voit en appliquant les dégnéréscences. On en déduit que F• détermine
bien un foncteur F̃ et que N•(F̃ ) = F•. Cela termine la preuve. �

Il est relativement aisé de montrer que le nerf préserve les limites ce qui suggère 83

que c’est un adjoint à droite.

Proposition 4.2.12. Le foncteur nerf N•(−) : cat → sEns est un adjoint à droite
dont on notera π̃ l’adjoint à gauche.

Notons que l’adjoint du nerf est décrit dans le corrigé de la feuille de TD 5.
Nous verrons dans la section 4.2.2 que cette adjonction se décompose en deux

parties.

4.2.2. Quasicatégories. L’idée derrière la notion de quasicatégorie est d’utiliser la
caractérisation du nerf en retirant la condition d’unicité du relèvement. Ceci va
donner une notion de composition qui ne sera définie qu’à une 2-cellule (c’est à
dire une homotopie près) et de même les compositions et aurtes structures seront
déterminées à des cellules supérieures près.

Définition 4.2.13 (Quasicatégorie). Une quasicatégorie est un ensemble simplicial
X• qui satisfait que tout morphisme Λn

r,• X• (0 < r < n) d’un cornet interne a un
relèvement en un n-simplexe ∆n

• → X•. Autrement dit, il existe, pour tout 0 < r < n,
un relèvement h dans le diagramme suivant

Λn
r,•� _

��

// X•

��
∆n
•

//

h
==

{∗}

rendant les triangles commutatifs.

Un morphisme entre quasicatégorie est simplement un morphisme entre les en-
sembles simpliciaux sous-jacents. On appelera ∞-foncteur un tel morphisme d’en-
sembles simpliciaux.

Un sommet x ∈ X0 d’une quasicatégorie est appelé un objet de X• et 1-simplexe
f ∈ X1 est appelé un (1-)morphisme (ou une flèche) de l’objet d1(f) vers l’objet
d0(f).

83. voir le théorème 6.2.53
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Enfin on appelera morphisme unité d’un objet x la dégénérescence s0(x) ∈ C1 de
x 84. On le notera idx ∈ C1.

Exemple 4.2.14. D’après la proposition 4.2.11, on a un plongement pleinement fi-
dèle des catégories dans les quasi-catégories ; et on peut caractériser les catégories
ordinaires comme celles ayant la propriété de l’existence d’uniques relèvements. Les
objets et morphismes de C correspondent précisément à ceux de N•(C) dans la dé-
finition 4.2.13 tout comme les foncteurs de C vers D correspondent précisément à
ceux de N•(C) vers N•(D).

Exemple 4.2.15. Un complexe de Kan, c’est à dire un ensemble simplicial fibrant
(pour la structure de modèle de Quillen sur sEns), est une quasi-catégorie. Au vu
de la proposition 4.2.11, une catégorie ordinaire donne un complexe de Kan si et
seulement si c’est un groupoide. Cela suggère la terminologie suivante.

Exemple 4.2.16. Nous verrons ci-dessous 4.4 qu’une catégorie C munie d’une classe
d’équivalence faible donne une quasicatégorie “relevant” la catégorie homotopique
Ho(C) (dans un sens rendu précis ci-dessous 4.2.3. Ceci donne une large classe
d’exemples de quasicatégories qui ne sont ni le nerf d’une catégorie ni un complexe
de Kan.

Terminologie 4.2.17. On appelle souvent 85 (petite) ∞-catégorie la donnée d’une
quasicatégorie et ∞-foncteur (ou juste foncteur) un morphisme de quasicatégorie.

Un complexe de Kan, (vu comme quasicatégorie ayant en plus la propriété d’ex-
tensions pour les cornets initiaux et finaux), est appelé un ∞-groupoide. Les propo-
sitions 4.2.38 et 4.2.11.(1) justifient cette terminologie.

Notation 4.2.18. Étant donné que nous pensons à une quasicatégorie comme une
généralisation des catégories ordinaires, pour x, y des objets d’une quasicatégorie
C•, nous noterons souvent HomC•(x, y) le sous-ensemble des morphismes de x vers
y, c’est à dire le sous-ensemble des f ∈ C1 tels que d1(f) = x et d0(f) = y.

Nous avons vu 3.2.12 que les morphismes entre ensembles simpliciaux sont na-
turellement munis d’une structure d’ensemble simplicial (dont les 0-simplexes sont
précisément les morphismes). Ceci nous ammène à poser :

Définition 4.2.19. Soit C• une quasicatégorie et x, y ∈ C0 des objets. L’espace des
morphismes de x vers y est

MapC•(x, y) := {x} ×C• Map•(∆
1
•,C•)×C• {y}

c’est à dire le produit fibré dans sEns donné par le pullback

MapC•(x, y)

��

//

y
Map•(∆

1
•,C•)

ev0,ev1

��
{∗} x×y // C• ×C•

84. qui est bien un morphisme de x vers x
85. c’est peut être le modèle le plus populaire, notamment suite aux travaux de Lurie pour les
∞-catégories
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où x, y : {∗} → C• sont les morphismes qui envoient le point sur les objets x, y

respectivement 86 et evi = Map•(∆
1
•,C•)

−◦inci−→ Map•(∆
0
•,C•)

∼= C• sont les mor-
phismes induits par les deux inclusions inci : {∗} = ∆0

• ↪→ ∆1
• d’un point dans les

deux sommets 87 de ∆1
•.

Proposition 4.2.20. Soit C• une quasi-catégorie. Alors, pour tout objets x, y ∈ C0

on a que

(1) MapC•(x, y) est un complexe de Kan (autrement dit un∞-groupoide au sens
de 4.2.17).

(2) Les 0-simplexes de MapC•(x, y) sont les morphismes de x vers y : autrement
dit on a un isomorphisme canonique MapC•(x, y)0

∼= HomC•(x, y).

La proposition nous dit donc qu’une quasicatégorie a bien un espace à homotopie
près de morphismes entre objets comme prescrit par 4.1.2.

Démonstration. Les tirés en arrière d’ensembles simpliciaux se calculent degré par
degré. Comme HomC•(x, y) est défini comme le produit fibré {x}×C0 C1×C0 {y} , le
résultat de 4.2.20.(2) est une conséquence de l’isomorphisme canonique Map0(∆1

•,C•)
∼=

HomsEns(∆
1
•,C•)

∼= C1.
L’identification (cf 3.2.15) d’ensembles simpliciaux Map•(∆

0
•,C•)

∼= C• nous
donne que le morphisme (ev0, ev1) s’identifie avec le morphisme

Map•(∆
1
•,C•)

−◦(inc0
∐

inc1−→ Map•(∆
0
•

∐
∆0
•,C•).

Or ∆0
•
∐

∆0 ↪→ ∆1
• est une cofibration car injective en chaque degré. Il suit du

lemme 3.2.17 que c’est une fibration si C∞ est fibrant dans sEns, c’est à dire est
un complexe de Kan. Donc son tiré en arrière est aussi une fibration ce qui donne
par définition que MapC•(x, y) est de Kan. Si C∞, la preuve donne que l’ensemble
simpicial est bien une quasi-catégorie. Pour démontrer que c’est bien un complexe
de Kan, il faut montrer qu’il a aussi la propriété de relèvement par rapports aux
cornets initiaux et finaux. Les deux cas sont duaux et basé sur les arguments de la
proposition 4.2.38 que nous ne démontrerons pas. Nous renvoyons à [16] pour une
preuve complète. �

Lemme 4.2.21. La postcomposition f• 7→ F• ◦ f• est un morphisme d’ensembles

simpliciaux MapC•(x, y)
F•◦−−→ MapD•(F0(x), F0(y)).

Démonstration. La composition de morphismes d’ensembles simpliciaux est un mor-
phisme d’ensemble simplicial ; le résultat découle donc de la propriété universelle du
tiré-en-arrière. �

La proposition suivante nous dit que les foncteurs entre quasicatégories sont les
objets d’une quasicatégorie.

Proposition 4.2.22. Soit X• un ensemble simplicial et C• une quasicatégorie. Alors
l’ensemble simplicial Map•(X•,C•) est une quasicatégorie.

La proposition nous permet de poser les définitions suivantes.

Définition 4.2.23. Soit C•, D• des quasicatégories.

86. et sur leurs dégénérescences itérées en degré simplicial > 0
87. autrement dit inci est induit par le morphisme [0]→ [1] donné par 0 7→ i, i = 0, 1
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• On appelle∞-catégorie des foncteurs de C• vers D• la quasicatégorie Map•(C•,D•).
Notons que les objets de cette quasicatégorie sont précisément les foncteurs
de C• vers D• au sens de la définition 4.2.13.
• Les (∞-)transformations naturelles sont les 1-morphismes de cette catégorie.
• Un∞-foncteur F• : C• → D• est dit pleinement fidèle si pour tous les objets
x, y ∈ C0, on a que le morphisme d’ensembles simpliciaux induit

MapC•(x, y)
F•◦−−→ MapD•(F0(x), F0(y))

est une équivalence faible d’ensembles simpliciaux.

Exercice 4.2.24. Vérifier que si C, D sont des catégories ordinaires, la quasicaté-
gorie des foncteurs est le nerf de la catégorie des foncteurs Fun(C,D), c’est à dire
Map•(N•(C), N•(D)) ∼= N•(Fun(C,D)).

Démonstration de la proposition 4.2.22. C’est une conséquence du lemme plus gé-
néral suivant, appliqué à Z• = C•, Y• = {∗} et L• = K• = X•.

Lemme 4.2.25. Soit L• ↪→ K• un morphisme injectif degré par degré (donc une
cofibration) et p : Z• → Y• un morphisme d’ensembles simpliciaux qui a la propriété
de relèvement à droite par rapport à toutes les inclusions de cornets internes. Alors
le morphisme canonique

Map•(K•, Z•) −→ Map•(L•, Z•)×Map•(L•,Y•) Map•(K•, Y•)

a la propriété de relèvement à droite par rapport à toutes les inclusions Λn
k,• ↪→ ∆n

•
(0 < k < n) de cornets internes.

Preuve du lemme 4.2.25. Elle est similaire à celle du lemme 3.2.17. Il faut montrer
que pour tout 0 < r < n, il existe un relèvement (en pointillé) dans le carré commu-
tatif

Λn
r,•� _

��

// Map•(K•, Z•)

��
∆n
•

//

55

Map•(L•, Z•) ×
Map•(L•,Y•)

Map•(K•, Y•)

qui rende les deux triangles commutatifs. De la loi exponentielle 3.2.16, on déduit
qu’un tel diagramme commutatif est équivalent à un diagramme

Λn
r,• ×K• ∪Λnr,•×L• ∆n

• × L• //
� _

��

Z•

��
∆n
• ×K• //

55

Y•

L’argument de la preuve du lemme 3.2.9.(3) nous donne que flèche de gauche a la
propriété de relèvement à gauche par rapport à toutes les flèches ayant la propriété
de relèvement à droite par rapport aux inclusions de cornets internes. Le relèvement
existe donc puisque la flèche de droite a justement cette propriété. �

�
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4.2.3. Compositions faibles et catégorie homotopique d’une quasicatégorie. Nous
allons maintenant continuer de voir en quoi une quasicatégorie répond au modèle
hypothétique 4.1.2 d’∞-catégorie. Nous avons défini une notion de 1-morphismes et
d’objets 4.2.13 dans une quasicatégorie, mais nous n’avons pas encore parlé de com-
positions de tels morphismes. Cette notion n’est pas uniquemet définie contrairement
à une catégorie mais nous avons en revanche des compositions faibles :

Soit C• une quasicatégorie et f, g ∈ C1 deux morphismes dans C• vérifiant
d0(f) = d1(g), c’est à dire que la source de g est le but de f . Alors, la paire (f, g) défi-
nit un 2-cornet interne de C•, autrement dit un morphisme Λ2

1,• → C• (cf 3.2.3). Par
définition d’une quasicatégorie 4.2.13, il existe des 2-simplexes σ ∈ C2 (ce qui est la
même chose qu’un morphisme ∆2

• → C•) relevant (f, g) (i.e. d0(σ) = g, d2(σ) = f).

Définition 4.2.26. Soient f, g ∈ C1 deux morphismes composables (i.e. d0(f) =
d1(g)) d’une quasicatégorie. Une composition faible de f, g est d1(σ) ∈ C1 pour tout
2-simplexe σ relevant le 2-cornet interne (f, g). On notera parfois f ◦σ g = d1(σ).

Contrairement au cas d’une catégorie ordinaire (ou de son nerf), une telle compo-
sition faible n’est pas unique en général. Montrons cependant que deux compositions
faibles sont uniques à “homotopie 88” près.

Définition 4.2.27. Soit C• une quasicatégorie. On dit que deux 1-flèches f, g : x→ y
dans C sont équivalentes 89 si il existe un 2-simplexe σ ∈ C2 d’une des 4 formes
suivantes :

1
g

��
0

idx

f
// 2,

1
idy

0

g
@@

f
// 2,

1
f

��
0

idx

g
// 2,

1
idy

0

f
@@

g
// 2,

Remarque 4.2.28. Les deux derniers diagrammes sont les mêmes que les deux pre-
miers si ce n’est qu’on a inversé f et g ; ils garantissent que la relation d’équivalence
de morphismes est symétrique. L’exsistence de ces diagrammes se traduit simplement
en termes de cornets en disant que deux morphismes f, g : x → y sont équivalents
si il existe un relèvement d’un des 2-cornets initiaux ou finaux qu’ils forment en un
2-simplexe dont la dernière face est l’identité.

Notons que la définition 4.2.27 a du sens pour toute paire de 1-simplexe avec
les mêmes faces d0, d1 dans un ensemble simplicial. En revanche le lemme suivant
lui utilise que l’on a une quasicatégorie et est l’analogue du fait que la relation
d’homotopie 3.3.1 est une relation d’équivalence pour les complexes de Kan. Le
lemme suivant sera démontré à la fin de cette partie.

Lemme 4.2.29. Soit C• une quasicatégorie.

(1) Soient f, g : x → y des 1-morphismes de C•. S’il existe un 2-simplexe d’une
des quatre formes données dans la définition 4.2.27, alors il existe des 2-
simplexes de chacune de ces quatre formes.

(2) Tout 1-morphisme est équivalent à lui-même.
(3) La relation d’équivalence sur les 1-morphismes est transitive.

88. qui va être une retraduction de la notion d’homotopie 3.3.1 appliqué à l’ensemble des mor-
phismes de x vers y et du lemme 3.3.9

89. on dit parfois homotope
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Notation 4.2.30. On notera pour simplifier f ∼
C•
g la relation d’équivalence.

Armé de la notion d’équivalence, on peut énoncer le résultat suivant.

Proposition 4.2.31. Soit C• une quasicatégorie et f , g deux 1-morphismes compo-
sables. Deux compositions faibles de f et g sont équivalentes.

Démonstration. Soient f : x → y, g : y → z des morphismes composables. Et soit
σ1, σ2 deux relèvements du 1-cornet interne représenté par la paire (f, g). On note
pour simplifier g ◦1 f = d1(σ1) et g ◦2 f = d1(σ2) les compositions faibles associées.
La dégénérescence s1(g) ∈ C2 nous donne le 2-simplexe représenté par le diagramme

1

0

g
@@

g
// 2.

idy

. On recolle ces trois 2-simplexes pour obtenir le 3-cornet interne

Λ3
1,• → C• suivant

(17)

3

0 2

1

g◦1f

g◦2f

f

Idy

g

g

où la face intérieure est donnée par σ2, la face rouge sur le devant à gauche est
donnée par σ1, la face jaune par la dégénrescence de g. La face opposée est celle
qui n’est pas remplie par la construction. Comme C• est une quasicatégorie, on sait
qu’il existe un 3-simplexe H ∈ C3 = HomsEns(∆

3
•,C•) qui remplit ce diagramme.

Alors d1(H) est un 2-simplexe qui remplit la face opposée de (17). Par définition ce
simplexe est une équivalence entre g ◦2 f et g ◦1 f . �

Montrons maintenant l’associativité à équivalence près des compositions faibles.

Notons que si x
f→ y, y

g→ z et z
h→ w sont trois flèches composables alors pour

toute composition faible g ◦σ f et h sont composables et de même pour f et h ◦τ g

Proposition 4.2.32. Soient x
f→ y, y

g→ z et z
h→ w trois flèches composables. Alors,

on a une équivalence

h ◦κ (g ◦σ f) ∼
C•

(h ◦τ f) ◦δ f

pour toutes compositions partielles (données par des 2-simplexes σ, κ, τ, δ).

Démonstration. Fixons σ, κ, τ . Par unicité de la composition à équivalence près 4.2.31,
il suffit de montrer qu’il existe un 2-simplexe δ′ : ∆2

• → C• tel que d1(δ)′ =
h ◦κ (g ◦σ f). On commence par recoller les 2-simplexes σ et τ
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w

x z

y
f

g◦σf

h

h◦τg

g

respectivement obtenus via les flèches composables

(f, g) (la face verte en dessous) et (g, h) (la face rouge à droite). On recolle mainte-
nant le 2-simplexe κ : ∆2

• → C• (dessiné en jaune) correspondant aux flèches compo-

sables (g◦σf, h). et on obtient le 3-cornet interne Λ3
2,• → C• :

w

x z

y
f

g◦σf

h◦κ(g◦σf) h

h◦τg

g

où κ est donc représenté sur la face opposée. Puisque C• est une quasicatégorie, on
peut relever ce 3-cornet interne en un 3-simplexeH et δ′ := d2(H) nous donne alors la

face bleue de devant à gauche sur le diagramme suivant :

w

x z

y

h◦κ(g◦σf)

f

g◦σf

h

h◦τg

g

Par définition de la composition partielle associée à δ′ = d2(H) on obtient bien que
(h ◦τ g) ◦δ′ f = d1(δ′) = h ◦κ (g ◦σ f). �

On peut maintenant définir la catégorie homotopique d’une quasicatégorie de la
manière suivante.

Définition 4.2.33 (Catégorie homotopique d’une quasicatégorie). Soit C• une qua-
sicatégorie. On notera π(C•) la catégorie dont les objets sont ceux de C• et les 1-
morphismes sont les classes d’équivalence de 1-morphismes de C• (cf définition 4.2.27).
La composition est donnée par la classe d’équivalence des compositions faibles et les
unités par les classes d’équivalence des flèches unités idx de C•.

On utilise la notation π(C•) et non pas Ho(C•) essentiellement pour spécifier que
c’est une construction spécifique aux quasicatégories (et que nous allons comparer
les deux) et rappeler le groupoide fondamental 4.2.39, mais en pratique on peut
confondre les deux constructions.
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Corollaire 4.2.34. Si C• est une quasicatégorie, alors π(C•) est bien une catégorie et
C• 7→ π(C•) définit un endofoncteur de la catégorie des quasicatégories donné par
la règle qui à F : C• → D• un ∞-foncteur, associe la règle [f ] 7→ [F (f)] ;. De plus,

(1) On a des un ∞-foncteur naturel (en C•) πC• : C• → N•(π(C•)) donné par
la règle qui à f : x→ y un morphisme de C•, associe la classe d’équivalence
[f ] ∈ Homπ(C)(x, y) ;

(2) on a des équivalences naturelles de quaiscatégories

π(N•(C)) ∼= C,

Fun(π(C•), π(D•)) ∼= π
(
Fun(C•,D•)

)
.

Démonstration. Que π(C) soit une catégorie découle immédiatement des proposi-
tions 4.2.31 et 4.2.32 qui garantissent que la composition est uniquement définie et
associative. De plus nous avons dans la peuve de la proposition 4.2.31 que pour tout
morphisme f , on a un 2-simplexe dégénéré s1(f) ∈ C2 = 1

0

f
@@

f
// 2.

idy

qui nous

donne que d1(s0(f)) = f et donc que idy est bien une unité à droite. Pour l’unité à
gauche on utilise bien sûr s1(f) à la place de s0(f).

Le point (1) découle maintenant du fait qu’un foncteur entre quasicatégories est
un morphisme d’ensembles simpliciaux. En particulier si σ est une 2-cellulere levant
le 2-cornet interne associée à une paire composable (f, g), alors F (σ) est une 2-cellule
relevant le 2-cornet associé à (F (f), F (g)). Il suit que [F (f◦σg)] = [F (f)◦F (σ)F (g)] =
[F (f)] ◦ [F (g)]. On montre de même que les unités sont préservées.

Enfin le point (2) découle de la proposition 4.2.11 et des exemples 4.2.14. �

Remarque 4.2.35. La catégorie homotopique d’une quasicatégorie permet de relever
certains concepts standards aux ∞-catégories. Par exemple

Définition 4.2.36. Un morphisme f : x → y d’une quasicatégorie C• est appelé un
isomorphisme si [f ] est un isomorphisme de π(C•).

De même, en combinant cette dernière définition avec 4.2.23, on obtient les défi-
nitions suivantes.

Définition 4.2.37. Soit C•, D• des quasicatégories.

• Un ∞-foncteur F : C• → D• est essentiellement surjectif si π(F ) : π(C•)→
π(D•) l’est.
• Deux ∞-foncteurs F,G : C• → D• sont naturellement équivalents si ils sont

isomorphes (au sens de 4.2.36) en tant que morphismes dans la quasicatégorie
Map•(C•,D•).

On peut montrer (mais ce n’est pas trivial) le résultat suivant qui est impor-
tant et identifie les ∞-groupoides avec les ∞-catégories dont tous les éléments sont
inversibles.

Proposition 4.2.38. Soit C• une quasicatégorie. On a que C• est un∞-groupoide 90 si
et seulement si tous les morphismes de C• sont inversibles c’est à dire si et seulement
si π(C•) est un groupoide.

90. c’est à dire un complexe de Kan par définition 4.2.17
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Exemple 4.2.39. Soit X est un espace topologique, alors Sing•(X) est un complexe
de Kan donc est un ∞-groupoide. Par construction et le lemme 3.3.9, on a que
π(Sing•(X)) est équivalente au groupoide fondamental de X. On peut donc voir
Sing•(X) comme l’∞-groupoide associé à l’espace topologique X. Nous allons voir
que l’équivalence de Quillen 3.2.18 nous dit que réciproquement, tout ∞-groupoide
au sens des quasicatégories est équivalent à un espace topologique.

Exemple 4.2.40. Nous verrons ci-dessous 4.4.11 qu’une catégorie C munie d’une
classe d’équivalence faible donne un exemple de quasicatégorie non-triviale Ho∞(C)
dont la catégorie homotopique est équivalente à Ho(C) = C[W−1].

Les deux exemples précédents donnent une grande source d’exemples de quasica-
tégories.

Donnons une démonstration que nous avions laissé de côté.

Démonstration du lemme 4.2.29. Le point essentiel est que nous avons les 2-cellules
dégénérées s1(f) ∈ C2 = 1

0

f
@@

f
// 2

idy

et s0(f) = 1
f

��
0

idx

f
// 2

que l’on

peut recoller à l’une des 4 formes et montrent directement le point (2). Par exemple,

on obtient à partir de la première forme 1
g

��
0

idx

f
// 2,

, un 3-cornet Λ3
2,• → C•

donné par sur la face du fond une dégénérescence de f , et toujours s1(g) à droite on

obtient un 3-cornet interne Λ3
2,• → C• différent

3

0 2

1

f

f

idx

Idy

g

g

obtenu

en collant sur la face du fond la dégénérescence s1(f) de f , et la dégénérescence s1(g)
à droite. L’existence d’un relèvement de ce 3-cornet interne nous donne l’existence
de la face du fond qui est précisément la forme symétrique 1

f

��
0

idx

g
// 2

.

On obtient la forme symétrique de la deuxième forme de la même manière.
Si en revanche on avait collé les dégénérescences de g correspondant aux faces

rouges et jaunes on aurait obtenu un autre type de 3-cornet interne Λ3
1,• → C•
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3

0 2.

1

g

f

idx

Idy

g

g

Le relevé nous fournit (en prenant sa facce d1) une

équivalence de la forme 1
f

��
0

idx

g
// 2,

ce qui permet de conclure pour le point

(1) en utilisant les différentes symétries. Finalement, pour le point (3), étant donné
une équivalence entre f et g et entre g et h, que l’on peut choisir de la forme que l’on
souhaite par (1), on construit un 3-cornet interne Λ3

1,• similaire au précédent donné

par

3

0 2.

1

h

f

idx

Idy

g

g

La face opposée du relèvement donne précisément

une équivalence entre f et h. �

Remarque 4.2.41. Cas des catégories non-petites La définition 4.2.13 d’une quasica-
tégorie que nous avons donné correspond à celle d’une petite∞-catégorie. Si ce n’est
pas génant en ce qui concerne l’exemple 4.1.1, ça l’est beaucoup plus dans l’objectif
d’associer une ∞-catégorie à une catégorie de modèle puisque ces dernières étant
(co)complètes, elles ne sont essentiellement jamais petites.

La structure de modèle des catégories simplicialement enrichies 4.3 se placera
naturellement dans ce contexte. D’un point de vue quasicatégorie, la solution est de
se placer dans des univers plus large et considérer des objets simpliciaux dans ce
contexte. La définition d’une quasicatégorie est alors la même dans ce contexte. En
particulier, si C est une catégorie non-nécessairement petite, on peut définir le nerf
de C comme l’objet simplicial

N•(C) := HomCat([•],C)

en prenant les morphismes entre catégories non nécessairement petites. L’objet ob-
tenu est un objet simplicial (qu’on peut voir comme un objet simplicial dans Catdisc

la sous-catégorie de Cat des catégories discrètes, c’est à dire qui n’ont que des iden-
tités comme morphismes) qui vérifie la proposition 4.2.11. Notons que si C est une
catégorie avec des ensembles de moprhismes, alors on a encore que MapN•(C•)(x, y)
est bien un ensemble simplicial, qui est de Kan. De plus, quel que soit l’univers dans
lequel on s’est placé, les diagrames définissant les propriétés des relèvements des
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cornets internes ne concernent que des ensembles puisque les cornets et simplexes
sont des ensembles simpliciaux (par ailleurs finis).

En particulier, on peut généraliser la définition 4.2.13 et tous les résultats des
section 4.2.2, 4.2.3 s’étendent à ce contexte. Précisément :

• on peut définir les quasicatégories comme les objets simpliciaux C• de Catdisc

qui vérifient la propriété de relèvement par rapport aux inclusions de cornets

internes, c’est à dire l’existence de relèvements Λn
r,•� _

��

// C•

∆n
•

h
==

• et tels que pour tout objets (c’est à dire 0-simplexes) x, y ∈ C0, les tirés
en arrière MapC•(x, y) := {x} ×C• MapSCatdisc

(∆1
•,C•) ×C• {y} soient des

ensembles simpliciaux, nécessairement de Kan.
• On a une catégorie QCatf des quasicatégories non-nécessairement petites

dont les objets sont les quasicatégories non-nécessairement petites et les mor-
phismes les morphismes simpliciaux entre tels objets ; pour toute paire de
quasicatégorie, on a une quasicatégorie large Map•(C•,D•) des foncteurs de
C• vers D•.
• Le nerf N•(−) := HomCat([•],−) est un foncteur Cat→ QCatf pleinement

fidèle.
• Toutes les définitions, exemples, lemmes et propositions de 4.2.3, 4.2.2 sont

vraies dans ce contexte, quitte à changer cat en Cat.

On peut évidemment généraliser encore plus et travailler avec des catégories plus
larges de la même façon. Cette approche a d’ailleurs l’avantage de ne pas considérer
la classe des objets comme une classe particulière (contrairement à l’usage en théorie
des catégories) mais commme une classe de flèches de source et but “vide”.

4.2.4. Structure de modèle de Joyal sur les quasicatégories. Les quasicatégories
forment un modèle populaire des ∞-catégories qui ont cependant quelques incové-
nients : par exemple, la composition n’est pas définie strictement 91. Nous avons aussi
construit des quasicatégories de foncteurs entre (petites) quasicatégories mais pas
une quasicatégorie des quasicatégories.

Pour remédier à celà nous allons introduire une structure de modèle encodant
les quasicatégories et les ∞-foncteurs entre elles. Cela nous permettra également de
comparer ce modèle avec d’autres modèles. Le point important est que l’on va définir
une structure de modèle sur sEns dont les objets fibrants sont les quasicatégories
et les équivalences faibles vont encoder le fait d’avoir une équivalence des espaces de
morphismes induisant des équivalences de catégories homotopiques.

Terminologie 4.2.42. Soit C• une quasicatégorie. On note π0(C•) l’ensemble des
classes d’isomorphismes de la catégorie π(C•) associée à C•.

Définition 4.2.43 (Structure de modèle de Joyal). Soit f : X• → Y• un morphisme
d’ensembles simplicaux. On dit que

91. on peut la strictifier pour résoudre ce problème, ce qui conduit en fait à regarder la notion
de catégorie simplicialement enrichie en fait ; attention en faisant cela on peut perdre la propriété
d’avoir un complexe de Kan de morphismes...
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• f est une équivalence catégorielle 92 si pour toute quasicatégorie C•, le mor-

phisme induit f ∗ : π0(Map•(Y•,C•))
−◦f−→ π0(Map•(X•,C•)) est un isomor-

phisme ;
• une cofibration si f est injectif en chaque degré simplicial 93

• une fibration de Joyal si elle a la propriété de relèvement à droite par rapport
à toutes les cofibrations qui sont des équivalences catégorielles.

On notera respectivement WJ la classe des équivalences catégorielles, C celle des
cofibrations et FJ celle des fibrations de Joyal. On appelle cette donnée la structure
de Joyal.

Théorème 4.2.44. La catégorie des ensembles simpliciaux (sEns,WJ ,FJ ,C) munie
de la structure de Joyal est une catégorie de modèle cofibrement engendrée et propre
à gauche.

Les objets fibrants de cette structure sont précisément les quasicatégories.

On notera Qcat cette structure de modèle 94 et on l’appelera la catégorie de modèle
des (petites) quasicatégories. Par définition QCatf est la sous-catégorie pleine de

QCat de ses objets fibrants. On notera RJ le remplacement fibrant associé à la
structure de Joyal qui à un ensemble simplicial associe donc sa quasicatégorie associée
par définition 4.2.13.

On notera aussi QCat celle des quasicatégories non-petites (reprenant les idées
de 4.2.41). Précisément, cette dernière et ses autres variantes s’obtiennent en définis-
sant des structures de modèle similaire sur sEnsU la catégories des objets simpliciaux
dans un univers U donné.

Remarque 4.2.45. Tous les objets de Qcat sont cofibrants, comme pour la structure
de Quillen sur les ensembles simpliciaux 95.

Remarque 4.2.46. Les équivalences faibles de ces structures sont difficiles à identifier
en général. Cependant :

Exercice 4.2.47. Démontrer que si un foncteur F est une équivalence de catégories
(oridnaires), alors N•(F ) est une équivalence catégorielle.

Exercice 4.2.48. Démontrer que si f : X• → Y• est une fibration acyclique, alors f
est une équivalence catégorielle.

Proposition 4.2.49. Le nerf et le foncteur catégorie homotopique forment une ad-

jonction de Quillen Qcat
π◦RJ ++

cat
N•

mm où cat est munie de sa structure de modèle

canonique.

De même leur extension QCat
π◦RJ ,,

Cat
N•

mm aux (quasi)catégories non petites est

une adjonction de Quillen

92. nous suivons la convention de Lurie ; Joyal appelle cela une équivalence catégorielle faible
93. c’est donc la même notion de cofibration que celle des Quillen dans sEns
94. le contexte devrait toujours permettre de ne pas confondre cette structure de modèle avec sa

sous-catégorie des objets fibrants
95. en particulier cette catégorie de modèle est donc propre à gauche



INTRODUCTION À L’HOMOTOPIE 137

Le foncteur de remplacement fibrant dans sEns nous donne un endofoncteur R :
sEns→ sEns qui envoie une quasicatégorie sur un complexe de Kan.

Terminologie 4.2.50. On dit que le foncteur associé C• 7→ R(C•) associe à une
quasicatégorie son ∞-groupoide sous-jacent. Ceci est justifié par l’exemple 4.2.52.

Notation 4.2.51. Si C• est une quasicatégorie, on notera Ciso
• = R(C) son ∞-

groupoide sous-jacent.

Exemple 4.2.52. On a un isomorphisme naturel R(N•(C)) ∼= N•(C
iso) où Ciso est le

groupoide sous-jacent à C, c’est à dire la plus grande sous-catégorie de C qui est un
groupoide.

Remarque 4.2.53. On a une catégorie de modèle des quasicatégories qui généralise
celle des catégories. Les équivalences faibles de la catégorie de modèle des catégories
sont les équivalences de catégories. En particulier la catégorie homotopique de cette
dernière encode les catégories et les classes d’équivalence de foncteurs, c’est à dire
les foncteurs à équivalence près, voir le devoir maison.

La catégorie de modèle des quasicatégories donne une construction similaire pour
les ∞-catégories.

4.3. Le modèle des catégories enrichies simplicialement

Nous en venons maintenant à un autre modèle très naturel aussi qui est obtenu
en considérant des catégories munies d’une topologie, ou au vu du théorème 3.2.18,
d’une structure d’ensemble simplicial (qui est plus maniable car plus petite et se
transpose plus naturellement dans de nombreux exemples et domaines mathéma-
tiques).

Il existe une structure de modèle canonique sur les catégories, qui a été developpé
en devoir. L’idée est de combiner cette structure et celle de Quillen sur sEns (ou
Top) pour obtenir un modèle des ∞-catégories réalisant précisément l’idée d’une
catégorie munie d’un espace à homotopie près de morphismes.

Définition 4.3.1. Une catégorie C est d̂ıte simplicialement enrichie 96 si elle est munie
d’ensembles simpliciaux de morphismes MapC(x, y)• pour toute paire d’objets x, y ∈
Obj(C) et de morphismes d’ensembles simpliciaux MapC(y, z)• × MapC(x, y)•

◦→
MapC(x, z)• vérifiant :

• MapC(x, y)0 = HomC(x, y) et la restriction de ◦ aux 0-simplexes est la com-
position dans C ;
• ◦ est associative et les morphismes identités de C sont des unités pour ◦.

Un foncteur de catégories enrichies simplicialement est un foncteur tel que les appli-
cations induites au niveau des espaces de morphismes soient des morphismes d’en-
sembles simpliciaux, c’est à dire une règle Obj(C) 3 X 7→ F (X) ∈ Obj(D) au
niveau des objets et pour tous objets X, Y ∈ C, des morphismes d’ensembles sim-
pliciaux MapC(X, Y )• → MapD(F (X), F (Y ))• tels que F (f ◦ g) = F (f) ◦ F (g) et
F (idX) = idF (X).

On notera Cat∆ la catégorie des catégories enrichies simplicialement.

96. on dit parfois catégorie simpliciale, mais cette dernière terminologie peut aussi désigner un
objet simplicial dans cat ou une catégorie simplicialement enrichie tensorisée et cotensorisée au
dessus de sEns, donc il vaut mieux l’éviter si possible
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Remarque 4.3.2. Notons que les morphismes sous-jacents de la catégorie C sont
uniquement déterminés par la structure simpliciale, puisqu’il s’agit des 0-simplexes
munis des compositions et unités restreintes au degré 0.

Remarque 4.3.3. On a une notion de catégorie enrichie dans les espaces topologiques
similaire obtenue en remplaçant ensembles simpliciaux par espaces topologiques.

Exemple 4.3.4. La catégorie sEns est enrichie simplicialement via Map•(X•, Y•).

Exemple 4.3.5. Si C est une catégorie, on peut la voir comme une catégorie enrichie
simplicialement en prenant comme espace des morphismes l’ensemble simplicial dis-
cret HomC(x, y) ; autrement dit, on pose MapC(x, y)0 = HomC(x, y) et on ne met
que les dégénérescences des 0-simplexes en degré supérieur. Ceci nous fournit un
foncteur

ι : Cat ↪→ Cat∆.

Lemme 4.3.6. Le foncteur ι : Cat ↪→ Cat∆ est pleinement fidèle

Exercice 4.3.7. Démontrer le lemme.

Le foncteur ι est un analogue du nerf N• : cat→ Qcat de la section 4.2.2.

Exemple 4.3.8. La catégorie Cat∆ est une catégorie (large) enrichie simplicialement.
En effet, si C, D sont deux telles catégories, et F,G : C → D deux foncteurs, les
transformations naturelles entre ces foncteurs ont une structure simpliciale donnée
comme collection de sous-ensembles simpliciaux des MapD(F (x), G(x))•.

Rappelons que nous avons un foncteur π0 : sEns→ Ens qui associe à un ensemble
simplicial X•, l’ensemble π0(|X•|) ∼= π0(R(X•)) où R(X•) est un remplacement fi-
brant 3.3. Ceci nous permet de passer aux classes d’homotopies dans les espaces de
morphismes pour définir la catégorie homotopique associée.

Définition 4.3.9 (Catégorie homotopique d’une catégorie simplicialement enrichie).
Si C est une catégorie enrichie simplicialement, on note π0(C) la catégorie dont les
objets sont les objets de C et qui à un morphisme f : x → y associe sa classe dans
π0(MapC(x, y)•).

Un morphisme γ : x → y dans C est appelé une équivalence dans C 97 si [γ] est
un isomorphisme dans π0(C).

Notons que par définition, π0(C) a les mêmes objets que C et que ces morphismes
sont des quotients des HomC(x, y). En particulier, à tout morphisme f ∈ C entre x
et y, on peut associer sa classe d’équivalence [f ] ∈ Homπ0(C)(x, y).

Lemme 4.3.10. Soit C une catégorie enrichie simplicialement. Alors π0(C) est bien
une catégorie et f 7→ [f ] est un foncteur π : Cat∆ → Cat.

Exercice 4.3.11. Démontrer le lemme.

Nous définissons maintenant une structure de modèle combinant la structure de
Quillen des ensembles simpliciaux sur les morphismes et la notion d’équivalence de
catégorie.

Définition 4.3.12. (Structure de modèle de Dwyer-Kan, Bergner)

97. il est bn de se convaincre que cette notion est analogue à celle d’isomorphisme dans une
quasicatégorie
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Une équivalence de Dwyer-Kan: est un foncteur f : C→ D de catégories enrichies
simplicialement tel que

(1) pour toutes paires d’objets x, y ∈ C, MapC(x, y)•
f→ MapD(f(x), f(y))•

est une equivalence faible d’ensembles simpliciaux ;
(2) π0(f) : π0(C)→ π0(D) est une équivalence de catégorie.

On note WDK la classe des équivalences de Dwyer-Kan.
Une fibration de Dwyer-Kan: est un foncteur f : C→ D de catégories tel que

(1) pour toutes paires d’objets x, y ∈ C, MapC(x, y)•
f→ MapD(f(x), f(y))•

est une fibration d’ensembles simpliciaux ;
(2) pour tout x ∈ Obj(C), y ∈ Obj((D) et toute équivalence γ : f(x) → y

dans D, il existe une équivalence γ′ : x→ x′ dans C telle que f(γ′) = γ.
On notera FDK la classe des fibrations de Dwyer-Kan.

Une cofibration de Dwyer-Kan: est un foncteur qui a la propriété de relèvement à
gauche par rapport à toutes les fibrations de Dwyer-Kan qui sont des équi-
valences de Dwyer-Kan. On notera CDK cette classe.

Remarque 4.3.13. On peut remarquer que les fibrations de Dwyer-Kan sont exacte-
ment les foncteurs qui sont des fibrations de Kan au niveau des ensembles simpliciaux
de morphismes et dont la classe dans les catégories homotopiques est une isofibra-
tion 98.

Théorème 4.3.14 (Bergner). La structure (Cat∆,WDK ,FDK ,CDK) est une stuc-
ture de modèle cofibrement engendrée.

Remarque 4.3.15. Les objets fibrants sont les catégories dont les ensembles de mor-
phismes sont des complexes de Kan.

Contrairement aux quasicatégories, toutes les catégories simplicialement enrichies
ne sont pas cofibrantes.

Par ailleurs, la catégorie simplicialement enrichie des foncteurs entre deux caté-
gories enrichies simplicialement fibrantes n’est pas nécéssairement fibrante (contrai-
rement au cas des quasicatégories 4.2.22).

Notons que nous avons le résultat suivant.

Lemme 4.3.16. On a une adjonction de Quillen Cat∆
π0 ,,

Cat
ι
mm où Cat est munie

de sa structure de modèle canonique 99.

Exercice 4.3.17. Démontrer le lemme.

En particulier, la counité de l’adjonction nous donne le morphisme canonique

(18) ` : C −→ ι(π0(C))

de catégorie enrichie simplicialement.

Nous allons maintenant définir un foncteur reliant les catégories enrichies sim-
plicialement et les quasicatégories ; foncteur qui généralise le nerf d’une catégorie
ordinaire : C 7→ Homcat([•],C). L’idée est de définir un objet similaire en rempla-
çant les catégories par les catégories simpliciales. Comme la catégorie [n] n’est pas

98. C’est à dire une fibration de catégorie, voir le devoir maison.
99. dont les équivalences faibles sont les équivalences de catégorie et les fibrations les isofibrations
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cofibrante en tant que catégorie simpliciale, afin d’obtenir un foncteur raisonnable du
point de vue homotopique il nous faut le remplacer par une catégorie plus adaptée.

Définition 4.3.18. Soit ˜[n] la catégorie enrichie simplicialement dont les objets sont
les éléments de l’ensemble {0, . . . , n} et les ensembles simpliciaux de morphismes
sont

Map ˜[n](i, j) =

{
∅ si i > j
N•(Pi,j) si i ≤ j

où Pij est la catégorie associée à l’ensemble partiellement ordonné (par l’inclusion)
des sous-ensembles J de {k ∈ [n], i ≤ k ≤ j} qui contiennent i et j.

La composition Map ˜[n](j, k)×Map ˜[n](i, j)→ Map ˜[n](i, k) est induite par l’applica-

tion du foncteur nerf à la réunion de sous ensembles partiellement ordonnés (disjoints
en dehors de j) : Pjk × Pij → Pik : (K, J) 7→ J ∪K.

En particulier Pii a un seul élément et son nerf est donc équivalent à {∗} = ∆0
•.

Remarque 4.3.19. On a un isomorphisme d’ensembles simpliciaux Map ˜[n](i, j)
∼=

(∆1
•)
j−i−1 pour i < j. En particulier, ces ensembles simpliciaux sont contractiles 100

ce qui correspond au fait qu’il y a un unique morphisme de i vers j dans la catégorie

[n]. Ainsi, le foncteur ˜[n]→ [n] qui envoie N•(Pij) sur un point est une fibration de
Dwyer-Kan qui est également une équivalence de Dwyer-Kan.

Proposition 4.3.20. La donnée de la définition 4.3.18 est une catégorie enrichie sim-
plicialement dont les unités sont les uniques éléments des N0(Pii).

De plus tout morphisme croissant f : [n] → [m] induit par postcomposition un

foncteur ˜[n]→ ˜[m] qui fait de ˜[•] un objet cosimplicial dans les catégories enrichies
simplicialements.

Définition 4.3.21 (Nerf cohérent). On appelle nerf cohérent 101 le foncteur Ñ• :

cat∆ → sEns donné par C 7→ Homcat∆( ˜[•],C) munie de la structure simpliciale

induite par la structure cosimpliciale de ˜[•].

On notera de même Ñ• : Cat∆ → sEnsU son extension à des catégories non-

nécessairement petites (associées à un univers U), donné par C 7→ HomCat∆( ˜[•],C).

Remarque 4.3.22. Si C est une catégorie ordinaire, le lemme 4.3.16 implique que le
nerf cohérent coincide avec le nerf N•(C).

Théorème 4.3.23. Le nerf cohérent est un adjoint de Quillen à droite QCat
π̃ ,,

Cat∆

Ñ•

mm .

Cette adjonction est de plus une équivalence de Quillen et se restreint en une équi-

valence de Quillen Qcat
π̃ ,,

cat∆

Ñ•

ll .

Le théorème permet donc d’identifier la structure de modèle des quasicatégories et
celle des catégories enrichies simplicialement. C’est en ce sens que ces deux théories
donnent donc la même notion d’infinie catégorie ; sens que nous allons d’ailleurs
préciser dans la partie 4.4. Étant donné que les objets fibrants sont préservés par un
foncteur de Quillen à droite, on peut donc utiliser la terminologie suivante :

100. ce qui découle aussi plus simplement du fait que les posets Pi,j ont des éléments minimaux
101. ou parfois nerf simplicial dans la littérature
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Terminologie 4.3.24. Une catégorie enrichie simplicialement fibrante est aussi sim-
plement appelée une ∞-catégorie 102

Remarque 4.3.25. Le foncteur dérivé à droite RÑ• = Ñ• ◦ RDK : Cat∆ → QCat
envoie donc toute catégorie simpliciale sur une quasicatégorie.

Remarque 4.3.26. A contrario des quasicatégories, on peut composer strictement les
ensembles simpliciaux de morphismes ou les catégories de foncteurs entre catégories
enrichies simplicialement. En revanche, ces ensembles de morphismes entre objets
fibrants (c’est à dire ∞-catégorie) ne sont pas nécessairement fibrants, c’est à dire
doivent être remplacés pour obtenir la bonne structure.

Remarque 4.3.27. On a une équivalence naturelle canonique π(Ñ•(C)) ∼= π0(C) entre
les catégories homotopiques d’une catégorie enrichie simplicialement et celle de sa
quasicatégorie associée. Ceci jsutifie la notation π que nous avons utiliser dans le
lemme 4.3.10.

De plus cette identification envoie le morphisme canonique ` : C → ι(π0(C)) sur
πÑ•(C) du corollaire 4.2.34.

4.4. L’∞-catégorie associée à une catégorie de modèle

Nous allons maintenant expliquer comment associer une∞-catégorie à une catégo-
rie de modèle, et plus généralement une catégorie munie d’une notion d’équivalences
faibles, qui sera un enrichissement de la catégorie homotopique sous-jacente. Préci-
sément :

Philosophie 4.4.1. À toute catégorie C munie d’une classe W stable par composition
de morphismes, on souhaite associer une ∞-catégorie Ho∞(C) et un ∞-foncteur
`∞ : C→ Ho∞(C) tels que

• Ho∞(C) relève Ho(C), c’est à dire π(Ho∞(C)) ∼= Ho(C) et il existe une

factorisation C
`∞ //

`

33Ho∞(C) // Ho(C) (où la flèche de droite est induit

par le morphisme canonique qui envoie une ∞-catégorie sur sa catégorie
homotopique 4.3.10 ou 4.2.34 et ` : C→ Ho(C) est la localisation).
• Ce relèvement est universel parmi les ∞-catégories vérifiant le point précé-

dent : précisément pour toute (∞-)catégorie D et (∞-)foncteur F : C→ D
tel que π ◦F : C→ D → Ho(D) envoie W dans des isomorphsimes, il existe
une factorisation (unique à équivalence près 103) F∞ : Ho∞(C)→ D rendant
le diagramme suivant 104

C

`

55

F //

`∞

##

D
` // Ho(D)

Ho∞(C)

F∞

99

// Ho(C)
F̃

99

102. le Théorème 4.3.23 nous dit précisément qu’il n’y a pas d’ambiguité réelle à utiliser cette
terminologie pour les quasicatégories et les catégories enrichies simplicialement puisque le nerf
d’une catégorie simpliciale fibrante est précisément une quasicatégorie.
103. l’équivalence étant unique à une 2-équivalence près et ainsi de suite
104. dans les ∞-catégories
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commutatif (où F̃ : Ho(C)→ Ho(D) est donné par la propriété universelle
de la catégorie homotopique).

Lorsque C est de modèle, il est légitime d’espérer calculer les morphismes de
Ho∞(C) en fonctions de remplacements fibrants et cofibrants dans C. Par ailleurs,
l’existence d’une telle∞-catégorie ne se fait en général pas sans s’autoriser à changer
d’univers si l’on ne dispose pas d’une (bonne) structure de modèle.

L’existence d’un tel relevé homotopique remonte aux travaux de Dwyer-Kan construi-
sant une catégorie simpliciale associée à (C,W).

Notation 4.4.2. Soit M une catégorie et W une sous-classe de morphismes stable par
composition. Pour tout entier n ≥ 0 et objets X, Y de M , on note MapLH

W
M(X, Y )n

la collection de tous les diagrammes commutatifs

X0,1

��

· · ·

��

X0,i

��

// X0,i+1

��

· · ·oo

��

X0,m−1

��
X1,1

��

· · ·

��

X1,i

��

// X1,i+1

��

· · ·oo

��

X1,m−1

��

X
...

��

...

��

... //

��

...

��

...oo

��

...

��

Y

Xn,1 · · · Xn,i
// Xn,i+1 · · ·oo Xn,m−1

(où m ≥ 1 est un entier non-fixé) vérifiant que

• toutes les flèches horizontales qui vont vers la gauche et toutes les verticales
sont dans W ;
• toutes les flèches horizontales d’une même colonne vont dans le même sens ;
• Les flèches d’une même colonne interne 105ne sont pas toutes l’identité ;
• les flèches horizontales de deux colonnes consécutives vont dans des sens

opposés.

Dans les conditions et notations précédentes, on identifie X avec une suite verticale
en position 0 de flèches qui sont toutes l’identité entre les Xi,0 = X, et de même Y
avec une suite verticale en position m de flèches qui sont toutes l’identité entre les
Xj,m = Y .

On note di : MapLH
W
M(X, Y )n → MapLH

W
M(X, Y )n−1 la règle envoyant un dia-

gramme sur le diagramme où on a supprimé la ième ligne (c’est à dire supprimé tous
les Xi,∗ et flèches horizontales associées et composé les flèches verticales arrivant et
repartant en les Xi,∗) et on note sj : MapLH

W
M(X, Y )n → MapLH

W
M(X, Y )n+1 la règle

envoyant un diagramme sur le diagramme où on a doublé la jème ligne (c’est à dire
rajouté une ligne composée des Xj,∗ et des flèches horizontales entre eux juste après
la jième ligne et mis l’identité comme flèche verticale entre les deux copies de Xj,∗).

Terminologie 4.4.3. Un élément de MapLH
W
M(X, Y )n est appelé un n-“hamac”106

entre X et Y .

105. c’est à dire une bande formé des flèches reliant des objets de la forme X∗,i, X∗,i+1 avec
0 < i < m
106. en raison de la forme suggestive de ce diagramme
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On peut composer deux n-hamacs de X vers Y et de Y vers Z en les concaténant
en Y et en composant toutes les flèches qui iraient éventuellement dans le même
sens dans deux colonnes adjacentes ainsi obtenues (effaçant ainsi une ligne verticale)
quitte à effacer une colonne interne qui n’aurait que des identités. On note ◦ :
MapLH

W
M(Y, Z)n ×MapLH

W
M(X, Y )n → MapLH

W
M(X,Z)n cette opération.

Lemme 4.4.4. La composition ◦ : MapLH
W
M(Y, Z)n×MapLH

W
M(X, Y )n → MapLH

W
M(X,Z)n

est bien définie.

Exercice 4.4.5. Démontrer le lemme.

Proposition 4.4.6. La donnée des di, sj (de la notation 4.4.2) et de la composition
donnent une structure de catégorie enrichie simplicialement aux objets de M munis
des MapLH

W
M(X, Y )• comme ensembles simpliciaux de morphismes.

Exercice 4.4.7. Démontrer la proposition.

Définition 4.4.8 (Localisation hamac). On note LH
WM la catégorie enrichie simpli-

cialement dont les objets sont les objets de M et les ensembles simpliciaux de mor-
phismes les MapLH

W
M(X, Y )• munis de la structure de la proposition 4.4.6.

Remarque 4.4.9. Il existe d’autres catégories simpliciales fonctorielles qui sont Dwyer-
Kan équivalentes à la localisation hamac.

On peut par exemple inclure tous les morphismes de M dans les morphismes
verticaux d’un hamac. Le morphisme de catégorie simplicialement enrichie est une
équivalence de Dwyer-Kan comme cela peut être démontré en utilisant une démons-
tration similaire à celle des descriptions de la catégorie homotopique dans le TD 2.

Un autre exemple standard est donné par la construction d’une résolution simpli-
ciale basée sur la monade reliant les catégories aux graphes (c’esy à dire oubliant la
composition). Ceci produit un objet simplicial (très très gros) qui en degré simplicial
n − 1 est la localisation usuelle de FnM [FnW

−1] où Fn = F ◦ · · · ◦ F où F est le
foncteur catégorie libre sur le graphe sous-jacent à une catégorie donnée.

Proposition 4.4.10. La localisation hammac a le spropriétés suivantes :

• on a une équivalence de catégorie canonique π0(LH
WM) ∼= Ho(M).

• Pour tout x, y ∈ Obj(M), on a une équivalence faible naturelle d’ensembles
simpliciaux

MapÑ•(LH
W
M)(x, y)

'←− MapLH
W
M(x, y).

De plus, le nerf cohérent Ñ•(L
H
WM) de la localisation hamac est une quasicatégorie

et π(Ñ•(L
H
WM)) ∼= Ho(M).

On en déduit la définition suivante de l’infinie catégorie associée à (M,W).

Définition 4.4.11. Soit M une catégorie munie d’une sous-classe W stable par com-
position. On appelle Ho∞(M) := Ñ•(L

H
WM) la quasicatégorie associée à (M,W). Si

C est munie d’une structure de modèle, on notera Ho∞(C) la catégorie associée à
la paire (C,W) où W sont les équivalences faibles de C.

Remarque 4.4.12. On peut bien entendu, si on travaille dans le modèle Cat∆ des infi-
nies catégories, utiliser directement la localisation hamac LH

WM comme∞-catégorie
associée au vu de la proposition 4.4.10 (et de la terminologie 4.3.24).
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Construisons le“relèvement”du foncteur quotient. Rappelons que ι : Cat→ Cat∆

est le plongement canonique qui identifie les catégories avec les catégories enrichies
simplicialement dont les espaces de morphismes sont discrets. On a un foncteur

canonique ι(M) ↪→ LH
WM qui envoie tout morphisme X

f→ Y de HomM(X, Y )

dans le morphisme 0-hamac trivial X
f→ Y ∈ MapLH

W
M(X, Y )0 (et l’étend en degré

supérieur par dégénérescence). En composant ce foncteur avec le nerf cohérent on
obtient un morphisme de quasicatégories 107

(19) `∞ : N•(M) = Ñ•(ι(M))→ Ho∞(M).

Lemme 4.4.13. On a un diagramme commutatif de morphismes de quasicatégories

N•(M)

` &&

`∞ // Ho∞(M)

π

��
Ho(M)

où la flèche diagonale est le foncteur quotient et la flèche

verticale le morphisme construit dans le corollaire 4.2.34.

Exercice 4.4.14. Démontrer le lemme.

Le corollaire 4.4.10 (ou la proposition 4.4.10) et le lemme 4.4.13 garantissent que
le premier point de la philosophie 4.4.1 est satisfait par Ho∞(M) tel que défini
par 4.4.11.

Notons que par définition, l’infinie catégorie associée à une catégorie de modèle ne
dépend que de la classe des équivalences faibles. La donnée des structures de modèle
permet de construire des foncteurs entre ∞-catégories associées et de simplifier la
structure construite : un premier exemple est le lemme 4.4.15 ci-dessous qui est un
relevé du lemme 2.2.14.

Notons tout d’abord que si M ′ ⊂ M est une sous-catégorie de M , alors tout
n-hamac de M ′ est un n-hamac de M et on en déduit que LH

W∩M ′M
′ est une

sous-catégorie enrichie simplicialement de LH
WM et par suite on a un (∞-)foncteur

Ho∞(M ′)→ Ho∞(M).

Lemme 4.4.15. Soit C une catégorie de modèle. Les inclusions Cc � o

  
Ccf

. �

==

� p

!!

C

Cf

/ �

??

induisent des équivalences 108 Ho∞(Ccf ) ∼= Ho∞(Cc) ∼= Ho∞(Cf ) ∼= Ho∞(C).

Une question naturelle qui se pose est la fonctorialité de la construction de Ho∞(M).
Soient (M,W), (M ′,W′) deux catégories munies de classes d’équivalences faibles.
Pour qu’un foncteur F : M →M ′ induise un foncteur LH

WM → LH
W′M

′ il suffit qu’il
envoie un n-hamac sur un n-hamac c’est à dire qu’il envoie les équivalences faibles de
M sur des équivalences faibles dans M ′. En général c’est évidemment une propriété

107. on a bien que la surce et le but sont des quasicatégories par les propositions 4.4.10 et 4.2.11
108. c’est à dire des équivalences catégorielles des quasicatégories ou de manière équivalentes des
équivalences de Dwyer-Kan des localisations hamacs
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très forte (nous avons vu de nombreux exemples de foncteurs ne le vérifiant pas) mais
en revanche on peut dans de nombreux cas dériver un foncteur pour obtenir cette
propriété. C’est en particulier le cas des foncteurs dérivés de la section 2.5 qui ont
une extension naturelle aux ∞-catégories associées comme nous allons le montrer.

Soit F
C
))
G

D

ii une adjonction de Quillen entre deux catégories de modèles ; on

note WC et WD leurs classes d’équivalences faibles respectives. On note comme d’ha-
bitude L : C→ C et R : D→ D les remplacements cofibrants et fibrants.

Lemme 4.4.16. Le foncteur LF = F ◦ L : C → D et RG = G ◦ R : D → C envoie
un n-hamac sur un n-hamac.

Démonstration. Par la propriété (MC2), L envoie des équivalences faibles sur des
équivalences faibles entre objets cofibrants et de plus, par définition 2.5.4 et lemme 2.5.8,
F envoie des équivalences faibles entre objets cofibrants sur des équivalences faibles.
Il suit que la composée F ◦L envoie bien un hamac sur un hamac puisque elle envoie
WC dans WD. La même preuve s’applique pour G ◦R. �

Puisque LF préserve les n-hamacs, il envoie l’espace MapLH
W
C(x, y)n dans l’espace

MapLH
W
D(LF (x),LF (y))n pour tout entier. Le même résultat a lieu pour RG. On

note LH(F ) et LH(G) les transformations ainsi induites sur les localisations hamacs.

Lemme 4.4.17. LH(F ) : LH
WC

C → LH
WD

D et LH(G) : LH
WD

D → LH
WC

C sont des
foncteurs de catégories simplicialement enrichies.

Exercice 4.4.18. Démontrer le lemme.

En les composant avec le nerf cohérent on obtient donc des foncteurs entre quasi-
catégories.

Notation 4.4.19. On note F∞ := Ñ• ◦ LH(F ) : Ho∞(C) → Ho∞(D) et G∞ :=
Ñ• ◦ LH(G) : Ho∞(D)→ Ho∞(C) les (∞-)foncteurs ainsi obtenus.

Nous pouvons résumer ce que nous avons construit dans la proposition suivante :

Proposition 4.4.20. Tout foncteur de Quillen ϕ : C → D (à droite ou à gauche)
entre deux catégories de modèle induit un ∞-foncteur ϕ∞ : Ho∞(C) → Ho∞(D)
tel que le diagramme suivant

Ho∞(C)
ϕ∞ //

π

��

Ho∞(D)

π

��
N•(Ho(C)) // N•(Ho(D))

(où les flèches verticales sont les morphismes canoniques et la flèche horizontale du
bas est le foncteur dérivé 2.5.15 de ϕ) soit commutatif dans QCat.

Le même résultat a lieu dans Cat∆.

Ainsi on vient de montrer que les foncteurs dérivés entre catégories de modèles
de la partie 2.5 se relèvent en des∞-foncteurs entre leurs∞-catégories associées 109.
Comme on peut s’y attendre, ces derniers sont des équivalences lorsque l’adjonction
est une équivalence de Quillen :

109. prouvant au passage la moitié du deuxième point de 4.4.1
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Théorème 4.4.21. Soit F
C
))
G

D

ii une équivalence de Quillen. Alors les foncteurs in-

duits F∞ : Ho∞(C)→ Ho∞(D) et G∞ : Ho∞(D)→ Ho∞(C) sont des équivalences
inverses l’une de l’autre d’∞-catégories.

Remarque 4.4.22. Par équivalence on sous-entend bien-sûr ici équivalences catégo-
rielles. Qu’elles soient inverses l’une de l’autre signifie que leurs composées sont
homotopes dans la structure de modèle de Joyal à l’identité.

On dispose maintenant d’une notion d’infinie catégorie associée à une catégorie de
modèle, qui est invariante par équivalence de Quillen. Ceci nous permet de définir
l’infinie catégorie des infinie catégories.

Définition 4.4.23 (L’infinie catégorie des quasi-catégories). On appelle ∞-catégorie
des ∞-catégorie la localisation ∞−Cat := Ho∞(QCat) de la catégorie de modèle
de Joyal des quasicatégories.

On note de même∞−cat = Ho∞(Qcat) l’infinie catégorie des petites∞-catégories.

Remarque 4.4.24. Le théorème 4.4.21 nous dit que Ho∞(QCat) ∼= Ho∞(Cat∆) et
plus généralement que toute catégorie de modèle Quillen équivalente à Cat∆ est un
modèle pour les ∞-catégories au sens où son ∞-catégorie associée est (équivalente
à) ∞−Cat. Il existe de fait de nombreux autres modèles équivalents : catégories de
Segal, espaces de Segal, ensembles dendriformes, etc.

Exercice 4.4.25. Soient R, S des algèbres commutatives différentielles graduées au
sens du chap̂ıtre 5.1.

(1) Soit M un complexe de châınes de (R, S)-bimodules. Démontrer que le pro-
duit tensoriel M ⊗S − induit un ∞-foncteur Ho∞(Ch(S))→ Ho∞(Ch(R)).

(2) Soit f : R → S un morphisme de cdgas. On note f∗ : Ch(S) → Ch(R) le
foncteur qui à un S-module associe le même complexe de châınes muni de
l’action de R donnée par r ·M = f(r) ·M .
(a) Démontrer que f∗ induit un∞-foncteur Ho∞(Ch(S))→ Ho∞(Ch(R)).
(b) Démontrer que le foncteur induit par f∗ est une équivalence si f est un

quasi-isomorphisme.

Nous avons vu que l’un des intérêts d’une structure de modèle était de démontrer
facilement que la catégorie homotopique était une vraie catégorie (et non pas une
catégorie dans un univers plus large) et de donner un moyen de comprendre les
morphismes de la catégorie homotopique en termes de morphismes de la catégorie
de modèle de départ.

On a un résultat analogue pour les ∞-catégories associées à une catégorie de mo-
dèle, tout du moins à condition de pouvoir les munir d’un enrichissement simplicial
compatible avec la structure de modèle au sens de la définition suivante.

Définition 4.4.26 (Catégorie de modèle simpliciale). Une catégorie de modèle simpli-
ciale est la donnée d’une catégorie enrichie simplicialement C, munie d’une structure
de modèle (W,F,C) et de foncteurs

C× sEns
�−→ C, C× sEnsop

(Y,S•)7→Y S•−→ C

satisfaisant les conditions supplémentaires suivantes
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(1) pour tout objet X ∈ C, le foncteur X �− : sEns→ C est adjoint à gauche
de MapC(X,−)• ;

(2) pour tout objet Y ∈ C, le foncteur Y (−) : sEns→ Cop est adjoint à gauche
de MapC(−, Y )• ;

(3) on a un isomomorphisme naturel X � (K × L) ∼= (X �K)� L ;
(4) pour toute cofibration i : K � L et fibration q : X � Y , le morphisme

canonique

MapC(L,X) −→ MapC(K,X) ×
MapC(K,Y )

MapC(L, Y )

est une fibration d’ensembles simpliciaux qui est acyclique si i ou q l’est.

La propriété (1) et (3) est, par définition, la propriété que C est tensorisée par
sEns ; la propriété (2) étant celle que C est cotensorisée par sEns. Ils nous donnent
des isomorphismes naturels

HomC(X � S•, Y ) ∼= HomsEns(S•,MapC(X, Y )•)(20)

HomsEns(S•,MapC(X, Y )•) ∼= HomC(X, Y S•).(21)

Remarque 4.4.27. La donnée des foncteurs � et (Y, S•) 7→ Y S• et de leurs propriétés

est en fait équivalente à dire qu’on a les propriétés (1) et (2) et que C×sEns
�−→ C

est un bifoncteur de Quillen à gauche, c’est à dire un foncteur de Quillen qui vérifie
en plus que l’image d’une paire de cofibrations est une cofibration acylique dés que
l’une d’entre elle est acyclique.

En particulier, les propriétés d’adjonction font que � détermine (Y, S•) 7→ Y S•

(lorqu’il existe bien sûr).

Remarque 4.4.28. La propriété (4) de la définition 4.4.26 généralise l’axiome (MC4)
des catégories de modèle. En effet, un carré commutatif correspondant à (MC4) est
exactement un 0-simplexe de MapC(A,X) ×

MapC(A,Y )
MapC(B, Y ) et le relèvement est

un 0-simplexe de MapC(B,X). Or une fibration acyclique d’ensembles simpliciaux
est surjective, cf 3.2.10. Il suit donc que le relèvement existe. La propriété (4) est
donc un axiome bien plus fort qui établit que l’espace des relèvements est équivalent
à celui des carrés commutatifs du type (MC4).

Exemple 4.4.29. L’exemple prototype d’une catégorie de modèle simpliciale est la
catégorie des ensembles simpliciaux sEns où � = ×. Le lemme 3.2.17 nous donne
le dernier axiome.

Les catégories de modèle des groupes abéliens simpliciaux, groupes simpliciaux
sont d’autres exemples standards. Plus généralement le corollaire 3.4.2 et la propo-
sition 3.4.6 fournissent de nombreux exemples.

La catégorie de modèle de Quillen Top des espaces topologiques n’est pas simpli-
ciale, mais est Quillen équivalente à sEns qui l’est. Par ailleurs, sa sous-catégorie
(Quillen équivalente) des espaces Hausdorff compactement engendrés l’est.

La structure projective sur les complexes de châınes n’est pas une catégorie de
modèle simplicale, mais elle est naturellement équivalente à une en vertu du théo-
rème 4.4.30 ci-dessous. En fait de nombreuses structures de modèle que nous avons
vu le sont en vertu des résultats suivants remarquables de Dugger.
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Théorème 4.4.30 (Dugger [4]). Soit C une catégorie de modèle combinatoire. Alors
C est Quillen équivalente à une catégorie de modèle simpliciale, combinatoire et
propre à gauche.

Remarque 4.4.31. Dugger [5] a également démontré que si C est une catégorie de
modèle combinatoire et propre à gauche, alors on peut modifier cette structure (par
une localisation de Bousfield) de manière à la rendre simpliciale (et toujours combi-
natoire et propre à gauche) de sorte que l’identité soit une équivalence de Quillen.

Avoir une structure de modèle simpliciale a les conséquences suivantes.

Proposition 4.4.32. Soit C une catégorie de modèle simpliciale. Soit A cofibrant et
X fibrant. Alors

(1) MapC(A,X) est de Kan, c’est à dire un ensemble simplicial fibrant ;
(2) On a une bijection naturelle 110 π0(MapC(A,X)) ∼= HomHo(C)(A,X).
(3) Pour tout S• ∈ sEns et objets Y, Z ∈ C, on a des équivalences faibles

naturelles d’ensembles simpliciaux :

MapC(Z � S•, Y )• ∼= MapsEns(S•,MapC(Z, Y )•)•

MapsEns(S•,MapC(Z, Y )•)• ∼= MapC(Z, Y S•)•.

Le point (3) généralise les équivalences (20) et (21) données par les adjonctions
de la définition d’une catégorie de modèle simpliciale.

Démonstration. Le premier point est une conséquence de la propriété (4) de la défi-
nition 4.4.26 appliqué à K = ∅ et Y = {∗}.

Pour le deuxième, sachant que on utilise d’une part que (1) et le fait que tout
ensemble simplicial soit cofibrant (et en particulier A� S• est donc cofibrant par la
remarque 4.4.27) nous donne pour tout S• ∈ sEns une bijection naturelle

(22) HomHo(sEns)(S•,MapC(A,X)•) ∼= HomsEns(S•,MapC(A,X)•)/' ∼=
HomC(A� S•, X)/' ∼= HomHo(C)(A� S•, X)

d’après le corollaire 2.2.22. D’autre part, pour S• = {∗} = ∆0
•, on a par le théo-

rème 3.2.18 que

(23) HomHo(sEns)(∆
0
•,MapC(A,X)) ∼= HomHo(Top)({∗}, |MapC(A,X)•|)

∼= π0(|MapC(A,X))•|) ∼= π0(MapC(A,X)•)

par le lemme 3.3.2. D’où le résultat en prenant S• = ∆0
• dans (22).

Pour le troisième point, on utilise que

homC(Z � (S• × T•), Y ) ∼= homC((Z � S•)� T•, Y )

d’après la propriété (3) de 4.4.26 et on note que l’on a des bijections naturelles

homC((Z � S•)� T•, Y ) ∼= homsEns(T•,MapC(Z � S•, Y )•) et

homC(Z � (S• × T•), Y ) ∼= homsEns(S• × T•,MapC(Z, Y )•)
∼= homsEns(T•,MapsEns(S•,MapC(Z, Y )•)•)

d’après la formule exponentielle 3.2.16. En appliquant Yoneda 3.1.13 (c’est à dire
en prenant les simplexes standards pour T•) on obtient la première formule. La
deuxième se démontre de mnaière analogue. �

110. en les variables A et X
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Remarque 4.4.33. la preuve démontre plus généralement que l’on a des bijections
naturelles

HomHo(sEns)(S•,MapC(A,X))• ∼= HomHo(C)(A� S•, X),

HomHo(sEns)(S•,MapC(A,X)•) ∼= HomHo(C)(A,X
S•).

Une catégorie de modèle simpliciale est par définition enrichie simplicialement
et donc un objet de QCat. La proposition 4.4.32 nous donne un lien fort entre
les espaces simpliciaux de morphismes dans C et les morphismes dans la catégorie
homotopique lorsque la source est cofibrante et la cible fibrante (comme d’habitude
dans les catégories de modèle). De plus nous avons que les ensembles simpliciaux de
morphismes sont des foncteurs de Quillen à droite en chaque variable, on peut donc
les dériver ce qui conduit à la définition suivante.

Définition 4.4.34. Soit C une catégorie de modèle simpliciale et X, Y deux objets.
L’espace dérivés des morphismes de X vers Y est par définition l’ensemble simplicial

RMapC(X, Y )• := MapC(L(X), R(Y ))•

où L et R sont les remplacements (co)fibrants dans C.

Comme Y
∼
� R(Y ) et L(X)

∼
� X sont des (co)fibrations acycliques, il suit de la

propriété (4) des catégories de modèles simpliciales 4.4.26 que

Lemme 4.4.35. Si A est cofibrant et X est fibrant, le morphisme canonique 111

MapC(A,X)• −→ RMapC(A,X)• est une équivalence faible.

Exercice 4.4.36. Démontrer le lemme.

En particulier, la restriction du bifoncteur RMapC(−,−) à la sous-catégorie Ccf

des objets à la fois cofibrants et fibrants coincide avec MapC(−,−) à équivalence
faible naturelle près.

Notation 4.4.37. On notera Ccf la sous-catégorie simplicialement enrichie de C des
objets à la fois cofibrants et fibrants.

Notons LH
WC la localisation hammac de la catégorie sous-jacente à C (c’est à

dire que l’on considère HomC(X, Y ) = MapC(X, Y )0 pour construire la catégorie
simpliciale LH

WC).

Théorème 4.4.38. Soit C une catégorie de modèle simpliciale.

(1) Pour tous objets X, Y ∈ C, on a des équivalences faibles naturelles (en X, Y )

MapHo∞(C)(X, Y )• ' MapLH
W
C(X, Y )• ∼= RMapC(X, Y )• = MapC(L(X), R(Y ))•

(2) On a une équivalence d’∞-catégories Ccf
∼= Ho∞(C).

Le dernier point signifie précisément que le foncteur canonique Ñ•(Ccf )→ Ho∞(C)
est une équivalence catégorielle qui est en fait induite par une équivalence de Dwyer-
Kan Ccf → LH

WC de catégories simplicialement enrichie.
Ce théorème 4.4.38 nous permet donc d’identifier l’∞-catégorie Ho∞(C) d’une

catégorie de modèle simpliciale avec (le nerf d’)une catégorie simplicialement enrichie
déduite de C ; en particulier cela nous garantit que cette ∞-catégorie reste dans les
mêmes univers que C.

111. induit par L(A)→ A et X → R(X)
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Les Théorèmes 4.4.21 et 4.4.30, ce résultat reste vrai pour toute catégorie de mo-
dèle combinatoire. En particulier, il s’applique aux complexes de châınes, espaces
topologiques et aux catégories de diagramme sur les catégories de modèles combina-
toires.

Nous avons vu qu’il y a un foncteur QCat → sEns qui à une quasicatégorie
associe un ∞-groupoide que nous notons C 7→ Ciso, cf 4.2.51.

Lemme 4.4.39. Le foncteur C 7→ Ciso induit un foncteur ∞−Cat −→ Ho∞(sEns)
qui vérifie que pour toutes quasicatégorie C et tout ∞-groupoide G, on a une équi-
valence catégorielle

MapHo∞(QCat)(ι(G),C)• ' MapHo∞(sEns)(G,Ciso)(∼= MapsEns(G,Ciso)).

Une façon d’interpréter ce lemme est de dire que (−)iso est l’adjoint ∞-catégoriel
à droite de ι.

Exercice 4.4.40. Imaginer ce que doit être la définition d’une adjonction entre ∞-
foncteurs.

Remarque 4.4.41 (Universalité de l’∞-catégorie associée à une catégorie de modèle).
Nous avons déjà vu le point (1) et une partie du point (2) de la définition philoso-
phique 4.4.1. Précisons maintenant ce point et l’unicité de Ho∞(M).

La donnée d’un∞-foncteur de M dans une infinie catégorie X qui envoie W dans
les isomorphismes de X s’identifie avec un point de l’infinie catégorie 112

Fun
W→iso

(M,X) := MapQCat(N•(M), X)• ×
MapQCat(N•(W ),X)•

MapQCat(N•(W ), X iso)•

Cette construction est fonctorielle en X de sorte que nous avons un ∞-foncteur
Fun
W→iso

(M,−) : Ho∞(QCat)→ Ho∞(sEns).

Nous avons défini (19) le foncteur `∞ : N•(M)→ Ho∞(M) de M dans son infinie-
catégore quotient ; on a aussi par composition un foncteur N•(W)→ Ho∞(M). Par
pré-composition nous obtenons alors un morphisme canonique fonctoriel en toute
quasicatégorie X
(24)

MapQCat(Ho∞(M), X)•
`∗∞−→ MapQCat(N•(M), X)• ×

MapQCat(N•(W ),X)•
MapQCat(N•(W ), X iso)•

d’ensembles simpliciaux. Autrement dit, on obtient une (∞-)transformation natu-
relle

`∗∞ : MapQCat(Ho∞(M),−)⇒ Fun
W→iso

(M,−)

entre les deux ∞-foncteurs MapQCat(Ho∞(M),−), Fun
W→iso

(M,−) : Ho∞(QCat) →
Ho∞(sEns). L’existence de la factorisation de tout foncteur au travers de Ho∞(M)
se traduit par l’esentielle surjectivité de cette transformation. Son unicité à homo-
topie près par le fait que cette transformation est un isomorphisme 113. C’est préci-
sément ce que nous dit la proposition suivante.

112. Comme N•(W) ↪→ N•(M) est une cofibration de Joyal, on a que MapQCat(N•(M), X)• →
MapQCat(N•(W), X)• est une fibration de Joyal (4.2.25) et donc ce tiré en arrière est une quasi-
catégorie. On peut montrer, en utilisant les résultats duaux de l’exemple 2.6.19 ou le TD 4, qu’il
est équivalent au produit cartésien dérivé dans QCat
113. au sens de la définition 4.2.36 dans la quasicatégorie des foncteurs de QCat vers sEns
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Proposition 4.4.42. Le morphisme (24) est une équivalence faible entre objets fi-
brants pour tout X et induit une équivalence naturelle de foncteurs (c’est à dire
d’après 4.2.37 un isomorphisme entre MapQCat(Ho∞(M),−) et Fun

W→iso
(M,−) dans

la quasicatégorie Map•(Ho∞(QCat),Ho∞(sEns))).

La proposition établit donc précisément la propriété universelle 114 satisfaite par la
localisation Ho∞(M) dans les∞-catégories et traduit le fait que celle-ci représente le
foncteur de quasicatégories Fun

W→iso
(M,−) :∞-Cat→ Ho∞(sEns). Cette proposition

donne en particulier l’unicité de Ho∞(M) à isomorphisme 115 près dans ∞-Cat.

4.5. Notion d’∞-(co)limites

Nous allons maintenant définir une notion d’∞-(co)limites (voir la définition 4.5.21)
relevant les notions de (co)limites homotopiques de la partie 2.6 entre catégories
homotopiques à leurs ∞-catégories associées. Dans le cas de catégorie de modèle
combinatoire, ces relevés seront précisément calculés par les (relevés des) (co)limites
homotopiques 2.6.

Un point important que l’on veut, évidemment, est que ces notions soient inva-
riantes par équivalence d’infinies catégories (c’est à dire équivalence catégorielle si
on regarde le modèle donné par des quasicatégories). En particulier les (co)limites
standards ne le seront pas 116. Le modèle des quasicatégories permet de décrire cette
notion d’∞-(co)limites d’une manière assez aisée.

Un premier cas simple (mais crucial) est celui des (co)limites vides, c’est à dire
les objets initiaux et finaux.

Définition 4.5.1 (Objets initiaux et finaux d’une ∞-catégorie). Soit C une ∞-
catégorie 117 Un objet X est dit final si pour tout objet Y , MapC•(Y,X) est fai-
blement équivalent à un point 118.

Un objet X est dit initial si pour tout objet Z, MapC•(X,Z) est faiblement
équivalent à un point.

Lemme 4.5.2. Soit C une ∞-catégorie. Les sous-catégories Cinit et Cfin des objets
initiaux et finaux sont soit vides soit des ∞-groupoides contractiles 119.

En particulier, deux objets initiaux de C sont isomorphes et deux objets finaux
sont eux aussi isomorphes.

Le mot isomorphe est au sens des ∞-catégorie, c’est à dire de la définition 4.2.36.

Exercice 4.5.3. Démontrer le lemme.

Remarque 4.5.4. Si F : C
∼→ D est une équivalence d’∞-catégorie, alors F induit

des équivalences faibles entre les espaces de morphismes ; en particulier elle préserve
les objets finaux et initiaux.

114. qui est le point (2) de la définition philosophique 4.4.1
115. au sens de 4.2.36
116. ne serait-ce que par les colimites ne sont pas invariantes par équivalences faibles d’espaces
topologiques comme nous l’avons vu
117. c’est à dire une quasicatégorie ou une catégorie simplicialement enrichie fibrante selon le
modèle que l’on choisit
118. autrement dit contractile ; rappelons que l’ensemble MapC•

(Y,X) est fibrant par définition

d’une ∞-catégorie
119. c’est à dire des complexes de Kan faiblement homotopes à un point
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À toute quasicatégorie C et objet X de C, nous pouvons associer le tiré en arrière
C/X (dans QCat) défini par

C/X

��

//

y
Map•(∆

1
•,C)

ev1

��
{∗} X // C

où ev1 est l’évaluation en son but d’un foncteur (cf 4.2.19). On construit de même,
en remplaçant ev1 par ev0, CX/.

Lemme 4.5.5. C/X et CX/ sont des quasicatégories. Les morphismes ev0, respecti-

vement ev1, induisent des morphismes de quasicatégories C/X → C et CX/ → C.

Démonstration. Les premiers points sont des conséquences du lemme 4.2.25. Le
deuxième est donné par la compositions C/X → Map•(∆

1
•,C)

ev0−→ C et sa version
duale. �

Lemme 4.5.6. Soit C une∞-catégorie. Un objet X est final si et seulement si C/X →
C est une fibration acylique d’ensembles simpliciaux.

Un objet X est initial si et seulement si CX/ → C est une fibration acylique
d’ensembles simpliciaux.

On peut réinterpréter les (co)limites standards en termes d’objets finaux et ini-
tiaux. En effet soit I une petite catégorie, C une catégorie et F : I → C un
diagramme de forme I dans C. On note CF/ la catégorie des objets au dessus du
diagramme F . C’est à dire la catégorie dont les objets sont donnés par un objet Z
et, pour tout i ∈ I, des flèches F (i)

αi→ Z telles que pour toute flèche i
f→ j on ait

F (i)
αi→ Z = F(i)

F (f)→ F (j)
αj→ Z. Autrement dit les objets sont les diagrammes

commutatifs obtenus à partir du diagramme en rajoutant un objet Z et des flèches
pointant de chaque objet du diagramme vers le nouvel objet Z. Un morphisme de
(Z, (αi)i∈I) vers (Z ′, (α′i)i∈I) est un morphisme Z → Z ′ dans C qui commute avec

les αi, α
′
i, c’est à dire tel que α′i = F (i)

αi→ Z → Z ′ pour tout i ∈ I.
On construit dualement la catégorie C/F des objets au dessus du diagramme. Ses

objets sont la donnée d’un objet Z ∈ C et de flèches βj : Z → F (j) pour tout j ∈ I

qui fassent commuter Z
βj //

βk !!

F (i)

F (g)

��
F (k)

pour toute flèche g : j → k. Ses morphismes

sont les morphismes Z ′ → Z qui commutent avec les βj, β
′
j.

Lemme 4.5.7. Une colimite de F est un objet initial de CF/.
Une limite de F est un objet final de C/F .

Exercice 4.5.8. Démontrer le lemme.

Étant donné que l’on a une définition des objets finaux et initiaux dans une quasi-
catégorie, il suffit maintenant de définir un analogue de CF/ et C/F pour définir des
∞-(co)limites d’∞-catégories. Nous disposons déjà, pour toute petite catégorie I et
quasicatégorie C, de la quasicatégorie Map•(N•(I),C) ∼= MapHo∞(QCat)(N•(I),C)
des ∞-foncteurs de I dans C.
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Terminologie 4.5.9. On appellera diagramme de forme I dans C un ∞-foncteur
F : N•(I)→ C.

Construisons maintenant les∞-catégories au dessus et en dessous d’un diagramme.
La construction est plus compliquée car la notion de commutativité de diagramme
n’est plus stricte mais à des choix d’homotopie près.

Pour ce faire nous introduisons le joint de deux ensembles simpliciaux.

Définition 4.5.10. Soient S•, T• deux ensembles simpliciaux. Leur joint est l’ensemble
simplicial (S ? T )• défini en degré simplicial n par

(S ? T )n :=
∐

p=−1···n

Sp × Tn−p−1

où par convention S−1 = T−1 = {∗}.
Les faces di sont données par, pour tout (α, β) ∈ Sp × Tn−p−1 par

di(α, β) =


(di(α), β) si i ≤ p, p 6= 0

(α, di−p−1(β)) si i > p, p 6= n− 1
β si p = 0
α si p = n− 1

et les valeurs de di sur S• et T• pour p = −1, n. Les dégénérescences sont définies de
même.

Lemme 4.5.11. Le joint de deux ensembles simpliciaux est un ensemble simplicial.

Exercice 4.5.12. Démontrer le lemme.

Remarque 4.5.13. La formule du joint n’est PAS symétrique : (S ? T )• n’est pas
isomorphe à (T ? S)• comme ensemble simplicial.

Exemple 4.5.14. Si T• = ∆0
• est un point, alors (S ? T )• est le cône de S•. C’est à

dire l’ensemble simplicial obtenu en rajoutant un sommet “final” ∗f à ceux de S0,
un 1-simplexe allant de de v à ∗f pour tout v ∈ S0 et, plus généralement, pour
tout n-simplexe de S•, un n+ 1-simplexe obtenu en rajoutant ∗f (et toutes les faces
nécessaires contenant ∗f ).

En revanche (T ? S)• est le cocone de S•. Il est obtenu en rajoutant encore un
sommet ∗i et un 1-simplexe allant de ∗i vers tout v ∈ S0 et de même pour les
n-simplexes.

Proposition 4.5.15. Soit F : N•(I)→ C un∞-foncteur d’une petite catégorie I vers
une quasicatégorie C.

(1) Il existe un unique ensemble simplicial C/F solution de la propriété universelle
suivante : pour toute ∞-catégorie D, il existe une bijection naturelle

(25) HomsEns(D,C/F ) ∼= HomsEns((D ? N•(I))•,C) ×
HomsEns(N•(I),C)

{F}.

où l’ensemble de droite est l’ensemble des foncteurs dont la restriction à N•(I)
est le foncteur F .

(2) Il existe un unique ensemble simplicial CF/ solution de la propriété universelle
suivante : pour toute ∞-catégorie D, il existe une bijection naturelle

HomsEns(D,C
F/) ∼= HomsEns((N•(I) ?D)•,C) ×

HomsEns(N•(I),C)
{F}.
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(3) On a que CF/ et C/F sont des quasicatégories et pour toute équivalence

catégorielle f : C → C′ les foncteur induits CF/ → (C′)F/ et C/F → C′/F
sont des équivalences faibles.

Terminologie 4.5.16. On appelle respectivement CF/ et C/F les quasicatégories des
objets en dessous du diagramme F , resp. au dessus de F .

En prenant D = C/F et idC/F , on déduit de (25) et de l’inclusion C/F ↪→ (C/F ?

N•(I))• un morphisme canonique C/F → C qui essentiellement oublie les F (i) et les

flèches qui leur sont associées. On a de même un morphisme canonique CF/ → C.

Terminologie 4.5.17. On appelle les morphismes C/F → C et CF/ → C les foncteurs
d’oubli canoniques.

Remarque 4.5.18. Plus généralement, le joint de deux quasicatégories est encore une
quasicatégorie. Ceci permet de définir des quasicatégories au dessus/en dessous d’un
diagramme défini sur une quasicatégorie. On a par ailleurs, le résultat suivant pour
les catégories ordinaires.

Lemme 4.5.19. Soient C,D deux petites catégories. Alors on a un isomorphisme
(N•(C) ? N•(D))• ∼= N•(C ? D) où C ? D est la catégorie dont les objets sont la
réunion des objets de C et D, les morphismes donnés par

HomC?D(X, Y ) =


HomC(X, Y ) si X, Y ∈ C
HomD(X, Y ) si X, Y ∈ D

∅ si X ∈ D, Y ∈ C
{∗} si X ∈ C, Y ∈ D.

Exemple 4.5.20. Si I = {∗} et F (∗) = X est un objet de C, alors C/F ∼= C/X et

CF/ ∼= CX/ et les foncteurs d’oublis canoniques sont ceux du lemme 4.5.5.

On peut enfin définir la notion d’∞-(co)limite.

Définition 4.5.21 (∞-(co)limites). Soit F : N•(I) → C un diagramme de forme I
dans une quasicatégorie C.

(1) Une ∞-colimite de F est un objet initial de CF/. Elle sera notée colim∞(F ).
(2) Une ∞-limite de F est un objet final de C/F . Elle sera notée lim∞(F ).

On fait en général l’abus de notation consistant à écire aussi colim∞(F ) et lim∞(F )
leurs images dans C donné par les ∞-foncteurs canoniques 4.5.17.

Exemple 4.5.22. Si C est une catégorie usuelle, alors le lemme 4.5.7 nous donne que
les∞-(co)limites de N•(C) sont les (co)limites usuelles de C (vues comme objets de
N•(C)).

Exemple 4.5.23. L’∞-catégorie Ho∞(C) associée à une catégorie de modèle combi-
natoire C a toutes les (co)limites homotopiques (cf 4.5.29).

Lemme 4.5.24 (Unicité des ∞-(co)limites). Soit F : N•(I) → C un diagramme de
forme I dans une quasicatégorie C. Le sous-ensemble des ∞-(co)limites de F est
soit vide soit un ensemble simplicial fibrant contractile.

Démonstration. C’est une conséquence de la définition et du lemme 4.5.6. �
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Relions maintenant, dans le cas d’une catégorie de modèle, les foncteurs dérivés
et les (co)limites homotopiques.

Supposons donc que C est une catégorie de modèle combinatoire. Rappelons
d’après le Théorème 2.6.16 que, pour toute petite catégorie D, on dispose des fonc-
teurs (co)limites colimD, limD : CD → C qui sont des adjoints de Quillen du fonc-
teur constant cst : C → CD dans les structures de modèle projective et injective
sur les diagrammes CD. En particulier on obtient les foncteurs dérivés hocolimD

et holimD (Proposition 2.5.13). D’après la proposition 4.4.20, on a donc des ∞-
foncteurs hocolimD∞, holimD∞ : Ho∞(CD) → Ho∞(C) entre les ∞-catégories as-
sociées. La proposition suivante nous dit que ces relevés des foncteurs dérivés sont
les ∞-(co)limites des foncteurs.

Proposition 4.5.25. Soit C une catégorie de modèle combinatoire et F : D→ C un
diagramme de forme D dans C. Alors on a des isomorphismes naturels (en F )

hocolimD∞(F ) ' colim∞(F ), holimD∞(F ) ' lim∞(F ).

Dans cette proposition on a noté (co)lim∞(F ) l’image dans C par le foncteur oubli
canonique 4.5.17 des ∞-(co)limites de F (4.5.21).

Démonstration. C’est une conséquence immédiate du théorème 4.5.28 suivant auquel
on applique le foncteur oubli canonique. �

Ce résultat est une conséquence d’un résultat plus précis que nous allons énoncer.
Commençons par relever 120 hocolimD (resp. holimD) en des objets de CF/ (resp.
C/F ).

Rappelons du lemme 4.5.19 la définition de la catégorie {∗} ?D qui est une caté-
gorie qui a un objet ∗ et les objets de D, les morphismes de D entre, l’identité de
∗ et un unique morphisme ∗ → i pour tout objet i ∈ D. Par définition, D est une
sous-catégorie du joint catégoriel {∗} ?D.

Lemme 4.5.26. La (sous-)catégorie des foncteurs {∗}?D −→ C dont la restriction à
D est F est la catégorie dont les objets sont les Z ∈ C munis d’une transformation
naturelle ηZ : F → cst(Z) et les morphismes sont les morphismes f : Z → Z ′ qui

commutent avec les η(−), c’est à dire tels que ηZ′ = F
ηZ−→ cst(Z)

cst(f)−→ cst(Z ′).
Dualement, la (sous-)catégorie des foncteurs D ? {∗} −→ C dont la restriction à

D est F est la catégorie dont les objets sont les Z ∈ C munis d’une transformation
naturelle βZ : cst(Z) → F et les morphismes sont les morphismes f : Z → Z ′ qui

commutent avec les β(−), c’est à dire tels que βZ = cst(Z)
f−→ cst(Z ′)

βZ′−→ F .

Exercice 4.5.27. Démontrer le lemme.

Le lemme s’applique en particulier à colimD(F ) (resp. limD(F )) et les proposi-
tions 4.5.15 et 4.4.20 nous donne donc un objet de CF/ (resp. C/F ) dont l’image par
le foncteur oubli canonique est hocolimD∞F (resp. holimD∞F ). On notera par abus
de notation hocolimD∞F et holimD∞F les dits objets de CF/ et C/F .

Théorème 4.5.28. Soit C une catégorie de modèle combinatoire et D une petite
catégorie. Pour tout foncteur F : D → C, l’objet hocolimD∞F (resp. holimD∞F )
est un objet initial de CF/ (resp. final de C/F ).

120. en suivant l’idée de la construction de 2.6.3
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En particulier, il existe des équivalences naturelles hocolimD∞F ' colim∞(F ) et
holimD∞F ' lim∞(F ).

Esquisse de preuve du Théorème 4.5.28. D’après le théorème 4.4.30, il suffit de mon-
trer ce résultat pour les catégories de modèles simpliciales combinatoires puisque tous
les objets sont préservés par équivalence de Quillen.

Le point important maintenant que nous avons déjà vu, découlant du
théorème 2.6.16, propositions 2.5.13
et 4.4.20, est que nous avons des∞-foncteurs hocolimD∞ : Ho∞(CD)→ Ho∞(C)

et holimD∞ : Ho∞(CD) → Ho∞(C) relevant les foncteurs dérivés hocolimD et
holimD.

Pour conclure que ces foncteurs (munis de leur structure d’objets dans CF/ et
C/F ) sont équivalents aux ∞-colimites, il suffit de voir que l’on a une équivalence
catégorielle de quasicatégories

(26) Ho∞(CD) ∼= Map•(N•(D),C).

En effet, on peut alors utiliser une preuve similaire à celle de la propriété universelle
de LF dans la proposition 2.5.17 et les techniques de la proposition 4.4.20 pour
vérifier que hocolimD∞(F ) est bien un objet initial de CF/. L’équivalence (26) est
non-trivial et est démontrée dans [16] par exemple. �

Corollaire 4.5.29. Si C est une catégorie de modèle combinatoire, l’∞-catégorie
Ho∞(C) admet toutes les (co)limites indicées par une petite catégorie D.

Démonstration. Il s’agit juste d’utiliser les théorèmes 4.5.28 et 2.6.16. �

Remarque 4.5.30. Le corollaire précédent est un exemple des propriétés remarquables
associées aux ∞-catégories associées à une catégorie de modèle combinatoire. Ces
∞-catégories sont appelées présentables dans la littérature.

Les propriétés générales des (co)limites se généralisent aux∞-colimites. Par exemple
pour tout adjoint de Quillen à gauche F : C→ D entre catégories de modèles combi-
natoires, alors F∞ commute avec les∞-colimites et de même un∞-foncteur relevant
un adjoint à droite de Quillen commute avec les ∞-limites. Un autre exemple est
donné par la proposition suivante.

Proposition 4.5.31. Soit C une quasicatégorie et F,G : N•(D)→ C des diagrammes
qui admettent respectivement une ∞-colimite et une ∞-limite. Alors, pour tout
Z ∈ C, on a un isomorphisme 121 :

MapC(colim∞(F ), Z) ' lim∞MapC(F (−), Z)(27)

MapC(Z, lim∞(G)) ' lim∞MapsEns(Z,G(−))(28)

dans Ho∞(sEns).

121. au sens des ∞-catégories
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V. Homotopie Rationnelle

L’homotopie rationnelle est née avec les travaux de Quillen, puis Sullivan (et bien
d’autres après et avec eux). Elle a pour objet le calcul de tous les invariants algébro-
topologiques rationnels d’un espace topologique à partir de ses cochaines (munie de
leur structure multiplicative). Le résultat principal établit que cette dernière contient
effectivement tous les invariants possibles en un sens, mais au delà de ce résultat, la
force de la théorie réside dans sa calculabilité.

5.1. Algèbres graduées différentielles commutatives, algèbres
libres et semi-libres

Dans cette partie et les suivantes, sauf mention explicite du contraire, on travaillera
sur le corps Q des rationnels lorsque on ne précise rien ; tous les résultats ont du
sens sur un autre corps de caractéristique nulle cela dit.

Rappelons le théorème de De Rham

Théorème 5.1.1. SoitM une variété C∞. Il existe un isomorphisme naturel d’algèbres
graduées

H∗(M,R) ∼= H ∗ (Ω∗dR(M))

où Ω∗dR(M) désigne l’algèbre des formes différentielles munie de la différentielle de
De Rham.

L’algèbre des formes différentielles est une algèbre commutative au sens gradué.
En revanche, l’algèbre des cochaines singulières (C∗(M,R),∪), elle, n’est qu’asso-
ciative 122. La commutativité de la structure induite en cohomologie s’explique par
le fait que le produit a ∪ b − ±b ∪ a est homotope à 0. On peut en fait montrer
que l’homotopie est-elle même symétrique à homotopie près (et ainsi de suite). Cela
amène à deux questions

• Y-a-t’il une algèbre de cochaines commutatives au sens gradué calculant la
cohomologie singulière d’un espace ?
• (Thom) Toute algèbre commutative graduée est-elle la cohomologie d’un es-

pace topologique ?

La réponse à la première question, posée dans cette généralité, est négative. En
effet, il existe des opérations de Steenrod, construites naturellement à partir des
homotopies du cup-produit, qui donnent des classes de cohomologie non-triviale en
cohomologie à coefficient dans Z/pZ. L’existence d’une réponse positive à la première
question impliquerait que toutes ces classes doivent être nulles. En revanche, cette
obstruction disparait en caractéristique nulle et on va voir qu’on peut effectivement
construire un tel modèle. La réponse à la deuxième question devient également posi-
tive en caractéristique nulle, comme nous le verrons comme conséquence du théorème
principal.

Précisons maintenant quelques définitions et terminologies.

Notation 5.1.2. On note Ch≥0(R) la catégorie des complexes de cochaines de R-
modules, concentrés en degré positif ou nul.

122. et très fortement non-commutatives au sens strict. Son centre est réduit à C0(M,R) et deux
cochaines génériques ne commutent pas
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Cette catégorie s’identifie sans peine avec CH≤0(R) en identifiant un complexe de
chaines avec un complexe de cochaines avec la graduation opposée.

La catégorie Ch≥0(R) des complexes de cochaines a une structure symmétrique
monoidale. Le produit tensoriel de deux complexes (C∗, dC), (D∗, dD) étant donné
par (C ⊗ D)n =

⊕
i+j=nC

i ⊗ Dj et la différentielle étant donnée par d(x ⊗ y) =

d(x)⊗ y+ (−1)ix⊗d(y) si x ∈ Ci. L’isomorphisme τ : C⊗D ∼= D⊗C est lui donné
par τ(x⊗ y) = (−1)ijy ⊗ x si x ∈ Ci , y ∈ Dj.

Définition 5.1.3. La catégorie CDGA des algèbres graduées différentielles commu-
tatives (on écrira juste CDGA) sur Q est la catégorie des monoides commutatifs
unitaires dans (Ch≥0(Q),⊗). Autrement dit, une CDGA est un morphisme de com-
plexes de cochaines A ⊗ A → A (noté ·) qui est associatif, commutatif au sens
gradué :

y · x = (−1)ijx · y pour x ∈ Ai, y ∈ Aj,
vérifie la relation de Leibniz 123 :

d(x · y) = d(x) · y + (−1)ix · d(y) pour x ∈ Ai,
où d désigne la différentielle de A, et est munie d’un morphisme Q→ A de complexes
de cochaines 124 et d’algèbre tel que 1 · a = a · 1 = a.

Sur R, plutôt que sur Q, on a un exemple donné par Ω∗dR(M). Dans toute la suite,
sauf mention du contraire, on verra Q (ou toute autre anneau de base R) comme
une cdga concentrée en degré 0.

Remarque 5.1.4. Si x est de degré impair, alors, x2 = −x2 implique que x2 = 0. A
contrario, les éléments de degré pair commutent avec tout le monde.

Remarque 5.1.5. Étant donné que la différentielle est une dérivation pour le produit
(formule de Leibniz), on a que la cohomologie d’une cdga est une algèbre commutative
au sens gradué (que l’on peut donc aussi identifier à une cdga avec différentielle
nulle), sa multiplication étant induite par celle de la cdga.

Exemple 5.1.6 (Algèbres symétriques). On a un exemple canonique construit comme
suit. Soit V un espace vectoriel, on note

Sym(V ) :=
⊗
n≥0

(V ⊗n)Σn
∼=
⊗
n≥0

(V ⊗n)Σn

l’algèbre symétrique sur V obtenue en quotientant les tenseurs par la relation v1 ⊗
· · ·⊗vn ∼ σ.(v1⊗· · ·⊗vn) où σ agit via l’isomorphisme τ (par exemple (12) ·v⊗w =
(−1)ijw⊗v si w ∈ V j, v ∈ V i). Si V =

⊕
Qxi⊕

⊕
Qyj est engendré par des vecteurs

de degrés pairs xi et de degré impairs yj, on obtient que l’espace gradué

Sym(V ) = Q[xi]⊗ Λ(yj)

soit le produit tensoriel entre les polynomes en les variables paires et le produit
extérieur en les variables impairs. La concaténation des tenseurs induit une struc-
ture d’algèbre graduée commutative sur Sym(V ) qui coincide avec l’isomorphisme
précédent.

De manière générale, on a un isomorphisme canonique

Sym(V ⊕W ) ∼= Sym(V )⊗ Sym(W )

123. qui exprime que d est une dérivation
124. Q est vu comme un complexe concentré en degré 0
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d’algèbre commutative différentielle graduée.
Si (V, d) est un complexe de cochaines, alors la différentielle d : V i → V i+1 s’étend

en une structure de CDGA sur Sym(V ) par la formule de Leibniz :

d(v1 · · · vn) =
∑

(−1)|v1|+···|vi−1|v1 · · · vi−1 · d(vi) · vi+1 · · · vn.

Définition 5.1.7. On notera Sym((V, d)) (ou simplement Sym(V ) quand il n’y a
pas d’ambiguité) la CDGA ainsi construite, appelée algèbre différentielle graduée
commutative libre associée au complexe (V, d). On notera aussi, pour des éléments
gradués xi (i ∈ I),

Q[xi, i ∈ I] := Sym
(⊕
i∈I

Qxi
)

la CDGA libre engendrée par l’espace vectoriel gradué engendré par les xi (ou bien
sûr Qxi est vu comme étant concentré en degré égal au degré de xi). On prendra
bien garde que ceci est une CDGA (autrement dit les éléments de degré impairs sont
de carrés nuls et anticommutent entre eux).

Notons qu’un morphisme de complexes de cochaines f : V → W induit un mor-
phisme de cdgas Sym(V )→ Sym(W ) :

f(v1 · · · vn) = f(v1) · · · f(vn).

L’algèbre symétrique est bien libre au sens où elle vérifie de fait la propriété univer-
selle donnée par

Lemme 5.1.8. Le foncteur algèbre symétrique (V, d) 7→ Sym((V, d)) est l’adjoint à

gauche Ch≥0(R)
Sym(−)

--
CDGA

U
mm du foncteur oubli U qui à une algèbre associe son

complexe de cochaines sous-jacent.

En particulier on a des bijections naturelles

HomCDGA(Sym(V ), A) ∼= HomCh≥0(R)(V,A)

pour tout complexe V et CDGA A. Les deux conséquences à retenir sont les sui-
vantes : soit (V, d) un complexe de cochaines et Sym((V, d)) la cdga obtenue ci-
dessus.

• Un morphisme de cdga ϕ : Sym(V ) → A est uniquement déterminé par sa

restriction ϕ|V : V
ϕ→ A ;

• Une dérivation 125 de δ : Sym(V ) → A est uniquement déterminé par sa

restriction δ|V : V
δ→ A.

Exemple 5.1.9 (Algèbres libres fonctoriellement acycliques). Soit (V, dV ) un complexe
de cochaines. On note C(V ) le cocône de id : V → V . Précisément, on a que C(V )n =
V n−1 ⊕ V n avec pour différentielle donnée, pour x ∈ V n−1, y ∈ V n par d(x, y) =
(−dD(x) + y, dD(y)). On a une suite exacte courte de complexes de cochaines :
V [1] ↪→ C(V )� V où V [1]n = V n−1 avec la différentielle x 7→ −dD(x) et H∗(C(V ))
est acyclique.

125. c’est à dire une application linéaire δ : A→ B entre cdgas qui vérifie la relation de Leibniz :
δ(x·y) = δ(x)·y+±x·δ(y). On ne suppose pas que cette dérivation préserve le degré. En particulier,
elle peut être de degré 1, c’est le cas d’une différentielle ou bien −1, ce sera le cas d’une homotopie.
On notera que δ(1) = 0
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En caractéristique nulle, le foncteur Sym(−) est exact 126 ; en particulier l’unité
η : Q ↪→ Sym((C(V ), d)) = Q⊕

⊕
n≥1 Sym

n(C(V ), d) est un quasi-isomorphisme

Q η−→
∼

Sym((C(V ), d))

qui est un quasi-inverse du morphisme de cdga canonique p : Sym((C(V ), d))→ Q
(qui envoie V sur 0). On peut en fait expliciter une homotopie entre η◦p et l’identité :
Soit h : C(V, d)∗ → C(V, d)∗−1 l’opérateur défini, pour x ∈ V ∗−1, y ∈ V ∗ par
h(x, y) = (0, x) ∈ V ∗−2 ⊕ V ∗−1. On étend h comme une dérivation à Sym(C(V ), d)

(en utilisant les conséquences du Lemme 5.1.8), que l’on note h̃. On vérifie alors que

dh̃+ h̃d = Id− η ◦ p.

Exercice 5.1.10. Montrer la formule précédente.

Notation 5.1.11. On notera 127 E(V ) := Sym(C(V ), d).

Tout morphisme de complexes f : V → W induit un morphisme de complexes
C(V )→ C(W ) et donc un quasi-isomorphisme de cdga E(V )→ E(W ).

Soit maintenant A une cdga. On peut lui appliquer l’exemple 5.1.9 précédent pour
construire l’algèbre libre acyclique E(A) := Sym(C(A, d)). On définit un morphisme
d’algèbre graduée commutative π : E(A)→ A par sa restriction π|C(A) : A∗−1⊕A∗ →
A∗ donnée par la projection sur la deuxième variable : (x, y) 7→ y. On obtient alors :

Lemme 5.1.12. Le morphisme d’algèbre graduée commutative π : E(A)→ A est un
morphisme surjectif de cdgas.

Une autre notion très utile sera la suivante.

Définition 5.1.13. Une cdga semi-libre est une cdga dont la structure d’algèbre gra-
duée commutative sous-jacente est libre.

Autrement dit c’est une algèbre de la forme (Sym(V ), ∂) où V est un espace
gradué et où ∂ : Sym(V )∗ → Sym(V )∗+1 est une dérivation de carré nul (mais qui
n’est pas forcément induite par un morphisme de complexe de cochaines sous-jacent
à V ). Il convient de bien faire la distinction entre les semi-libres et les algèbres libres.

Remarque 5.1.14. En particulier, ∂ est donc uniquement déterminé par sa restriction
δ|V : V → Sym(V ). Toute application de ce genre détermine une dérivation, mais
que δ2 = 0 est une condition supplémentaire. Cette application ∂ est donc donnée
par la somme directe

∂ :
∑

∂i où ∂i : V → Symi(V ) ⊂ V ⊗i

La composante ∂1 : V → V définit une différentielle sur V , qu’on appelle la partie
linéaire 128 de ∂.

De même un morphisme de cdga de (Sym(V ), ∂) dans A est uniquement déterminé
par sa restriction à V ; mais tout morphisme de ce genre ne sera pas forcément un
morphisme de complexes de cochaines.

126. cela se ramène à montrer que Sym(C(Q[−n])) est acyclique pour tout n ≥ 0
127. la notation est inspirée par l’espace contractile fonctoriel associé à un groupe topologique
128. Les puissances symétriques Sym((V, d)) d’un complexe de cochaines sont exactement le cas
où toutes les autres composantes ∂i≥2 = 0
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Remarque 5.1.15 (Augmentation). Une algèbre semi-libre est canoniquement aug-
mentée : l’application V 7→ 0 définit un morphisme de cdgas (Sym(V ), d) → Q qui
est une rétraction de l’unité.

Remarque 5.1.16. La cohomologie d’une algèbre semi-libre n’est pas une algèbre
symétrique en général.

Exercice 5.1.17. Soit V = Qx ⊕ Qy où |x| = 2 et |y| = 3. On muni Sym(V ) de
la dérivation donnée par d(x) = 0 et d(y) = x2. Démontrer que (Sym(V ), d) est
semi-libre et que sa cohomologie n’est pas libre.

On va voir que toute cdga est faiblement équivalente à une algèbre semi-libre.

5.2. Structure de modèle des algèbres graduées différentielles
commutatives et algèbres de Sullivan

L’existence d’une structure de modèles sur les cdgas dont les équivalences faibles
sont les morphismes de cdgas qui sont des quasi-isomorphismes découle de résultats
généraux sur les catégories de modèle que nous allons énoncer.

Soit R un anneau commutatif unitaire quelconque. Par la section 2.3, on dispose
de (la restriction de) la structure projective sur Ch≥0(R) (identifié avec Ch≤0(R)).
Précisément, une équivalence faible de Ch≥0(R) pour cette structure est un quasi-
isomorphisme, une fibration est un morphisme de complexes surjectif en tout degré
et les cofibrations sont les morphismes de Ch≥0(R) qui ont la propriété de relèvement
à gauche par rapport à toutes les fibrations acycliques. Cette structure définit bien
une structure de modèle similaire à celle de Ch≥0(R) mais légérement différente (du
au fait que l’homologie en degré 0 dans ce dernier cas correspond à un quotient de
toutes les 0-chaines par les bords, c’est à dire une colimite, alors que dans le cas
Ch≤0(R) l’ahomologie en degré 0 est donné par le noyau de la différentielle, c’est à
dire une limite).

On note Dn(R)∗ = 0→ 0→ . . . R
id→ R→ 0 . . . le complexe de cochaines concen-

tré en degré n − 1 et n, et Sn(R)∗ = R[−n] le complexe de cochaines égal à R
concentré en degré n ; de sorte que ces complexes correspondent à Dn

−∗(R), Sn−∗(R)
via l’isomorphisme Ch≥0(R) ∼= Ch≤0(R). On a donc un morphisme de cochaines ca-
nonique : Sn(R)∗ ↪→ Dn(R)∗ donné par l’identité en degré n. On a la caractérisation
suivante des fibrations :

Lemme 5.2.1. Un morphisme f : C∗ → D∗ dans Ch≥0(R) est

• une fibration si et seulement si, pour tout n ≥ 1, il a la propriété de relève-
ment à droite par rapport aux morphismes 0→ Dn(R)∗ ;
• une fibration acyclique si et seulement si, il a la propriété de relèvement à

droite, par rapport aux morphismes Sn(R)∗ ↪→ Dn(R)∗, pour tout n ≥ 1,
ainsi que par rapport au morphisme 0→ S0(R)∗.

Démonstration. La preuve est similaire à celle de la proposition 2.3.16. �

Armé du Lemme 5.2.1, nous pouvons appliqué l’argument du petit objet et le
raisonnement du théorème 2.3.2 (et de toute la partie 2.3) pour démontrer :

Proposition 5.2.2. La structure projective sur les complexes de cochâınes Ch≥0(R)
est une structure de modèle cofibrement engendrée dont les cofirations génératrices
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sont les (Sn(R)∗ ↪→ Dn(R)∗)n≥1

∐
(0→ S0(R)∗) et les cofibrations acycliques géné-

ratices sont les (0→ Dn(R)∗)n≥1.
Par ailleurs,

(1) les cofibrations sont exactement les morphismes de complexes de cochaines
injectifs en tout degré ≥ 1 et de conoyau projectif 129 en tout degré ;

(2) les cofibrations (resp. acycliques) sont aussi tous les morphismes de complexes
qui sont des rétractes d’une colimite séquentielle 130 de poussés en avant de
cofibrations de la forme Sn(R)∗ → Dn(R)∗ (n ≥ 1) ou 0 → Sn(R)∗ (resp.
(0→ Dn(R)∗, n ≥ 1) ;

(3) tout complexe de cochaine dans CH≥0(R) est fibrant 131.

Nous avons vu que le foncteur oubli de la structure d’algèbre d’une cdga vers
son complexe sous-adjacent définit une adjonction. Un résultat de Quillen permet
de relever une structure de modèle cofibrement engendrée le long d’une adjonction
vérifiant certaines propriétés. Cela permet, souvent, en pratique de construire une
structure de modèle.

Le résultat suivant donne un moyen d’induire une structure de modèle à partir
d’une adjonction partant d’une catégorie cofibrement engendrée (qui est la source
de l’adjoint à gauche).

Précisément, soit D une catégorie de modèle cofibrement engendrée. On note I
(resp. Jac) les cofibrations (resp. cofibrations acycliques) génératrices. On suppose
que les domaines des cofibrations et cofibrations acycliques sont κ-petits où κ est un
ordinal.

Soit F : D
))
Cjj : U une adjonction (où U est donc l’adjoint à droite). On

définit sur D une structure induite 132 en définissant f : X → Y dans C comme
étant une équivalence faible (respectivement une fibration) si et seulement si U(f)
est une équivalence faible (resp. fibration) dans D. On définit (comme d’habitude)
les cofibrations comme étant les flèches ayant les propriétés de relèvement à gauche
par rapport aux fibrations acycliques.

Théorème 5.2.3 (Quillen). Supposons que C soit complète et cocomplète et que
l’adjonction vérifie que

(1): l’adjoint à droite U préserve les colimites κ-séquentielles,

et l’une des deux hypothèses suivantes :

(2): tout morphisme de C qui a la propriété de relèvement par rapport à toutes les
fibrations est une équivalence faible,

(2’): tout morphisme F (Jac)-cellulaire est une équivalence faible.

alors la structure induite fait de C une catégorie de modèle cofibrement engendrée

et de plus l’adjonction F : D
))
Cjj : U est de Quillen. Les cofibrations et cofibra-

tions acycliques génératrices de C sont respectivement données par F (I), F (Jac) et
leurs domaines sont encore κ-petits.

129. sur un corps, par exemple sur Q comme nous le serons dans la suite de ce chap̂ıtre, cette
condition est toujours vérifiée
130. c’est à dire une colimite de la forme X0 → . . . Xi → Xi+1 → . . .
131. et cofibrant sur un corps comme Q
132. qu’on pourrait appeler projective par analogie avec celle sur les complexes de chaines ou les
catégories de diagramme
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Comme nous allons le voir ci-dessous, l’idée de la preuve est d’utiliser l’argument
du petit objet à partir des familles F (I) et F (Jac). L’hypothèse (1) permet justement
de faire cela en garantissant la petitesse des domaines des flèches. Les hypothèses
(2) ou (2’) 133 permettent de garantir que tout cofibration acyclique est un rétracte
d’une F (Jac)-cellulaire.

Dans le cas qui nous intéresse où D est la catégorie des complexes de (co)châınes
on a le corollaire suivant.

Corollaire 5.2.4 (Hinich). Si D = Ch(R), D = Ch≥0(R) ou D = Ch≥0(R) munie
de la structure de modèle projective, que C est complète et cocomplète et que
l’adjonction vérifie les hypothèses

(1): l’adjoint à droite U préserve les colimites (N)-séquentielles,
(2’): pour tout objet A ∈ C, on a que la flèche canonique U(A→ A

∐
F (Dn(R)∗))

est un quasi-isomorphisme,

alors la structure induite fait de C une catégorie de modèle cofibrement engendrée,
l’adjonction est de Quillen et les cofibrations et cofibrations acycliques génératrices
de C sont respectivement données par F (I), F (Jac) (dont les domaines sont N-
petits).

Démonstration. Les domaines des cofibrations acycliques (resp. cofibrations ) des
complexes de (co)chaines sont 0 (resp. Sn(R) ou 0) qui sont compacts, en particulier
N-petits. Il suit que la condition (2’) du théorème 5.2.3 est équivalente à celle de
l’énoncé du corollaire et donc le résultat découle du théorème 5.2.3. �

Remarque 5.2.5. En particulier, dans le cas de D = CH≥0(R), les cofibrations (resp.
acycliques) sont exactement les morphismes qui sont des rétractes d’une colimite de
poussés en avant de cofibrations de la forme F (Sn(R)∗) → F (Dn(R)∗) ou F (0) →
F (S0(R)∗) (resp. (F (0)→ F (Dn(R)∗)).

Démonstration du théorème 5.2.3. Remarquons que le fait que l’adjonction soit de
Quillen découle immédiatement du fait que U préserve les fibrations et les fibra-
tions acycliques (puisqu’il préserve aussi les équivalences faibles) et donc qu’il est de
Quillen à droite. Le lemme 2.5.5 assurera donc que l’adjonction est de Quillen une
fois prouvé que la structure est de modèle.

L’axiome (MC1) est contenu dans l’énoncé. Comme U est un foncteur et que
l’axiome (MC2) est vrai dans D, il est vrai pour C. Le même argument assure la
stabilité par rétracte des équivalences faibles et fibrations de C. Comme les mor-
phismes ayant la propriété de relèvement à gauche par rapport à une classe de
morphisme sont stables par rétracte (cf la preuve de la proposition 2.1.13), il en est
de même des cofibrations de C. Enfin, la moitié de (MC4) est prouvée par définition.

Le reste de la preuve va consister à regarder les propriétés de l’image par F des
cofibrations et cofibrations acycliques génératrices. On commence par remarquer la
propriété suivante.

Sous-Lemme 5.2.6. Un morphisme f : X → Y dans C est une fibration (resp.
fibration acyclique) si et seulement si il a la propriété de relèvement à droite par
rapport à la classe F (Jac) (resp. F (I)).

133. elles sont évidemment équivalentes une fois prouvé le théorème puisque les F (Jac) sont gé-
nératrices. Selon les cas l’un est plus facile que l’autre à prouver
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Preuve du sous-lemme. De l’adjonction découle qu’un carré commutatif (resp. et un
relèvement h dans ce carré)

F (A) //

��

X

f

��
F (B)

h

==

// Y

est équivalent à un carré commutatif (resp. et un relèvement φ(h) dans ce carré)

A //

��

U(X)

U(f)

��
B

φ(h)
==

// U(Y )

Comme les fibrations (resp. acycliques) de D sont exactement celles telles que U(f)
soit une fibration (resp. acycliques) de D, le résultat découle du fait que D est
cofibrement engendré. �

Le sous-lemme implique immédiatement que F (I), F (Jac) seront les cofibrations
et cofibrations acycliques génératrices une fois qu’on aura prouvé que la structure
est de modèle.

Par ailleurs il suffira de prouver la petitesse des domaines des morphismes de F (I)
et F (Jac) pour vérifier que la structure est cofibrement engendrée. Vérifions cela :
Soit A� B une cofibration génératrice de D. Alors pour tout colimite séquentielle
colim
k∈κ

Xk dans C, on a un diagramme commutatif

colim
k∈κ

(HomC(F (A), Xk) //

∼=
��

HomC(F (A), colim
k∈κ

Xk)

∼=
��

colim
k∈κ

(HomD(A,U(Xk)) // HomC(A,U(colim
k∈κ

Xk))
∼= // HomC(A, colim

k∈κ
U(Xk))

où les bijections verticales sont données par l’adjonction et les flèches horizontales
sont les flèches canoniques et l’équivalence donnée par l’hypothèse (1). Comme D est
cofibrement engendrée la première flèche horizontale du bas est aussi une bijection
puisque A est κ-petit et que le sous-lemme et le fait que D est cofibrement engendrée
et donc les U(Xk) sont des rétractes de I-cellualires. Ainsi l’application horizontale
du haut est une bijection.

Finalement on a plus qu’à montrer les propriétés de factorisation et la dernière
partie de (MC4). On montre d’abord les propriétés de factorisation et on va les
utiliser pour (MC4) (comme il est souvent pratique de faire pour les catégories
cofibrement engendrées). On commence par remarquer :

Sous-Lemme 5.2.7. Les rétractes de morphismes F (I)-cellulaires (resp. F (Jac)-cellulaires)
ont la propriété de relèvement par rapport aux fibrations acycliques (resp. fibrations)
de C. De plus tout rétracte d’un morphisme F (Jac)-cellulaire est une équivalence
faible de C.

Démonstration du sous-lemme. La première assertion découle du sous-lemme 5.2.6
par stabilité par composition, rétractes et poussés-en-avant des morphismes ayant
des propriétés de relèvement à gauche par rapport à une classe de morphismes. Pour
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la deuxième, on a que les hypothèses (2) ou (2’) montre que si βj : Uj → Vj ∈ Jac
est une cofibration acyclique génératrice, alors pour tout objet A ∈ C, on a qu’un
poussé en avant A → A

∐
F (Uj)

F (Vj) est une équivalence faible de C. Ce qui assure

que c’est le cas pour tout rétracte d’une Jac-cellulaire par le raisonnement précédent
(ou en appliquant (2) directement si cette hypothèse était déjà vérifiée). �

Puisque les domaines de F (Jac) sont κ-petits comme on vient de le voir, on peut
leur appliquer l’argument du petit objet (Section 2.3 et Proposition 2.3.22). Ceci
assure que tout morphisme f : X → Y a une factorisation fonctorielle f : X →
Cf → Y où Cf → Y a la propriété de relèvement par rapport à l’ensemble F (Jac)
donc est une fibration et X → Cf est F (Jac) cellulaire donc est une cofibration et
est acyclique en vertu du sous-lemme 5.2.7. Cela termine de montrer la première
factorisation. La deuxième est similaire en utilisant l’argument du petit objet pour
la famille F (I).

Il reste à démontrer que tout cofibration i : A→ B qui est une équivalence faible
dans C a la propriété de relèvement à gauche par rapport à toutes les fibrations. Pour
cela il suffit de montrer que c’est un rétract d’un morphisme qui a cette propriété. On
utilise la première factorisation : pour obtenir i : A→ Ci � B où comme on l’a vu
A → Ci est F (Jac)-cellulaire. En particulier a la propriété de relèvement demandé.
On a de plus vu qu’elle est une équivalence faible et comme i aussi, on en déduit que
la fibration Ci � B est en fait une fibration acyclique 134. Ainsi, comme i : A → B
est une cofibration, on a un relèvement dans le carré commutatif

A //

i
��

Ci

o
����

B

s
>>

B

qui donne que A→ B est un rétracte de A→ Ci. �

On dispose de l’adjonction Ch≥0(Q)
Sym(−)

--
CDGA

U
nn du Lemme 5.1.8 où U est

l’oubli de la multiplication.

Corollaire 5.2.8. La structure induite par Ch≥0(Q) sur CDGA est une structure de
modèle cofibrement engendrée et l’adjonction est de Quillen.

Puisque c’est le cas dans Ch≥0(Q), les fibrations sont les morphismes de cdgas qui
sont surjectifs en tout degré. En particulier, toutes les cdgas sont fibrantes.

Remarque 5.2.9. La même preuve assure que les cdgas Z-graduée ou concentrées en
degrés négatifs ou nul ont une structure de modèles cofibrement engendrée.

Notons par ailleurs que ce corollaire s’applique à toute catégorie de O-algèbre
différentielle graduée où O est une opérade algébrique. En particulier cela s’applique
par exemple aux algèbres différentielles graduées associatives, aux algèbres de Lie
différentielles graduées etc...

Le résultat reste par ailleurs valide sur tout corps de caractéristique nulle. En
revanche, le résultat n’est pas vrai en caractéristique non-nulle pour les cdgas (c’est
essentiellement lié au défaut de Sym(−) à être exact).

134. l’hypothèse (2) ou (2’) a pour seul but de garantir ce résultat
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Remarque 5.2.10. Du Corollaire 5.2.4 et de la preuve ci-dessous découle aussi que
les cofibrations génératrices sont les (Sym(Sn(Q)∗) → Sym(Dn(Q)∗))n≥1

∐
(Q ↪→

Sym(S0(Q)∗) ∼= Q[t]) et les cofibrations acycliques génératrices sont les (Q ↪→
Sym(Dn(Q)∗))n≥1. Toute cofibration (resp. acyclique) est un rétract d’une com-
position de poussés-en-avant de cofibration génératrice (resp. acyclique génératrice).

Démonstration du Corollaire 5.2.8. Il suffit de vérifier les hypothèses (1’), (2’) du
corollaire 5.2.4. La première découle du fait qu’une colimite séquentielle (ou toute
colimite filtrante en fait) calculé dans les complexes de (co)châınes (comme une
réunion donc) de morphismes de cdgas a canoniquement une structure de cdga qui
factorise toute famille compatibles de morphismes de cdgas issus des composantes
de la colimite (en revanche U ne commute pas du tout avec des colimites arbitraires,
par exemple pas avec les coproduits).

Pour la deuxième, on doit démontrer que A
idA⊗η−→ A⊗Sym(Dn(Q)∗) est un quasi-

isomorphisme. Comme Dn(Q)∗ = C(Q[−n]) le résultat découle de la formule de
Künneth et de l’exemple 5.1.9. �

Remarque 5.2.11. Notons que l’on peut aussi directement montrer (2) (du théo-
rème 5.2.3), ce qui peut être instructif car l’idée peut s’appliquer même dans des cas
non-linéaires. En effet, si f : A∗ → B∗ a la propriété de relèvement par rapport à tous
les morphismes de cdga qui sont surjectif en tout degré, on utilise le lemme 5.1.12
qui nous donne un relèvement dans le diagramme commutatif

A∗
idA⊗η //

f
��

A∗ ⊗ E(B∗)

f ·π
����

B∗
id

//

h
66

B∗.

On en déduit alors que f est un rétracte A∗

f
��

A∗� _

id⊗η
��

A∗

f
��

B∗
h // A∗ ⊗ E(B∗)

f ·π // B∗

de id⊗η qui

est un quasi-isomorphisme puisque η : Q→ E(B∗) l’est (Exemple 5.1.9). L’idée (qui
s’applique de manière assez générale et peut s’obtenir parfois en utilisant l’argument
du petit objet) ici a donc été de factoriser f sous la forme f : A

∼→ P � B pour

montrer se ramener à un rétracte de A
∼→ P .

Pour obtenir et étudier de bons remplacements cofibrants, on introduit la ter-
minologie suivante qui sera cruciale pour faire des calculs efficaces en homotopie
rationnelle.

Définition 5.2.12 (Algèbre de Sullivan, relatives et minimales).

• Une algèbre de Sullivan est une algèbre semi-libre (Sym(V ∗), d) où V ∗ se
décompose 135 en somme directe de sous espaces gradués

V ∗ =
⊕
n≥0

V ∗n

135. autrement dit on rajoute une graduation supplémentaire à chaque V n de sorte que V ∗ de-
vienne bigradué
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telle que, en notant V ∗(n) =
⊕

k≤n V
n
k , on a

d(V (0)∗) = 0, et d(V ∗(n)) ⊂ Sym(V (n− 1)∗) (n ≥ 1).

• Une algèbre de Sullivan est minimale, si dans la décomposition on a de plus
que les éléments de V ∗j sont en degré inférieur à celui des éléments non-nuls
de V ∗k>j.

• Une algèbre de Sullivan relative est l’inclusion canoniqueA
id⊗1
↪→ (A⊗Sym(V ∗), d)

d’une cdga A telle que V ∗ est munie d’une décomposition comme dans le cas
d’une algèbre de Sullivan telle que

d(V (0)∗) ⊂ A, et d(V ∗(n)) ⊂ A⊗ Sym(V (n− 1)∗) (n ≥ 1).

• Une algèbre de Sullivan relative est minimale si on a la même condition sur
les degrés que pour une algèbre de Sullivan minimale.

On notera que les algèbres de Sullivan (éventuellement minimales) sont des al-
gèbres relatives (évent. minimale) où A = Q 136. Comme on travaille sur un corps,
toute filtration de Q-espace se décompose et on peut donc aussi définir les algèbres
de Sullivan par la donnée d’une filtration.

Une condition pratique pour vérifier qu’une algèbre de Sullivan est minimale est
la suivante :

Lemme 5.2.13. Soit une algèbre de Sullivan (Sym(V ∗), d) vérifiant V 0 = 0. Alors
(Sym(V ∗), d) est minimale si et seulement si d(V ∗(k)) ⊂ Sym≥2(V ∗(k − 1)) 137.

Remarque 5.2.14. Si V ∗ est concentré en degré ≥ 2, alors on peut montrer qu’une
algèbre semi-libre est de Sullivan minimale si et seulement si d(V ∗) ⊂ Sym≥2(V ∗) et
qu’une inclusion A ↪→ A⊗Sym(V ∗) est de Sullivan relative minimale si et seulement
si d(V ∗) ⊂ A>0⊗Sym>0(V ∗)+A⊗Sym≥2(V ∗). Ceci découle du lemme et du fait que
l’on peut voir aussi que si V ∗ est concentré en degré≥ 2, alors toute algèbre semi-libre
(Sym(V ∗), d) est de Sullivan ; il suffit de prendre comme graduation supplémentaire
celle qui est en fait déjà donnée par le degré de V ∗ en tant que module gradué.

Exemple 5.2.15. Sym(Dn(Q)∗) et Sym(Sn(Q)∗) sont des algèbres de Sullivan. La
deuxième est évidemment minimale mais pas la première. Par ailleurs l’inclusion
Sym(Sn(Q)∗) ↪→ Sym(Dn(Q)∗) est une algèbre de Sullivan relative minimale.

De même, les algèbres E(A∗) (Exemple 5.1.9) sont de Sullivan (et pas minimales
en général).

Exemple 5.2.16. Soit Sym(Q < x, y, z >) la dg-algèbre avec x, y, z en degrés 1
et la différentielle donnée par d(x) = yz, d(y) = zx, d(z) = xy. Cette algèbre est
semi-libre mais n’est pas de Sullivan.

Le lien entre les algèbres de Sullivan et la structure de modèle est le suivant.

Lemme 5.2.17. Les algèbres cofibrantes sont les rétractes d’algèbres de Sullivan, les
cofibrations sont des rétractes d’algèbres de Sullivan relatives.

136. comme Q est concentré en degré 0, on pourra remarquer qu’aucun élément de Q n’est un
bord
137. c’est à dire que la différentielle est décomposable
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Démonstration. C’est un corollaire de l’argument du petit objet. Plus précisément,
les cofibrations génératrices sont de Sullivan relatives d’où on déduit que les J-
cellulaires sont aussi de Sullivan relatives en utilisant comme degré externe celui
induit par le nombre de composition dans l’argument du petit objet. À partir d’une
algèbre de Sullivan relative, on construit la décomposition en exprimant déjà A ⊗
Sym(V (0)∗) comme un poussé en avant à partir des cofibrations génératrices en
utilisant que Sym(V ) ∼=

⊗
i∈B Sym(Qxi) (où B est une base de veceturs homogènes

de V ) puis en faisant des compositions degré par degré pour reconstruire tous les
Sym(V (n)∗). En étudiant l’argument du petit objet de manière précise dans le cadre
des cdgas, on peut montrer que les algèbres cofibrantes sont précisément celles de
Sullivan et que les cofibrations sont les rétractes d’algèbres de Sullivan relatives. �

Remarque 5.2.18. On peut montrer que si une algèbre cofibrante est connexe, alors
c’est une algèbre de Sullivan (autrement dit, dans ce cas là, tout rétracte d’une
algèbre de Sullivan est de Sullivan).

Définition 5.2.19 (Modèle de Sullivan). Un modèle de Sullivan (resp. minimal) d’une

cdga est une équivalence faible de cdga (Sym(V ), d)
∼→ A où (Sym(V ), d) est de

Sullivan (resp. minimale).

Remarque 5.2.20. La différence avec un remplacement cofibrant est qu’on ne sup-
pose pas nécessairement que le morphisme est une fibration. Évidemment, on peut
toujours se ramener à une fibration par remplacement cofibrant. Mais on peut aussi
plus simplement utiliser l’astuce suivante : si f : (Sym(V ), d)

∼→ A est un modèle
de Sullivan, alors

(Sym(V ), d)⊗ E(A)
f ·π−→ A

est un modèle de Sullivan surjectif en tout degré d’après l’exemple 5.2.15. En re-
vanche, on ne peut pas imposer qu’un modèle de Sullivan minimal soit une fibration
en général.

Nous verrons en revanche que les algèbres minimales ont des propriétés particu-
lières qui rendent l’étude du type d’homotopie d’une cdga très agréable (cf Proposi-
tion 5.2.26 ou le Lemme 5.3.9).

Étant donné que notre principale motivation pour étudier les cdgas provient des
cochaines associées à un espace topologique (non-vide) ou ensemble simplicial, nous
allons maintenant nous focaliser sur les cdgas connexes :

Définition 5.2.21. Une cdga est d̂ıte connexe si H0(A) ∼= Q (l’isomorphisme étant
alors nécessairement induit par l’unité).

Une cdga est d̂ıte augmentée si elle est munie d’un morphisme de cdga ε : A→ Q
qui est une section de l’unité : ε ◦ η = id. On notera A+ := ker(ε) l’idéal d’augmen-
tation de A ; il est en particulier stable par la différentielle.

En effet, pour tout espace topologique ou ensemble simplicial, on a que C∗(X) ∼=∏
C∗(Xα) (et de même pour les formes polyhédrales 138 de la section 5.4 ou la co-

homologie) où le produit se fait sur toutes les composantes connexes par arcs de
X. En particulier, on est ramené à étudier des cdgas connexes. Par ailleurs les co-
chaines d’un espace topologique (à l’exception du vide) sont augmentée par le choix

de n’importe quelle point base C∗(X)
(∗7→x)∗→ C∗({∗})

∼
� Q.

138. la démonstration est la même que pour la cohomologie singulière



INTRODUCTION À L’HOMOTOPIE 169

Remarque 5.2.22. Pour les algèbres connexes, le lemme 5.2.13 sera crucial pour rec-
connâıtre les algèbres minimales. Et par ailleurs, en vertu du lemme 5.2.27 et de la
proposition 5.2.29, on peut toujours supposer qu’un modèle de Sullivan Sym(V ∗)
d’une algèbre connexe vérifie V 0 = 0.

Enfin toute algèbre semi-libre est augmentée (via l’application canonique V 7→ 0
car Q = Sym(V )) et son idéal d’augmentation est Sym>0(V ∗).

Remarque 5.2.23 (Morphismes entre algèbres de Sullivan). Un morphisme de cdgas
f : (Sym(V ), d) → (Sym(W ), d) entre algèbres semi-libres est uniquement déter-
miné par les restrictions fi : V → Symi(W ) (cf le Lemme 5.1.8). Si V 0 = 0, on a
nécessairement f0 = 0. On appelle f1 : V → W la partie linéaire de f . De même, les
différentielles (dans le cas connexe ou pas) sont données par les di : V → Symi(V )
(avec i > 0). Il est clair que d1 est une différentielle, qui est nulle si de plus les
algèbres sont minimales.

Comme f est un morphisme de cdgas, on le morphisme induit :

f1 : (V, d1) −→ (W,d1)

est un morphisme de complexes de cochaines.

Définition 5.2.24 (Complexe des indécomposables). Si A est une cdga augmentée,
on note Q(A) := A+/A+ ·A+ les indécomposables (c’est à dire le quotient de l’idéal
d’augmentation par les produits non triviaux). La différentielle d de A passe au
quotient (par propriété de Leibniz) et on note

πn(A, d) := Hn(Q(A), d).

En particulier, si A est semi-libre on a que (Q(A), d) ∼= (V ∗, d1) puisque seule la
partie linéaire d1 de la différentielle survit dans le quotient. Le lemme 5.2.13 nous
donne alors que

Lemme 5.2.25. Si A = (Sym(V ∗), d est une algèbre de Sullivan minimale connexe,
alors pour tout n on a πn(Sym(V ), d) = V n.

Proposition 5.2.26. Soit f : (Sym(V ), d) → (Sym(W ), d) un morphisme entre al-
gèbres de Sullivan avec V 0 = W 0 = 0.

• On a que f est un quasi-isomorphisme si et seulement si f1 : (V, d1) −→
(W,d1) est un quasi-isomorphisme.
• Si les algèbres sont de plus minimales, alors f est un quasi-isomorphisme si et

seulement si f1 est un isomorphisme si et seulement si f est un isomorphisme.

La proposition énonce une propriété clé et fortement utile des algères minimales :
un morphisme entre cdgas minimales connexes est un quasi-isomorphisme si et seule-
ment si c’est un isomorphisme.

Démonstration. Si f est un quasi-isomorphisme entre algèbres de Sullivan alors c’est
une équivalence d’homotopie par le corollaire 5.3.5. Il suit alors du lemme 5.3.7 que
Q(f) = f1 est un quasi-isomorphisme. La réciproque se fait en filtrant Sym+(V )
et Sym+(W ) par le degré des puissances symétriques. La suite spectrale associée
(cf [20]) converge vers Sym(V ) et la différentielle sur sa première page est exactement
d1. On obtient alors que l’on a un isomorphisme au niveau de cette page et donc sur
la cohomologie globale.

Dans le cas minimal, on a que d1 = 0, donc f1 est un quasi-isomorphisme, si
et seulement si c’est un isomorphisme et le premier point donne déjà la première
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équivalence. Par ailleurs si f1 est un isomorphisme, alors f est un isomorphisme
comme il découle du lemme des 5 et de la longue suite exacte en homologie associée
à la suite exacte courte A+ · A+ ↪→ A+ � Q(A) quand A est de Sullivan. Enfin si
f est un isomorphisme, c’est un quasi-isomorphisme ce qui permet de conclure pour
la dernière implication. �

La remarque 5.2.20 et le lemme suivant permette de passer librement d’un modèle
de Sullivan surjectif (donc une fibration) à un modèle de Sullivan minimal (qui ne
donne en général pas lieu à une fibration, mais est unique à isomorphisme non-naturel
près).

Lemme 5.2.27. Une algèbre de Sullivan connexe est isomorphe en tant que cdga au
produit tensoriel 139

(Sym(V ), d) ∼= (Sym(W ), D)⊗ E(U)

d’une algèbre de Sullivan minimale (Sym(W ), D) avec W 0 = 0 et d’une algèbre de
Sullivan acyclique E(U). De même une algèbre de Sullivan relative (entre algèbres
connexes) s’écrit sous la forme :

A⊗ (Sym(V ), d)
∼= // A⊗ (Sym(W ), D)⊗ E(U)

A.
4 T

id⊗1

gg

( �
id⊗1

55

La partie minimale est unique à isomorphisme près.

Démonstration. L’unicité découle de l’unicité du modèle minimal, voir la proposi-
tion 5.2.26 or 5.2.29 ci-dessous pour le cas relatif. Nous ne traitons que le cas absolu ;
l’autre est similaire en travaillant dans la catégorie des algèbes dans les A-modules.

La différentielle d : V → Sym(V ) de V s’écrit (cf remarque 5.1.14) sous la forme
d1 + d+ où d1 : V → V est a partie linéaire et d+(V ) ⊂ est la partie décomposable ;
d1 est une différentielle sur V ∗. Le lemme 5.2.13 identifie les minimales avec celles
telles que d1 = 0. Donc si d1 = 0, l’algèbre est déjà minimale. Sinon soit une
décomposition de V ∗ = H∗ ⊕ B∗ ⊕ A∗ telle que B∗ = d1(V ∗) sont les bords de
d1 et H∗ ⊕ B∗ = ker(d1). En particulier H∗ ∼= H∗(V ∗, d1) est la cohomologie de
V ∗ par rapport à d1 et d1 envoie bijectivement A∗ sur B∗. Cette décomposition
existe car Q est un corps et que l’on peut donc décomposer les cocyles sous la forme

donnée. L’algèbre semi-libre Sym(A
d1

B) est contractile (et isomorphe à un E(U) par
construction). Par construction on a un morphisme de complexes : A ↪→ V qui induit

un morphisme de cdgas Sym(A
d1→ B) → (Sym(V ), d) (simplement en envoyant

A sur A et B sur l’image par d (dans Sym(V )) de A. On note E(U) l’image de

Sym(A
d1→ B) que l’on identifie avec son image dans Sym(V ). Autrement dit on s’est

ramené au cas où la différentielle de V sur E(U) est simplement linéaire induite par
d1 : A→ B et on travaille (en abusant les notations) dans ce cadre. Le quotient de

l’algèbre sous-jacente Sym(V ) par l’idéal engendré par Sym(A
d1→ B) est une algèbre

commutative libre (isomorphe à Sym(H∗) et minimale. Le morphisme quotientp :
Sym(V ∗) → Sym(H∗) est un quasi-isomorphisme par le Théorème de Künneth
appliqué à Q(Sym(V )) → Q(Sym(H∗) et la propositon 5.2.26. Le Corollaire 5.3.5

139. qui est le coproduit dans la catégorie CDGA
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nous donne un quasi-isomorphisme inverse g : Sym(H∗)→ Sym(V ∗). En particulier,
p ◦ g est un quasi-isomorphisme donc un isomomorphisme par la proposition 5.2.26.
Il suit que

g ⊗ id : Sym(H∗)⊗ E(U)→ Sym(V )⊗ Sym(V )→ Sym(V )

est un isomorphisme d’algèbres puisque c’est un morphisme entre algèrbes semi-libre
qui est un isomorphisme au niveau des générateurs. �

Les notions de modèle de Sullivan s’étendent sans difficulté aux morphismes.

Définition 5.2.28 (Modèles de Sullivan d’un morphisme). Soit f : A→ B d’algèbres
graduées différentielles commutatives.

• Un modèle de Sullivan relatif de f est une factorisation de f sous la forme

B

f

%%// i// B ⊗ Sym(V ) ∼
// C

où i est une algèbre de Sullivan relative.
• Un modèle de Sullivan relatif minimal de f est une factorisation comme la

précédent où i est de Sullivan relative minimale.

Proposition 5.2.29. Tout morphisme de cdgas f : A → B admet un modèle de
Sullivan relatif.

De plus :

• si A et B sont connexes, alors f admet un modèle de Sullivan relatif minimal :
A ↪→ A⊗ Sym(V ∗)

∼→ B vérifiant V 0 = 0.
• Un modèle de Sullivan relatif minimal de f est unique à isomorphisme (non-

canonique) près.
• En particulier, toute cdga connexe A admet un modèle de Sullivan minimal

vérifiant V 0 = 0 qui est unique à isomorphisme (non-naturel) près.

Démonstration. La structure de modèle cofibrement engendrée des cdgas assure (via
l’axiome (MC5) et l’argument du petit objet) que tout morphisme admet un modèle
de Sullivan relatif.

Le lemme 5.2.27 assure que dans le cas connexe, on peut décomposer sous la forme
A ↪→ A ⊗ Sym(V ∗) ∼= A ↪→ A ⊗ Sym(W ∗) ⊗ E(U) avec W 0 = 0. Le morphisme
d’espaces vectoriels graduée U 7→ 0 induit un morphisme de cdgas E(U) → Q qui
est une section de l’unité η : Q→ E(U), en particulier un quasi-isomorphisme car η
l’est. Le morphisme A ↪→ Sym(W ∗)⊗ E(U)→ Sym(W ∗) induit est une algèbre de
Sullivan relative minimale.

L’unicité découle immédiatement du lemme 5.3.10 ci-dessous appliqué au mor-
phisme : f = id : A→ A. �

Remarque 5.2.30. La structure de modèle (et l’argument du petit objet) garantit
aussi que l’on peut factoriser tout morphisme de cdgas f : A → B sous la forme

A
∼
↪→ A⊗ Sym(V )� B où la première flèche est une algèbre de Sullivan relative et

un quasi-isomorphisme.



172 GRÉGORY GINOT

5.3. Homotopie des CDGAs

Nous allons préciser ici quelques propriétés de la relation d’homotopie dans les
cdgas (et démontrer certains lemmes utilisés dans la section précédente).

Tout comme dans les espaces topologiques on peut utiliser l’objet en cylindre X×I
pour définir toutes les relations d’homotopie, dans les cdgas, nous avons un objet en
chemin universel pour définir les relations d’homotopie entre morphismes de cdgas.

Notation 5.3.1. On note I∗ := Ω∗PL(∆1) l’algèbre polyhédrale de l’intervalle définie
dans la section 5.4.

Explicitement on a donc

I∗ = Q[t0, t1, dt0, dt1]/(t0 + t1 = 1, dt0 + dt1 = 0) = Q[t, dt]

où la dernière équivalence est donnée en identifiant t0 = t, t1 = 1 − t (et dt0 =
−dt − 1 = dt). On a que les ti sont de degré nuls, de différentielles respectives les
d(ti) (qui sont donc de degré 1).

Notation 5.3.2. On note εi : Ω∗PL(∆1) → Q les deux morphismes de cdgas définis
par ε0(t) = 0 et ε1(t) = 1 (et nécessairement εi(dt) = 0).

On a, pour i = 0, 1, une factorisation

B

id

##
� � // B ⊗ I∗

id⊗εi
// // B

qui établit que B⊗ I∗ et les morphismes (id⊗ ε0, id⊗ ε1) : B⊗ I∗ � B×B = B⊕B
forment un objet en chemin pour B au sens de la définition 2.2.15.

Définition 5.3.3 (Homotopie de Sullivan). Deux morphismes de cdgas f0, f1 : A→ B
sont dit homotopes au sens de Sullivan si il existe un morphisme de cdga H : A →
B ⊗ I∗ tel que fi = (id⊗ εi) ◦H pour i = 0, 1.

Une homotopie de Sullivan est donc une homotopie à droite au sens des catégories
de modèles. Si on suppose que la source est cofibrante, on a la propriété remarquable
suivante 140.

Proposition 5.3.4. Soit (Sym(V ), d) une algèbre de Sullivan. La relation d’homo-
topie de Sullivan est une relation d’équivalence sur HomCDGA((Sym(V ), d), B) qui

est équivalente aux relations d’homotopie
l∼,

r∼ et ' de la structure de modèle.
En particulier, le quotient Homcdga((Sym(V ), d), B) par la relation d’homotopie de
Sullivan est en bijection avec le quotient HomCDGA((Sym(V ), d), B)/ '.

Démonstration. Puisque une homotopie de Sullivan est une homotopie à droite, étant
doné que toute cdga est fibrante et qu’une algèbre de Sullivan est cofibrante, il suffit
d’après le Corollaire 2.2.22 de montrer que pour tout objet en chemin B

∼→ P �
B × B de B et toute homotopie à droite H : (Sym(V ), d) → P entre f, g, alors il

existe une homotopie de Sullivan K : (Sym(V ), d) → B ⊗ I∗. Soit B
∼
� P ′

∼
� P

une factorisation de l’équivalence faible B → P donnée par (MC5) et (MC2). La

factorisation implique que P ′
∼
� P � B × B et B

∼
� P ′ est un objet en chemin.

Comme (Sym(V ), d) est cofibrante et que P ′
∼
� P est une fibration acyclique, le

140. la première affirmation peut aussi se démontrer à partir de la propriété d’extension 5.4.8
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morphisme H se relève en K ′ : (Sym(V ), d) → P ′ (vérifiant H = (Sym(V ), d)
K′→

P ′
∼
� P ), qui relève donc l’homotopie à droite associée à P à P ′. Le carré commutatif

B //
��
o
��

B ⊗ I∗

ε0×ε1����
P ′
proj0×proj1

//
- 


φ
;;

B ×B

donne le relèvement φ par (MC4). La composée K := φ ◦ K ′ :

(Sym(V ), d)→ B ⊗ I∗ est alors une homotopie de Sullivan. �

Corollaire 5.3.5. Si f : A→ B est une équivalence faible entre algèbres de Sullivan,
alors il existe g : B → A tel que f ◦ g ' idB et g ◦ f ' idA.

Démonstration. Sachant que toute cdga est fibrante, la proposition 5.3.4 précé-
dente et la proposition 2.2.20.b) et e) (et le théorème 2.2.26) assure que les com-

positions HomHo(CDGA)(A,A)
f∗→ HomHo(CDGA)(A,B) et HomHo(CDGA)(B,B)

f∗→
HomHo(CDGA)(A,B) et HomHo(CDGA)(B,A)

f∗→ HomHo(CDGA)(B,B)sont des bijec-
tions et que les ensembles en question sont les quotients des morphismes de cdgas
par la relation d’homotopie. Un représentant de la préimage par f∗ de idB donne g
et le résultat suit. �

Remarque 5.3.6. Les classes d’homotopie de Sullivan sont en fait le π0 d’un ensemble
simplicial de morphismes. En effet, on peut définir

MapCDGA(A,B)• := HomCDGA(A,B ⊗ Ω∗PL(∆•))

munie de la structure simpliciale induite par [n] 7→ Ω∗PL(∆n) où Ω∗PL(∆n) est défini
dans la section 5.4.

Lemme 5.3.7. Soit f, g : A→ B un morphisme entre algèbres connexes augmentées.
Alors si f et g sont homotopes, π∗(f) = π∗(g) : π∗(A) → π∗(B). Si de plus les
algèbres sont de Sullivan minimales, alors Q(f) = Q(g) : Q(A)→ Q(B).

Démonstration. Le théorème de Kunneth implique que les applications induites ε̃i :
Q(B)⊗ I∗ → Q(B) sont identiques en cohomologie. On en déduit que c’est aussi le
cas pour Q(B⊗I∗)→ Q(B) pour les algèbres minimales et le lemme en découle. �

Les relèvements donnés par l’axiome (MC4) de la structure de modèle (Corol-
laire 5.2.8) vérifient par ailleurs une propriété d’unicité.

Proposition 5.3.8. Soit A ↪→ A⊗(Sym(V ), d) une algèbre de Sullivan relative. Étant
donné un diagramme commutatif de cdgas

A
f //

� _

id⊗1
��

B

p
����

A⊗ (Sym(V ), d) //

h

77

C

un relevé h existe dès que l’une des flèches verticale est un quasi-isomorphisme. De
plus le relevé h est unique à homotopie de Sullivan près (relativement 141 à A).

141. c’est à dire que l’homotopie est un morphisme de A-modules
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On peut remarquer que le diagramme est un diagramme de A-algèbres graduées
différentielles commutatives 142 où les structures de A-algèbres sont induites par les
morphismes d’algèbres.

Démonstration. L’existence des relevés découle immédiatement de la structure de
modèle. Si la flèche verticale de gauche est une cofibration acyclique, alors comme
toute cdga est fibrante, on a que

HomCDGA(A⊗ (Sym(V ), d), B)/
r∼(id⊗1)∗−→ HomCDGA(A,B)/

r∼

est une bijection par la proposition 2.2.20.e).

Soit maintenant p : B
∼
� C est une fibration acyclique. La commutativité du

diagramme assure que nos morphismes de cdgas sont aussi des morphismes de A-
modules où les structures de A-modules sont induites par les morphismes de cdgas.
Autrement dit, le diagramme est un diagrame de monoides commutatifs et unitaires
dans la catégorie des A-modules. Mais les morphismes de A-algèbres graduées dif-
férentielles commutatives A ⊗ Sym(V ) → B sont en bijection avec les morphismes
d’algèbres graduées différentielles commutatives Sym(V )→ B. On peut alors appli-
quer la proposition 2.2.20.b) pour conclure.

�

Les algèbres de Sullivan minimales vérifient la propriété suivante similaire à leur
propriété d’isomorphisme.

Lemme 5.3.9. Si f0, f1 : A → B sont deux morphismes homotopes entre deux
algèbres de Sullivan minimales connexes, alors f0 = f1.

Démonstration. Soit H : Sym(V ) → Sym(W ) ⊗ I∗ une homotopie pour f, g :
Sym(V )→ Sym(W ) deux algèbres de Sullivan minimales. Par le corollaire 5.3.5, il
existe g : Sym(W ) → Sym(W ) ⊗ I∗ tel On peut la factoriser sous la forme Par le
lemme 5.3.4, deux tels morphismes sont homotopes au sens des catégories de modèle
et définissent donc le même élément �

Nous démontrons enfin un lemme utilisé ci-dessus.

Lemme 5.3.10. Soit un diagramme commutatif de cdgas

A

fo
��

� � i // A⊗ Sym(V )

f
��

∼

((
C �
� j // C ⊗ Sym(W )

∼ // B

où i, j sont des algèbres de Sullivan relatives minimales. Alors il existe un quasi-
isomorphisme relevé f rendant le diagramme commutatif.

Si de plus f : A→ B est un isomorphisme alors f est un isomorphisme aussi.

142. autrement dit de monoide unitaire commutatif dans la catégorie monoidale des A-modules
différentiels gradués
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Démonstration. Par la remarque 5.2.20, on peut factoriser C ⊗ Sym(W )
∼→ B

sous la forme C ⊗ Sym(W )
id⊗η
↪→ C ⊗ Sym(W ) ⊗ E(U)

∼
� B. Le carré commu-

tatif A
��

i
��

(id⊗η)j◦f
// C ⊗ Sym(W )⊗ E(U)

o
����

A⊗ Sym(V )
∼ //

f̃
55

B

et le fait que i soit une cofibration

asure l’existence d’un relevé et on obtient f comme la composée A ⊗ Sym(V )
f̃→

C ⊗ Sym(W ) ⊗ E(U) � C ⊗ Sym(W ). C’est un quasi-isomorphisme par la pro-
priété (MC2).

Supposons maintenant que f soit un isomorphisme. En appliquant le résultat
au diagramme évident avec f−1, on obtient un quasi-isomorphisme f−1 : C ⊗
Sym(W ) → A ⊗ Sym(V ) On a que f−1 ◦ f : A ⊗ Sym(V ) → A ⊗ Sym(V ) est
un quasi-isomorphisme qui fixe A. Par la proposition 5.3.8, ce quasi-isomorphisme
est homotope à l’identité par une homotopie qui fixe A et de même pour f ◦f−1. Un
démonstration analogue à celle du Lemme 5.3.7 nous donne alors que l’application
induite A⊗Q(Sym(V ))→ A⊗Q(Sym(V )) est un isomorphisme fixant A et une dé-
monstration analogue à celle de la proposition 5.2.26 montre que ce morphisme est un
isomorphisme. On en déduit donc que f a un inverse à droite. Un raisonnement inver-
sant le rôle de f et f−1 nous donne un inverse à gauche et donc f est un isomorphisme.
A ⊗ Q(Sym(V )) l’on a un morphisme induit A ⊗ Q(Sym(V ) → C ⊗ Q(Sym(W ))

qui est un quasi-isomorphisme. et on veut montrer que f−1 ◦ f = id (la composition
dans l’autre sens sera alors aussi l’identité par symétrie de l’argument). Il suit alors
du Lemme 5.3.9 que la composée est l’identité. �

5.4. Formes polyhédrales

On introduit maintenant l’analogue, du à Sullivan, des formes de de Rham pour
tout espace topologique. L’idée consiste à d’abord définir une version polyhédrale
des formes différentielles sur le n-disque muni de sa triangulation standard ; c’est à
dire sur le n-simplexe standard ∆n.

Définition 5.4.1. L’algèbre des formes polyhédrales sur ∆n est définie comme la cdga
quotient

Ω∗PL(∆n) := Q[t0, . . . , tn, dt0, . . . , dtn]/ t0 + · · ·+ tn = 1
dt0 + · · ·+ dtn = 0

où les ti sont en degrés 0 et les dti sont en degrés 1. La différentielle d : Ω∗PL(∆n)→
Ω∗+1
PL (∆n) est donnée, pour tout i = 0 . . . n, par

d(ti) = dti et d(dti) = 0.

Remarque 5.4.2. Comme les dti sont en degrés 1 et l’agèbre est graduée commutative,
on a que Ωi>n

PL (∆n) ∼= 0.

Remarque 5.4.3 (Lien avec les formes de De Rham). On a une inclusion évidente de
Ω0
PL(∆n) dans les fonctions C∞(∆n) en tant que polynomes à coefficients rationnels.

On en déduit un isomorphisme naturel

Ω∗dR(∆n) ∼= C∞(∆n) ⊗
Ω0
PL(∆n)

Ω∗PL(∆n).
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La structure cosimpliciale des ∆n induit une structure simpliciale sur les formes
polyhédrales définie comme suit : pour i = 0 . . . n et k = 0 . . . n, on pose

di(tk) :=

 xk si k < i
0 si k = i
xk−1 si k > i

si(tk) :=

 xk si k < i
xk + xk+1 si k = i
xk+1 si k > i

(29)

et on applique la même formule pour les dtk.

Lemme 5.4.4. La structure (29) donne une structure d’objet simplicial [n] 7→ Ω∗PL(∆n)
dans CDGA 143 aux formes polyhédrales sur les simplexes standards.

Cette structure simpliciale vérifie deux propriétés utiles. Tout d’abord, les formes
polyhédrales, pour chaque simplexe ∆n fixée sont contractibles (tout comme les
formes de de Rham sur un disque). Par ailleurs, la cdga simpliciale est-elle même
“contractible” par rapport à la structure simpliciale. Ces deux propriétés s’énoncent
plus précisément comme suit :

Proposition 5.4.5.

(1) (Lemme de Poincaré PL) l’unité η : Q→ Ω∗PL(∆n) est un quasi-isomorphisme
(de cdgas).

(2) Pour tout i ≥ 0, on a que le Q-module simplicial Ωi
PL(∆•) est simplicialement

contractile : c’est à dire qu’il existe un morphisme de Q-espace vectoriel
s : Ωi

PL(∆•)→ Ωi
PL(∆•+1) tel que

(30) d0s = id, d1s = 0 si • = 0 et dj+1s = sdj si • > 0, sj+1sj = ssj.

En particulier l’homologie simpliciale H∗
(
Ωi
PL(∆•),

∑
(−1)jdj

)
est nulle et

la réalisation géométrique de Ωi
PL(∆•) est contractile.

Remarque 5.4.6. Les conditions (30) montrent précisément que l’opérateur s est
un opérateur d’homotopie entre id et 0 dans le complexe

(
Ωi
PL(∆•),

∑
(−1)jdj

)
. On

peut montrer facilement que si une application vérifiant ces conditions est définie sur
un ensemble simplicial de Kan, comme c’est le cas pour Ωi

PL(∆•), alors les groupes
d’homotopie de ce dernier sont tous nuls.

Remarque 5.4.7 (Propriété d’extension). L’homotopie simpliciale s garantit que les
q-formes polyhédrales Ωq

PL(∆•) forment un Q-module simplicial étendable 144 : c’est
à dire que

Lemme 5.4.8. Pour tout n ≥ 1, tout sous ensemble J ⊂ [n], et toute famille (ωj ∈
Ωq
PL(∆n−1))j∈J telle que

diωj = dj−1ωi si i < j,

il existe une q-forme ω ∈ Ωq
PL(∆n) sur ∆n telle que djω = ωj pour tout j ∈ J .

En particulier les i-formes PL forment un ensemble simplicial de Kan pour tout
i, ce qui est de toutes façons une propriété de tous les groupes simpliciaux.

On peut maintenant définir les formes PL associées à tout ensemble simplicial ou
espace topologique.

143. on dira simplement de cdga simpliciale.
144. on peut penser à cette propriété comme une propriété de faisceaux : si on a une famille d’objets
dont les restrictions à leurs intersections communes sont les mêmes, alors ils sont la restriction d’un
objet global
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Définition 5.4.9.

(1) On note Ω∗PL : sEns −→ CDGAop le foncteur défini par

X• 7→ Ω∗PL
(
X•
)

:= HomsEns

(
X•,Ω

∗
PL(∆•)

)
muni de la structure de cdga définie degré par degré.

(2) On note également Ω∗PL : Top −→ CDGAop le foncteur composé défini par

X 7→ Ω∗PL
(
Sing•(X)

)
On appelle ces cochaines les formes polyhédrales (ou juste PL) associées à X• ou X.

La structure degré par degré signifie que les i-formes PL de X• sont l’ensemble
HomsEns

(
X•,Ω

i(∆•)
)

munie de la structure de Q-espace vectoriel induite par celle
de Ωi(∆•) en tout degré simplicial • (c’est à dire par la somme des fonctions). Le
produit est induit par le produit des formes ((fn) · (gn) = (fn ∧ gn) où ∧ désigne la
multiplication dans Ω∗PL(∆n)) et la différentielle est définie de même (d((fn)n≥0) =
(d(fn))n≥0).

Remarque 5.4.10. Une façon plus commode et équivalente d’énoncer le résultat du
lemme 5.4.8 est de tout simplement de remarquer que les restrictions Ωi

PL(∆n) →
Ωi
PL(∂∆n) sont surjectives.

Le fait que Ω∗PL(∆•) soit une CDGA simpliciale garantit que la structure de cdga
précédente est bien définie.

Remarque 5.4.11. Le lemme de Yoneda 3.1.13 nous assure qu’il y a un isomorphisme
canonique

Ω∗PL
(
∆n
•
) ∼= Ω∗PL(∆n)

ce qui assure que notre terminologie de formes polyhédrale pour le simplexe standard
est consistante.

De manière générale, siK est un complexe simplicial (au sens de la définition 3.1.3),
on obtient alors qu’une i-forme polyhédrale est exactement une collection de i-formes
sur chaque simplexe de K dont les restrictions à leurs faces communes sont iden-
tiques.

Remarque 5.4.12. On a un analogue du Lemme 3.2.17.

Lemme 5.4.13. Pour toute inclusion K• ↪→ L• d’ensembles simpliciaux, le morphisme
de cdga induit Ω∗PL(L•) → Ω∗PL(K•) est surjectif en tout degré ; en particulier c’est
une fibration de cdga.

Démonstration. Cela se démontrer en utilisant que le fait que les formes PL sur les
simplexes soient étendables (remarque 5.4.7) qui donne le cas de l’inclusion ∂∆n

• ↪→
∆n
• . En utilisant que L• se reconstruit en recollant des smplexes sur leur bord (cf. la

preuve du Lemme 3.2.9), le résultat en découle. �

Du lemme 3.2.17 découle qu’on peut définir les cochaines d’une paire L•, K•)
comme le noyau de ce morphisme et obtenir une suite exacte longue naturelle en
cohomologie reliant les formes PL relatives et absolues.

Remarque 5.4.14. On peut remplacer la cdga simpliciale Ω∗PL(∆•) par n’importe
quelle cdga simpliciale A∗• dans la définition 5.4.9 pour définir des cdga fonctorielles
A∗(X•) (resp. A∗(X)) pour tout ensemble simplicial X• (resp. espace topologique
X). Si de plus la cdga obtenue est étendable, alors le lemme 5.4.13 est valide pour
cette dernière.
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Les formes polyhédrales réalisent l’objectif annoncé de donner un modèle naturel
et commutatif au sens gradué des cochaines singulières. Pour relier les formes PL à
la cohomologie singulière, on peut utiliser un analogue PL du théorème de De Rham.

Rappelons qu’une n-forme ω ∈ Ωn
PL(X•) est une famille (ωi :=

∑
α fi,αdtα0 · · · dtαi)

où les fi,α sont fonctions de X• à valeur dans les polynomes à coefficients ration-
nels en les variables tj. Notons que pour i = n, on obtient simplement un élément
fndt0 · · · dtn. En particulier, on peut intégrer, pour tout xn ∈ Xn, de telles formes sur
le n-simplexe standard et obtenir un rationnel. On définit ainsi l’application linéaire
d’intégration

∫
ω : Cn(X•) = Q < Xn >−→ Q par, pour tout simplexe xn ∈ Xn,

(31)

∫
ω(xn) :=

∫
∆n

fn(xn)dt0 · · · dtn.

En prenant X• = Sing•(X), on obtient 145 ainsi
∫
ω ∈ C∗(X•) (où C∗(X) est le

complexe des cochaines singulières de X). En faisant varier ω on obtient ainsi une
application linéaire ∫

: Ω∗PL(X) −→ C∗(X)

(et plus généralement, pour tout ensemble simplicial X•, une application linéaire∫
: Ω∗PL(X•) −→ C∗(X•)), donnée par ω 7→

∫
ω. Cette application est évidemment

naturelle en X (resp. X•).

Théorème 5.4.15 (Sullivan). L’application
∫

: Ω∗PL(X) −→ C∗(X) est un quasi-
isomorphisme de complexes de cochaines qui induit un isomorphisme d’algèbres en
cohomologie.

De plus, elle est induite, en cohomologie, par un zigzag de quasi-isomorphismes
naturels d’algèbres associatives différentielles graduées unitaires entre Ω∗PL(X) et
C∗(X) (munie du cup produit).

Les mêmes résultats ont lieu pour tout ensemble simplicial et les cochaines sim-
pliciales.

Le premier point suit essentiellement de la formule de Stokes et du lemme de
Poincaré PL.

Remarque 5.4.16. Le dernier point précise le premier, en affirmant que la structure
multiplicative 146 des cochaines singulières est bien équivalente à celle des formes
polynomiales (et pas juste les algèbres induites en cohomologie).

Ceci se démontre essentiellement de la manière suivante. On dispose de l’al-
gèbre différentielle graduée associative simpliciale C∗(∆n) dont la structure sim-
pliciale est induite par la structure cosimpliciale 3.1.8 des simplexes standards et
la fonctorialité de l’algèbre des cochaines singulières ; elle est par ailleurs étendable
(5.4.7). On peut alors construire pour tout espace topologique X, les cochaines
HomsEns(Sing•(X), C∗(∆•)) qui est une dg-algèbre associative qui est isomorphe

145. de manière générale, on obtient un élément dans le complexe des cochaines simpliciales de
X•, qui est défini comme étant, en degré i, le dual linéaire de Ci(X•), muni de la différentielle

(−1)i
∑i
j=0(−1)jd∗j

146. il admet même un relèvement à des structures mulitplicatives associatives et homotopique-
ment commutatives, qui se précise formellement en utilisant le language des opérades
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aux cochaines singulières de X en tant qu’algèbre différentielle graduée 147. On consi-
dère alors le zigzag de morphismes d’algèbres associatives différentielles graduées :

(32)

HomsEns(Sing•(X), C∗(∆•))
∼−→ HomsEns(Sing•(X), C∗(∆•)⊗Ω∗PL(∆•))

∼←− Ω∗PL(X)

dont les flèches sont induites par les morphismes

C∗(∆•)
id⊗η−→ C∗(∆•)⊗ Ω∗PL(∆•),

Ω∗PL(∆•)
η⊗id−→ C∗(∆•)⊗ Ω∗PL(∆•)

induites par les morphismes d’unité respectifs de Ω∗PL(∆•) et C∗(∆•). Les flèches
de (32) sont des quasi-isomorphismes pour tout X• car C∗(∆•) vérifie également les
résultats de la proposition 5.4.5.(1) et (2) (ce qui permet de démontrer ce résultat
par récurrence en passant aux cochaines relatives à partir du cas des simplexes).

La construction des formes PL d’un polyèdre a un adjoint.

Proposition 5.4.17. Le foncteur Ω∗PL : sEns −→ CDGAop est un adjoint à gauche.

Précisément, on a une adjonction sEns

Ω∗PL..
CDGAop

S∆
•

ll où l’adjoint à droite S∆
• est

donné par

S∆
• (A∗) := HomCDGA

(
A∗,Ω∗PL(∆•)

)
.

La structure simpliciale est donnée niveau par niveau à partir de celle de Ω∗PL(∆•).

Démonstration. Cela découle des isomorphismes naturels

HomCDGA

(
A∗,HomsEns

(
X•,Ω

∗
PL(∆•)

)) ∼= HomsCDGA

(
A∗ ×X•,Ω∗PL(∆•)

)
∼= HomsEns

(
X•, homCDGA

(
A∗,Ω∗PL(∆•)

))
où A∗×X• est la cdga simpliciale obtenue en prenant, en degré simplicial, l’algèbre
A∗ ×Xi =

∏
x∈Xi A

∗. �

On peut penser à cette adjonction comme une variante de l’adjonction donnée
par la réalisation géométrique et l’ensemble singulier. En effet, Ω∗PL(∆•)) est un ob-
jet cosimplicial naturel dans CDGAop ce qui permet d’interpréter S∆

• exactement
comme le foncteur Sing•(−). Par ailleurs la définition de Ω∗PL(X•) devient une va-
riante imédiate de la réalisation géométrique si on interprète la formule comme étant
à valeur dans CDGAop et pas CDGA.

5.5. Espaces et algèbres formelles

La cohomologie d’une cdga est une algèbre graduée (Remarque 5.1.5). Une ques-
tion naturelle est de voir si cette structure est équivalente à celle sur les cochaines.

147. l’isomorphisme est donné par l’application qui à f : Sing•(X) → Cn(∆•), notée σ 7→ fσ :

QSing•(∆
•)→ Q, associe la cochaine singulière Singn(X) 3 σ 7→ fσ(∆n id→ ∆n)
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Définition 5.5.1 (formalité). Une cdga (A, d) est d̂ıte formelle si elle est faiblement
équivalente (autrement dit isomorphe dans la catégorie Ho(CDGA)) à son algèbre
de cohomologie (H∗(A), 0) en tant que cdga.

Un espace topologique X (ou un ensemble simplicial) est formel si ses formes
polyhédrales Ω∗PL(X) sont formelles en tant que cdga.

Remarque 5.5.2. Rappelons que deux cdgas A, B sont faiblement équivalentes si,
par définition, elles sont reliées par un zigzag

A
∼← A1

∼→ . . .
∼← An

∼→ B

où les flèches sont des morphismes de cdgas qui sont des quasi-isomorphismes (au-
trement dit des équivalences faibles dans CDGA). Ce dernier point est équivalent
à dire que A est isomorphe à B dans Ho(CDGA).

Par ailleurs, quitte à prendre des tirés-en-arrière de cdgas, tout zigzag est équi-
valent à un zigzag avec n = 1 (c’est à dire avec un seul intermédiaire).

Remarque 5.5.3. Un complexe de cochaines sur un corps est toujours quasi-isomorphe
à sa cohomologie (en tant que complexe de cochaines). Si ce complexe est en plus
une cdga, ce quasi-isomorphisme induit la structure d’algèbre sur la cohomologie,
mais, n’est pas un morphisme de cdgas en général. La propriété d’être formel est
une vraie condition non-triviale pour une cdga, voir la feuille de TD 5 pour voir un
exemple de cdgas non-formelle.

Cette notion de formalité et ses problématiques s’étend évidemment à toute struc-
ture algébrique (Lie, associative, etc...) sur un complexe de cochaines ou par exemple
aux complexes de faisceaux.

Nous allons étudier un exemple crucial d’espace formel :

Exemple 5.5.4 (Modèle minimal et formalité des sphères). Soit n ≥ 1. L’anneau de
cohomologie de Sn est

H∗(Sn,Q) ∼= Q[x]/(x2 = 0)

où x est un générateur de degré n. Remarquons que si n est impair, la relation x2 = 0
est redondante puisque elle est vérifiée automatiquement pour tout générateur de
degré impair (Remarque 5.1.4).

On commence donc par le cas impair n = 2k − 1 (k ≥ 1). Notons x̃ un 2k − 1-
cocycle de Ω∗PL(S2k−1) (dont la cohomologie est H∗(S2k−1,Q) par le théorème 5.4.15)
engendrant H2k−1(S2k−1). Comme x̃ est de degré impair, on a x̃2 = 0 et l’application

(Sym(Qx), 0) −→ (Ω∗PL(S2k−1)n, d)

définie comme l’unique morphisme de cdgas qui envoie x sur x̃ sur lui même est un
quasi-isomorphisme de cdgas. Comme l’algèbre symétrique à gauche est la cohomo-
logie de S2k−1 on a démontré la formalité de la sphère S2k−1.

Dans le cas pair n = 2k (k ≥ 0), notons encore x̃ un cocycle de Ω∗PL(S2k) engen-
drantH2k(S2k). On a encore un morphisme de cdgas Sym(Qx), 0) −→ (Ω∗PL(S2k)n, d)
qui envoie le générateur de la source sur x̃. Ce morphisme n’est plus un quasi-
isomorphisme car x est de degré pari et donc son carré est une classe de cohomologie
de Sym(Qx̃), 0), qu’il convient donc de tuer. La classe x̃2 est un bord dans Ω4k

PL(S2k)
(car c’est un cycle). Soit ỹ ∈ Ω4k−1

PL (S2k) une 4k − 1-cochaines telle que d(ỹ) = x̃2.
Soit y un élément de degré 4k − 1 et munissons Sym(Qx ⊕ Qy) de la différentielle
définie, sur les générateurs, par d(y) = x2 et d(x) = 0 (ce qui implique en particulier
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que d2 = 0). Soit ψ : (Sym(Qx ⊕ Qy), d) −→ H∗(S2k,Q) = Q[x]/(x2 = 0) l’unique
morphisme d’algèbres graduées commutatives envoyant y sur 0 et x sur sa classe dans
le quotient. C’est un morphisme de cdgas x est un cocycle et un quasi-isomorphisme
car, par des considérations immédiates de degré, un élément de Sym(Qx⊕Qy) est
de la forme P (x) + Q(x)y (où P , Q sont des polynomes) et a pour différentielle
Q(x)x2. Soit alors φ l’unique morphisme d’algèbres graduées commutatives

(Sym(Qx⊕Qy), d) −→ Ω∗PL(S2k)

donné par φ(x) = x̃, φ(y) = ỹ. Par construction, c’est un morphisme de cdgas et un
quasi-isomorphisme vu le calcul précédent. Ceci établit la formalité de S2k.

Par ailleurs, les modèles semi-libres donnés sont des modèles de Sullivan minimaux
de de Sn (cf. lemme 5.2.13). Ainsi :

Proposition 5.5.5. Soit n ≥ 1. Les sphères Sn sont formelles et ont pour modèle de
Sullivan minimal

Sym(Qx), 0) avec x de degré 2k − 1 si n = 2k − 1,

(Sym(Qx⊕Qy), d) avec x de degré 2k, y de degré 4k − 1 si n = 2k.

La sphère S0 est aussi formelle.

Remarque 5.5.6. L’exemple précédent des sphères impaires se généralise facilement
à toute cdga (et donc tout espace) dont la cohomologie est une algèbre symétrique
Sym(W ∗). Ainsi CP∞ est formel.

Exemple 5.5.7. Une démonstration similaire au cas des sphères de dimension paire
prouve que les espaces projectifs rééls et complexes RP n et CP n sont formels.

Il existe beaucoup d’espaces intéressants formels ; la proposition suivante en énu-
mère un certain nombre.

Proposition 5.5.8.

(1) Si X est un groupe topologique (ou même simplement un H-espace) alors X
est formel (c’est en particulier le cas de Ωx0X et de tout groupe de Lie donc).

(2) Si X est une suspension X ∼= ΣY alors X est formel.
(3) (Deligne-Griffiths-Morgan-Sullivan) SiX est une variété de Kahler compacte,

alors X est formel.

Exercice 5.5.9. Montrer qu’un produit (resp. un bouquet) d’espaces formels (resp.
pointés) est formel.

5.6. Rationnalisation et Équivalence homotopique entre espaces et
cdgas

Nous allons maintenant comparer les théories homotopiques des cdgas et des es-

paces topologiques. Nous disposons de deux adjonctions sEns

Ω∗PL..
CDGAop

S∆
•

ll et

| − | : sEns
,,
Topll : Sing•(−) (données par les propositions 3.1.19 et 5.4.17).

Définition 5.6.1. La réalisation spatiale des cdgas est le foncteur composé CDGAop →
Top défini par A 7→ |S∆

• (A)|. On appelera S∆
• (A) la réalisation simpliciale de A.
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On sait (Corollaire 3.2.18) que la réalisation géométrique est de Quillen, et qui
plus est, une équivalence de Quillen.

Remarque 5.6.2. L’adjonction entre ensembles simpliciaux et espaces topologiques
passe aux catégories pointées. La structure de modèle sur les espaces pointés étant
donnée en déclarant que les équivalences faibles, fibrations et cofibrations sont les
applications qui le sont si on oublie qu’elles sont pointées (cf Exercice 2.5.7). Pour
les cdgas, la notion équivalente à celle d’être pointée est celle donnée par les algèbres
augmentées (Remarque 5.1.15). L’adjonction entre sEns et CDGAop passe à ce

cadre là formellement aussi pour donner une adjonction sEns∗

Ω∗PL..
CDGAop

aug

S∆
•

mm .

Notons que les limites dans les les catégories pointées sont les mêmes que dans les
catégories non-pointées. En revanche les colimites (en particulier les coproduits) sont
différentes.

Les adjonctions entre ensembles simpliciaux et cdgas (resp. pointés et augmentées)
sont de Quillen :

Proposition 5.6.3. L’adjonction sEns

Ω∗PL..
CDGAop

S∆
•

ll est une adjonction de Quillen.

L’adjonction induite sEns∗

Ω∗PL..
CDGAop

aug

S∆
•

mm est également une adjonction de Quillen.

Démonstration. Rappelons que les cofibrations pour la structure de modèle de CDGAop

sont les fibrations de CDGA. Il suffit, par le lemme 2.5.5, de montrer que Ω∗PL
préserve les cofibrations et les cofibrations acycliques. Il préserve les équivalences
faibles car une équivalence d’homotopie faible entre espaces topologiques (ou en-
sembles simpliciaux) induit un quasi-isomorphisme de leurs cochaines singulières et
donc par le théorème de de Rham-Sullivan 5.4.15, on obtient un diagramme com-

mutatif Ω∗PL(X)
Ω∗PL(f)

//

∫
∼
��

Ω∗PL(Y )∫
∼
��

C∗(X)
f∗

∼
// C∗(Y )

impliquant que Ω∗PL(f) est un quasi-isomorphisme

si f : Y → X est une équivalence faible. Si K• ↪→ L• est une cofibration (c’est à
dire une inclusion), alors Ω∗PL(L•) → Ω∗PL(K•) est surjective en chaque degré par
le Lemme 5.4.13, c’est donc une fibration dans CDGA donc une cofibration dans
CDGAop et le résultat est démontré. �

Cette adjonction 5.6.3 ne peut évidemment pas être une équivalence (déjà car
il existe des cdgas qui ne sont pas des sommes directes de cdgas connexes même à
quasi-isomorphisme près), notamment car une cdga ne donne lieu qu’à des invariants
Q-linéaires, ce qui n’est évidemment pas le cas d’un espace quelconque. Nous allons
voir que cette dernière obstruction est essentiellement la seule lorsque l’on se restreint
à des espaces simplement connexes.

Pour cela on introduit la notion suivante
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Définition 5.6.4 (espace rationnel). Un espace (resp. ensemble simplicial) simplement
connexe X est dit rationnel si ses groupes d’homotopie 148 πn(X) (n ≥ 2) sont des
Q-espaces vectoriels.

Notons que un groupe abélien est naturellement muni d’une structure de Q-espace
vectoriel si il est uniquement divisible, c’est à dire divisible (tout élément x s’écrit
sous la forme ny pour tout n > 0) et sans torsion. De manière équivalente on a

Lemme 5.6.5. Un espace simplement connexe est rationnel si et seulement si

• ses groupes d’homologie Hi(X,Z) sont des Q-espaces vectoriels (pour i ≥ 2)
• si et seulement si les groupes H̃i(ΩX,Z) sont des Q espaces vectoriels pour

tout i ≥ 1.

A priori cette condition est contraignante. On va cependant voir que tout espac
simplement connexe a une rationnalisation universelle.

On définit maintenant une notion d’équivalence faible appropriée pour travailler
avec des invariants rationnels et des espaces rationnels.

Lemme et Définition 5.6.6 (équivalence rationnelle). Une application f : X →
Y entre espaces topologiques (resp. ensembles simpliciaux) simplement connexes
est une équivalence rationnelle si elle vérifie l’une (et donc toutes) les conditions
équivalentes suivantes :

• l’application induite f∗ ⊗ Q : πi(X) ⊗ Q → πi(Y ) ⊗ Q est un isomorphisme
pour tout i ≥ 2
• l’application induite H∗(f,Q) : H∗(X,Q) → H∗(Y,Q)est un isomorphisme

pour tout i ≥ 2
• l’application induite H∗(f,Q) : H∗(Y,Q) → H∗(X,Q)est un isomorphisme

pour tout i ≥ 2.

L’équivalence entre les différente définitions provient essentiellement des théorèmes
de Whitehead, des coefficients universels et d’Hurewicz.

Remarque 5.6.7. Si f : X → Y est une application entre espaces rationnels, alors f
est une équivalence rationnelle si et seulement si c’est une équivalence d’homotopie
faible.

Étant donné que l’on s’intéresse aux espaces simplement connexes, on a envie de
restreindre Top et sEns à ce cadre. Pour rester dans ce contexte, on doit évidemment
regarder des (co)limites pointées homotopiquement. Le plus facile pour définir une
structure de modèle dans ce contexte est de passer aux

Définition 5.6.8. Un ensemble simplicial est 1-réduit si son 1-squelette est réduit
à un seul point (c’est à dire qu’il a un seul sommet et un seul 1-simplexe donné
par la dégénérescence du sommet). On note sEns1−red la sous-catégorie pleine des
ensembles simpliciaux 1-réduits.

Notation 5.6.9. On note Top1, sEns1, Top1
∗, sEns1

∗ les sous-catégories pleines des
espaces topologiques et ensembles simpliciaux simplement connexes, respectivement
simplement connexes et pointées. On considère aussi les sous-catégories Ho(Top1)
etc.. correspondant aux sous-objets et morphismes (quotients) correspondants à ces
catégories dans les catégories homotopiques.

148. on ne précise pas les points bases puisque les espaces sont simplements connexes
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La catégorie de modèle des ensembles simpliciaux passe à la sous-catégorie sEns1−red

(ce qui se voit dans la preuve de la proposition/définition 5.6.10) Un ensemble sim-
plicial 1-réduit est évidemment simplement connexe (puisque on peut utiliser les
groupes d’homotopie simpliciale). On a un diagramme commutatif

Ho(Top1)
' // Ho(sEns1) Ho(sEns1−red)? _'oo

'vv

Ho(Top1
∗)

?�

OO

' // Ho(sEns1
∗)

?�

OO

dont on déduit que toutes les catégories homotopiques du diagramme sont équi-
valentes. L’équivalence diagonale à gauche suit du fait qu’un ensemble simplicial
1-réduit n’a pas d’homotopie en degré 0 et 1 (comme il est évident sur les groupes
d’homotopie simpliciaux). On modifie maintenant la catégorie de modèle de manière
à s’intéresser aux équivalences rationnelles (en particulier on rajoute des équivalences
faibles).

Proposition 5.6.10. On munit la sous-catégorie pleine sEns1−red des classes de mor-
phismes suivantes :

• les équivalences faibles sont les équivalences rationnelles,
• les cofibrations sont les cofibrations de sEns,
• les fibrations sont les morphismes ayant la propriété de relèvement à droite

par rapport aux cofibrations acycliques.

Cette classe de morphisme fait de sEns1−red une catégorie de modèle.

On notera sEns1−red
Q la structure de modèle induite. On notera que toute fibration

dans cette catégorie est en particulier une fibration de Kan.

Démonstration. La propriété (MC2) s’obtient en passant aux groupes d’homologie,
tout comme la stabilité par rétracte des équivalences rationnelles. Celles pour les
cofibrations suit de celle des ensembles simpliciaux et celle des fibrations est auto-
matique puisque elles sont définies par propriété de relèvement à droite. Pour (MC5),

on remarque que si X
i
↪→ Z

∼
� Y est une factorisation dans sEns où X, Y sont

1-réduits, alors, en notant que l’image i(X) est également 1-réduite, on obtient une
cofibration X � Zreq où Zred est le complexe simplicial obtenu en ne gardant que
les 0 et 1-simplexes dans l’image de i(X) (c’est à dire qu’on a retiré les autres et
toutes leurs dégénérescences). Comme Z → Y est fibration et Y 1-réduit, il suit que
le morphisme d’ensemble simplicial induit Zred → Z → Y est encore une fibration
de Kan (il n’y aucune condition non-triviale à vérifier dans la codnition de Kan par
rapports aux simplexes que nous avons enlevé). Par ailleurs, c’est une équivalence
faible pour les mêmes raisons : les groupes d’homotopie simpliciaux d’un remplace-
ment fibrant Z̃ de Z sont les mêmes que ceux du remplacement fibrant Z̃red obtenu
en réduisant Z̃ (ceci ne change aps son caractère fibrant en vertu du même argu-
ment que précédemment puisque {∗} est réduit). En effet, on a rien changé dans les
groupes d’homotopie en degré ≥ 2 et les autres sont nuls puisque ceux de Y le sont.

Ainsi X ↪→ Zred → Y est bien une cofibration suivie d’une fibration de Kan
acyclique qui par définition de la structure de modèle est la même chose qu’un
morphisme ayant la propriété de relèvement des cofibrations (puisque c’est le cas
dans sEns). Montrons maintenant la propriété de relèvement des fibrations qui sont
des équivalences rationnelles.
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Soit X → Y une fibration et une équivalence rationnelle. D’après ce qu’on vient

de voir, on peut la factoriser sous la forme X ↪→ Z
∼
� Y sous la forme d’une cofi-

bration et d’une fibration acyclique (pour la nouvelle structure de modèle). D’après
la propriété 2 pour 3, X ↪→ Z est aussi une équivalence rationnelle. Ainsi elle a la
propriété de relèvement à gauche par rapport à toute fibration acycliqe de la nou-
velle structure et en particulier X → Y . Le relèvement induit dans le diagramme

X
��
o
��

X

��
Z
. �

>>

// Y

asure que X → Y est un rétracte de Z
∼
� Y et donc a bien la pro-

priété de relèvement à gauche par rapport à toute cofibration. L’existence de l’autre
factorisation est plus délicate et technique et nous renvoyons à [15]. �

Proposition 5.6.11. Les objets fibrants de la catégorie de modèle sEns1−red
Q sont

exactement les ensembles simpliciaux fibrants et rationnels.

Démonstration. Ils sont nécessairement fibrants puisque des fibrations dans cette
catégorie de modèle sont en partculier des fibrations de Kan. Pour montrer qu’ils
sont de plus rationnels, on utilise le fait que l’ont peut représenter toute applica-
tion de degré k de Sn → Sn (c’est à dire induisant la multiplication par k sur les
groupes d’homotopie) par une cofibration qui est une équivalence rationnelle. En
effet si f est une telle application, on construit Sn × [0, 1]

∐
f S

n = cyl(f) où le

recollement identifie Sn × {1} avec son image par f . L’inclusion Sn ↪→ cyl(f) est
donc la mutliplication par k en homotopie et induit donc un isomorphisme au niveau
des groupes d’homologie à coefficients dans Q. Il suit de l’existence du relèvement

dans Sing•(S
n)•red
��
o
��

// X

����
Sing•(cyl(f))•red

//
* 


77

{∗}

que les groupes d’homotopie de X sont uniquement

divisibles par tout entier. �

Corollaire 5.6.12. Tout espace simplement connexe a un remplacement rationnel

X
∼
� XQ où XQ est un espace rationnel. De plus XQ est un CW-complexe relatif.

La dernière assertion se démontre comme le fait que la réalisation géométrique
est un CW-complexe. Par ailleurs, quitte à passer d’abord au revêtement universel,
on peut donc associer à tout espace un espace rationnel canonique, cela dit cette
opération perd évidemment toute information sur le groupe fondamental.

On définit de même une structure de modèle sur les cdgas 1-réduites (qui sont
canoniquement augmentées) CDGA1−red dont la catégorie homotopique est équi-
valente à la sous-catégorie pleine de Ho(CDGA) dont les objets sont les cdgas
simplement connexes 149. Ceci découle de la preuve de la Proposition 5.2.29, qui
montre que si A est simplement connexe, on peut trouver un modèle de Sullivan
(minimal) (Sym(V ∗), d)→ A avec V 0 = V 1 = 0.

On énonce maintenant le résultat fondamental expliquant la relation entre la théo-
rie homotopique des espaces rationnels et les cdgas, du à Quillen, Sullivan :

149. celles qui sont connexes et dont la cohomologie en degré 1 est nulle
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Théorème 5.6.13. L’adjonction de Quillen de la proposition 5.6.3 induit une adjonc-

tion de Quillen sEns1−red
Q

Ω∗PL//
(CDGA1−red)op

S∆
•

mm et une équivalence de catégorie

Ho(Top1
Qf ) ' Ho(CDGA1

f )

entre les catégories homotopiques des espaces simplement connexes de type fini (c’est
à dire dont les groupes d’homologie sont de dimension finie en chaque degré) et les
cdgas simplement connexes de type fini (là encore degré par degré).

Remarque 5.6.14. Le théorème reste vrai pour des espaces dits nilpotents, c’est à dire
ceux qui sont connexes et dont le groupe fondamental est nilpotent et agit de manière
nilpotente sur les groupes d’homotopie supérieurs (une fois étendu la définition de
la rationnalisation pour ces espaces).

Comme toute cdga connexe a un modèle de Sullivan minimal connexe (et en
utilisant les lemmes 5.3.4 et 5.3.9), on obtient

Corollaire 5.6.15.

• Les classes d’isomorphismes dans Ho(Top1
Q,f ) sont les mêmes que les classes

d’isomorphismes d’algèbres de Sullivan minimale (Sym(V ), d) avec V 0 =
V 1 = 0.
• On a des bijections naturelles entre HomHo(Top1

Q)(X, Y ) et les classes d’ho-

motopie de Sullivan (resp. isomorphismes) entre modèles de Sullivan (resp.
minimaux) de X et Y .

Le point fondamental de la preuve du Théorème 5.6.13 est le suivant :

Proposition 5.6.16. Soit (Sym(V ∗), d) une algèbre de Sullivan minimale avec V 0 =
V 1 = 0. On a un accouplement naturel bilinéaire non-dégénéré πn(|S∆

• (Sym(V ∗), d)|)×
V n → Q qui induit un isomorphisme V n '−→ HomQ(πn(|S∆

• (Sym(V ∗), d)|),Q) si V n

est de type fini.

Puisque tout espace connexe admet un modèle minimal (que l’on peut choisir de
telle sorte que V 0 = V 1 = 0) et par invariance homotopique de la réalisation spatiale
(théorème 5.6.13) on en déduit le critère très pratique suivant :

Corollaire 5.6.17. Soit X un espace topologique simplement connexe de type fini et
(Sym(V ), d) un modèle de Sullivan minimal de X. Alors on a des isomorphismes

V n ∼= HomQ(πn(X),Q).

Le corollaire donne un moyen efficace très pratique pour calculer les groupes d’ho-
motopie rationnels d’un espace simplement connexe. Il suffit de dualiser les V i d’un
modèle minimal.

Aperçu de la preuve de la Proposition 5.6.16. Par l’équivalence de Quillen entre sEns
et Top, il suffit de démontrer le résultat au niveau des groupes d’homotopie simpli-
ciaux de S∆

• (Sym(V ∗), d)|).
Notons Sym(S∗n) le modèle minimal de la sphère de dimension n (Proposition 5.5.5) ;

ainsi Snn a un générateur et les autres composantes sont nulles si n est impair et S2n−1
n

a un autre générateur si n est pair (et la différentielle de ce dernier est le carré du
générateur de Snn).
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On a des bijections induites par nos diverses adjonctions de Quillen :

(33) HomHo(sEns)(∂∆n+1
• , S∆

• ((Sym(V ∗), d))

∼= HomHo(CDGAop)(Ω
∗
PL(∂∆n+1

• ), (Sym(V ∗), d))

∼= HomHo(CDGA)((Sym(V ∗), d),Ω∗PL(∂∆n+1
• ))

∼= HomHo(CDGA)((Sym(V ∗), d), Sym(S∗n))

le dernier isomorphisme étant induit par les propriètes de relèvement des algèbres
de Sullivan et le quasi-isomorphisme naturel Sym(S∗n)→ Ω∗PL(∂∆n+1

∗ ).
Par ailleurs, par formalité de Sym(S∗n) (Proposition 5.5.5), lemme 5.3.9 et pro-

priétés des algèbres semi-libres, on a qu’une classe d’homotopie de morphisme de
cdga (Sym(V ∗), d) dans Sym(S∗n) est uniquement déterminée par sa composante
φ : V n → Hn(Sn) ∼= Q. On obtient ainsi une application

πn(S∆
• ((Sym(V ∗), d))) ∼= HomHo(sEns)(∂∆n+1

• , S∆
• ((Sym(V ∗), d))→ HomQ(V n,Q)

induisant notre accouplement. Pour vérifier qu’il est bilinéaire, on utilise un modèle
minimal du wedge Sn ∨ Sn de deux sphères et vérifier que c’est précisément un
isomorphisme nécessite d’étudeir en détail la construction par induction sur i et sur
la dimension de V i.

La preuve montre que ce pairing est non-dégénéré si les groupes d’homotopie
πn(S∆

• ((Sym(V ∗), d)))⊗Q sont de types finis ce que l’on peut montrer être équivalent
à demander que V n est de dimension finie. . �

Points essentiels de la preuve du théorème 5.6.13. Que l’adjonction passe aux caté-
gories 1-réduites se voit directement à partir de la définition des foncteurs Ω∗PL et
S∆
∗ . Par les équivalences de catégories homotopiques que nous avons vu, la deuxième

affirmation se réduit à montrer que l’unite et la counité de l’adjonction induite

Ho(sEns1−red
Q )

LΩ∗PL//
(Ho(CDGA1−red)op)

RS∆
•

nn entre les catégories homotopiques sont

des équivalences faibles lorsque V est de type fini en chaque degré. C’est à dire que
pour tout modèle de Sullivan, que l’on peut supposer minimal, (Sym(V ), d)→ A et
tout ensemble simplicial fibrant 1-réduit X•, les morphismes canoniques

(Sym(V ), d) −→ Ω∗PL(S∆
• ((Sym(V ), d))(34)

X• −→ S∆
• (Ω∗PL(X•))(35)

sont des équivalences faibles (respectivement dans CDGA et dans sEns1−red
Q ). On

remarque que le fait que (35) soit une équivalence faible découle en fait de (34). En
effet, cette propriété est équivalente par définition au fait que |X•| → |S∆

• (Ω∗PL(X•))|
est une équivalence rationnelle ce qui est équivalent par le lemme et définition 5.6.6
à demander que le morphisme d’algèbres différentielles associatives graduées

C∗(|S∆
• (Ω∗PL(X•))|,Q) −→ C∗(X•,Q)

est un quasi-isomorphisme, ce qui par le théorème de Sullivan-De Rham 5.4.15, est
équivalent à demander que le morphisme de cdgas

Ω∗PL(|S∆
• (Ω∗PL(X•))|,Q) −→ Ω∗PL(X•,Q)
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est un quasi-isomorphisme. En prenant un modèle de Sullivan (Sym(V ), d)
∼→ A

avec V 0 = V 1 = 0 de X•, on obtient un diagramme commutatif

Ω∗PL(|S∆
• (Ω∗PL(X•))|,Q) // Ω∗PL(X•,Q).

(Sym(V ), d)

ii
∼

66

d’où l’on déduit que le fait que (34) est un quasi-isomorphisme implique que (35)
l’est aussi.

Maintenant le fait que (34) soit une équivalence faible découle en fait de la Pro-
position 5.6.16. En effet, si V est concetnré en un seul degré, alors, nécessairement
la différentielle est nulle et cela devient une conséquence de cette proposition et du
théorème d’Hurewicz 150 qui donne un isomorphisme en cohomologie en degré n. On
travaille ensuite par récurrence sur n pour se ramener à montrer qu’il suffit de dé-
montrer le résultat pour tout V tel que V i > n = 0 (en utilisant esentiellement que
l’homologie en degré < n n’interagit pas V i>n).

Le cas V i>n = 0 se traite là aussi par récurrence en considérant un diagramme
commutatif de la forme

Sym(V <n) �
� //

∼
��

Sym(V <n ⊕ V n) // //

��

Sym(V n)

∼
��

Ω∗PL(S∆
• (Sym(V <n))) // Ω∗PL(S∆

• (Sym(V <n ⊕ V n))) // Ω∗PL(S∆
• (Sym(V n)))

où les quasi-isomorphismes verticaux à droite et à gauche sont obtenus par l’hypo-
thèse de récurrence et implique que celui du milieu en est un. �

Exemple 5.6.18 (Théorème de Serre). Dans la proposition 5.5.5 nous avons déter-
miné le modèle minimal (Sym(V ∗n ), d) des sphères Sn. D’un autre côté, la proposi-
tion 5.6.16 nous assure que les groupes d’homotopie des sphères vérifient

πm(SnQ) ∼= HomQ(V m
n ,Q)

puisque les V i
m sont de dimension finie. La forme explicite des V ∗n déterminée dans

la proposition 5.5.5 nous redonne alors immédiatement le Théorème de Serre 1.7.9.

Soit F → E
p→ B une fibration de Serre avec B simplement connexe et E connexe

par arcs. On suppose de plus que E et F sont de type finis. Soit (Sym(V ), d) →
Ω∗PL(B) un modèle de Sullivan (que l’on peut choisir minimal) de B. Soit maintenant
un modèle de Sullivan relatif (que l’on peut encore prendre minimal)

(Sym(V ), d)� w

id⊗1 **

∼ // Ω∗PL(B)
p∗ // Ω∗PL(E)

(Sym(V )⊗ Sym(W ), D)

∼

55

150. précisément on l’applique dans le cas d’un espace qui a un unique groupe d’homotopie non-
trivial, ce qui s’appelle un espace d’Eilenberg-MacLane pour lesquels on sait exhiber leur anneau
de cohomologie
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du morphisme de cdga induit par p : E → B ( dont l’existence découle de la
proposition 5.3.8). La flèche canonique i∗ : Ω∗PL(E)→ Ω∗PL(F ) induit un morphisme
canonique

(36) Q⊗(Sym(V ),d) (Sym(V )⊗ Sym(W ), D)
id⊗i∗−→ Ω∗PL(F )

puisque i∗ ◦ p∗ = 0. Le produit tensoriel à la source est le produit tensoriel dans la
catégorie des (Sym(V ), d)-modules gradués et hérite d’une structure de cdga cano-
nique 151 définie par le produit tensoriel des multiplications. Pour cette structure, la
flèche (36) est un morphisme de cdgas.

Proposition 5.6.19. Sous les hypothèses précédentes, le morphisme de cdgas

Q ⊗
(Sym(V ),d)

(Sym(V )⊗ Sym(W ), D)
id⊗i∗−→ Ω∗PL(F )

est un quasi-isomorphisme.

La preuve de cette proposition est essentiellement le fait qu’une équivalence de
Quillen préserve les limites homotopiques et que la fibre d’une fibration est faible-
ment équivalente à la limite homotopique (c’est à dire le noyau homotopique) du
morphisme.

Notons que l’on peut réécrire Q ⊗
(Sym(V ),d)

(Sym(V )⊗Sym(W ), D) ∼= (Sym(W ), D)

où la différentielle D est induite par la restriction W → (Sym(V )⊗ Sym(W ) dans
le passage au quotient.

Exemple 5.6.20 (Cohomologie de ΩX). Considérons la fibration ΩxX → PxX → X
d’un espace connexe par arcsX où PxX désigne les chemins commençant en x et ΩxX
les lacets pointés en x. Soit (Sym(V ), d)→ Ω∗PL(X) un modèle de Sullivan minimal
de X avec V 1 = V 0 = 0. L’espace PxX est contractible. Un modèle de Sullivan relatif
de (Sym(V ), d)→ Ω∗PL(X)→ Ω∗PL(PxX) est alors donné par l’inclusion Sym(V )→
(Sym(V ⊕ V [−1]), D) qui envoie V sur lui même identiquement. Ici la différentielle
D est celle donnée par le cone de l’identité. Plus exactement, pour v ∈ V n, on choisit
D(v) = d(v) ∈ Sym(V ) ⊂ Sym(V ⊕ V [−1]) et pour w ∈ V [−1]n = V n+1 on choisit
d(w) = w − s(d(w)) ∈ V n+1 ⊕ Sym(V )⊗ V [−1] où s : Sym(V )→ Sym(V ⊕ V [−1]
est l’unique dérivation de degré −1 définie par la restriction s|V qui envoie v sur le
même élément mais vu dans V [−1] (et donc vu comme étant en degré n− 1). Ainsi
s(v1 · · · vm) =

∑
±v1 · · · vj−1s(vj) · · · vn où ± est −1 à la puissance la somme des

degrés de v1,... vj−1.

Exercice 5.6.21. Montrer que (Sym(V ⊕V [−1]), D) est bien une cdga, de Sullivan et
est quasi-isomorphe à Q (indication, il suffit de voir que cette cdga a une filtration
dont le gradué associé est E(V ) où V est muni de la différentielle nulle et de savoir
que si un morphisme entre deux complexes filtrés est un quasi-isomorphisme sur le
gradué associé, alors il l’est sur les complexes eux-mêmes).

On en déduit que l’inclusion (Sym(V ), d) ↪→ Sym(V )⊗Sym(V [−1]) ∼= (Sym(V ⊕
V [−1], D) est bien un modèle de Sullivan de (Sym(V ), d)→ Ω∗PL(X)→ Ω∗PL(PxX).

151. le produit tensoriel au dessus de A est le coproduit dans la catégorie des A-cdgas pour toute
cdga A.
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La Proposition 5.6.19 nous donne alors qu’un modèle de Sullivan de l’espace des
lacets pointés ΩxX est

Q ⊗
Sym(V )

(Sym(V ⊕ V [−1]), D) ∼= (Sym(V [−1]), D).

Par construction, comme (Sym(V ), d) est un modèle minimal et V 1 = V 0 = 0,
la différentielle d est à valeur dans Sym≥2(V ) et ainsi D a toujours au moins une
composante dans Sym≥1(V ). Il suit que D = 0. Par conséquent, on obtient que le
modèle minimal de ΩxX est (Sym(V [−1]), 0) où V est l’espace gradué sous-jacent
au modèle minimal de X.

En particulier, on obtient immédiatement la cohomologie de ΩxX, que c’est une
algèbre symmétrique et que cet espace est formel !
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VI. Appendice : (r)appels de topologie et théorie des catégories

Le but de cet appendice est de fixer certaines notations, conventions et de préciser
ou rappeler selon les cas quelques résultats ou notions de topologie et catégories
utilisés. Il est écrit dans un style plus sec et essentiellement sans preuves (que l’on
peut trouver dans des textes classiques de topologie ou catégories, par exemple ceux
de la bilbiographie ou vos notes de cours préférées).

6.1. Quelques notions de topologie générale

Nous précisons dans cette partie quelques notations et résultats généraux de to-
pologie générale que nous allons utiliser. Nous utilisons la terminologie standard
suivante

Définition 6.1.1. Un espace topologique X est un ensemble muni d’une famille de
sous-ensembles U ⊂ X appelés ouverts, satisfaisant les propriétés suivantes :

(1) X et l’ensemble vide ∅ sont ouverts,
(2) une réunion quelconque

⋃
I Ui d’ouverts est un ouvert,

(3) l’intersection d’une famille finie d’ouverts est un ouvert.

Un sous-espace topologique de X est un sous-ensemble A ⊂ X muni de la topologie
induite, c’est à dire dont les ouverts sont ceux les sous-ensemble U ∩A où U est un
ouvert de X.

Un homéomorphisme est une bijection continue dont la réciproque est aussi conti-
nue.

• Une fonction f : X → Y entre espaces topologiques est continue si la pré-
image par f de tout ouvert est un ouvert.
• Un espace topologique est discret si tous sous-ensemble est ouvert.
• Un espace topologique est grossier si ses seuls ouverts sont lui-même et ∅.

Notation 6.1.2. On notera X ∼= Y lorsque X et Y seront homéomorphes.

6.1.1. Espaces séparés, compacts et variantes. Une propriété très utile en topologie
est celle d’être un espace séparé, qui est automatique pour les espaces métrisables,
mais n’est pas néessairement préservé par les passages aux quotients (voir 6.1.3).
Cette propriété qui signifie que les points sont séparés (au sens du français) par
des ouverts fait partie d’un hiérarchie d’axiomes dits de séparation classique qui est
récapitulée dans la définition suivante :

Définition 6.1.3 (Axiomes de Séparation). Soit X un espace topologique.

(T0): X est T0 (ou de Kolmogoroff) si pour tout point x 6= y, il existe un ouvert
contenant l’un des points et pas l’autre.

(T1): X est dit 152 T1 si pour tout points x 6= y, il existe un ouvert Ux contenant x
et pas y et un ouvert Uy contenant y et pas x.

Séparé =(T2): X est séparé si pour tout x 6= y, il existe des ouverts disjoints Ux
contenant x et Uy contenant y.

152. parfois appelé de Fréchet, mais c’est une terminologie ambigue et non-univoque qu’il vaut
mieux proscrire
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(T3): X est T3 ou régulier s’il est T0 et vérifie en plus la propriété (T̃3) : pour tout
fermé F et point x /∈ F , il existe des ouverts Ox, OF disjoints contenant
respectivement x et F .

(T4): X est T4 ou normal s’il est T1 et vérifie en plus la propriété (T̃4) : si A, B sont
des fermés disjoints dans X, il existe des ouverts OA, OB disjoints contenant
respectivement A et B.

Remarque 6.1.4. En anglais, un espace séparé est appelé espace de Hausdorff.

Au plus un espace est élevé dans cette hiérachie, au plus il est facile de construire
des fonctions continues sur ces espaces.

Ces notions de séparation sont strictement différentes et s’impliquent les unes les
autres. En particulier les espaces normaux et régulier sont séparés 153. On pourra
consulter les exercices pour voir plus d’exemples.

Exemple 6.1.5. Tout espace métrisable est séparé et même normal. C’est également
le cas de toute variété (au sens français du terme, ce qui inclut qu’elle est séparée
notamment).

Un sous-ensemble de R[x1, . . . , xn] muni de la topologie de Zariski (c’est à dire
dont les fermés sont les les ensembles de racines d’un polynome) n’est pas séparé.

Exemple 6.1.6. Soit (X,�) un ensemble (partiellement) ordonné. Pour x ∈ X, on
introduit les parties :

Dx = {y ∈ X / x � y} et Gx = {y ∈ X / y � x}.

Les ensembles Dx (respectivement les ensembles Gx) forment la base d’une topologie
appellée topologie droite (resp. gauche). Ces espaces topologiques sont T0 mais pas
T1 en général. Par ailleurs tout espace T0 qui vérifie que l’intersection quelconque
d’ouvert est ouverte est homéomorphe à un ensemble partiellement ordonné muni
de la topologie droite.

Une des principales propriétés des espaces normaux est résumée dans le Théorème
suivant.

Théorème 6.1.7 (Tietze). Soit X un espace normal et F un fermé de X. Toute
fonction continue φ : F → R s’étend en une fonction continue Φ : X → R (i.e.
vérifiant que pour tout x ∈ F , Φ(x) = φ(x)).

En prenant F = A ∪ B la réunion de deux fermés disjoints, on obtient comme
corollaire

Lemme 6.1.8 (Urysohn). Soient A, B deux fermés disjoints d’un espace normal.
Alors il existe une fonction continue sur X qui vaut 0 sur A et 1 sur B.

Une autre notion vraiment fondamentale est celle de compacité et ses variantes. Il
existe une petite subtilité à son sujet pour les espaces topologiques généraux et des
différences de terminologie entre certaines traditions auxquelles il convient de faire
attention, cf remarque 6.1.12.

153. au sens du français. Les anglophones font la distinction entre la propriété de séparation des
fermés et celles d’être T1 ou T0 en plus
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Définition 6.1.9 (Espace compact). Un espace topologique X est dit compact s’il
est séparé et que de tout recouvrement de X par des ouverts, on peut extraire un
recouvrement fini.

Un espace est dit localement compact, si pour tout point x ∈ X, il existe un
voisinage compact de x.

Lemme 6.1.10. Un fermé dans un compact est compact.

Exercice 6.1.11. Démontrer le lemme.

Remarque 6.1.12. Bien entendu, la première propriété est inutile dans les espaces
métrisables car ces derniers sont toujours séparés.

Par ailleurs, on notera qu’en littérature anglo-saxone, l’hypothèse X séparé est
souvent omise 154, ce qui n’est pas le cas dans la tradition française. Par exemple
un espace muni de la topologie grossière est toujours compact au sens anglo-saxon
usuel. De même, si Y n’est pas séparé, alors un précompact (c’set à dire un espace
vérifiant la propriété de recouvrement) de Y n’est pas forcément fermé dans Y (il
suffit de considérer un singleton dans un espace grossier pour trouver un exemple).

L’hypothèse séparé est fondamentale pour obtenir la proposition bien connue et
utile :

Proposition 6.1.13. Soit X un espace compact et Y un espace séparé.

(1) Tout compact de Y est fermé ;
(2) pour toute application continue f : X → Y , on a que f(X) est compact.
(3) Si f : X → Y est une application continue, injective d’un compact dans un

espace séparé alors c’est un homéomorphisme de X sur f(X) ⊂ Y (où f(X)
est muni de sa topologie de sous-espace de Y .

Proposition 6.1.14. Tout espace compact est normal.

Définition 6.1.15 (Espace paracompact). Un espace paracompact est un espace topo-
logique séparé vérifiant que tout recouvrement ouvert (Ui)i∈I admet un raffinement
localement fini, c’est à dire un recouvrement par des ouverts (Vj)j∈J tel que chaque
Vj est inclus dans un Ui, et de sorte que tout point est inclus dans un nombre fini
de Vj.

Exemple 6.1.16. Toute variété topologique (au sens du français) est paracompacte.
Tout espace métrisable est également paracompact.

Une des principales utilisation des espaces paracompact est le résultat suivant.

Proposition 6.1.17 (partition de l’unité). Soit X un espace paracompact et (Ui)i∈I un
recouvrement ouvert de X. Alors il existe un ensemble (fi)i∈I de fonctions continues
de X dans [0, 1] vérifiant que fi est à support dans Ui, tout point x admet un
voisinage sur lequel seul un nombre fini de fi sont non-nulles et de plus

∑
i∈I fi = 1

sur ce voisinage.

6.1.2. Topologie compacte-ouverte pour les espaces de fonctions. Soit X, Y deux
espaces topologiques. On note Y X l’espace des fonctions continues Y X := {f : X →
Y, f continue }. Ces objets apparaissent régulièrement en topologie algébrique, par
exemple pour définir les espaces de chemins 1.6.7. La topologie de ces espaces est
donnée par

154. c’est ce qu’on appelle un espace pré-compact en français
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Définition 6.1.18. La topologie compacte-ouverte est la topologie sur Y X dont les

ouverts sont engendrés par les ensembles ŨK = {f : X → Y , f(K) ⊂ U} pour tous
sous-ensembles U ⊂ Y ouvert et K ⊂ X compact.

Il n’est pas complétement évident de se rendre compte tout de suite que cette
topologie est naturelle. C’est un peu plus évident si l’espace d’arrivée est métrique
en vertu de la proposition suivante :

Proposition 6.1.19. Si Y est un espace métrisable, la topologie compacte-ouverte est
la topologie de la convergence uniforme sur tout compact.

La topologie-compacte ouverte est aussi la bonne topologie pour assurer que la
composition ou l’évaluation X × Y X → Y , (x, f) 7→ f(x) sont continues, du moins
sous des hypothèses de séparation et compacité suffisante.

Lemme 6.1.20. On suppose que X est localement compact, alors :

(1) l’application d’évaluation ev : X × Y X → Y définie par ev(x, f) = f(x) est
continue.

(2) Si de plus Y est localement compact et Z est séparé, l’application f 7→
(y 7→ f(−, y)) induit un homéomorphisme ZX×Y ∼= (ZX)Y et la composition
(f, g) 7→ g ◦ f induit une application continue c : Y X × ZY → ZX .

(3) Si Y, Z sont séparés, l’appplication qui à (f, g) ∈ Y X ×ZX associe l’applica-
tion x 7→ (f(x), g(x)) est un homéomorphisme Y X × ZX ∼= (Y × Z)X .

Exercice 6.1.21. Démontrer le lemme 6.1.20.

6.1.3. Espaces topologiques définis par des propriétés universelles. Dans cette par-
tie nous détaillons la topologie produit et la topologie de la réunion et plus généra-
lement les espaces limites et colimites.

Définition 6.1.22. Soit (Xi)i∈I une famille d’espaces topologiques. La topologie pro-
duit sur

∏
i∈I Xi est la topologie la moins fine rendant continue les projections ca-

noniques πj :
∏

i∈I Xi → Xj, (xi) 7→ xj.

Lemme 6.1.23. Une base d’ouverts pour la topologie produit est donnée par les
ouverts de la forme

∏
i∈I Ui où Ui est ouvert de Xi et seul un nombre fini de Ui sont

différents de Xi entier.

Démonstration. L’application pj étant continue, il suit que pour tout Uj ouvert dans
Xj, Uj ×

∏
i 6=j∈I Xi = p−1

j (Ui) doit être ouvert dans
∏

i∈I Xi. Une intersection finie
d’ouvert étant ouverte il suit que les ensembles de la forme énoncée dans le lemme
sont bien des ouverts pour la topologie produit. Considérons maintenant la topologie
engendrée par ces ouverts (en penant donc des réunions quelconques). Par définition,
toute topologie rendant continue les pj continue doit contenir ces ouverts et il suit
que cette topologie est bien la moins fine. �

En particulier, pour un produit fini, un ouvert est une réunion de produits d’ou-
verts quelconque des Xi.

Lemme 6.1.24. Les applications continues de Z dans
∏

i∈I Xi sont en bijection avec

les familles d’application continues (Z
fi→ Xi)i∈I .

Plus précisément, la topologie produit est, à homéomorphisme près, l’unique es-
pace P , muni d’applications continues pj : P → Xj, tel que pour toute famille
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d’applications ϕi : Z → Xi, il existe une unique application ϕ : Z → P rendant le
diagramme 155

Xi

Z
φ //

ϕi
44

φj **

P

pi

??

pj

��

...

Xj

commutatif.

Exercice 6.1.25. Démontrer le lemme 6.1.24.

Démonstration. Une application (ensembliste) f : Z →
∏
Xi est la donnée pour tout

z ∈ Z d’un élément (fi(z))i∈I ∈
∏
Xi où chaque fi(z) ∈ Xi. Par ailleurs, on a que

fi(z) est la composée pi ◦ f par définition de la projection. Ceci montre que toute
application continue Z →

∏
Xi est uniquement déterminée par ses composantes

fi := pi ◦ f . Il reste à voir que f est continue si et seulement si les fi le sont. Puisque
la composée d’applications continues l’est et que les pi sont continues, il reste à
vérifier que f est continue si chaque fi l’est. M Par le lemme 6.1.23, on est ramené
au cas où U est de la forme (

∏
Jfini Uj)×(

∏
i∈I\J Xi) où les Uj sont des ouverts de Xj.

Mais f−1
i (Ui) = f−1(p−1

i (Ui)) et donc f−1(U) =
⋂
j∈J f

−1(p−1
j (Uj)) =

⋂
j∈J f

−1
j (Uj)

est ouvert.
Ceci prouve la première assertion et le fait que la topologie vérifie la propriété

équivalente énoncée dans le diagramme. L’unicité à homéomorphisme près résulte
de l’unicité de l’application φ. Soit P ′ une autre solution, alors les projetcions pj :∏
Xi → Xj détermine une unique application continue f :

∏
Xi → P ′. et de

même on obtient une unique application g : P ′ →
∏
Xi rendant les daigammes

commutatifs. En composant ces flèches on obtient une application f ◦ g rendant le
diagramme commutatif avec Z = P ′ = P . Comme l’identité est aussi solution, par
unicite f ◦ g = id. De même g ◦f = id et on a que f et g sont des homéomorphismes
inverses l’un de l’autre. �

On dispose aussi d’une topologie canonique “duale” de la topologie produit, celle
sur les réunions disjointes, appelée plus simplement coproduit.

Si (Xi)i∈I est une famille d’ensemble, on note
∐

i∈I Xi leur réunion disjointe (par-
fois appelée externe), c’est à dire l’ensemble {(xi, i), i ∈ I, xi ∈ Xi} formé des élé-
ments de chaque ensemble (à ne pas confondre avec la réunion “interne” de sous-
ensembles d’un même ensemble).

On a les inclusions canoniques ij : Xj ↪→
∐
∈I Xi qui envoie un élément de Xj sur

l’élément correspondant dans la réunion. On identifiera souvent Xi avec la compo-
sante de la réunion qui lui correspond (soit l’image ii(Xi)), et parfois on dira plus
précisément la composante indicée par i.

Définition 6.1.26. Soit (Xi)i∈I une famille d’espaces topologiques. La topologie co-
produit sur

∐
i∈I Xi est la topologie la plus fine rendant continue les inclusions

canoniques ij : Xj ↪→
∐

i∈I Xi.

155. on a représenté que deux objets Xi dans le diagramme mais ils y sont bien sûr tous
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Les ouverts de la topologie coproduit sont très faciles à décrire ; ce sont juste les
réunions d’ouverts :

Lemme 6.1.27. Un ouvert de la topologie coproduit est une réunion disjointe
∐

i∈I Ui
d’ouverts Ui ⊂ Xi.

En particulier, si chaque Xi est connexe (resp. connexe par arcs) alors les compo-
santes connexes (resp. connexes par arcs) sont exactement les Xi.

Lemme 6.1.28. Les applications continues de
∐

i∈I Xi dans un espace topologique W

sont en bijection avec les familles d’application continues (Xi
gi→ W )i∈I , la bijection

étant donnée par les compositions avec les inclusions canoniques : (
∐
Xi

ψ→ W ) 7→
(g ◦ ij)j∈I .

Plus précisément, la topologie coproduit est, à homéomorphisme près, l’unique
espace C, muni d’applications continues ij : Xj → C, tel que pour toute famille
d’applications ψi : Xi → W , il existe une unique application ψ : C → W rendant le
diagramme 156

Xi

ii ��

ψi

##... C
φ // W

Xj

ij

@@

ψj

<<

commutatif.

Les deux exemples précédents de topologie (co)produit sont typiques des exemples
de topologie (co)limite. La présentation de leur propriété universelle en terme de
diagramme est facile et relativement anecdotique dans leur cas, mais elle est en
revanche le bon moyen de comprendre des exemples plus compliqués et le bon moyen
de comprendre les généralisations dans des catégories quelconques de ces notions.
Deux exemples du même type sont donnés par les produtis fibrés (définition 6.1.44)
et coproduit fibré/recollement (définition 6.1.40) :

Définition 6.1.29.

Lemme 6.1.30 (Propriété universelle de la topologie quotient). L’espace quotient

X/R̃ vérifie que toute application continue f : X → Y qui est constante sur les
classes d’équivalence de R, se factorise de manière unique sous la forme

X
f //

π ""

Y

X/R
f̃

<<

.

Autrement dit, il existe une unique application continue f̃ : X/R→ Y qui relève f ,

c’est à dire telle que f = f̃ ◦ π.
Tout autre espace topologique X̃ muni d’une application p : X → X̃ vérifiant

la même propriété de factorisation que la topologie quotient est canoniquement ho-
méomorphe à X/R.

156. on a représenté que deux objets Xi dans le diagramme mais ils y sont bien sûr tous
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Exercice 6.1.31. Démontrer cette propriété.

Un cas particulier qui revient souvent est lorsque la relation d’équivalence est
induite par une structure de groupes. De manière générale, les groupes topologiques
ont des propriétés assez remarquables. Rappelons qu’un groupe topologique est un
groupe muni d’une structure d’espace topologique tel que la multiplication G×G→
G et l’inverse G → G, x 7→ x−1 sont continues. Une action continue d’un groupe
topologique sur un espace X est une application continue G ×X → X qui est une
action de groupe sur les ensembles sous-jacent.

Définition 6.1.32. Soit X un espace topologique et G un groupe agissant continue-
ment sur X. On note X/G l’espace quotient associé à la relation d’équivalence x ∼ y
si il existe g ∈ G tel que x = g · y.

Notation 6.1.33. Si F est un sous-espace de X, on notera X/F l’espace topologique
quotient de X par la relation d’équivalence engendrée par f ∼ f ′ pour tout f, f ′ ∈ F .

Exemple 6.1.34. L’espace topologique S1 est le quotient R/Z du groupe topologique
(R,+) par son sous-groupe Z.

De manière générale, la topologie quotient est la topologie qui réalise l’idée intui-
tive de recollement de sous-espaces comme on peut s’en convaincre via les exemples
précédents.

On prendra garde, cependant, qu’en général, un espace quotient n’a pas de raison
d’être encore séparé... et donc pas compact non plus (au sens francophone du mot
compacité, cf paragraphe 6.1.1).

Exercice 6.1.35. Montrer que le quotient R/Q est un espace topologique de cardinal
non-dénombrable dont la topologie est la topologie grossière.

Voici maintenant quelques propriétés spécifiques à la topologie quotient

Proposition 6.1.36. Soit π : X → X/R la projection canonique sur un espace
quotient.

(1) Si X est connexe (resp. par arcs) alors X/R est connexe (resp. par arcs).
(2) Si G est un groupe, l’application quotient p : X → X/G est ouverte.
(3) Si H ⊂ G est un sous-groupe d’un groupe topologique G, alors G/H est séparé

si et seulement si H est fermé.
(4) Si X/R est séparé, alors le graphe {(x, y), x ∼ y} ⊂ X × X est fermé.

Réciproquement, si ce graphe est fermé et que π : X → X/R est ouverte,
alors X/R est séparé.

(5) SiX est compact, alors X/R est séparé si et seulement si le graphe de R est
fermé dans X2.

Exercice 6.1.37. Démontrer cette proposition (on pourra utiliser qu’un espace com-
pact est normal).

On le voit, la propriété d’être séparé n’est pas complétement aisé à garantir dans
un quotient. Il existe cependant une condition assez agréable pour garantir cela dans
de nombreux exemples intéressants.

Corollaire 6.1.38. Si X est compact et F est un fermé alors l’espace quotient X/F
est compact, en particulier séparé.
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Exercice 6.1.39. Démontrer ce corollaire.

Définition 6.1.40 (Recollements). Soit X, Y deux espaces topologiques, A une partie
non-vide de X et f : A → Y , une application continue. On munit X

∐
Y de la

topologie coproduit. Le recollement de X sur Y par f est l’espace topologique
quotient

X ∪f Y := (X
∐

Y )/
(
x ∼ f(x), x ∈ A

)
.

Plus généralement, si A
f→ X et A

g→ Y sont deux applications continues, on
appelle encore recollement de X et Y le long de f , g (ou par abus de terminologie
le long de A) l’espace quotient

X ∪A Y := (X
∐

Y )/
(
g(x) ∼ f(x), x ∈ A

)
.

Cet espace topologique est aussi appelé coproduit fibré de X, Y par f, g ou encore
pushout (pour garder la terminologie anglaise) de X et Y par A.

Remarque 6.1.41. On prendra garde que le recollement X ∪A Y dépend de f , et g et
pas seulement de A ! On fait donc un abus de notation.

Par construction, les inclusions canoniques de X, Y dans le coproduit suivi par
l’application quotient donne des applications canoniques jX : X → X ∪A Y , jY :
Y → X ∪A Y qui vérifient par définition de la relation d’équivalence sur le quotient
que jX ◦f = jY ◦g. Par composition, si h : X∪AY → W est une application continue,
on obtient alors deux applications h◦jX : X → W et h◦jY : Y → W . Nous énonçons
maintenant la propriété fondamentale du recollement/coproduit fibré, tout d’abord
par une phrase simple puis diagrammatiquement.

Lemme 6.1.42 (Propriété universelle du recollement). Le pushout X ∪A Y est le
pushout dans la catégorie des espaces topologiques. Autrement dit, l’ensemble des
applications continues de X ∪A Y → W est en bijection avec l’ensemble des couples

(X
φ→ W,Y

ψ→ W ) d’applications continues vérifiant φ ◦ f = ψ ◦ g. La bijection est
précisément donnée par h 7→ (h ◦ jX , h ◦ jY ).

Beaucoup de constructions en topologie algébrique sont des coproduits fibrés/recollements,
c’est par exemple le cas des cônes et cylindres d’une application 1.8.6.

Exemple 6.1.43 (Bouquets de sphères). Soit I un ensemble. On se donne un point
base xi ⊂ Sn dans la sphère de dimension n pour tout i ∈ I. On appelle bouquet de
sphères (indicé par l’ensemble I), noté

∨
I S

n, le recollement X =
∐

I S
n∪∐

I{xi}{pt}
donné par l’unique application f :

∐
I{xi} → {pt}.

Une notion “duale” ou plutôt en langage catégorique la co-notion associée à celle
de coproduit fibré est celle de produit fibré.

Définition 6.1.44. Soit X
f→ Z, Y

g→ Z deux applications continues. Le produit fibré
de X et Y au dessus de Z, appelé aussi tiré-en-arrière de Y par f (ou pullback en
anglais) est l’espace topologique

X ×Z Y := {(x, y) ∈ X × Y, f(x) = g(y)}
vu comme un sous-espace du produit X × Y .

Le produit fibré vérifie également une propriété universelle.
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Lemme 6.1.45. L’espace topologique X ×Z Y de la définition 6.1.44, muni des deux
applications px : (x, y) 7→ x, pY : (x, y) 7→ y, est un produit fibré dans la catégorie
Top des espaces topologiques. C’est à dire que l’ensemble des applications continues

d’un espace topologique T dans X ×Z Y est en bijection avec les couples (T
φX→

X,T
φY→ Y ) d’applications continues vérifiant f ◦ φX = g ◦ φY ; la bijection étant

explicitement donnée par h 7→ (pX ◦ h, pY ◦ h).

Exercice 6.1.46. Démontrer le lemme 6.1.45.

Ce lemme garantit donc que le tiré-en-arrière est l’unique (à homéomorphisme
près) espace topologique vérifiant la propriété de factorisation donnée par le dia-
gramme (38). Les constructions de tiré-en-arrière sont très importantes en géométrie
(quelle soit différentielle ou algébrique).

6.1.4. Complexes cellulaires. Les complexes cellulaires, aussi appelés CW-complexes,
sont une bonne (et large) sous-catégorie des espaces topologiques, obtenus à partir
de recollements (définition 6.1.40) de boules de dimension n, qui a été cruciale dans
le développement des notions d’homotopie faible.

Définition 6.1.47. On appelle i-cellule (ou cellule de dimension i > 0) fermée un
espace homéomorphe à Di la boule unitée compacte de dimension i, alors qu’un
espace homéomorphe à Di \Si−1 sera appelé i-cellule ouverte. Une 0-cellule est juste
un espace homéomorphe à un point.

Si e est une n-cellule fermée, on note ∂e son bord (qui est homéomorphe à Sn−1)

et
◦
e = e \ ∂e est une cellule ouverte. Soit maintenant f : ∂e → X une application

continue définie sur le bord d’une cellule. On dispose du recollement de e sur X
suivant f , c’est à dire l’espace topologique quotient

X ∪f e :=
(
X
∐

e
)
/
(
f(x) ∼ x pour x ∈ ∂e

)
.

On dispose en particulier de l’application évidente (d̂ıte caractéristique) e→ X ∪f e
dont la restriction à

◦
e est un homéomorphisme sur son image.

Définition 6.1.48 (CW-complexe). Un espace topologique X est appelé un CW-
complexe si il existe une suite (X(n))n≥0 telle que

(1) X(0) est une réunion disjointe de 0-cellules (c’est à dire un espace discret) ;
(2) X(n) est obtenu à partir de X(n−1) à partir de recollement de cellules de

dimension n sur X(n−1) ;
(3) X =

⋃
n≥0X

(n) est muni de la topologie de la réunion 157, c’est à dire que

la topologie de X est déterminée par celle des X(n) de la manière suivante :
F ⊂ X est fermé si et seulement si F ∩X(n) est fermé pour tout n.

Un CW-complexe est fini si il est obtenu à partir d’un nombre fini 158 de cellules.
On appelle X(n) le n-squelette de X. On appelle une suite X(n) vérifiant les pro-

priétés ci-dessus une décomposition cellulaire de X.
La dimension d’un CW-complexe est le maximum (dans N∪{+∞}) des dimensions

des cellules ouvertes de X.

157. c’est à dire la colimite dans Top du diagramme X(0) → X(1) → . . .
158. on peut vérifier que si une décompositon cellulaire de X est finie, alors toute décomposition
de X va être finie par compacité des boules
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On notera qu’un CW-complexe X admet (sauf pour ceux de dimension 0) une
infinité de décompositions cellulaires.

Soit Y un sous-espace d’un complexe cellulaire X =
⋃
X(n). On dit que Y est un

sous-complexe cellulaire de X si, la suite (Y (n) := Y ∩X(n))n∈N est une décomposition
cellulaire de Y (en particulier Y est donc un CW-complexe). Autrement dit un sous
complexe cellulaire de X est un espace qui est la réunion d’un certain nombre de
cellules de X.

Exemple 6.1.49. • Un complexe simplicial, cf 3.1.3, K a une structure naturelle
de CW -complexe donné par sa filtration K(i) par les i-simplexes. La princi-
pale différence entre les comlexes simpliciaux et les CW complexes tient au
fait que les applications de recollement d’un complexe simplicial sont en fait
des injections cellulaires.
• Les graphes sont exactement les CW-complexes de dimension 1.
• La sphère Sn a une décomposition cellulaire donnée par une unique cellule

de dimension 0 et une cellule de dimension n. On peut aussi l’obtenir en
recollant deux disques sur Sn−1 (en ayant au préalable construit Sn−1 de
manière cellulaire). En particulier n’importe quel équateur d’une sphère Sn

est un sous CW-complexe.
• Les espaces projectifs Pn(R), Pn(C) sont des complexes cellulaires de di-

mension respective n et 2n. Les Pi ≤ n(R) sont des sous CW complexes de
Pn(R).
• Le tore, RP 2, la bande de Mobius ou la bouteille de Klein et de nombreux

complexes simpliciaux ont des décompositions cellulaires avec moins de cel-
lules que de simplexes à l’instar de la sphère.
• Toute variété différentiable est un CW-complexe, tout comme toute variété

topologique de dimension plus petite que 3. Ce n’est pas le cas de toutes les
variétés topologiques, mais en revanche toute variété topologique est homo-
tope à un CW-complexe.

Par construction, X(n) \X(n−1) est une réunion disjointe de n-cellules ouvertes (en
tant qu’espace topologique). On notera aussi que X est la réunion X =

⋃
n≥0

(
X(n) \

X(n−1)
)

disjointe de ses cellules ouvertes (attention, la topologie n’est cependant pas
celle de la réunion disjointe). Par ailleurs, les images (par les applications caracté-
ristiques) des cellules fermées sont fermées dans X (cette propriété n’est en général
pas vraie pour les cellules ouvertes).

D’autres propriétés topologiques utiles sont résumées dans la Proposition sui-
vante :

Proposition 6.1.50. Soit X un CW-complexe et X =
⋃
X(n) une décomposition

cellulaire.

• X est séparé et tout point de X admet une base de voisinages contractibles.
• X est paracompact.
• Pour tout n, X(n) est fermé dans X.
• Si K ⊂ X est compact, alors il rencontre un nombre fini de cellules ouvertes

de X. En particulier X est compact si et seulement si il est fini.
• Pour tout n, le quotientX(n)/X(n−1) est homéomorphe à un bouquet

∨
α∈I

X(n)
Sn

de sphères (cf exemple 6.1.43) (où IX(n) est l’ensemble des cellules de dimen-
sion n de la décomposition cellulaire de X).
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• Si Y est un sous complexe fermé deX, alors Y est un rétracte par déformation
d’un voisinage ouvert de X.

Définition 6.1.51 (Morphismes cellulaires). Soient X =
⋃
X(n), et Y =

⋃
Y (n) deux

décompositions cellulaires de CW-complexes. Une application continue f : X → Y
est dite cellulaire si, pour tout n, f(X(n)) ⊂ Y (n).

En particulier, l’inclusion d’un sous-complexe est cellulaire.

Remarque 6.1.52. Un des grands intérêts de la définition d’un CW -complexe et que
l’on peut construire facilement des applications continues issues d’un CW-complexe :
en effet, par définition de la topologie de la réunion, on peut les construire inductive-
ment, sur chaque X(n) et pour les construire sur X(n) en les connaissant sur X(n−1)

il suffit de donner des applications définies sur les n-cellules qui coincident sur leur
bord à celle sur X(n−1).

6.2. (R)appels et notations sur les catégories

Nous précisons ici quelques notations et exemples de la théorie des catégories que
nous utilisons.

Définition 6.2.1 (Catégorie). Une catégorie C est la donnée d’une collection d’objets,
notée Obj(C) et pour tout couple (A,B) d’objets, la donnée d’un ensemble de mor-
phismes, noté HomC(A,B) et dont on désignera souvent un élément f sous la forme
f : A → B, pour tout objet A d’un morphisme appelé identité de A dans A, noté
idA ∈ HomC(A,A) et d’un opérateur de composition, pour tout triplet (A,B,C)
d’objets,

HomC(A,B)× HomC(B,C)
◦−→ HomC(A,C)

(noté pour f : A→ B et g : B → C par g ◦ f) satisfaisant les propriétés suivantes :

(1) La composition est associative : (h◦ g)◦ f = h◦ (g ◦ f) pour tout f : A→ B,
g : B → C, h : C → D ;

(2) la composition est unitaire : idB ◦ f = f = f ◦ idA pour tout f : A→ B.

Un morphisme f ∈ HomC(A,B) sera appelé un isomorphisme si il existe un mor-
phisme g ∈ HomC(B,A) tel que f ◦ g = idB et g ◦ f = idA.

Une sous-catégorie de C est simplement une sous-classe d’objets et des sous-
ensembles des morphismes entre ces objets qui contiennent les identités et est stable
par composition. Elle est dite pleine si les morphismes entre objets de la sous-
catégorie sont exactement ceux entre ces objets dans C.

Soit C, D deux catégories. Un foncteur F : C → D associe à tout objet X
de C un objet F (X) de D et à tout couple (A,B) d’objets de C, une application
F (−) : HomC(A,B)→ HomD(F (A), F (B)) vérifiant

• F (idA) = idF (A),
• F (f ◦ g) = F (f) ◦ F (g).

On peut composer deux foncteurs : G ◦ F (X) = G(F (X)), G ◦ F (f) = G(F (f)) et
cette opération est associtive et unitaire (l’unité étant le foncteur identité f 7→ f .

Puisque un foncteur préserve les compositions et l’identité, il suit aisément qu’un
foncteur F : C→ D envoie tout isomorphisme de C sur un isomomorphisme de D.

Remarque 6.2.2. Il existe une notion plus générale de catégorie, où on remplace les
ensembles par un univers plus grand. Nous n’en aurons en fait pas vraiment l’usage.
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Terminologie 6.2.3. Un objet A d’une catégorie C est dit

• initial si pour tout objet X de C, il existe un unique morphisme A → X
dans C,
• terminal si pour tout objet X de C, il existe un unique morphisme X → A

dans C,
• nul si il est terminal et initial dans C.

il est facile de voir que, s’il existe, un objet initial ou terminal est unique à iso-
morphisme près.

Voici quelques exemples de catégories qui reviendrons souvent :

Exemple 6.2.4. • La catégorie Top des espaces topologiques dont les objets
sont bien entendu les espaces topologiques et les morphismes les applications
continues. La composition et l’identité sont simplement celles des fonctions
usuelles. En particulier les isomorphismes de Top sont précisément les ho-
méomorphismes. Cette catégorie admet un objet initial donné par l’espace
vide ∅ et un objet terminal donné par un singleton {∗}.
• Une variante utile de la catégorie des espaces topologiques sera la catégorie

Top∗ des espaces pointés. Ses objets sont les espaces (X, ∗) topologiques
munis 159 d’un point distingué ∗ ∈ X. Les morphismes f : (X, x0) → (Y, y0)
entre espaces pointés sont donc les applications continues qui préservent les
points bases, i. e., telles que f(x0) = y0.

On notera que Top∗ n’est cependant pas une sous-catégorie de Top. Par
ailleurs, le singleton est un objet nul de Top∗.
• La catégorie Ens sera celle dont les objets sont les ensembles et les mor-

phismes sont toutes les applications.
On peut bien entendu regarder plusieurs sous-catégories intéressantes de

Ens : par exemple celle des ensembles finis (où on ne garde que les ensembles
finis et conserve tous les morphismes), celle des surjections (où on se restreint
seulement aux applications qui sont surjectives), celle des injections etc. Un
isomorphisme dans n’importe laquelle de ces catégories est simplement une
bijection.
• Si M est un monoide, alors on peut lui associer une catégorie BM qui a

un unique objet noté ∗ et telle que HomBM(∗, ∗) = M de telle sorte que la
composition et l’identité soient données respectivement par la multiplication
et l’unité de M . Réciproquement, si on fixe un objet X dans une catégorie
D, alors (HomD(X,X), ◦) est un monoide.
• A l’opposé d’un monoide, tout ensemble E donne lieu à une catégorie dont

les objets sont les éléments de la catégorie et les flèches sont l’identité seule-
ment. Un exemple avec plus de structure (et utile) est le cas d’un ensemble
partiellement ordonné X,≤ : Les objets de la catégorie associée sont encore
les éléments de X et on se donne en sus exactement un morphisme x → y
pour toute paire d’objets x ≤ y. Une telle catégorie n’a un objet initial ou
terminal que si elle admet un minimum ou maximum.
• La catégorie Cat des catégories est la catégorie dont les objets sont les ca-

tégories et les morphismes entre deux catégories C, D les foncteurs de C

159. en particulier, ils ne sont pas vides
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vers D. Elle a pour sous-catégorie pleine (d’une taille ensembliste plus rai-
sonnable) la catégorie Catsmall des petites catégories, c’est à dire celles dont
les objets forment un ensemble.

Une autre source de catégorie qui reviendra beaucoup, seront celles qui sont asso-
ciées à des données linéaires et sont en fait additives.

Définition 6.2.5. Une catégorie additive est une catégorie dont les ensembles de
morphismes sont munis d’une structure de groupe abélien de sorte que la composition
de morphismes soit bilinéaire et qui est de plus munie d’un objet nul, c’est à dire
d’un objet à la fois initial et terminal.

Exemple 6.2.6 (Catégorie des groupes abéliens, modules). Soit k un anneau commu-
tatif unitaire. On notera k−Mod la catégorie, d̂ıte des k-modules, dont les objets
sont les k-modules et les morphismes sont les applications k-linéaires. En particulier,
on a la catégorie Ab := Z−Mod la catégorie des groupes abéliens. La somme de
deux morphismes de groupes abéliens est encore un morphisme de groupes abélien
et donne la structure additive dont l’objet nul est évidemment le module nul 0}.
Cette catégorie est une sous-catégorie de la catégorie Gp de tous les groupes qui elle
n’est pas additive.

Parmi les sous-catégories de k−Mod, on notera k−Modf celle des k-modules de
type fini (c’est à dire admettant un nobre fini de générateurs).

Plus généralement la catégorie Ch(k) des complexes de châınes est une catégorie
additive.

Définition 6.2.7 (Transformations et équivalences naturelles). Soient F,G : C→ D
deux foncteurs. Une transformation naturelle de F vers G est la donnée, pour tout
objet X ∈ C, d’un morphisme τX : F (X) → G(X) dans D vérifiant que pour tout
morphisme f : X → Y dans C le diagramme suivant

F (X)
F (f)

//

τX
��

F (Y )

τY
��

G(X)
G(f)

// G(Y )

est commutatif.
Une équivalence 160 naturelle entre F et G est une transformation naturelle pour

laquelle les τX sont des isomorphismes.

Exemple 6.2.8. Si on fixe C et D deux catégories, on dispose de la catégorie Fun(C,D)
des foncteurs de C vers D dont un objet est un foncteur et les morphismes HomFun(C,D)(F,G)
sont les transformations naturelles de F vers G. la composition des transformations
naturelles τ, τ ′ étant donnée par la composition des flèches : τ ′ ◦ τ(X) = τ ′X ◦ τX et
l’identité étant la transformation naturelle telle que τX = idX pour tout objet.

Intuitivement on doit penser qu’être naturellement équivalent est la “bonne” no-
tion identifiant les mêmes foncteurs. Ceci conduit naturellement à la bonne notion
d’équivalence de catégories

Définition 6.2.9 (Équivalence de catégories). Un foncteur F : C→ D est une équi-
valence de catégorie si il existe un foncteur G : D → C tel que les foncteurs F ◦ G

160. ou isomorphisme naturel
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et G ◦ F sont naturellement isomorphes à idD, idC aux foncteurs identités de D et
C.

On a un critère pratique pour déterminer si deux catégories sont équivalentes.

Définition 6.2.10. Un foncteur F : C→ D est

• plein si pour tous objetsX, Y ∈ C, l’application HomC(X, Y )→ HomD(f(X), f(Y ))
est surjective ;
• fidèle si pour tous objetsX, Y ∈ C, l’application HomC(X, Y )→ HomD(f(X), f(Y ))

est injective ;
• essentiellement surjectif si pour tout objet Z de D, il existe un objet X ∈ C

et un isomorphisme F (X) ∼= Z. Autrement dit tout objet de la catégorie
d’arrivée est isomorphe à l’image d’un objet de la catégorie source.

Un foncteur plein et fidèle est souvent appelé pleinement fidèle, et par définition
cela veut dire qu’il induit des bijections entre les ensembles de morphismes..

Proposition 6.2.11. Un foncteur F : C → D est une équivalence de catégorie si et
seulement si il est pleinement fidèle et essentiellement surjectif.

Exercice 6.2.12. Démontrer la proposition 6.2.11.

Exercice 6.2.13. Démontrer que la catégorie R-Modf des espaces vectoriels de di-
mension finie est équivalente à la catégorie dont les objets sont les entiers naturels
et les ensembles de morphismes de n vers m sont les sont les matrices de taille
m × n munie de la multiplication matricielle comme composition. En revanche ces
catégories ne sont pas isomorphes.

6.2.1. Limites et (co)limites dans des catégories. Précisons pour commencer deux
types de (co)limites fondamentaux.

Définition 6.2.14. Sot C une catégorie et A
f→ X, A

g→ Y deux morphismes. On

appelle coproduit fibré 161 de f et g, un objet W , muni de morphismes X
jX→ W ,

Y
jY→ W vérifiant jX◦f = jY ◦g, tel que pour tout couple de morphismes φX : X → Z,

φY : Y → Z rendant commutatif le diagramme (sans la flèche en pointillée) suivant

(37) A
g //

f
��

Y

jY
�� φY

��

X
jX //

φX ,,

W
∃!h

&&
Z

il existe un unique morphisme h : W → Z rendant le diagramme complet commu-
tatif 162.

Un coproduit fibré n’existe pas forcément pour des morphismes quelconques dans
une catégorie quelconque. En revanche, si il existe, il est unique à isomorphisme
près :

161. ou coproduit cofibré ou poussé-en-avant ou pushforward en anglais...
162. c’est à dire rendant les deux triangles, ainsi crées par la flèche pointillée, commutatifs
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Lemme 6.2.15. Si W et W ′ sont deux objets qui sont des coproduits fibrés (en
particulier on peut donc les munir respectivement des morphismes jX , jY , j′X , j

′
Y )

alors W et W ′ sont isomorphes. Il existe par ailleurs un unique tel isomorphisme
compatible avec les choix des jX , jY , j

′
X , j

′
Y .

Exercice 6.2.16. Démontrer le lemme 6.2.15.

Définition 6.2.17. Sot C une catégorie et X
f→ Z, Y

g→ Z deux morphismes. On
appelle produit fibré ou pullback (en anglais) de f et g, un objet P , muni de mor-

phismes P
pX→ X, P

pY→ Y vérifiant f ◦ pX = g ◦ pY , tel que pour tout couple de
morphismes φX : Z → X, φY : Z → Y rendant commutatif le diagramme (sans la
flèche en pointillée) suivant

(38) T φX

��

φY

��

∃!h

��
P

pX //

pY
��

X

f
��

Y
g // Z

il existe un unique morphisme h : T → P rendant le diagramme complet commuta-
tif 163. On appelera pX , pY les morphismes structuraux (ou plus parfois canoniques).

Là encore le produit fibré n’existe pas forcément pour des morphismes quelconques
dans une catégorie quelconque. En revanche, si il existe, il est unique à isomorphisme
près :

Lemme 6.2.18. Si P et P ′ sont deux objets qui sont des produits fibrés, alors P et P ′

sont isomorphes. Il existe par ailleurs un unique tel isomorphisme compatible avec
les choix de morphismes structuraux reliant W , W ′ à X, Y .

Exemple 6.2.19. Le recollement X∪AY d’espaces topologiques est un coproduit fibré
dans la catégorie Top des espaces topologiques (cf. 6.1.42). De même le produit fibré
d’espace topologiques est bien le produit fibré dans Top.

De manière plus générale on a une notion de limites et colimites associées à des
diagrammes, c’est à dire un ensemble d’objets et de morphismes entre eux.

Définition 6.2.20. Un diagramme dans une catégorie C est un foncteur I → C où I
est une petite catégorie, c’est à dire une catégorie avec un ensemble d’objets. Pour
une petite catégorie I fixée, un tel foncteur est appelé diagramme de forme I.

Exemple 6.2.21. Soit I un ensemble, vu comme une catégorie discrète (cf 6.2.4).
Alors un diagramme est simplement une famille indicée par I d’objets de C.

Ainsi pour I = N vu comme un ensemble ordonné via la relation d’ordre, un
diagramme dans C est alors juste la donnée d’une suite d’objets et de morphismes
reliant ceux d’indice consécutifs :

X0
f0→ X1

f1→ X2 → . . . .

163. c’est à dire rendant les deux triangles, ainsi crées par la flèche pointillée, commutatifs
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Exemple 6.2.22. Soit P la catégorie avec 3 objets a, b, c et deux flèches non triviales
a→ b et c→ b, alors un diagramme de type P est simplement la donnée de

X
f→ W

g← Y

alors que pour la catégorie C avec 3 objets a, b, c et deux flèches non triviales b→ a
et b→ c, alors un diagramme de type C est simplement la donnée de

X
f← A

g→ Y

Définition 6.2.23 (Limites et colimites). Soit I une petite catégorie et D : I → C
un diagramme de type I dans une catégorie C.

• Une limite de D est un objet LD ∈ C, muni de morphismes αi : LD → D(i)

pour tout objet i ∈ I vérifiant que pour toute flèche i
f→ j dans I, on a

αj = D(f) ◦ αi, et satisfaisant la propriété universelle suivante : pour tout

objet Z muni de morphismes Z
hi→ D(i) pour tout objet i vérifiant que pour

toute flèche i
f→ j dans I on a hj = D(f)◦hi, il existe un unique morphisme

h : Z → LD vérifiant que pour tout objet i ∈ I, on a hi = αi ◦ h.
• Une colimite de D est un objet CD ∈ C, muni de morphismes βi : D(i)→
CD pour tout objet i ∈ I vérifiant que pour toute flèche i

f→ j dans I, on
a βi = βj ◦D(f), et satisfaisant la propriété universelle suivante : pour tout

objet W muni de morphismes D(i)
fi→ W pour tout objet i vérifiant que pour

toute flèche i
f→ j dans I on a fi = fj ◦D(f), il existe un unique morphisme

f : CD → W vérifiant que pour tout objet i ∈ I, on a fi = f ◦ βi.

Lemme 6.2.24. Si une limite de D existe, elle est unique à isomorphisme près. De
même si une colimite existe elle est unique à isomorphisme près.

En particulier on parlera de la limite ou colimite d’un diagramme.

Démonstration. Cela découle de l’unicité des morphismes h, f dans la définition
comme dans la preuve du lemme 6.1.24. �

Notation 6.2.25. On note en général lim
i∈I

D(i) la limite d’un diagrammeD et colim
i∈I

D(i)

la colimite d’un diagramme.

Définition 6.2.26 (Produits et coproduits). Soit I un ensemble vu comme une caté-
gorie discrète (cf exemple 6.2.4). Alors un diagramme de forme I est équivalent à
la donnée d’une famille (Xi)i∈I d’objets et la limite de ce diagramme est appelée le
produit indicé par I de la famille. Il est noté

∏
i∈I Xi.

La colimite de ce diagramme est appelé le coproduit et est notée
∐

i∈I Xi.

Exemple 6.2.27. Il suit des lemmes 6.1.30 et 6.1.24 que les topologies produit et
coproduit sont bien les produits et coproduits de la catégorie Top.

En revanche dans la catégorie des espaces pointés, le coproduit est différent. En
effet dans Top∗, on a

∐
i∈I(Xi, xi) ∼=

∨
(Xi, xi) ∼=

∐
i∈I Xi/(xi ∼ xj, ∀i, j ∈ I) le

bouquet des espaces Xi, muni du point base donné par la classe [xi] dans le quotient.

Exercice 6.2.28. Démontrer que les produits et coprodutis finis (c’est à dire que I
est fini) sont isomorphes dans Ab ou k−Mod. Identifier les produits et coproduits
infinis et vérifier qu’ils sont différents dans ces mêmes catégories.
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Exemple 6.2.29. Dans toute catégorie C, le produit fibré est la limite des diagrammes
de forme P alors que les coproduits fibrés sont les colimites des diagrames de forme C
comme dans l’exemple 6.2.22. par ailleurs, si C a un objet initial O alors le coproduit
de deux objets s’identifie avec le coproduit fibré X ∪O Y . La remarque duale est en
vigueur pour le produit de deux objets dans une catégorie avec un objet final ∗ :
X × Y ∼= X ×∗ Y .

Définition 6.2.30. Soit X0
f0→ X1

f1→ X2 → . . . une tour d’espace topologique, c’est à
dire un foncteur de (la catégorie associée à) N muni de sa relation d’ordre dans Top.
On appelle réunion topologique de cette tour la colimite colimi∈NXi de ce diagramme
dans Top.

Exemple 6.2.31. La topologie d’un complexe cellulaire est la réunion topologique de
la tour donnée par les inclusions X(0) ↪→ X(1) ↪→ . . . .

Lemme 6.2.32. La réunion topologique existe pour toute tour X0
f0→ X1

f1→ X2 → . . .
et est donné par

∐
i∈NXi/(fi(xi) ∼ xi).

Si les fi sont des inclusions de sous-espaces topologiques, alors, les applications
canoniques αiXi → colimi∈NXi sont injectives, que colimi∈NXi =

⋃
N αi(Xi) s’iden-

tifie à la réunion des Xi et que αi est un homéomorphisme sur son image. De plus
F est fermé dans colimi∈NXi si et seulement si F ∩ αi(Xi) ∼= F ∩Xi est fermé dans
Xi (on identifie Xi avec son image vu la phrase précédente).

Exercice 6.2.33. Démontrer ce lemme.

Exercice 6.2.34. Démontrer que, si ils existent, la colimite (resp. limite) d’un dia-
gramme sur I = ∅ est un objet initial (resp. final).

Exercice 6.2.35 (Limite d’une tour). Soit N muni de sa relation d’ordre comme dans

l’exemple 6.2.21. Un diagramme de type Nop est une tour · · · → X2
f1→ X1

f0→ X0.
Dans la catégorie des espaces topologique la limite de toute tour existe et est

donnée par le sous-espace {(xn) ∈
∏

n∈NXn, ∀i ∈ N, fi(xi+1) = xi} de l’espace
produit

∏
NXn, c’est à dire par le sous-espace des suites compatibles aux fi.

Exercice 6.2.36 (Polynomes et séries formelles). Soit A un anneau commutatif uni-
taire et considérons le diagramme dans Ring, la catégorie des anneaux unitaires,
donné par la tour A0[x] ↪→ A1[x] ↪→ . . . donné par les inclusions des polynomes
Ai[x] de degré inférieur ou égal à i dans ceux de degré inférieur ou égal à i+ 1. Alors
colimNAi[x] ∼= A[x] l’anneau des polynomes.

En revanche si on regarde le diagramme . . . A2[x] � A1[x] � A0[x] donné par
les projections canoniques Ai[x] � Ai[x]/(xi) ∼= Ai−1(x), on obtient que la limite
limNAi[x] ∼= A[[x]] est isomorphe à l’anneau des séries formelles à coefficient dans
A.

Le même calcul marche dans A −Mod (mais donne seulement une structure de
module) à la place de la catégorie des anneaux.

Définition 6.2.37. Une catégorie I est dite filtrée si elle est non-vide et vérifie que

• pour tout objets i, j ∈ I, il existe un objet k “au dessus d’eux”, c’est à dire
qu’il existe des morphismes i→ k et j → k ;
• pour toute paire de morpismes f, g : i→ j, il existe une flèche h : j → k telle

que h ◦ f = h ◦ g.
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Une catégorie est dite cofiltrée si Iop est filtrée 164.
Une colimite filtrée est une colimite sur une catégorie I qui est filtrée (c’est à

dire que l’on regarde des diagrammes de type I où I est filtrée.
Une limite cofiltrée est une colimite sur une catégorie I qui est cofiltrée.

Une généralisation est la notion de (co)limite κ-(co)filtrée pour un cardinal κ.

Proposition 6.2.38. Soit I, J des petites catégories et F une catégorie filtrante. On
a alors des isomorphismes naturels de foncteurs :

- colimJ(colimi∈I(D(i,−))
∼=←− colimI×J D

∼=−→ colimI(colimj∈J(D(−, j)),
- limJ(colimi∈I(D(i,−))

∼=−→ limI×J D
∼=←− limI(colimj∈J(D(−, j)) pour tout

I × J-diagramme,

- colimF(limj∈J D(−, j)
∼=−→ limJ(colimk∈F(D(k,−)) pour tout diagrame de

type F× J .

Exercice 6.2.39. Démontrer que dans Top toutes les limites et colimites existent.

Exercice 6.2.40. Démontrer que dans k−Mod toutes les limites et colimites existent.

6.2.2. Adjonction. La notion de foncteurs adjoints est une des plus importante de
la théorie des catégories.

Définition 6.2.41. Deux foncteurs G : C → D et D : D → C sont adjoints si et
seulement si on a un isomorphisme naturel de bifoncteur 165

HomD(G(·), ·)
Ag

..∼ HomC(·, D(·))
Ad

nn .

Ici on a noté Ag et Ad les équivalences inverses l’une de l’autre.
On dit que G est adjoint à gauche de D et que D est adjoint à droite de G.

Concrètement, la définition est équivalente à dire que pour tout f ∈ HomC(X,X ′)
et g ∈ HomD(Y, Y ′) on a un diagramme commutatif dont les flèches horizontales sont
des isomorphismes :

HomD(G(X), Y )
Ag(X,Y )

..

g∗
��

∼ HomC(X,D(Y ))
Ad(X,Y )

nn

D(g)∗
��

HomD(G(X), Y ′)
Ag(X,Y ′)

..∼ HomC(X,D(Y ′))
Ad(X,Y ′)

nn

HomD(G(X ′), Y ′)
Ag(X′,Y ′)

..

G(f)∗

OO

∼ HomC(X ′, D(Y ′))
Ad(X′,Y ′)

nn

f∗

OO
(Adj)

Nous avons utilisé la notation standard suivante : pour g : Y → Z, h : X → Y ,
l’application g∗ : HomD(X, Y ) → HomD(X,Z) est simplement la composition par
g ; c’est à dire l’application f 7→ g ◦ f alors que h∗ : f 7→ f ◦ h.

164. c’est à dire qu’elle est non vide et vérifie que our tout objets i, j ∈ I, il existe un objet k “en
dessous d’eux”, c’est à dire qu’il existe des morphismes k → i et k → j et que de plus, pour toute
paire de morpismes f, g : j → i, il existe une flèche h : k → j telle que f ◦ h = g ◦ h
165. c’est à dire une équivalence naturelle entre foncteurs de Cop ×D→ Ens
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La partie supérieure du diagramme traduit donc le fait que Ag(X, ·) et Ad(X, ·) est
un morphisme de foncteur (pour la deuxième variable) alors que la partie basse tra-
duit le fait que Ag(·, Y ) et Ad(·, Y ) est un morphisme de foncteur (pour la première
variable). Puisque Ag et Ad sont inverse l’un de l’autre, on a Ag(X, Y ) = Ad(X, Y )−1

pour tous objets X, Y .

Proposition 6.2.42. Soit F : C → D un foncteur. Il existe, à équivalence naturelle
près, au plus un foncteur G qui soit adjoint à gauche de F et au plus un foncteur D
qui soit adjoint à droite de F .

On peut donc parler, s’ils existent, de l’adjoint à gauche ou l’adjoint à droite d’un
foncteur et définir une adjonction en ne spécifiant qu’un seul des foncteurs.

Exercice 6.2.43. Démontrer la proposition.

Exemple 6.2.44. Soit f : A → B un morphisme d’anneaux commutatifs unitaires.
On munit B de la structure de A-module induite : (a, b) 7→ f(a)b ce qui donne un
foncteur canonique Rf : B-Mod→ A-Mod. Le produit tensoriel par B au dessus de
A, N 7→ B ⊗A N , définit un foncteur qui est adjoint à gauche de Rf .

Exemple 6.2.45. Le foncteur de la catégorie des groupes dans Ens qui envoie un
groupe sur son ensemble sous-jacent et ne change pas les morphismes a un adjoint
à gauche qui a un ensemble associe le groupe libre engendré par cet ensemble.

En prenant X = D(Y ) et Y = G(X) respectivement dans le diagrame (Adj), on
obtient pour tous objets X ∈ C et Y ∈ D, des isomorphismes

HomD(G(D(Y ), Y ) ∼= HomC(D(Y ), D(Y )),(39)

HomD(G(X), G(X)) ∼= HomC(X,D(G(X))).(40)

Définition 6.2.46 ((co)unité d’une adjonction). Soit G un adjoint à gauche de D.

• L’unité de l’adjonction est la transformation naturelle (ε : X → D(G(X)))
induite par idG(X) dans l’isomorphisme (40).
• La counité de l’adjonction est la transformation naturelle (ηY : G(D(Y ))→
Y ) induite par idD(Y ) dans l’isomorphisme (39).

Proposition 6.2.47. Soit G : C→ D et D : D→ C deux foncteurs et ε : IdC → DG
et η : GD −→ IdD deux transformations naturelles.

(1) Les transformations ε et η sont respectivement l’unité et la counité d’une
adjonction 166 entre G et D si et seulement si les composées

D(Y )
ε(D(Y ))−→ DGD(Y )

D(η(Y ))−→ D(Y ) et G(X)
G(ε(X))−→ GDG(X)

η(G(X))−→ G(X)

sont des identités.
(2) Le foncteur G est pleinement fidèle si et seulement si ε est un isomorphisme,

et D est pleinement fidèle si et seulement si η est un isomorphisme.

Exercice 6.2.48. Démontrer cette proposition.

Corollaire 6.2.49. Une adjonction entre deux foncteurs G et D est une équivalence de
catégories si et seulement si son unité et sa counité sont des isomorphismes naturels.

166. par construction, G est alors forcément l’adjoint à gauche
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Remarque 6.2.50. Si F est une équivalence de catégorie et que G est une équivalence
inverse, alors F et G sont nécessairement adjoints ; chacun étant à la fois inverse à
droite et à gauche de l’autre.

Une des propriétés fondamentales des foncteurs adjoints est la suivante.

Proposition 6.2.51. Si G : C,→ D est un adjoint à gauche de D : D→ C, alors G
commute avec les colimites et D commute avec les limites :

colim
I

G(Xi)
∼=−→ G(colim

I∗
Xi), D(lim

I∗
Yi)

∼=−→ lim
I∗
D(Yi).

Plus précisément, la proposition dit que les morphismes canoniques colimI G(Xi) −→
G(colimI∗ Xi), D(limI∗ Yi) −→ limI∗ D(Yi) respectivement induits par les propriétés
universelles des (co)limites 167 sont des isomorphismes. Ce sont donc des isomor-
phismes naturels entre les foncteurs respectifs.

Remarque 6.2.52. Notons que si C est une catégorie abélienne, le noyau d’un mor-
phisme est une limite alors que le conoyau est une colimite. On peut alors notere que
si on a une adjonction entre catégorie abélienne, alors l’adjoint à gauche est exact à
droite et et l’adjoint à droite est exact à gauche au sens de la définition 1.5.1.

Lorsque l’on travaille dans des catégories suffisament“petites”, le fait de commuter
avec des (co)limites est en fait équivalent à être un adjoint.

Théorème 6.2.53 (Un des théorèmes de l’adjoint). Soit F : C→ D un foncteur entre
catégories localement présentables. Alors F est un adjoint à gauche si et seulement
si il commute aux colimites. C’est un adjoint à droite si et seulement si il commute
aux limites et est accessible.

Une catégorie localement présentable est une catégorie qui est

• admet un ensemble de générateurs κ-compact 2.3.18 pour un certain cardinal
κ (en particulier tout objet est une colimite κ-filtrée de ces objets).
• elle admet toutes les colimites.

Un foncteur dans une telle catégorie est accessible si il commute aux colimites κ-
filtrées.

Exemple 6.2.54. Toute catégorie de préfaisceau d’ensembles est une catégorie loca-
lement présentable. De plus toute catégorie de modèle combinatoire 2.6.14 est une
catégorie localement présentable.

167. via les morphismes obtenus en appliquant G aux morphismes canoniques Xj → colimI Xi et
D aux morphismes canoniques limI Yi → Yj
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