INTRODUCTION A L’HOMOTOPIE

GREGORY GINOT

RESUME. Nous allons présenter un introduction aux théories modernes de I’homo-
topie, en particulier basées sur les catégories de modele. Ces notions proviennent
des travaux de Daniel Quillen dans les années 1960-70. Nous verrons enfin com-
ment ces idées ont abouti & (et permis de définir) la notion d’oo-catégories qui sont
une notion en un sens plus universelle que celle de catégorie de modele. Nous nous
appuierons sur trois exemples que nous traiterons plus ou moins parallelement :
les espaces topologiques, 1’algebre homologique, et les algebres commutatives. Ce
dernier exemple nous permettra de caractériser le type d’homotopie rationnel des
espaces en termes de dg-algebres commutatives. Les techniques de catégorie de
modeles, en plus de leur vertu unificatrice, permettent notamment de faire de ’al-
gebre homologique dans un cadre non-abélien et ont un role important dans les
développements récents de la topologie algébrique mais aussi certains aspects de
la géométrie algébrique.
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[. NOTIONS D’HOMOTOPIE, ALGEBRE HOMOLOGIQUE ET (R)APPELS

Dans ce premier chapitre, nous donnons une vue d’ensemble rapide de la théorie de
I’homotopie pour les espaces topologiques, de groupes d’homotopie et des concepts
clés afférants, en particulier celui d’équivalence d’homotopie faible. En parallele, nous
donnerons également des bases d’algebre homologique.

Commencons par préciser quelques
Conventions et notations.

(1) On désignera respectivement par Top la catégorie des espaces topologiques,
dont les fleches sont les applications continues, et par Top, celle des espaces
topologiques pointés (dont les fleches sont les applications continues envoyant
le point base de la source sur celui du but).

(2) On notera, pour tout anneau R, R-Mod la catégorie des R-modules (dont les
fleches sont les applications R-linéaires) et Ch(R) la catégorie des complexes
de R-modules (cf 2.3 pour des notations précises).

(3) On notera I le segment compact [0, 1], S” la sphere de dimension n.

(4) On notera Cat la catégorie (large) des catégories et cat la catégorie des
petites catégories.

(5) Sauf mention du contraire un (co)produit (quelconque) d’espaces topolo-
giques sera muni de la topologie (co)produit (cf. [6.1.3).

(6) Nous appelerons pullback un produit fibré et pushout un coproduit fibré dans
toute catégorie (cf. sans ressentir le besoin d’utiliser une terminologie
francaise.

1.1. HOMOTOPIE ENTRE FONCTIONS, ENTRE ESPACES

Définition 1.1.1. Deux applications continues fy, fi : X — Y entre espaces topolo-
giques sont dites homotopes §'il existe une application continue F': X x [0;1] — YV
—~—

I
telle que F' [y, oy = fo et F' [x, 1y = [i.

Définition 1.1.2. Deux espaces topologiques X et Y sont dit homotopes s’il existe
deux morphismes f: X — Y et g: Y — X tels que f o g est homotope a idy et
g o f est homotope a idy.

Notation 1.1.3. (1) Si deux morphismes fy, fi : X — Y sont homotopes, on
notera : fy ~ fi.
(2) Si deux espaces topologiques X et Y sont homotopes, on notera : X ~ Y.
(3) Si deux espaces topologiques X et Y sont isomorphes (homéomorphes), on
notera : X =Y.

La relation d’homotopie entre deux applications continues (et par suite entre es-
paces) est une relation d’équivalence. Par ailleurs, si f ~ g alors po fog~pogogq
pour toute paire d’applications continues p, ¢ (telle que les composées existent bien
sur).

FExercice 1.1.4. Démontrer ces affirmations.

Définition 1.1.5. Un espace contractile est un espace homotope a un point.
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FExemple 1.1.6. Un point, une boule, R".
Contre-exemples : Deux points, un cercle, R" \ {0}, 'ensemble vide ...

Définition 1.1.7. Soit X,Y deux espaces topologiques, A C X un sous-espace, et

fo. f1: X =Y tels que fy |, = fi |4 On dit que fy est homotope a f; relativement

a A s'il existe une application continue F': X x [0;1] — Y telle que F ‘XX{O} = fo,
~

I
F‘Xx{l}:fla et F‘A:fO |A:f1 |A-

Les propriétés et notations précédentes s’étendent sans difficulté au cas relatif. On
notera ~ la relation étre homotope relativement a A.

Définition 1.1.8. Un sous-espace A <y X est un rétract par déformation (resp.
déformation forte) s’il existe p : X — A telle que poi = ids et i op ~ idx (resp.
relativement a A).

Exemple 1.1.9. L’exemple standard est la sphere S™ qui est un rétracte par défor-
mation forte de R"*1\ {0}.

1.2. GROUPES D’HOMOTOPIE D’UN ESPACE TOPOLOGIQUE

Définition 1.2.1. Si X est un espace topologique, on note my(X) 'ensemble de ses
composantes connexes par arcs. Si xg € X, et n > 1, on note m,(X, zg) ’ensemble
des classes d’homotopie relatives (au point base) d’applications (S™, %) — (X, xg)
(autrement dit les applications continues de S™ dans X qui envoient le point base *
sur zp modulo les homotopies H telles que H(x, —) = xg).

Notation 1.2.2. On note [X,Y] (resp. [(X, xo), (Y, yo)]) Pensemble des classes d’ho-
motopie (resp. relatives) de morphismes X — Y .

Remarque 1.2.3. a) Si X # (), la définition reste valable pour 7o (X, zo) quel que
soit xp € X.

b) On peut de maniere équivalente définir m,(X,zy) comme étant les classes
d’homotopie relative d’applications (1™, 0I"™) — (X, x¢), c’est a dire les classes
d’homotopie d’applications envoyant le bord de I™ sur xq (et on impose qu’en
tout temps ¢ € [0, 1], 'homotopie H(—,t) : I"™ x {t} — X vérifie aussi cette
propriété).

Définition 1.2.4 (Suspension). La suspension d'un espace topologique X est I'espace
topologique :
EX = X X/ (2,0)~(2,0), (2, 1)~ (a'1)

Définition 1.2.5 (Suspension réduite). La suspension réduite d’'un espace topologique
pointé (X, xq) est 'espace topologique pointé :

B(X,20) 1= (X X I/(@opm(a0).(x. )~ (e 1)z~ (0.2, (20, 0)]))
ou [(zg,0)] est la classe d’équivalence du point (zg,0).
FExemple 1.2.6. Les spheres sont des suspensions réduites :
Y(S", ) = (S™H %).
Ainsi, (S", %) = (S, 1).
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p=87y

Z(X 1’0)
E(X [L'())\/E(X xo

FI1GURE 1. La suspension réduite, a gauche, la classe du point base
étant représentée en bleu et la définition de f * g.

Lorsque X est pointé par un point zy, on a une application quotient canonique
SX — ¥(X, x). Cette application n’est pas toujours une équivalence d’homotopie.
Elle I'est cependant dés que (X, ) est bien pointéﬂ, voir la feuille de TD 1. C’est en
particulier le cas si X est un CW-complexe ou une variété topologique quelconque.

Définition 1.2.7 (Structure produit sur les morphismes de source une suspension).

Soient f, g : 2(X,xz0) — (Y,90). On définit f * g : (X, z9) — (Y, yo) comme étant
la composée :

(X, 70) = B(X,20)/x (1) = DX, 70) V B(X, 79) T (Y, 30)
voir figure [T} En termes de coordonnées on a donc

_ | fz.20) sit<1/2
[xg(@.t) '_{ g(z,2t—1) sit>1/2.

Proposition 1.2.8. a) La classe d’homotopie de f * g ne dépend que des classes
d’homotopie de f et de g.
b) Le produit * est associatif a homotopie pres :
(f*g)xh>fx(gxh)
c¢) L’application constante ¢ : (X, zo) — (Y, yo) (définie par c¢(x) = yo) est une
unité pour * a homotopie pres :
frxc~exf~f
d) Tout f € [2(X,z0), (Y, yo)] admet un inverse pour * : Posons f~!(z,t) :=

fle,1—t). Alors fx fle~cen~ f7lx f.
Ainsi, ([2(X, ), (Y,90)], *) est un groupe, et, en particulier, pour tout n > 1, on
a que m,(Y,yo) est un groupe.

On a une représentation graphique pratique standard pour un élément de m,, (X, x¢)
donné par la figure 2| ou I'on représente également le produit.

1. c’est & dire que l'inclusion du point dans X est une cofibration au sens de la définition m
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g(s,2t — 1)

Zo f Zo o )

f(s,2t)

o Zo

»
>

0 1

FIGURE 2. La représentation graphique dune application dans
mo(X, o) & gauche, et la représentation graphique du produit f g
a droite.

Proposition 1.2.9. a) Si n > 2, m,(Y,y0) est abélien. Plus généralement, si
(X, x9) = B(X', ), alors * est commutatif sur [X(X, z¢), (Y, y0)]-
b) Si f:(X,z0) = (Y,9), on définit un morphisme de groupes :

Je: 71-n(*X:l’O) _)ﬂ-n(YayO)
h = fen]

De plus, si f est une équivalence d’homotopie, alors f, ci-dessus est un
isomorphisme. On définit de méme une application f. : mo(X) — m(Y),

[z] = [f(2)].

FEzxercice 1.2.10. Démontrer les deux propositions précédentes. On peut faire un des-
sin (cf ﬁgure pour illustrer la preuve de la commutativité des groupes d’homotopie
supérieurs (ou double suspensions).

Remarque 1.2.11. On a représenté dans la figure[3|une homotopie H entre fxg et gx f
pour des applications f, g : (S *) — (X, xo) obtenue en faisant passer f au dessus
de g en “contractant et en les faisant tourner dans le sens anti-trigonométrique”
f et g. On aurait pu construire une autre homotopie H' entre f x g et g * f en
tournant dans l'autre sens, c’est a dire le sens trigonométrique. Les applications
H,H' : (S?,%) x I — (X, x0) ne sont pas homotopes 1'une & lautre en général, et
donc une telle homotopie est un choix non canonique méme a homotopie pres.

Notons qu’en dimension supérieure n > 3, la méme construction peut se faire
en faisant le produit H X id-2 : (I™,01") X I — (X, zp). Dans ce cas H X id et
H’ x id deviennent homotopes (car on peut prendre une homotopie similaire, mais
en jouant sur les coordonnées dans la direction supplémentaire, pour passer de H
a H'). Mais il y a plusieurs choix non-homotopes de telles homotopies! De maniere
générale, l'existence de ces choix donne une structure tres riche et intéressante en
homotopie, ayant donné naissance a la notion de FE,-algébre (aussi appelée algebre
sur les cubes de dimension n) cruciale en homotopie et qui a des ramifications dans
de nombreuses autres branches des mathématiques; elle sera étudiée dans le cours
de Y. Harpaz.

Remarque 1.2.12. Si xy et z{, sont dans la méme composante connexe par arcs, alors
on a des isomorphismes 7, (X, z9) — m,(X, ;) pour tout n > 1. Un tel isomorphisme
est induit en conjuguant des lacets (ou sphéres) par un chemin de zy a xj. Cet
isomorphisme n’est pas canonique en général. Il le devient, pour n = 1, si par
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g(s, 2t — 1)

f(s,2t)

f(s,2t=1)

g(s,2t)

FIGURE 3. La représentation graphique d’une homotopie entre f % g
(en haut) et g f (en bas), les symboles = désignant des homotopies
modifiant affinement I'une des coordonnées (s ou t) de chaque fonction.
Les parties bleues désigne 1’application constante qui vaut xg.

exemple 7 (X, zg) est abélien, et pour n > 1 si l'action induite de (X, xo) sur
T (X, 30) est trivialef]

1.3. ESPACES TOPOLOGIQUES A HOMOTOPIE ET A HOMOTOPIE FAIBLE PRES

La topologie algébrique étudie certainement les espaces topologiques a équivalence
d’homotopie pres, mais elle s’intéresse encore plus a celle d’espace topologique a
équivalence d’homotopie faible pres. Cette notion est en fait celle qui donne lieu a
plus de généralisations et analogues en mathématiquesﬁ

Définition 1.3.1 (équivalence d’homotopie faible). Une application f : X — Y est
une équivalence d’homotopie faible si f, : mo(X) — mo(Y') est une bijection et si
pour tout xy € X et tout n > 1, f, : m, (X, x0) = m(Y, f(20)) est un isomorphisme.

Notation 1.3.2. On notera X = Y une équivalence d’homotopie faible.

Remarque 1.3.3. Une équivalence d’homotopie est une équivalence faible d’homoto-
pie. La réciproque n’est pas vraie, en effet, a priori, une équivalence faible n’a par
exemple pas d’inverse homotopique, c’est a dire qu’il n’y a pas d’application continue
g:Y — X telle que g, est 'inverse de f, sur les groupes d’homotopie.

Ezemple 1.3.4. X =Net Y = {+,n > 0} U {0} sont faiblement homotopiquement
équivalents mais pas homotopiquement équivalents.

FEzercice 1.3.5. Démontrer le résultat énoncé.

2. un espace pour lequel les actions induites sont toutes triviales est dit simple. C’est évidemment
le cas si I'espace est simplement connexe.

3. comme nous le verrons avec le modele purement combinatoire donné par les ensemble ssim-
pliciaux, ou les algebres différentielles graduées commutatives
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La relation X et Y sont reliés par une équivalence d’homotopie faible n’est pas
une relation d’équivalence, puisque rien ne garantit qu'une application inverse existe
et donc la symétrie de cette relation (I’exemple précédent le démontre...). On va
donc considérer la relation engendrée par cette relation.

Définition 1.3.6. Deux espaces topologiques X et Y seront dits faiblement homotopes
si il existe une suite finie

XS 2 &2y S 232y . 2y Y
dont toutes les fleches sont des équivalences d’homotopie faible.

Remarque 1.3.7. On prendra garde qu’étre faiblement homotope implique évidem-
ment avoir des groupes d’homotopie isomorphes (sur les composantes connexes par
arcs) mais que la réciproque n’est pas vraie en général. En effet, deux espaces topo-
logiques peuvent avoir des groupes d’homotopie deux a deux isomorphes sans étre
faiblement équivalents. Par exemple, RP? et RP> x S? ont les mémes groupes d’ho-
motopie. Il ne peut en revanche pas exister de morphisme f : RP? — RP> x S? qui
induise un isomorphisme en homotopie, car sinon, le théoreme [1.3.10| assurerait que
f est un quasi-isomorphisme, ce qui ne peut étre le cas, car ces deux espaces n’ont
pas les mémes groupes d’homologie.

Nous disposons donc de deux notions naturelles que I'on souhaite étudier :

e les espaces topologiques a homotopie pres, donnant lieu a la catégorie homo-
topique forte Ho*"*" := Top|# ]

e les espaces topologiques a homotopie faible pres, donnant lieu a la catégorie
homotopique forte Ho := Top|# % ).

Icion anoté Z et W # les équivalences d’homotopie, respectivement les équivalences
d’homotopie faibles; les catégories homotopiques sont donc les catégories obtenues
en rajoutant formellement des inverses aux équivalences d’homotopie (respective-
ment d’homotopie faible). Voir la définition ci-dessous pour une définition plus
precise. Que de telles constructions donnent lieu a des catégories n’est pas évident a
priori; et par ailleurs I’étude de ces catégories, ne serait-ce que de leurs morphismes,
n’est pas aisée. En effet, n'importe quel zigzag X — 7, < Zy — Z3 & Zy... 2, —
Y de longueur finie définit un morphisme entre X et Y dans Ho (puisque les équiva-
lences faibles ont par définition un inverse dans cette catégorie) et plusieurs zigzags
de longueurs distinctent peuvent définir des morphismes égaux dans cette catégo-
rie. Il n’est pas évident qu'une telle construction donne une catégorie au sens usuel
(c’est a dire que les morphismes entre objets forment des ensembles). Nous verrons
dans le chapitre que c’est bien le cas et que le structures de modele donnent une
description de ces morphismes.

Remarque 1.3.8. En général, les espaces que l'on rencontrera seront relativement
“gentils”. Par exemple, ce seront des complexes cellulaires; ces derniers ont pour
propriété que les notions d’homotopie et d’homotopie faibles sont équivalentes pour
eux comme démontré par Whitehead.

Théoréme 1.3.9 (Whitehead, 1949). Si f : X — Y est une application continue (non-
nécessairement cellulaire) entre deux CW-complexes, alors f est une équivalence
faible d’homotopie si et seulement si ¢’est une équivalence d’homotopie.

Démonstration. Voir la feuille de TD 1 et sa solution. O
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Notons que les équivalences d’homotopies faibles sont cependant suffisantes pour
identifier les invariants homologiques de deux espaces topologiques :

Théoréme 1.3.10. Si f: X — Y est une équivalence faible d’homotopie, alors, pour
tout groupe abélien G, les applications induites :

f:H,(X,G)— H,(Y,G)
sont des isomorphismes.

On renvoit a [I8, 3 10, 21] pour une preuve. Le résultat est vrai en cohomologie et
pour toute théorie (co)homologique extraordinaire (au sens des axiomes d’Eilenberg-
Steenrod ou donnée par un spectre) et pour la (co)homologie a coefficient local (voir
la remarque[1.3.15). Ce dernier résultat est une autre manifestation de 'importance
de la notion d’homotopie faible.

Un autre tres beau résultat de Whitehead affirme que

Théoreme 1.3.11. Si f: X — Y est une application continue entre espaces simple-
ment connezes[] telle que f. : H;(X,Z) — H;(Y,Z) est un isomorphisme pour tout
i < m et un épimorphisme pour i = n, alors il en va de méme pour f, : m;(X,z) —
mi(Y, f(x)) (quel que soit = € X).

En particulier, si f, : H,(X,Z) — H,(Y,Z) est un isomorphisme pour tout n > 0,
alors f est une équivalence d’homotopie faible.

Démonstration. Voir [3, Théoreme 11.2]. O

Remarque 1.3.12. On peut remarquer que le premier point est une sorte de réciproque
partielle du théoreme de Hurewicz

St f: X =Y est une application continue entre espaces connezes par arcs et que
mi(f) : m(X,x) = m(Y, f(x)) est un isomorphisme pour tout i < n et un isomor-
phisme ou épimorphisme pour i = n, alors il en va de méme pour f. : H(X,Z) —
H,(Y,Z).

Remarque 1.3.13. Le théoreme [1.3.11| n’est pas vrai si on ne suppose pas X et YV
simplement connexes en général, voir [21I] pour un contre-exemple (par exemple
S%v St1). On peut cependant modifier les hypothéses pour gérer néanmoins ce cas.

Toute application continue f : X — Y induit une application continue f X =Y
au niveau des revétements universels de X et Y (s’ils existent) par propriété des
revetements.

Théoreme 1.3.14. Si f : X — Y est une application continue telle que pour tout
v e X, f.: m(X,z) = 7 (Y, f(x)) est un isomorphisme et que f, : H,(X,Z) —
Hn(}}, Z) est un isomorphisme pour tout n > 0, alors f est une équivalence d’homo-
topie faible.

FEsquisse de la preuve : L’isomorphisme Hy(X) = Z[mo(X)] S Ho(Y) = Zmo(Y))
implique que f, : mo(X) — m(Y) est une bijection. Ceci permet de se ramener a
démontrer le résultat sur les composantes connexe par arcs. La condition sur le 7
fait partie de ’énoncé. En passant aux revétements universels, la longue suite exacte
d’homotopie d’'un revétement (cas particulier de celle d'une fibration de Serre) cf

4. c’est a dire que mo(X) = {0} = m (X)
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Théoreme [1.6.14| permet de se ramener & démontrer que f, : m, (X, &) = m, (Y, f(i))
est un isomorphisme. Ce qui est exactement le Théoreme [1.3.11]

Cet énoncé nécessite de pouvoir prendre des revétements universels; ce n’est en
fait pas un probleme car tout espace est faiblement homotope a un CW-complexe (cf
la Remarque , et donc a équivalence d’homotopie faible pres, tout espace a un
tel revétement universel (évidemment le calcul de cet espace peut étre compliqué...).

Remarque 1.3.15. L’hypothese que les applications induites sur ’homologie des re-
vetements universels est un isomorphisme peut se tester au niveau de 'homologie a
coefficient local de X, Y ; c’est d’ailleurs ’énoncé correct lorsque les espaces n’ont
pas un tel revetement universel.

Si X est un espace connexe par arcs, un systeme local de groupes abéliens est une
représentation Z-linéaire de (X, zg), autrement dit un Z[m; (X, zo)]-module.

Un résultat standard est que la catégorie de ces représentations linéaires du groupe
fondamental est équivalente a la catégorie des faisceaux de groupes abéliens locale-
ment constant sur X (et est indépendante du choix du point base x a équivalence
pres). Pour tout systeme local ., la (co)homologie (singuliere) & coefficient localffest
la (co)homologie du complexe Cy (X, Z) ®@zir, (x.z0))  ; o0 peut donner une construc-
tion directe de ce complexe sans passer par le revétement universel et qui est définie
pour tout espace topologique. Un systeme local non-trivial canonique est donné par
Z[m (X, x)].

Pour un espace non connexe par arcs, on peut généraliser la notion de systeme
local, définie alors comme foncteur du groupoide fondamental 7(X) dans Ab la
catégorie des groupes abéliens, et de sa cohomologie.

Théoréme 1.3.16. Si f : X — Y est une application continue telle que pour tout z €
X, fio :m(X,z) = m (Y, f(x)) est un isomorphisme et que f, : H,(X, Z[m (X, z)]) —
H,(Y,Z|m (X, x)]) est un isomorphisme pour tout n > 0, alors f est une équivalence
d’homotopie faible.

L’équivalence entre les théoremes [1.3.16] et [1.3.14] se déduit d'un argument stan-
dard de suite spectrale (appliqué a celle de Leray-Serre du revétement universel).

Les constructions usuelles (quotient, tiré en arriere, ...) ne préservent pas en
général les homotopies ou les homotopies faibles.

FExemple 1.3.17. Considérons les deux poussés en avant définis par les diagrammes

a)
(%% {*}

) ——— g g Iy = {4}

5. il est également standard que pour des espaces paracompacts cette cohomolgie est celle du
faisceau localement constant associé
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b) Mais
{0, 1} ———{+}

0,1] ——S".

On constate que ces poussés en avant ne sont pas homotopes (ni faiblement homo-
topes) alors que pourtant [0, 1] est homotope au point. Ainsi, on voit que les poussés
en avant d’applications homotopes ne sont pas homotopes en général, c’est donc a
fortiori le cas des quotientsﬁ. En particulier le quotient de I'application X — {x}
est trivial et ne contient aucune information sur X. On pourrait facilement faire des
constructions similaires avec toutes sortes de limites et colimites (y compris le cas
d’une réunion) pour montrer que ces (co)limites ne se comportent pas bien vis a vis
de I'invariance par homotopie ou homotopie faible.

Cet exemple se généralise bien sur aux tirés en-arriere et a la plupart des (co)limites.

Pour palier ce défaut, et pour étudier les recollements d’espace topologiques a
homotopie pres, en d’autres termes pour comprendre la structure de Ho, Ho®"",
on doit construire des versions “homotopiques” de ces (co)limites. Ces constructions
permettent de relier les groupes d’homotopie, de (co)homologie et autres invariants
topologiques de la (co)limite homotopique & ceux des différentes composantes. On
donnera un exemple de poussé en avant homotopique ci-dessous [1.8.9| et la théorie
des catégories de modele permettra de définir et étudier ces notions de maniere

générale (cf[2.6)).
1.4. ALGEBRE HOMOLOGIQUE, FONCTEURS DERIVES
On fixe un anneau R commutatif.
Définition 1.4.1. Un complexe de chaines est un diagramme de R-modules :
Lo Son 5o,

tel que dod = 0.
Un complexe de cochaines est un diagramme de R-modules :

R e AL o AR AP
tel que 0o d = 0.

Définition 1.4.2. un morphisme de complexes de chaines f : A — B est une suite de
morphismes f, : A, — B, compatible avec la différentielle : do f,, = f,_1 od.

Notation 1.4.3. On notera Ch(R) la catégorie des complexes de chaines de R-modules
et Chso(R), Ch<o(R) ses sous-catégories pleines des complexes concentrés en degrés
positifs ou négatifs (c’est a dire tels que Ci-g = 0 ou Cjs¢ = 0).

Définition 1.4.4 (Suspension d'un complexe de chaines). Soit (C,d) un complexe
de chaines de R-modules. On définit sa suspension, notée C[1] comme la suite de
R-modules (C[1]; := C;_1)icz munie de la différentielle —d.

6. qui ne sont qu'un cas particulier de poussé en avant on Y = {x}
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La suspension itérée Cln| = C[1]---[1] est donc le complexe C[n]; = C;_,, muni
de la différentielle (—1)"d. On peut voir tout R-module M comme un complexe
concentré en degré 0, c’est a dire de la forme ...0 — M — 0 — ..., que 'on notera
tout simpelment M sans autre forme de proces, et donc aussi comme un complexe
concentré en degré i noté bien évidemment comme la suspsension M [i]. Le foncteur
R—Mod — Ch(R) ainsi obtenu est pleinement fidele.

Définition 1.4.5 (quasi-isomorphisme). Un morphisme de complexes de chaines f :
A — B est appelé un quasi-isomorphisme, (ou une équivalence faible), s’il induit
des isomorphismes en tout degré en homologie. On notera parfois — les quasi-
isomorphismes.

Cette notion est fondamentale; par exemple ’équivalence entre les différentes
théories homologiques entre les complexes simplciaux, leurs triangulations ou I'ho-
mologie singuliere est induite par des quasi-isomorphismes. De maniere générale,
I’algebre homologique est I'étude des complexes de chaines a quasi-isomorphisme
pres.

Définition 1.4.6. Une homotopie de chaines entre deux morphismes f,g : A — B
est une suite d’applications H,, : A, — B, telle que pour tout n € Z, on ait

doHn+Hn—1od:fn_gn-
On dira que f est homotope a g.

Lemme 1.4.7. Si f,g : A, — B, sont des morphismes de complexes de chaines
homotopes, alors f., g. : H.(A.) — H.(B.) sont égales.

On déduit facilement du lemme précédent que si f est homotope a l'identité (ou
tout isomorphisme ou tout quasi-isomorphisme), ¢’est un quasi-isomorphisme.

Définition 1.4.8. On dit que deux complexes de chaines sont quasi-isomorphes s’il
existe un zigzag de quasi-isomorphismes entre eux. On dit que deux complexes A, B
sont homotopes s’il existe des morphismes de complexes f,A — Bet g: B — A tels
que fog et go f soient homotope au sens des chaines a idg et id 4.

Tout comme pour les espaces topologiques, on a deux catégories “homotopiques”
induites par ces notions.

e on a la catégorie F (R) := Ch(R)/ ~ obtenue en quotientant les morphismes
de Ch(R) par la relation d’homotopie de chaines, appelée parfois catégorie
homotopique de R;

e la catégorie dérivée D(R) := Ch(R)[giso™'] olt on a formellement inversé les
quasi-isomorphismes.

On a donc défini deux catégories # (R) et D(R) dont les objets sont les complexes de

chaines de R-modules, et telles que pour tous complexes M et N, Homg (g (M, N) =

Homp(M,N)/~, (ol ~ est larelation d’homotopie entre morphismes,) et ott Homgp)

est obtenue en ajoutant formellement a Hompg un inverse a chaque quasi-isomorphisme.
Notons que ’on a une “factorisation ” 2(R) = F (R)[qiso™!].

Terminologie 1.4.9. On dit qu'un complexe de chaines est acyclique si son homologie
est nulle en tout degré.

Autrement dit un complexe de chaines (C,, d) est acyclique si et seulement si la
suite ... C; A C;_1 — ... est exacte.
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FExemple 1.4.10. Si X est un espace topologique contractile, alors son complexe des
chaines singulieres réduites ker(C\(X) — C,({*}) est acyclique.

On réunit dans le lemme suivant les deux lemmes fondamentaux/fondateurs de

I’algebre homologique :

Lemme 1.4.11. a) (Lemme du serpent) Si A 4y B % © est une suite exacte
courte de complexes de chaines[] on obtient une suite exacte longue naturellef]
en homologie :

L Ho(A) 5 Hy(B) 25 Hoy(C) -5 H, 1 (A) 25 H,_(B)...
b) (Propriété 2 pour 3) Etant donné un diagramme commutatif :

AC B C

R

A,(é B/ — O/

Si les deux lignes sont exactes, et si deux des morphismes verticaux sont des
quasi-isomorphismes, le troisieme ’est aussi.

Tout comme dans Top, les constructions de (co)limites dans les complexes ne sont
pas préservées par les équivalences faibles.
FExemple 1.4.12. Soit M un R-module. On a un complexe concentré en degré > 0

id id

M= ... ML M2 M M- M M 0
qui vérifie donc M;" = M pour tout i > 0. L’homologie de ce complexe est nulle

en tout degré et le morphisme canonique vers le complexe nul 0 est donc un quasi-
isomorphisme. De méme on a le complexe

M- = ... 0 YLy VL VLN L I L Y

*

qui vérifie donc M;” = M pour tout ¢ < 0 et est aussi quasi-isomorphe a 0.
On a aussi un morphisme de complexe ¢ : M — M donné par

M2 Mz 0 0 0
[ I R I
0 0 M=

et on en déduit un diagramme commutatif de quasi-isomorphismes M 2. M.

oj lo

0—2—0
On a que le noyau et le conoyau de 0 — 0 sont encore 0. En revanche le noyau de ¢
est = ... 0 Yy LN, y SRR Y LN ... ou le premier
0 est en degré 0 dont I’homologie est M en degré —1 et triviale en tout autre degré.

7. par défintion cela veut dire que f, g sont des morphismes de complexes et que en tout degré
n les suites induites de modules sont exactes

8. autrement dit on a un foncteur de la catégorie des suites exactes courtes de complexes dans
celle des suites exactes longues de modules
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De méme le conoyau a une homologie qui vaut M en degré 1 et 0 ailleurs. Dans les
deux cas le noyau et le conoyau de ¢ ne peuvent pas étre quasi-isomorphes a celui
de 0 — 0 ce qui montre que méme dans un cas simple, le noyau et le conoyau ne
sont pas préservé par quasi-isomorphisme.

Cet exemple se généralise au poussé en avant et tiré en arriere bien entendu.

Remarque 1.4.13. Soit N un R-module et (A,d) un complexe. On peut étendre la
différentielle d linéairement en d ® g idy sur chaque A; ®g N. 1l est clair que la suite
obtenue (A; ®r N,d ®pr idy) est un complexe de chaines.

Si f: A — B est un morphisme de complexe de R-modules, alors 'application
induite f ®pidy est un morphisme de complexe. De méme, une homotopie H entre
deux morphismes de complexes f, g induit une homotopie H Qg idy entre les appli-
cations f ®pidy et ¢ ®pidy.

En revanche, un quasi-isomorphisme f : A — B n’induit pas un quasi-isomorphisme
A®pridy — B®pgidy en général (sauf si N est plat). Ce phénomene est du au fait
que le produit tensoriel —®pgidy ne préserve pas les suites exactes courtes en général
et est responsable du théoreme des coefficients universels.

De méme les foncteurs Hompg(—, N) et Homg(N, —) ne sont pas invariants par
quasi-isomorphisme. Il convient d’étudier quelques exemples et exercice d’algebre
homologique sur ce sujet dans votre référence préférée (ou consulter celles données
sur la page web du cours).

La construction du cone d’un morphisme de complexe est importante en algebre
homologique. Nous verrons (proposition [2.6.21]) qu’ils sont un modele tres simple
pour les colimites homotopiques de complexes de chaines.

Définition 1.4.14. Soit f : (P.,dp) — (Q.,dg) un morphisme de complexes de
chaines. Le cone de f est le complexe de chaines C'(f) qui en degré n est donné par
C(f)n = Po—1 ® Qy et est muni de la différentielle d(z,y) = (—d(x),d(y) + f(x))
(pour x € P, 1, y € Q).

L’inclusion canonique et la projection canonique donne une suite exacte courte de
complexes de chaines

0— Q. < C(f) > PJ[1]

(ou on a suivi la définition pour la convention sur la suspension d'un complexe
de chaines). Un calcul rapide montre que la longue suite exacte associée en homologie

(lemme [1.4.11]) est
= Ho(P) 5 Ha(Q) S Hu(C() 5 Hoa(P) =
En particulier, on a

Lemme 1.4.15. Soit f : P — () un morphisme de complexes de chaines. Alors f est
un quasi-isomorphisme si et seulement si cone C(f) est acyclique.

Remarque 1.4.16. On appellera cocone d’'un morphisme f : P — () le complexe
coC(f)) qui en degré n vaut P, @ Q,41 et est muni de la différentielle d(x,y) =
(d(x),—d(y) + f(z)) pour x € P,, y € Qni1- On a que H;(coC(f)) = Hi 1 (C(f))
(bien que C(f) ne soit pas exactement la désuspension du cone). On a évidement
une suite exacte courte de complexes

0 Q. [-1] < C(f) & P..
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FEzxercice 1.4.17. Reprendre 'exemple [1.4.12] et vérifier que le cone de M AN est

trivial. Calculer 'homologie du cone et du cocone de M SN pour deux R-modules
M et N.

1.5. RESOLUTIONS, FONCTEURS EXACTS, CONSTRUCTION DE Tor ET Ext

On a vu que les (co)limites usuelles ou les opérations de prendre Hom ne sont
pas invariantes par quasi-isomorphisme. En algebre homologique, on a une fagon
standard de réparer ce probleme par 'utilisation de résolutions. Nous (r)appelons
ces notions maintenant qui seront en un sens généralisé dans le cadre de catégories
de modele plus loin.

Dans cette section, nous énongons des résultats pour des catégories abéliennes
(cf [20] ou toute autre référence). Le lecteur qui ne sait pas ce que ¢’est peut n’avoir
en téte que deux types d’exemples : les catégorie des R-modules ou leurs catégories
opposées ou R est un anneau associatif unitaire quelconque. Les catégories de com-
plexes, I’homologie et toutes les notions précédentes ont un sens dans ce cadre plus
général mais il suffit de garder I'intuition précédente en téte si on ne connait pas ces
notions. Notons que les morphismes entre R-modules forment un groupe abélien et
que ceci se généralise a toute catégorie abélienne.

Définition 1.5.1. Un foncteur F': C — D entre deux catégories abélienne est

(1) additif si F(f+¢g) = F(f)+ F(g) et F'(0) =0;

(2) exact a gauche (resp. a droite) si pour toute suite exacte 0 - A — B —
C — 0, lasuite 0 = F(0) - F(A) — F(B) — F(C) (resp. F(A) —» F(B) —
F(C) — 0) est exacte;

(3) est ezact si il envoie toute suite exacte courte sur une suite exacte courte
(autrement dit est exact a gauche et a droite).

Le lemme suivant fournit des exemples fondamentaux de ces notions.

Lemme 1.5.2. Soit M un R-module, alors le foncteur M ®z — est exact a droite, et
Homp(—, M) et Homp(M,) sont exacts a gauche.

Ceci conduit a regarder des modules rendant ces suites toujours exactes. Il s’agit
respectivement des modules plats, projectifs et injectifs.

Définition 1.5.3. (1) Un R-module P est dit projectif si, pour tout morphisme
J : P — N de R-modules et tout morphisme surjectif p : M — N de
R-modules, il existe un morphisme f tel que f =po f:

~ . P
P
M — N.
p

(2) Un R-module I est dit injectif si, pour tout morphisme f : N — [ de R-
modules et tout morphisme injectif ¢ : N < M de R-modules, il existe un
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morphisme f tel que f = foi :

(3) un R-module est dit plat si pour toute suite exacte 0 — A EN - BENYG RN 0,
lasuite 0 > PRr A — P®Rr B — P®rC — 0 est exacte.

(4) Un objet P d’une catégorie abélienne C est dit projectif (resp. injectif) si il
vérifie les mémes conditions de relevement que (1) (resp. (2)) dans la catégorie
C (ou surjectif est remplacé par épimorphisme, injectif par monomorphisme)

Les modules projectifs et injectifs vérifient bien la propriété annoncée.

Proposition 1.5.4. (1) Un R-module P est projectif si et seulement si pour toute

suite exacte 0 — A 5 B % C = 0, la suite 0 — Hompg(P, A) Ehi

Hompg(P, B) £5 Hompg (P, C) — 0 est exacte.

(2) Un R-module est injectif si et seulement si pour toute suite exacte 0 —
AL B % 0 =0 lasuite 0 — Hompz(C,P) —% Homg(B, P) =
Hompg (A, P) — 0 est exacte.

Notons que cette proposition est vraie dans toute catégorie abélienne.

Démonstration. Soit A %> B % € une suite exacte courte. Pour tout module P, on
a un complexe

0— I‘IOH’IR,]\/[Od(P7 A) ﬁ HomR,Mod(P, B) W;) I’IOH’IR,]MOd(P7 C)

ou la premiere application est (¢ : M — A) — (f o ¢; P — B) et la deuxieme est
(¥ :P— B)~ (goy; P — (). Comme fog=0,on a bien que la composée de
deux applications linéaires est nulle. Montrons que le premier morphisme f o — est
injectif. En effet si fo ¢ : P — B est nulle, alors ¢ est nulle puisque f est injective.
Montrons maintenant que ker(g o —) = Im(f o —). Puisque on sait déja qu’on a un
complexe, il suffit de montrer 'inclusion du noyau de g o — dans I'image de f o —.
Soit g 01 = 0, alors pour tout m € P, on a que ¢(m) € ker(g), donc il existe a € A
tel que ¢(m) = f(a) car la suite A — B — C est exacte. Mais comme en plus f
est injective, ce y est unique. On le note ¥ (m). L'unicité garantit que l'application
m +— 1h(m) est bien linéaire et par construction on a ¢ = f o).

Jusqu’a présent nous n’avons pas utilisé d’hypothese sur P et nous avons que

pour que la suite Hompg_pr0q(P, A) for, Hompg_ p0a( P, B) EAd Hompg_ p0a( P, C') soit
exacte il faut et il suffit que le dernier morphisme Hompg_ ys04( P, B) %% Homp_ Mod( P, C)

soit surjectif. Or ce morphisme est surjectif précisément si pourtout morphisme
Y : P — () il existe un morpisme ¢ rendant commutatif le diagramme suivant :

P

B—g»C’.
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Donc si P est projectif, on a bien que ce dernier morphisme est surjectif pour toute
suite exacte A — B — (. Réciproquement, si ce résultat est vrai pour toute suite
exacte, alors pour toute surjection p : M — N, on a une suite exacte ker(p) —
M — N et la condition de surjectivité assure donc que pour toute f : P — N, on a
l'existence de f telle que po f = f.

Le résultat pour les modules injectifs est complétement dual et se démontre mu-
tatis mutandis. O

FExemple 1.5.5. Un module libre est toujours projectif, car pour construire une ap-
plication linéaire issue d’'un module libre, il suffit de choisir les images de sa base
librement. Plus généralement :

Lemme 1.5.6. Un R-module P est projectif si et seulement si il est facteur direct
d’un module libre : il existe @ tel que P @ (@) soit libre. par ailleurs, un module
projectif est plat.

Il est malheureusement plus compliqué de caractériser les modules injectifs. mais
on a le critere suivant

Lemme 1.5.7. Un R-module E est injectif si et seulement si il satisfait a la condi-
tion (1)) :

(1) pour tout idéal I de R, Homg(R, E) — Hompg(I, E) est surjective.
Exemple 1.5.8. Si R est un corps, tous les modules sont projectifs et injectifs.
Exercice 1.5.9. Démontrer le résultat énoncé dans I'exemple précédent.

FEzercice 1.5.10. Démontrer que Z/mZ n’est pas projectif sur Z. Puis que Z/mZ est
projectif dans Z/mnZ lorsque m et n sont premiers entre eux.

Fxercice 1.5.11. Soit 0 - A — B — P — 0 une suite exacte avec P projectif.
Montrer que la suite est scindée. Si de plus B est aussi projectif, montrer qye A est
également projectif.

Ezxemple 1.5.12 (Les cas de Q). Les nombres rationnels Q sont un Z-module plat
mais qui n’est pas projectif. C’est aussi un module injectif.

En effet par le Lemme de Baer|1.5.7] il suffit de montrer que pour tout n € N* I’ap-
plication Homy(Z, Q) — Homgz(nZ, Q) est surjective. Soit donc f € Homgz(nZ, Q)
et posons g : Z — Q définie par g(k) = k@ Clairement g,z = f. Notons que cette
preuve s’applique a tout Z-module M dans lequel on peut diviser par tout entier.

Que Q n’est pas projectif découle du fait que I'application surjective g : @y Z =
ZM) — Q définie par g((ng)ren-) = Dopen: & n'admetpas de section.

k
Pour la platitude on renvoit a I'exercice

Ezemple 1.5.13. Le quotient Q/Z est un Z-module injectif mais n’est pas plat (ni pro-
jectif donc). En effet, la preuve de I'injectivité se fait comme dans I'exemple [1.5.12]

Montrons que Q/Z n’est pas plat. Considérons 'application f : Z =" 7 qui est in-
jective. L'application f®id : (Q/Z)®z7Z — (Q/Z)®77Z n’est autre que I'application
Q/7Z =% Q/7Z qui n’est pas injective car f(1/n) =1 =0 dans Q/Z.

Un des intéréts de ces notions est que tout module peut étre approché par de tels
modules, c’est a dire est quasi-isomorphe a un complexe formé de tels modules.
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Définition 1.5.14. Soit M un R-module.

(1) Une résolution projective la méme chose qu'un quasi-isomorphisme de com-
plexes de chaines n : P, — M ou chaque P; est projectif. Autrement dit c¢’est
la donnée d’un complexe de chaines concentré en degré positif (P,),en tel
que chaque P, est projectif et vérifiant H;~o(P,) =0, Ho(P,) = M.

(2) Une résolution injective de M est un quasi-isomorphisme de complexes de
cochaines concentré en degré positif 3 : M — I* ot chaque I’ est injectif.
Autrement dit c’est la donnée d’ un complexe de cochaines (I"),en tel que
chaque I" est injectif et vérifiant H>°(I*) =0, H°(I*) = M.

Proposition 1.5.15. Tout module admet des résolutions projectives et injectives.

Démonstration. On commence par choisir une surjection fy : Py — M ou P, est
projectif (on peut méme prendre P libre : il suffit de prendre By = @4 R ou S

est un systeme de générateurs de M). Soit alors My = ker(P 58 01, Soit alors

P f# My une surjection avec P; projectif et on note dy : P, f# My — Fy. On
a par construction que Py/Im(dy) = M. On continue la construction comme suit.

. . . . dn—> dn_s
Supposons avoir construit inductivement une suite exacte P,_; — P,_o — ...DF

tel que les P; soient projectifs. On note M,,_; = ker(d,_1) et on choisit P, EL M, _4
une surjection R-linéaire. On a alors que la composée d,, : P, — M,,_1 — P,_; vérifie
que Im(d,) = ker(d,,_1) de telle sorte que 'on a étendu la suite exacte précédente.
On obtient ainsi en itérant une résolution projective (Pi,d).

Pour les résolutions injectives, on remarque tout d’abord que pour tout anneau R,
on a que Homg(R, I) est injectif pour tout Z-module injectif (par exemple I = Q/Z)
ce qui découle du fait que le foncteur Homyz (R, I) est adjoint a droite du foncteur
oubli R-mod — Z-mod (tout comme un R-module libre est adjoint a gauche du fonc-

teur oubli). On en déduit une inclusion canonique M — 1T Homy(R,Q/Z).
¢:M—Homy (R,Q/Z)
De plus le membre de droite est injectif car produit d’injectif. On a construit

Bo: M — I° avec I° injectif et le reste de la preuve est dual du cas projectif. O

Ezemple 1.5.16. Le complexe --- — 0 — 0 — Z =3 Z est une résolution projective
(car libre) de Z/mZ.

Lemme 1.5.17 (Reléevement des morphismes & une résolution projective). Soient M,
N des R-modules, n : P, — M une résolution projective de M et a : ), — N un
quasi-isomomorphisme quelconque. Pour tout morphisme de R-modules f : M — N,
il existe un morphisme de complexes de chaines de R-modules f, : P, — @, rendant
le diagramme suivant

Pt

Zln Zlﬂé

M——N
f

commutatif. De plus le morphisme f est unique a homotopie de chaines pres.

Démonstration. On construit fn : P, — Q, par récurrence sur n. On pose par
convention f_; = f: M — N. On suppose que l'on a construit, pour tout ¢ tel que
—1 <4 <mn—1un morphisme f; : P, — Q; tel que df; = f;_1d.
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Par définition, le module P est projectif si et seulement si, pour tout morphisme
J : P — B et tout épimorphisme p : A — B, il existe un morphisme f tel que
f=pof
P

£

A B

Or, par hypothese, df,_1 = fn_s, ce qui implique que fn,l(Zn,l(P)) CZ,1(Q) =
Ker(d: Qn-1 — Qn_2). On a donc un diagramme :

Pn Zn—l(P)(—>Pn—1
f"*”iZng; fr1
Qn Zn—l(Q)(—> Qn—l

De plus, d : Q,, — Z,-1(Q) est surjective, car ¥ : @, — N est une résolution. Donc,
puisque P, est projectif, il existe une application f, : P, — Q, qui fait commuter
le diagramme précédent.

Etant donné deux relevements, on construit une homotopie entre eux par récur-
rence de la méme maniere. O

FExercice 1.5.18. On peut en réalité reformuler le lemme précédent de la facon sui-
vante : Soient P, un complexe dont les modules sont tous projectifs, et f : Q, — N,
un quasi-isomorphisme surjectif en tout degré. Alors on a la propriété de relevement :

0 0.
f
P, - N.

On a aussi un résultat dual avec les complexes de modules injectifs et les quasi-
isomorphismes injectifs en tout degré.

En appliquant la proposition a f =id : M — M et a deux résolutions projectives
on obtient

Corollaire 1.5.19. Deux résolutions projectives P, (), d’'un méme module M sont
homotopes et deux résolutions injectives sont également homotopes.

FEzercice 1.5.20. Montrer que si M est projectif alors son dual Homy (M, A) est
injectif.

Ezercice 1.5.21. Si M est un Z-module, on note S™'M le Z-module formé des

éléments T avec * € M et n € S et dans lequel ¥ = X si et seulement si
dk € S : k(mz —ny) = 0 (c’est a dire si et seulement si mz — ny est un élé-
ment de torsion de M). En particulier £ = 0 (: %) si et seulement si z est un

élément de torsion.

(1) Vérifier que Q = S™'Z.
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(2) Démontrer que tout élément de Q ®z M s’écrit sous la forme %@ T avec
z € M, et en déduire un isomorphisme Q @z M = S~'M.

(3) Démontrer que si M’ L M une application injective alors Q ®7z M’ |
Q ®z M est également injective et en déduire que Q est plat.

Le lemme de comparaison permet d’associer des complexes de (co)chaines
canoniques a au produit tensoriel ou aux foncteurs de morphismes. Et plus généra-
lement a tout foncteur exact a droite ou gauche.

Notons que si F' est un foncteur additif, F' envoie un complexe de (co)chaines
(C,d) sur le complexe de (co)chaines (F(C), F(d)).

Pour simplifier, dans le théoreme qui suit on suppose que C = R—Mod ou
R—Mod®, mais le résultat se généralise sans difficulté a toute catégorie abélienne
qui admet des résolutions projectives et injectives pour tout objet.

Théoréme 1.5.22. Soit F': C — S—Mod un foncteur exact a droite (resp. a gauche).

(1) Si P., Q. sont deux résolutions projectives (resp. injectives) de M, alors
il existe un quasi-isomorphisme canonique (& homotopie de chaines pres)
F(P,) — F(Q.,).

(2) La construction M +— F(P,(M)) ou P,(m) est une résolution projective
(resp. injective) de M induit un foncteur P(C) — D(S) et en particulier
les i-iémes groupes de (co)homologie M — H;(F,(P,(M)), s’étendent en un
foncteur C — S—Mod.

Par @(C) on entend la catégorie dérivée de C, c’est a dire Ch(C)[q — iso™ .

Démonstration. Nous faisons le cas des foncteurs exacts a droite.

(1) D’apres le lemme de relevement |1.5.17] il existe un morphisme P, EN Q. tel

que le diagramme P, —f>Q* soit commutatif et de plus si [/ : P, —

id
(). est un autre tel morphisme, alors il existe une homotopie de chaines
(définition ??) entre f et f’. En inversant les roles de P, et )., on obtient

g : @« — P, un morphisme de complexes relevant id; (également unique a
homotopie de chaines pres). Il suit que les composées fog : Q. — Q. et gof :

P, — P, sont des morphismes de complexes relevant id,; : P, ﬂ> P, .Or

zln :ln

M — M
I'identité idp, en est un autre relevement. Il suit encore et toujours de 'unicité
a homotopie de chaines pres dans le théoreme que foget go f sont
homotopes a I'identité : fog =idg, +dh+hd, go f =idp, +ds+ sd. Il suit
de l'additivité ?? et de la fonctorialité de F' que F(f) o F(g) = F(idg,) +
F(d)F(h)+ F(h)F(d) et F(g)o F(f) = F(idp,) + F(d)F(s) + F(s)F(d) sont
homotope a F'(id) = id et donc induisent des isomorphismes en homologie.
Autrement dit ce sont des quasi-isomorphismes.
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Ceci nous donne l'existence d'un quasi-isomorphisme F(f) := F(P,) —
F(Q.) et par ailleurs, ce dernier est indépendant du choix de f & homotopie
pres par le méme argument.

(2) Soit M 5 Net N % P deux morphismes dans C. Soient P.(M), P.(N) et
P,(P) des résolutions projectives respectives de M, N, P et f : P.(M) —
P« (N) et g: P.(N)— P,(P) données par le théoréeme tout comme
go f: P(M)— Px(P). On note comme dans le : point (1) LE(f) :== F(f) et
LF(g) := F(j). Comme les composées jo f et g o f sont deux relevements de
go f entre les mémes résolutions, ils sont reliées par une homotopie de chaines
et donc leur image par F' également. L’argument s’applique a l'identité de
meme.

Puisque des morphismes homotopes induisent exactement le méme mor-
phisme sur les groupes d’homologie, il suit que si f : P, — @, est homotope
a f"onaque Hi(F(f)) = H;(F(f'): Hi(L(F(P.))) — H;(L(F(Q.))). Ainsi
H;(LF(f)) est indépendant du choix du relevé f (dans le point (2)) et il
découle des points (1) et (2) que H;(ILF(—)) est bien un foncteur.

O

Ces constructions s’appelent les foncteurs dérivés de F' et seront étudiés dans un
cadre général plus loin 2.6f On note donc dans la suite LF(M) ~ F(P.(M)) et
RF(N) = F(I*(N)) les foncteurs donnés par le point (2) du théoreme dans
les cas ou F' est exact a droite ou a gaucge respectivement.

Le “foncteur dérivé” d'un foncteur exact a droite devient exact

Proposition 1.5.23. Soit F' un foncteur exact a droite. Si 0 — A LBpSsoso
est une suite exacte, alors on peut choisir une résolution projective de B telle que

0 — LF.(A) ) LF.(B) ) LF,(C) — 0 est une suite exacte de complexes de
chaines. En particulier on a une suite exacte longue naturelle en (co)homologie :

@) - = HLFA) 'Y gwrB) " BwWre) S H_(LF(A))
“lf Hi \(LE(B)) — - — Hy(LEB) " mywre) % ra) ™ ™ o o

Ce résultat est encore vrai pour les foncteurs dérivés RF' d'un foncteur exact a
gauche.

FEzxercice 1.5.24. Démontrer la proposition [1.5.23] et sa version duale.

Si on spécialise le théoreme [1.5.22 a nos deux exemples fondamentaux : le produit
tensoriel et les homomorphismes, on retrouve les foncteurs Tor; et Ext’ classiques
qui apapraissent dans le théoreme des coefficients universels.

Définition 1.5.25. Soit M un R-module.
L
(1) On note M ® — le foncteur dérivé a gauche de M ® — et Tor(M,—) =
R R

H;(P.(M) ®g —) ses i-iemes groupes d’homologie.

(2) On note RHompg(—, M) le foncteur dérivé a gauche de Hompg(—, M) et
Exto(N, M) = H'(Homg(N, I*(M))) = Hi(Homg(P.(N),M)) ses i-iemes
groupes de cohomologie.
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Les foncteurs Tor, sont des foncteurs d’homologie alors que les Ext’ sont des
foncteurs de cohomologie.

Le mot Tor vient de 'expression “produit de torsion” (car ces groupes n’appa-
raissent et ne mesurent que la torsion) alors que Ext vient de extension car ces
groupes encodent le nombre d’extensions de M par N.

Ezemple 1.5.26 (Ext et Tor de Z/nZ). La résolution projective de 'exemple [1.5.16
permet de calculer facilement Tor;(Z/nZ, M) et Ext'(Z.nZ, M). En effet, par défi-
nition nous obtenons que
L *1
ZnZ@M=---—0—-0—-M—=M
puisque Z @ M = M et que n ® m = 1 ® nm. De méme
RHom(Z/nZ, M) =M 3 M —0— ...

car Hom(Z, M) = M ou l'isomorphisme est donné par f — f(1).

Ainsi, ces groupes de (co)homologie sont nuls en degré > 2.

Regardons maintenant le cas de M = Z, puis de M = Z/nZ. Pour M = Z, comme
celui-ci est projectif, on a immédiatement que

Tor;>1(Z/mZ,Z) = 0 et Torg(Z/mZ,Z) = Z./mZ = 7 = 7/ mZ.
En revanche on a que
Ext®(Z/mZ,7) = 0 mais Ext'(Z/mZ,7) = 7./mZ est non-nul.

Regardons maintenant M = Z/nZ. Alors toutes mes fleches dans les complexes
dérivées deviennent nulles et il suit

Tor;>a(Z/mZ, Z/mZ) = 0, et Tori<,(Z/mZ,Z/mZ) = 7/mZ;
Ext’2%(Z/mZ,Z/mZ) = 0, et Ext'<(Z/mZ,Z/mZ) = Z./mZ;

Remarque 1.5.27. De maniere plus générale, les arguments donnés au-dessus donnent
directement que si P, est un complexe gradué positivement de modules R-projectifs,
alors le foncteur P, ® p — est exact.

En particulier, une suite exacte courte L — M — N de R-modules induit une
suite exacte courte de complexes P, ®gr L — P, ®p M — P, ®r N et, si P, est une
résolution projective de @, par le lemme [I.4.11] une suite exacte longue

oo — Torf(Q, M) — Torf(Q,N) — Tor{(Q, L)

— Tori(Q, M) — Tor{(Q,N) — Q®r L — Q®r M — Q®r N — 0.
Les constructions précédentes suggerent qu’on a envie d’identifier des résolutions
d’un méme objet, et, plus généralement, des complexes quasi-isomorphes.
Remarque 1.5.28. On a donc défini des “objets globaux” :
L
M SR N et IRI‘IO?HRU\f7 N),

qui sont des foncteurs définis sur les catégories dérivées ci-dessus, dont les groupes
de (co)-homologie sont les Tor®(M, N) et Extt(M, N). Pour se faire on définit les
deux foncteurs dérivés :

 Sn - RHomp(~-) : D(R) @ D(R) — D(Z).
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Nous verrons que ces constructions classiques de 1'algebre homologique sont des cas
particuliers des foncteurs dérivés des catégories de modeles.

La propriété suivante est souvent utile.

Proposition 1.5.29.
Exth(M,N) ~ Homgry(M, Nn])

ou N|[n] est le complexe concentré en degré —n

On pourra consulter [20, [17] pour des rappels/preuves plus détaillés d’algebre
homologique.

1.6. LES NOTIONS CLASSIQUES DE FIBRATIONS POUR LES ESPACES
TOPOLOGIQUES

A-t-on des notions analogues de “suite exacte longue associée a une suite exacte
courte en homotopie” et de “résolution projective” pour les espaces topologiques ?
La réponse est oui, et nous allons présenter ces objets, fondamentaux dans I’étude
des espaces topologiques a homotopie pres, notions qui sont cependant un petit peu
plus compliqué que pour les complexes de chaines, notamment cas ces objets en sont
plus linéaires[}

Définition 1.6.1. Une fibration de Hurewicz[/"est une application continue p : E — B
vérifiant la propriété de relevement :

X x {0} E
7
X x 1 B

Cela signifie que, pour tout espace topologique X, pour tous morphismes, X x {0} —
X x I et X x I — B faisant commuter le cadre du diagramme précédent, (ou
X x {0} — X x I est linclusion,) il existe un morphisme X x I — E faisant
commuter le diagramme précédent.

Définition 1.6.2. Une fibration de Serre est une application continue p : £ — B
vérifiant la condition de relevement précédente pour X = I", n > 0.

Remarque 1.6.3. Une fibration de Hurewicz est une fibration de Serre, mais la réci-
proque est fausse.

FExemple 1.6.4.
a) Un revétement est évidemment une fibration de Serre. L'unicité des releve-
ments des homotopies permet méme de montrer que c’est en fait une fibration
de Hurewicz(cf. [1§]).
b) Une projection F' x B — B, (f,b) — b, est une fibration de Hurewicz (et
donc de Serre).

9. par exemple une application linéaire surjective X — Y vérifie que f~1(y) = f~1(y') pour
tout couple de points y, 9/, mais ce n’est évidemment pas le cas, pas méme & homotopie faible pres,
pour une application continue

10. on dira souvent fibration sans autre adjectif
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¢) Soit p : E — B une fibration (de Hurewicz ou de Serre), et g : X — B.
L’application g*(p) : X xp E — X du pullback de p et g vers X est une
fibration.

Pour rappel, le pullback de deux applications continues f: B — Aet g: C — A
est 'ensemble {(b,c¢) € Bx C: f(b) = g(c)}. Il est souvent noté B x 4 C' et est muni
de deux applications de projection : f*: Bx,C — Bet g* : Bx,C — C. 1l vérifie
la propriété universelle que toute paire d’applications 7 : Z — B, j : Z — C telle
que foi = go j il existe une unique application Z — B x 4 C' rendant commutatifs
les diagrammes évidents.

Proposition 1.6.5.
a) “Etre une fibration de Serre” est une propriété locale, c¢’est-a-dire :
p: E — B est une fibration de Serre si et seulement si il existe un recou-

vrement (U;);e; de B par des ouverts tels que p |p,1(Ui) est une fibration de
Serre pour tout ¢ € I.

b) p : E — B est une fibration de Hurewicz si et seulement si il existe un
recouvrement dénombrable (U;);c; de B par des ouverts tels que p | p-1(U;) €St
une fibration de Hurewicz pour tout ¢ € I.

Démonstration. Pour la premiere propriété, voir la feuille de TD 1. Pour la deuxieme,
voir [18, Chapitre II, Section 7]. O

Ezemple 1.6.6 (Espaces fibrés). La proposition précédente permet d’obtenir les exemples
importants suivants.

d) Un espace ﬁbréﬂ (appelé aussi fibré localement trivial), est une fibration de
Serre.

e) Un espace fibré p : E — B au dessus d'une base B paracompacte et Hausdorff
(=séparé) est une fibration de Hurewicz.

La derniere propriété provient du fait qu’un espace paracompact séparé vérifie pré-
cisément ’hypothese que de tout recouvrement ouvert on peut extraire un recouvre-
ment dénombrable. On rappelle qu’elle est évidemment satisfaite si B est une variété
topologique.

Ezxemple 1.6.7 (Espace des chemins). L’exemple suivant est fondamental et en un
sens universel.
f) Soit f: X — Y. On définit P; = YO xy X = {(7,2) € YU x X : 4(0) =
f(z)}. On appelle P; Uespace des chemins au dessus de f. L’application :
evi: Py =Y
(v,z) = (1)

11. c’est a dire une application continue p : E — B telle qu’il existe un recouvrement ouvert
U;)icr de B tel que la restriction de p Ui A U; est homéomorphe a la projection canonique,
p~1(U;)

c’est & dire qu’il existe un diagramme commutatif : p~1(U;) = U; x F; .

p .
pTojo

U;
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FIGURE 4. Un homéomorphisme entre paires (quitte a composer par
la symétrie évidente a droite)

est une fibration de Hurewicz. En effet, supposons que ’on ait un diagramme
commutatif :

23 (72,22)

Z x {0}

Py

Z x I Y

Alors, pour tout z € Z, 7,(1) = ¢(2,0). On pose alors @(z,t) = (7. *
@ | (2)x [0, ©=), OU * désigne la concaténation des chemins.

Remarque 1.6.8. On a factorisé f: X — Y :
X S 9 By

r = (C),r) — flx)
(de Hurewicz). La premiere fleche est bien une homotopie car on peut contracter

tout chemin sur son point base par 'homotopie évidente H(f,t)(u) = f((1 —t)u).

en une équivalence d’homotopie et une fibration

Lemme 1.6.9 (Propriété de relevement des fibrations par rapport aux rétracts forts
de paires cellulaires). Si p: E — B est une fibration de Serre, alors pour tout rétract
par déformation forte ¢ : L — K ou L est un sous-CW-complexe de K il existe un
relevement du diagramme :

(3) L E
4

7 p

K- B

Remarque 1.6.10. On a un homéomorphisme de paires

(I 1 > {0}) = (1" 01+ \ I < {0})
Voir figure []

Preuve du Lemme. Soit r : K — L une rétraction de 7, et H : K x [ — K une
homotopie relativement a L entre idg et or. On a une factorisation du diagramme
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Lo Lx [0,1] UK x {1} —2

K K x[0,1] — K B

11 suffit de montrer qu’il existe un f qui fasse commuter ce diagramme. L’existence
de f vient du fait que L est un sous-complexe cellulaire de K. On peut construire f
par récurrence sur la filtration du CW-complexe K x [0,1] \ (L x [0,1] U K x {1}),
c’est-a~dire qu’il suffit de construire un f faisant commuter le diagramme :

It x [0,1]uI™ x {1} = I
P
S
ntl B
Qui est homéomorphe a :
I" x {0} E
P
T
]n+1... B
Or, p étant une fibration de Serre, ce diagramme admet bien un relevement. O

Notation 1.6.11. Si p : E — B est une fibration (de Hurewicz), on notera souvent
F ou E, la fibre de b € B le long de 'application p, c’est-a-dire le sous-ensemble

p~'({b}) € E.

Lemme 1.6.12. Si p : E — B est une fibration (de Hurewicz), et si B est connexe
par arcs, alors pour tous b,V € B, Ej, >~ Ej.

Autrement dit, a homotopie pres, les fibres d’une fibration de Hurewicz sont les
meémes partout.

Démonstration. Voir [1§] chapitre 2 section 8 corollaire 13.
On peut relier b a b’ par un chemin ~ : I — B. Puisque p est une fibration, on a
un relevement 4 du diagramme :

E, E
g .
E,x]——>B
Yoproji

ou la fleche du haut est l'inclusion. Puisque p((e, 1)) = (1) = ¥’ pour tout e € Ey,
on en déduit que I'image de I'application 7(:,1) est contenue dans FEj. On note
Y @ By — Ey Dapplication continue ainsi obtenue.

Montrons, qu’a homotopie pres, 'application 7; ainsi obtenue ne dépend de la
classe d’homotopie de 7 (dans les chemins a extrémités fixées). Soit H : I xI — B une
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homotopie entre v et /3, deux chemins entre b et b’ (avec H(0,—) = bet H(1,—) =1¥').
Puisque p est une fibration, on trouve un relevement H du diagramme suivant :

HO(p’I‘OJI XpTOJS)

ou la fleche du haut est donnée par B,o? et la projection F, x I — FEj suivie de
I'inclusion. (qui a servi pour construire 7 et B. Pour tout ¢, on a donc que H (1,t) €
Ey et H(1,—) est une homotopie entre 3, et 8.

Soit alors maintenant une application Ey — E, obtenue en partant de v~ !
Puisque v x 7! ~ ¢, (oul ¢, est le chemin constant en b), le résultat précédent
implique qu’il existe une homotopie entre =y *~fy*11 et n’importe quel relevé de ¢,. On
peut évidemment choisir un tel relevé constant égal a l'identité de Ej,. Il suit que
(7 % v~1)1 est homotope & D'identité. Par ailleurs, par construction, (v *y~1); est ho-
motope a la composition 07:11. On démontre de méme 1’équivalence d’homotopie
dans l'autre sens.

O

Exemple 1.6.13. Soit X connexe par arcs, 79 € X et P.X 1= Pyx = {z0} xx
X001 Pespace des chemins de X qui partent de zo. Pour tout € X, et tout choix
de chemin ~,, , reliant zo & , la fibre P,X, = ev; ' ({x}) de la fibration standard
evy : P,X — X est homéomorphe & l'espace Q,(X) := {f : S? AN X, /f(1) = a}
des lacets en x. L’homéomorphisme est obtenu en recollant le chemin ainsi obtenu,
parcouru dans le sens contraire avec v, ,,. Le lemme nous donne alors que
les espaces de chemins €2, sont tous homotopes entre eux. Ceci entraine (et méme
renforce) le fait que les groupes d’homotopie de X ne dépendent, & isomorphisme
pres, pas du choix du point base.

Le résultat suivant est fondamental et en un sens énonce qu’une fibration est un
analogue pour les espaces topologiques d’une suite exacte courte de complexes de
chaines.

Théoreme 1.6.14. Soit p : ' — B est une fibration de Serre, avec B connexe par
arcs, by un point de B, F := p~!(by) la fibre de by, et fo € F. On a alors une suite
exacte longue :

oo o To(F fo) =5 (B, fo) 25 ma(B, o) == mai(F, £o) - ..

Remarque 1.6.15. Les my ne sont pas des groupes. On peut néanmoins définir les

noyaux de mo(F, fo) —= mo(E, fo) et de mo(E, fo) = mo(B,by) comme étant les
égalisateurs de i, et p, avec les applications constantes.

Lemme 1.6.16. Si p : £ — B est une fibration de Serre avec B connexe par arcs,
alors les fibres de p sont faiblement homotopiquement équivalentes.

Démonstration. Rappelons que &, dénote 'espace des chemins de p, c’est-a-dire :

Pp=Ex B ={(e,y: 1= B):7(0) = ple)}
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On factorise I’application p comme dans ’exemple [I.6.7] :
fiES @ T B
Pour tout b € B, on obtient donc un morphisme :
Ey, — (P

Puisque &, — B est une fibration, on en déduit, d’apres le lemme précédent, que, si
b e B, (), ~ (P)y. 1l ne reste alors plus qu’a prouver que f est une équivalence
faible d’homotopie. En effet, on aura alors le zigzag :

By = (Pp)y = (Pp)y < Ev

On dispose du diagramme de suites exactes longues :

oo —— (B, b) ——— 7, (Ep, %) Tn(E, %) — ...

|

oo —— (B, b) — 1, ((Pp)p, %) —— Tp(Pp, %) — . ..

On déduit du Lemme des cing (1.4.11|b) que le morphisme m,,(Ep, *) = 7,((Pp)s, *)
est un isomorphisme. O

FExemple 1.6.17. On prendra garde, qu'une submersion surjective entre variétés n’est
pas forcément une fibration de Serre (ni donc d’Hurewicz). Par exemple, considérons
'application p : R?\ {0} — R donnée par la projection (z,y) + x. Les fibres en tout
point x # 0 sont données par une droite alors que la fibre en 0 n’est pas connexe par
arcs. Par conséquent, les fibres n’ont pas les mémes groupes d’homotopie et donc p
n’est pas une fibration de Serre en vertu du lemme [1.6.16]

1.7. GROUPES D’HOMOTOPIE RELATIFS ET SUITES EXACTES LONGUES EN
HOMOTOPIE

Définition 1.7.1 (groupes d’homotopie relatifs). Soit (X, A) une paire d’espaces topo-
logiques, et ag € A un point base. Pour n > 1, on définit 7, (X, A, ag), 'ensemble des
classes d’homotopie d’applications (I™,dI") — (X, A) qui envoient "~ x {0,1} U
"2 x {1} x [0,1] = o1\ ({0} x I"~1) (le “n-cornet”), sur le singleton {ag}. Les
homotopies doivent également respecter les conditions précédentes sur le bord (autre-
ment dit leur restriction au bord 01" doit rester a image dans A et celle a ’adhérence
de 01"\ ({0} x I"™1) doit étre constante, égale a ag).

Remarque 1.7.2. mo(X, A, ap) n’a pas, en général, de structure de monoide.

Pour n = 0, on peut déﬁnirlﬂ 7o(X, A) comme I'ensemble des composantes connexes
par arcs de X qui ne rencontrent pas A.

Proposition 1.7.3. Pour n > 2, on munit 7,(X, A, ap) d’une structure de groupe, qui
est abélienne si n > 3.

12. on prendra garde qu’il n’y a pas de définition universellement acceptée et que certains pré-
ferent ne pas considérer le cas n = 0 tout simplement.
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an 1 ap
g(2t - 17 S)
Q
A f ao A ’ ap
f(2t,s)
0
ag ag

FIGURE 5. La représentation graphique dune application dans
m1(X, A, ag) & gauche, et la représentation graphique du produit f * g
a droite.

On va définir le produit (cf. figure [5)). Posons :
a: I"Ix {1} — 1" x{0}
(tl...,tn,l) l—)(tl,tn,O)

remarquons que ™ = " [ I", que cet homéomorphisme envoit 91" sur [(OI™ [T 0I™)\
(I" ' x {1} [T 1™ x {0})], et qu'on peut le choisir de maniere a ce que {0} x ["!
soit envoyé sur [{0} x " 1][{0} x I"71].

Si [f], lg] € mn(X, A, ap), alors pour tout ¢t € I"™1) f(t,1) = ag = g(¢,0). On peut
donc définir une application continue f ][, g : I"™ — X par recollement. Elle vérifie :

fIg@rm = rorJJorm\ 1" x {1 ug" " x{0}) C 4
et : )
FIT 9O \{0}yx1"1) = FOI\(I" < {1}u{0}x 1" 1) Ug(DI™\(I" " x{0}{0} x 1" 1))

C fOI"\U{0} x 1" ) U g(aI" \ {0} x I"™") C {ao}
On vérifie que 'application :
k0 (X, A ag) X (X, Ay ag) — (X, A, ag)
([f1, 9] — [f ]9l

est bien un produit associatif muni d’'un élément neutre (I’application constante
au point base), commutatif si n > 3, de la méme maniére que pour les groupes
d’homotopie absolus.

Le lemme suivant est fort utile pour comprendre les applications dont la classe est
nulle dans 7,(X, A, ap).

Lemme 1.7.4. Soit [f] € m,(X, A, ap). Alors :

[f] = 0 <= f est homotope relativement a 01" a une application a valeur dans A

Démonstration. Montrons le sens < de I’équivalence. Supposons qu’il existe g :
I — A telle que f ~ 9 Alors la classe de f dans m,(X, A, ag) est la méme que

celle de g, qui est a valeur dans A, et on a que nécessairement goI™ \ {0} x I"~1 est
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Qg ago
ao ao ao
AlL__o A . Al A >
agp ag
R _—
2
0 1 2 1
FIGURE 6. L’homotopie dans 7,(X, A, ag) déformant une application
a valeur dans A sur I'application constante.
aq an an Qg
ao
ag
ao
Il - » X @o - »
[, A [ 2
A A A

FIGURE 7. La représentation graphique (a gauche) d’une homotopie
entre f représentant la classe nulle dans my(X, A, ag) et le chemin
constant ag, et, sa déformation, via une homotopie relativement au
bord 91 (les points bleus et rouges), vers un application a valeur dans

A.

I’application constante ag. Mais une telle application est homotope a I’application
constante qui vaut ag (c’est a dire I’élément neutre de 7,(X, A, ap)). En effet on peut

la déformer simplement sur ag en rétractant I™ sur {1} x I"~!, voir figure .

Montrons maintenant le sens = de I’équivalence. Soit H : I — X une homoto-
pie relative entre f et Papplication constante en ag. L’adhérence 91"+ \ ({0} x I™)
est un rétract par déformation (forte) de I"*1, il existe donc une homotopie R entre
It et 91"\ ({0} x I™) relativement a ce dernier. Ainsi, H o R |(0yx» €st une

homotopie entre f et H |5y relativement a 0I". Or H |grm gy est a valeur

dans A.

O

Les groupes d’homotopie relatives sont reliés entre eux par une longue suite exacte,

analogue a celle de 'homologie d'une paire.

Théoréme 1.7.5. Soit (X, A) une paire d’espace topologique, ag € A un point base.

On a une suite exacte longue :

oo (A, ag) —5 T (X, ag) 25 (X, A, a0) -5 mao1(A, ag) = ... mo(X) = mo(X, A).
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En pratique, on sera intéressé par le cas ou toutes les composantes connexes par
arcs de X rencontrent A. Dans ce cas le dernier terme est nul.

Démonstration. La derniere fleche est simplement induit par la décomposition de
7o(X) entre les composantes connexes qui rencontrent A (et la fleche mo(A) — mo(X)
est une surjection sur ce sous-ensemble) et les autres (qui sont en bijection avec
mo(X, A) par définition). On regarde maintenant le reste de la suite. Le morphisme
0: (X, A, a9) = m—1(A, ap) est défini par :

D) = 1S oyscrn—i]-

Par définition, Papplication f restreinte a {0} x I"~! est & valeur dans A et son bordH
et dans ag ; ainsi O([f]) est bien un élément de m,_1(A, ap) (qui ne dépend que de la
classe d’homotopie de f par construction). Que cette fleche soit un morphisme de
groupes est immédiat par définition du produit, voir la figure [0]

Montrons que la suite est exacte : si [f] € m,(X, ao), alors f |(gy, a1 est Iapplica-
tion constante. Donc Im(p,) C Ker(0). Réciproquement, si O([f]) = 0, cela signifie
qu’il existe une homotopie H : (I",0I") — (X, A) entre f [, /n-1 et le chemin
constant en ag. Supposons par exemple que H | (opxrn—1 €st le chemin constant et
que H \{1}“”_1 =f |{0}X1n_1. En posant :

a: {0} x It s {1y x 1!
(0,81 tn) — (L,t1...,t,)

On peut recoller H et f de la fagon suivante :

e e ™ x

De plus, {1} x I""! est un rétract par déformation (forte) de I", donc il existe une
homotopie r de I"™ vers {1} x I"! relativement & ce dernier. H o r ][, f est une
homotopie entre f et H[][, f relative a 0I", et H ][, f envoit 0" sur ao. Donc
/] = p-(H 1L /D).

Par le lemme|1.7.4] on obtient que la composée p, o1, est nulle (puisque elle envoie
un représentant d’'une classe de 7,(A, ag) sur une application a valeur dans A, qui
avut ag sur le bord). Par ailleurs, par le méme lemme, si p.([f]) = 0, alors f est
homotope relativement au bord a une application g a valeur dans A. Comme sur son
bord, f est constante et égale a ay, il suit que g définit bien un élément de m, (A4, ag)
et i,[g] = [f].

Enfin, on a i, o 9([f]) est la classe, relativement au bord, dans m, (X, ag) de
floyxpn—1- Or f:I" — X définit pécisément une homotopie entre f |5y, ;o1 €t son
bord opposé ag. Ainsi cette composée est nulle. Réciproquement, si i,([g] = 0, cela
veut dire que g est homotope dans X & une application I"~! x I — X qui, sur la
composante 91"~ x I du bord est ag et vaut g sur 1" x {0} et ag sur 1" x {1}.
Cela définit précisément un élément de m, (X, A, ap) dont I'image par 0 est [g]. O

On peut maintenant démontrer le théoreme de la longue suite exacte asscoiée a
une fibration de Serre.

13. on fait attention que cela définit encore pour n =1 un élément de 7y(A)
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Preuve du Théoréme . I faut commencer par définir 0 : 7, (B, by) — m,—1(F, fo).
Prenons f : (I",01™) — (B, by) une application représentant une classe dans (B, bp).
Montrons qu’on peut relever f en une application de ™ dans £. Comme p: £ — B
est une fibration de Serre, d’apres le lemme le diagramme suivant admet un
relovement [ :

f

ou la fleche du haut est I'application constante sur le point base fy. Par commuta-
tivité du diagramme la restriction de f au bord S"~! = 9I" est dans F et envoie
0{0} x I"=1 sur le point base fy. . On définit alors

A1) = [ o)

On vérifie que 'application ne dépend pas du choix du représentant de la classe
a = [f]. C’est la méme preuve que celle vérifiant que le relevement d’un chemin est
indépendant des choix dans le lemme (ou ici on ne travaille que sur des cubes
et rétractes de cubes a gauche). Que lapplication p : 7,(B, by) — m,_1(F, fo) soit un
morphisme de groupes, découle des définitions des produits : On a [f] x [g] = [f * ¢]
olt pour tout (t,s) € "' x [0,1], on a f * g(s,t) = f(s,2t) si t € [0,1/2] et vaut
g(s,2t — 1) sinon. On obtient alors immédiatement que O([f * g]) est donné par la
méme formule (avec s € {0} x I"7?) désormais et donc O([f * g]) = d([f]) * I([g])-

La fibration (de Serre) p : E — B envoie F' sur by par définition. Il suit qu’elle
envoie une classe [f] € m,(E,F, fo) sur une classe dans m,(B,by); on note p, :
(B, F, fo) = m,(B, by) 'application ainsi obtenue, qui est pour les raisons précé-
dentes un morphisme de groupes. la construction de 0 montre que le diagramme
suivant est commutatif :

..—>7Tan0 —>7TnEf0 —>7Tn(E Ffo)L’]Tn 1 Ffo —>

j )

*

o> Tp Ff(])ﬁ'ﬂ'n E fo)éﬂ'n(B bo)é‘ﬂ'n 1 Ff(])ﬁ'

Pour terminer la preuve, en vertu du Théoréme [I.7.5] il suffit de montrer que p, est
une bijection. )

On a en fait déja montré la surjectivité : en effet le relevement f : I" — E de
f (I, 0I") — (B, by) que nous avons construit est précisément une application qui
envoie {0} x I"~! dans F et son complémentaire dans OI" sur le point base. Ainsi
il définit une classe [f] € m,(E, F, fo) telle p.([f]) = [po f] = [f] dans 7, (B, bp).

Pour l'injectivité : supposons avoir deux applications f,g : I — E qui envoie le
bord dans F et 91"\ {0} x I"~! sur fy et qui, en outre, vérifient que p.([f]) = p«([g]) ;
c’est a dire po f = pog. Comme p : E — B est une fibration de Serre (et que

la fleche de gauche est un rétract par déformation fort d’une paire CW) on a un
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relevement dans le diagramme suivant :

H

ou H est 'homotopie entre p o f et p o g, et la fleche du haut est donnée par
fIlg : I" x {0,1} — E et lapplication constante sur fo sur {1} x I". Comme
H(—,0) = by, on a que H(—,0) est a valeur dans F. Il suit que H définit bien une
homotopie entre f et g identifiant leur classes dans m,(E, F, fy). O

Exemple 1.7.6. La fibration de Hopf est une application p : S* — CP! = S? dont la
fibre en tout point de S? est un cercle S*. On obtient une suite exacte longue :

s — 7T3(Sl) — 7T3(SS) ﬁ) 3(82) — 7T1(Sl) — 71'1(81) — 7T1(S3) — 7T1(SQ) Ce

Rappelons que :

n 0 sik<n
(S ):{ Z sin=k
et qu’en particulier :
0 sik#1
WSI):{ 2 Gho

Notre suite exacte longue devient alors :
i 00— Z S (S — 00— 0—0—7Z...
On en déduit que 73(S?) = Z
Remarque 1.7.7. Les groupes d’homotopie des spheres ne sont pas tous connus !
Ezxemple 1.7.8.
7T12(S2) = ZL[oz X L]z
7T11(Sg) = Z/24Z
On a mp<p,(S™) = 0 par une application aisée du lemme de Sard et 7,(S") = Z

par la théorie du degré (voir [3, [I8] par exemple). Serre a démontré le théoreme
remarquable suivant.

Théoréme 1.7.9 (Serre ~ 1953).
Si k > n, alors m(S™) est de torsion, sauf my,_1(S*") = Z @ torsion.

~Y

Remarque 1.7.10. (Une mise en garde.) Considérons la paire donnée par S' =
OI*> C I* = D? La longue suite exacte de groupes d’homotopie relatifs donne
m>3(D?, St %) = 0 et la suite exacte

0— m (D2 8" %) -2 Z — 0 — m(D?, S, %) — {x}

d’ott on déduit que m,(D? S, %) = 0 sauf pour n = 2 ol on trouve Z. Remar-
quons que ces groupes d’homotopieﬂ sont donc différents de ceux du quotient

14. contrairement aux groupes d’homologie d’une paire qui sont bien équivalents a ceux du cone
Cone(A — X)
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D?/S = S? qui est pourtant un “bon “quotient au sens ot D?/S! est homotope
au cone Cone(S' — D?). Ceci montre que la suite exacte n’a pas d’interpréta-
tions en termes de quotient homotopique de la forme X /A ou quotient homotopique
Cone(A — X)) (voir la suite du cours pour les notions de quotients homotopiques)
lorsque I'application quotient X — X /A n’est pas une fibration. En fait cette longue
suite d’exacte ne correspond pas a I’homotopie d'un espace de maniere naturelle
(contrairement donc a I’homologie relative H,(A, B) qui correspond bien a celle du
cone CA — X)) Cette propriété montre en fait que les groupes d’homotopie ne
satisfont pas de propriété du type “Mayer Vietoris”.

1.8. LA NOTION CLASSIQUE DE COFIBRATION POUR LES ESPACES
TOPOLOGIQUES

Nous allons maintenant définir une notion duale de celle de fibration (de Hure-
wicz).

Définition 1.8.1 (Cofibration). Une application i : A — X est appelée une cofibration
si pour tout espace topologique Y, tout diagramme commutatif du type suivant
admet un relevement f :

A vl
Fo

i evo

X- Y

Remarque 1.8.2. De maniere équivalente, puisque le foncteur “objet en chemin” est
adjoint a droite au foncteur “objet cylindre”, i : A — X est une cofibration si le
diagramme commutatif suivant admet un relevement :

(4) Ax {0}e—— A x[0,1]

7

i Y i

X x {0} X % [0,1]

Proposition 1.8.3. a) Sii: A — X est une cofibration, alors ¢ est un homéo-
morphisme sur son image[[}
b) Si X est séparé (Hausdorff), alors i(A) est un fermé de X.
c) Si A C X, alors l'inclusion A < X est une cofibration si et seulement si
X x {0} U A x[0,1] est un rétract de X x [0, 1].

Démonstration. Les deux premiers points sont dans la feuille de TD 1. Le dernier est
essentiellement une retraduction de la définition : en prenant ¥ = A x T U X x {0}
on obtient directement <. Réciproquement, si X x {0} U A x [0, 1] est un rétract
de X x [0,1] et qu’on a un diagramme commutatif comme , alors on construit le
relevement X x [0,1] — Y comme la composée X x [0,1] = X x{0}UAX[0,1] =Y
ou la premiere fleche est la rétraction. O

15. ce qui permet de se ramener au cas ou A est un sous-espace en pratique
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Lemme 1.8.4. Si K C L est une inclusion d’un sous-complexe cellulaire, alors c’est
une cofibration.

Démonstration. 11 suffit de construire une rétraction de L x [0,1] dans L x {0} U
K x [0,1] par récurrence sur L™ x [0,1]. En ayant déja construit une rétraction
r LM % [0,1] — LM x {0} U K™ x [0,1] on I'étend & L™+ x [0, 1] de la maniere
usuelle : pour construire "1 il suffit de le faire sur chaque cellule de LY qui n’est
pas dans K™V, On est donc ramené & contruire un relevement dans le diagramme
commutatif :

s" x {0)¢ S" x [0, 1]
i L) x {0} U KD x [0, 1] i
"+ x {0}¢ [ [0, 1]

ott les applications sont induites par I'inclusion canonique et 7™ qui est bien défini
sur la partie de bord S" x [0,1] de la cellule 7+ x [0,1] — L™+ x [0, 1]. Mais
comme S" — I™! est une cofibration par la proposition .c), le résultat en
découle. Comme un CW-complexe a la topologie réunion, on peut recoller les r(™
pour obtenir la rétraction voulue. O

Remarque 1.8.5 (complexes cellulaires relatifs). Le lemme précédent se généraliseﬁ
en fait a une inclusion X — L cellulaire génémlz’séem (aussi appelé complexe cellu-
laire relatif) : c’est a dire une inclusion X C L ou L est obtenu comme la colimite
dans les espaces topologiquesﬁ L = {J;¢; Li de sous-espaces contenant X et tels que
chaque L; est obtenu a partir de X par recollement de cellules.

Ezemple 1.8.6 (Le cylindre d’une application). L’exemple suivant est fondamen-
tal. Soit f : X — Y. On définit le cylindre de f comme l'espace Cyl(f) =
XX [0, 1] T psqoy Y x {0} = X x [0, [TY/(2,0)~s(x) (faire un dessin!). L’application
X — Cyl(f) (donnéee par x — (x, 1)) est une cofibration comme on le voit par une
preuve “duale” de celle de 'espace des chemins.

On obtient alors une factorisation de f en

X = Cyl(f) =Y

en une cofibration suivie d’une équivalence d’homotopie (donnée par I’homotopie
rétractant le cylindre X x [0, 1] sur X x {0}).

Lemme 1.8.7. Si X est un espace métrisable (ou seulement normalED, etsii: A—
X est fermé, alors 7 est une cofibration si et seulement si il existe un voisinage ouvert
U C X qui se rétracte par déformation sur A dans X (autrement dit il existe une
application H : U x [0,1] — X telle que H(a,t) =a, H(u,1) € A, H(u,0) = u).

16. en appliquant la preuve a chaque L; et en recollant les rétractions obtenues en utilisant la
topologie réunion

17. cette derniere généralise la notion de C'W-complexe relatif qui est la méme définition si ce
n’est qu’on immpose en plus de recoller les cellules par degré croissant

18. autrement dit L est muni de la topologie réunion des L;

19. c’est a dire un espace dans lequel deux fermés disjoints peuvent étre séparés par des ouverts
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Remarque 1.8.8. Les constructions usuelles (quotient, tiré en arriere, ...) ne pré-
servent pas en général les homotopies.

Nous avons vu précédemment que le poussé en avant (et autres colimites) ne
préserve pas les équivalences faibles. Pour palier ce défaut, on doit construire des
versions “homotopiques” de ces (co)limites, qui sont des constructions analogues a
celle des objets globaux associés a Tor et Ext. Ces constructions permettent de
relier les groupes d’homotopie, de (co)homologie et autres invariants topologiques
de la (co)limite homotopique a ceux des différentes composantes.

Donnons un exemple élementaire qui sera jsutifié plus avant dans la partie [2.6, a
savoir la construction des poussés en avant homotopiques :

Définition 1.8.9. Le pushout homotopique de A 50X , A LY est I’espace topolo-
gique

XﬁY::YHCyl(i) = (YHAX [0,1]HX)/<(

h

On notera que X [[Y est naturellement homéomorphe a Cyl(j) [[ Cyl(i). Par
A Cyl(A)

ailleurs, les inclusions de X et Y dans leurs composantes donne un diagramme

canonique

a,o>~j<a),<a',1)~i(a'>) '

A : X

Y

h
XY
A
qui n’est pas commutatif, mais est commutatif a homotopie présm

Remarquons que 'on a une application continue naturelle

h
XHY—>XHY
A A

qui est simplement induite par la projection A x [0,1] — A. Il n’y a en revanche,
pas d’application naturelle de X U, Y dans X U% Y en général. Par ailleurs, si on a
un diagramme commutatif

(5) vyl o4t x

ook

J

y! A i’ X!
h
alors on a une fleche naturelle f ]_[Zg X ]Z[ Y — X'[[4 Y’ donnée par y — f(y),

(a,t) = (p(a),t) et © — g(x).

h
20. c’est a dire que les deux fleches A — X [[Y déduites du diagramme sont homotopes. L’ho-
A

motopie étant évidemment celle ramenant A x {0} sur A x {1} dans le cylindre
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Lemme 1.8.10. Le pushout homotopique est un “invariant homotopique”.

Les guillemets et I’énoncé sont volontairement vagues. Cela est du au fait que
cette construction n’est pas un pushout ou une colimite de X < A — Y ni méme
si on considere ces objets dans la catégorie homotopique des espaces (I’analogue de
la catégorie dérivée, cf le chapitre suivant). On peut montrer qu’une transformation
constituée d’équivalences d’homotopies faibles induit une équivalence d’homotopie
faible entre les pushouts homotopiques, mais selon les cas on peut avoir des résultats
plus forts. Cette notion de colimite homotopique sera précisé dans la suite du cours,

voir section [2.6| et exemple [2.6.19|

Démonstration. On va seulement démontrer que si f : X — X’ est une équivalence
d’homotopie au dessus de A, elle induit, pour tous les pushouts de cette forme,
I’application :

fULY XU Y = XTUL Y
qui est une équivalence d’homotopie. Il existe des améliorations de cela, voir par
exemple la feuille de TD 1 ol on traite le cas ou Y = {x}.

Pour cela on va montrer que si g : X’ — X est un inverse homotopique de f,
alors g U" Y est un inverse homotopique de f U" Y. On remarque que X HZ Y est
le pushout :

T( A X [1/2, 1] U X/(a,l)wi(a) ~ C’yl(z)
Cyl(j) = A x [0,1/2] UY/ (@ 0)~j(a) XUyY

Or les injections A < Cyl(i) et A — Cyl(j) sont des cofibrations (d’apres [1.8.3),
donc, d’apres la propriété universelle du pushout, les morphismes Cyl(j) — X UL Y
et Cyl(i) — X U"Y sont aussi des cofibrations, ce qui implique que ¢ : A — X U%Y
est une cofibration.

Par hypothese, on a une homotopie H entre g o f et idx. Cela nous donne une

application H |, + A x [0,1] = X. On a aussi une application A x [0, 1] ally

Y %[0, 1] 7% Y On en déduit une application Ax[0,1] — XU"Y, auquel correspond
un morphisme ¢ : A — (X U% Y)I%U. On reléve alors le diagramme

A L (X Ut y)ld]
v(a) H evo
h h
XUy s XUy
A
- h
H correspond & une homotopie entre g o f[[idy et idx [[idy.
A A

On peut démontrer également que si on a des équivalences faibles A — A’, X —
X', Y — Y’ tels que le diagramme [5| soit commutatif, alors, I’application induite
XUNY — X'U" Y’ est une équivalence d’homotopie faible. C’est une conséquence
de l'exemple [2.6.19] et de la proposition [2.6.11]
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Sans utiliser la machinerie du reste du cours, on note que le fait que cette applica-
tion induise un isomrophisme pour les groupes fondamentaux résulte du Théoreme
de Van-Kampen (en choisissant les images de Y [J A x [0,3/4] et A x [1/4,0][[ X
comme ouverts). De méme Mayer-Vietoris appliqué aux mémes ouverts induit des
isomorphismes sur les groupes d’homologie. Il découle alors, si nos espaces sont sim-
plement connexes, du Théoreme que 'application est une équivalence d’ho-
motopie faible. O

Ezxemple 1.8.11. Un autre exemple classique de telle colimite est donné par la construc-
tion de “bon quotient”. Plus précisément, soit A C X un sous-espace. Il est classique
que le quotient X /A n’a pas de tres bonnes propriétés : par exemple, sa (co)homologie
(réduite) differe de celle de la (co)homologie relative H(X, A) de la paire en géné-
rallﬂ et n’est pas un invariant d’homotopie. En revanche, le Cone C(A C X) est
un invariant homotopique qui a les bons groupes de (co)homologie et dont on peut
remarquer qu’il est homotope au pushout homotopique du diagramme * <+ A — X.

Proposition 1.8.12. Si I'on a un diagramme commutatif :

At X

1
12

A X'

,L'/

ou i et ¢’ sont des cofibrations d’image fermée, alors 'application induite X/A —
X'/ A" est aussi une équivalence d’homotopie.

Démonstration. Voir les solutions du TD 1. O

On crée de maniere analogue les pullbacks homotopiques en remplacant Cyl(f)
par P.

De maniere générale, on peut créer des (co)limites homotopiques en remplacant
les applications par des (co)fibrations comme ci-dessus. Cela demande un petit peu
d’attention, car il faut faire cela tout en conservant la commutativité des diagrammes
servant a définir notre (co)limite. En général, c’est plus compliqué que simplement
remplacer les applications par des (co)fibrations méme si cela reste 'idée clé.

L’intérét des (co)limites homotopiques est qu’il donne des constructions inva-
riantes a homotopie (faible) pres. Elles ont la vertu d’étre beaucoup plus facilement
calculables (du point de vue de I'homologie ou de I'homotopie) que leurs construc-
tions non-homotopiques et correspondent aux foncteurs dérivés Tor et Ext de 'al-
gebre homologique. Par ailleurs, tres souvent, pour identifier des espaces topologiques
a homotopie (faible) pres, on peut se ramener a les identifier avec certaines construc-
tions de (co)limites homotopiques et utiliser leur meilleure calculabilité. Enfin, ces
constructions interviennent partout en topologie algébrique et leurs analogues plus
généraux que nous verrons dans les catégories de modeles sont des constructions
fondamentales dans les applications en dehors de la topologie algébrique.

21. un exemple standard est donné par A = {0} U {1/n} C [0,1] dont le quotient est constitué
des anneaux Hawaiens qui n’est pas homotope a un bouquet de cercles, et a une homologie un peu
plus compliquée.
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II. CATEGORIES DE MODELE

On va définir un cadre abstrait pour les équivalences faibles et la dualité fibra-
tions/cofibrations. Ce cadre nous permettra par ailleurs de construire proprement et
efficacement la catégorie des espaces topologiques a équivalence faible pres (ou la ca-
tégorie dérivée en algebre homologique) et les constructions homotopiques/dérivées
que nous avons esquissé dans le premier chapitre. Bien que la définition soit tres axio-
matique, elle s’est montrée redoutablement efficace et les exemplesﬁ et constructions
associées abondent.

Remarque 2.0.1. Ici ce que 'on appellera “catégorie de modele” est souvent appelé
“catégorie de modele fermée” dans la littérature, plus particulierement dans la ter-
minologie originelle de Quillen.

Commencons par donner la définition générale d’un rétract entre morphismes.

Définition 2.0.2. Soit C une catégorie. Un morphisme ¢ € Homc(A, B) est appelé
un rétract de f € Homg(X,Y) §'il existe un diagramme commutatif :

ida
/\

A X A
q f q
B Y B
\—/
idp

Si les applications verticales sont l'identité (et A — X linclusion d'un sous-
espace topologique), on retrouve le cas d'un rétracte entre objets (resp. espaces
topologiques).

2.1. DEFINITIONS ET AXIOMATIQUE

La définition qui suit est longue, mais centrale dans ce cours!

Définition 2.1.1. Une catégorie de modele est une catégorie C munie de trois classes
de morphismes :

e La classe 7 dont les éléments, appelés équivalences faibles, sont notés —.

e La classe € dont les éléments, appelés cofibrations, sont notés r—.

e La classe & dont les éléments, appelés fibrations, sont notés — (Attention a
ne pas les confondre avec les épimorphismes).

vérifiant les 5 axiomes suivants :
(MC1) C est compléte et cocomplete[]

22. méme s’il y en a fort peu d’élémentaires
23. c’est a dire l'existence de toutes petites limites et colimites, c’est a dire celles indicées par
une catégorie dont les objets forment un ensemble
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(MC2) (2 parmi 8) Dans tout diagramme commutatif :
B
Si deux des trois fleches sont des équivalences faibles, alors la troisieme est
aussi une équivalence faible.
(MC3) (Stabilité par rétracts) Si q est un rétract de f € W (vesp f € €, [ € F)

alors ¢ € W (resp ¢ € €, ¢ € F).
(MC4) (Relévements) Pour tout diagramme commutatif

A C

A B
7 p
C- D

il existe un relevement (symbolisé par la fleche en pointillé) rendant les deux
triangles commutatifs des que i € #* ou p € W (on prendra garde qu’on a
déja supposé que i est une cofibration et p une fibration).

(MC5) (Factorisations) Tout morphisme f : X — Y admet deux factorisations
naturelles :

XS Pr—Y et X—Cp>Y

Remarque 2.1.2 ((co)fibrations acycliques). Les éléments de #" N € (resp. # NF)
sont appelés les cofibrations acycliques (resp. fibrations acycliques)ﬁ

Remarque 2.1.3. L’axiome (MC4) est en fait constitué de deux axiomes : I'un concerne
le cas ou la fleche de gauche est une cofibration acyclique et celle de droite seule-
ment une fibration, alors que la deuxieme concerne le cas ou la fleche de gauche est
n’importe quelle cofibration mais celle de droite est une fibration acyclique.

Terminologie : On dit d'une fleche A — C' comme dans le diagramme de (M C4)
qu’elle admet la propriété de relevement a gauche par rapport a la fleche p: B — D.
Et on dit que la fleche p : B — D admet la propriété de relevement a droite par
rapport a la fleche A — C.

Remarque 2.1.4. L'hypothese que les factorisations sont naturelles (on peut aussi dire
fonctorielles) n’est pas indispensable@ mais pratique, pour démontrer les résultats
dont on a besoin et est souvent satisfaite en pratique. Elle signifie que si on a un

24. dans la littérature, on trouve aussi la terminologie de (co)fibrations triviales pour la méme
notion
25. et souvent non-demandée dans la littérature
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diagramme commutatif X Ty alors on obtient des diagrammes commutatifs

f/

X —Y
X——— P Y et X Cp—=Y
PL lP(p,q) ]‘1 PL C(p,Q)j lq
X~ Py Y’ X! Cp—=Y",

et par ailleurs P(p' o p,q' o q) = P(p',q') o P(p,q) ainsi que C(p' o p,¢ o q) =
C(p,q) o C(p,q). Autrement dit, les factorisations de l'axiome |(MC5) sont en fait
des foncteurs

Arr(C) — Arr(C) x Arr(C)

ot Arr(C) est la catégorie dont les objets sont les morphismes de C et les fléches
sont les diagrammes commutatifs (la composition dans Arr(C) étant donnée par la
superposition verticale de deux diagrammes).

Par ailleurs, il existe des variantes ot on demande seulement les (co)limites finies
pour (MC1).

Remarque 2.1.5. D’apres , toute catégorie de modele C admet un objet initial
0 et unfY objet terminal {x} (c’est-a-dire, pour tout objet X de C, Homc(0, X) et
Homc (X, {*}) sont des singletons). En effet, ces objets correspondent aux (co)limites
vides, c’est a dire indicées par I’ensemble vide.

Ezemple 2.1.6. Si C est additive, 0 = {x} est I'objet nul.
Si C = Top, 0 = () et {x} est un singleton. L'objet initial est alors différent du
terminal.

La définition suivante sera importante. On verra dans ce cours que les objets
cofibrants (resp. fibrants) ont un peu le méme role que les modules projectifs en
algebre homologique ou CW-complexe en homotopie (resp. injectifs).

Définition 2.1.7. Un objet X de C est dit :

e cofibrant si 0 — X est une cofibration.
e fibrant si X — {x} est une fibration.

Remarque 2.1.8. Soit X un objet de C. D’apres [(MC5H)], il existe toujours une facto-
risation de 0 — X :

(6) 0— L(X) > X

Donc tout X est faiblement équivalent a un objet cofibrant (via une fibration).
De méme, tout objet Y de C est faiblement équivalent (via une cofibration) a un
objet fibrant, par exemple donné par la factorisation

(7) Y = R(Y) — {x}.

26. déterminé a unique isomorphisme pres
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Terminologie 2.1.9. On appelle une fibration acyclique L 5 X , ou L est cofibrant,
une “résolution cofibrante”, ou un “remplacement cofibrant” de X.

On appelle une cofibration acyclique Y -, R, ou R est fibrant, une “résolution
fibrante” ou un “remplacement fibrant”.

On peut noter I'analogie de cette terminologie et de ces constructions avec celles
de résolution projectives et injectives|(1.5.14] De maniere générale les axiomes
et permettent de construire de nombreuses (co)fibrations.

Notons que la naturalité des factorisations de [(MC)H)| assure que 'on peut obtenir
des remplacements fibrant et cofibrant fonctoriels donnés par L et R ci-dessus @,

(7)-
Remarque 2.1.10. Si A est un objet cofibrant, alors pour toute fibration acyclique
Y — X, tout morphisme A — X se releve :

0 Y
!
A- X
On a aussi le résultat dual pour les objets B fibrants :
X B
!
Y {x}

On peut remarquer une analogie certaine avec des résultats obtenus pour les com-
plexes de modules projectifs et injectifs dans les rappels d’algebre homologique.

Exemple 2.1.11. Soit L 5 X et P 5 X deux résolutions cofibrantes de X. Alors,
les axiomes MC4 appliqués au diagramme () —— L induise une flecche P — L

P X
qui est une équivalence faible par la propriété 3 pour 2. Et de méme symétriquement
bien-stur.
Nous avons un résulat[® analogue pour les résolutions fibrantes.

Exercice 2.1.12. (1) Montrer que si C est une catégorie complete et cocomplete
et que 'on choisit 7" = Isomorphismes, €, # = tous les morphismes alors
on obtient une catégorie de modele.

(2) Montrer que le produit de 2 catégories de modele a une structure de modele
obtenue en prenant les produits 2 a 2 des classes (%", 6, F).

27. certains auteurs utilise la terminologie suivante sans supposer que les fleches sont des
(co)fibrations mais seulement des équivalences faibles

28. ces résultats sont l'intérét du choix d’exiger des fibrations/cofibrations pour définir les réso-
lutions cofibrantes/fibrantes
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(3) Montrer quesi (C, 7', €, F) est une catégorie de modele, alors (C?, WP, F P, €°P)
est une catégorie de modele. Autrement dit, les fibrations et cofibrations
jouent un roéle dual.

La proposition suivante est cruciale, et justifie le caractere “fermé” des catégories
de modele.

Proposition 2.1.13. Soit (C, %", %, F) une catégorie de modele.

a) f est une cofibration <= elle vérifie la propriété de relevement (a gauche)
le long de toutes les fibrations acycliques.

b) f est une cofibration acyclique <= elle vérifie la propriété de relevement (a
gauche) le long de toutes les fibrations.

c) f est une fibration <= elle vérifie la propriété de relevement (& droite) le
long de toutes les cofibrations acycliques.

d) f est une fibration acyclique <= elle vérifie la propriété de relevement (a
droite) le long de toutes les cofibrations.

e) f est une équivalence faible si et seulement si elle se factorise poi avec i une
cofibration acyclique et p une fibration acyclique.

Corollaire 2.1.14. On déduit de ce qui précede :

a) Dans une catégorie de modele (C, %", €, %), la donnée de deux des classes
W, 6 et F détermine entierement la troisieme.

b) W', € et F sont clos par composition.

c) Les cofibrations et cofibrations acycliques sont stables par pushouts; les fi-
brations et fibrations acycliques sont stables par pullbacks.

d) Les isomorphismes sont a la fois des cofibrations, fibrations et équivalences
faibles.

Aucun des deux exemples suivants ne sont triviaux. Le premier est néanmoins
fondamental. Il peut se démontrer pour une bonne partie en utilisant les résultats du
chapitre I, une méthode similaire (via 'argument du petit objet) a celle utilisée dans
la partie[2.3] pour les propriétés de factorisation. Une partie un peu plus technique est
la caractérisation des cofibrations données. Il est cependant assez aisé de montrer que
les inclusions cellulaires généralisées sont bien des cofibrations pour cette structure de
modele qui est le sens utile en pratique. Voir la feuille de TD 3 pour la démonstration
de I'exemple 2.1.15]

Ezxemple 2.1.15 (Catégorie de modele de Quillen sur les espaces topologiques).
Quillen a démontré que T'op, munie des équivalence faibles d’homotopie, des fibra-
tions de Serre et des rétractes d’inclusions cellulaires généralisées (cf est une
catégorie de modele.

Dans cette structure, tout objet est fibrant. Une variante] du lemme|[1.8.4] permet
de montrer que toute inclusion d’'un cellulaire est une cofibration. On peut en fait
montrer que les cofibrants sont exactement les rétractes de complexes cellulaires.

FEzemple 2.1.16 (Catégorie de modeéle de Strgm sur les espaces topologiques).
Strem a démontré que Top, munie des équivalences d’homotopie, des fibrations de
Hurewicz et des rétractes de cofibrations d’image fermée, est une catégorie de mo-
dele. Tout objet est encore fibrant.

29. ou plus exactement une identification des cofibrations génératrices de cette structure, voir
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On notera que les deux exemples précédents ont des équivalences faibles différentes
et que leurs notions de cofibrations différent, en particulier dans le cas de la structure
de Quillen, de celle de la section (mais en sont des cas particuliers).

Démonstration de la proposition [2.1.15. a) = vient de [(MC4)l Montrons < :

soit ¢ : A — B un morphisme admettant la propriété de relevement (a
gauche) le long de toutes les fibrations acycliques. D’apres [((MC5)| on peut

factoriser i : A — E — B. D’apres la propriété de relevement (comme dans
(MC4)) satisfaite par ¢ : A — B, on a un relevement h du diagramme :

A E

7 1§

B B

Ainsi on a le diagramme :
A A A
B—"~-E—" =B
\_/
idp

D’apres on en déduit que i € 6.
b) = vient de [(MC4), <= se montre comme précédemment.
c) et d) sont duales de a) et b).
e) = Soit f: X — Y. On factorise f : X — E 5 Y. Dapres (MC2), 1 € #'.
<« est une application directe de |[(MC2)|

O

Démonstration du corollaire [2.1.14 Notons qu'il découle immédiatement de [[MC2)]
que les équivalences faibles sont stables par composition.

Démontrons a). Sion a fixé 7 et F, alors, on connait aussi les fibrations acycliques
et le a) de la Proposition définit les cofibrations. De méme la donnée de %"
et € détermine les cofibrations acycliques et par suite les fibrations par le ¢) de la
Proposition 2.1.13]

Si maintenant on a la donnée de F et €, les b) et d) de la Proposition
déterminent les fibrations acycliques et cofibrations acycliques de C. Par suite, le e)
de Proposition détermine les équivalences faibles.

Démontrons b). Si on compose deux applications admettant la propriété de rele-
vement a gauche par rapport aux fibrations acycliques, alors en superposant deux
diagrames du type de : on obtient successivement un relevé dans le diagramme
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commutatif suivant

A B
C !
J

FE D

puis en remplacant la fleche A — B par la fleche ¢ : C' — B obtenue un relevé
supplémentaire

A B
EZ

C S )

E D

tel que le diagramme reste commutatif. Cela prouve que la composée de deux appli-
cations admettant la propriété de relevement par rapports aux fibrations acycliques
admet encore la propriété de relevement par rapports aux fibrations acycliques. Et

encore une fois la Proposition [2.1.13| permet bien de conclure que la composée de
deux cofibrations est une cofibration.

De méme, en appliquant la propriété de relevement au diagramme

A B
2
; D
."4
¥
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on obtient un relevé ¢ et en appliquant alors la propriété de relevement au dia-
gramme obtenu en remplacant £ — F' par @ on obtient un relevé :

A B
E

I

7 ¢ D

qui laisse le diagramme complétement commutatif. Ceci prouve que la composée de
fibrations acycliques est encore une fibration acyclique. En appliquant la Proposi-
tion [2.1.13] on en déduit que fibrations acycliques sont closes. On démontre de méme
les deux autre cas (cofibrations acycliques et fibrations).

On démontre la stabilité par pushout et pullback exactement de la méme facon en
“décomposant” des diagrammes de relevement (voir le corrigé de la feuille de TD 1
ou l'on a établi que les fibrations de Hurewicz sont stables par pullback. La preuve
utilisée la est rigoureusement la méme pour les fibrations générales et se dualise sans
peine pour les cofibrations).

Notons que dans la preuve des résultats de stabilité par composition et pushout
ou pullback, nous n’avons utilisé que les propriétés de relevement. Ainsi la preuve
utilisée démontre le lemme suivant qui est souvent utile pour vérifier qu’une structure
est bien de modele :

Lemme 2.1.17. Soit & une sous-classe de morphismes d’une catégorie C. On note
LLP(6) la classe des morphismes de C vérifiant la propriété de relevement a gauche
par rapport a tous les morphismes de G et RLP(S) la classe des morphismes de C
vérifiant la propriété de relevement a droite par rapport a tous les morphismes de

S.

(1) La classe LLP(G) est stable par composition et pushouts.
(2) La classe RLP(S) est stable par composition et pullbacks.

Passons au dernier point du corollaire. Il est clair que les isomorphismes admettent
les propriétés de relevement a droite et a gauche (en les inversant pour déterminer les
relevés). On déduit encore de la proposition qu’elles sont donc des fibrations, fibra-
tions acycliques, cofibrations et cofibrations acycliques et en particulier également
des équivalences faibles. |

2.2. CATEGORIE HOMOTOPIQUE D’'UNE CATEGORIE DE MODELE

Comme on 'a déja dit au début, la notion de catégorie de modele sert a définir
une notion d’homotopie et a travailler avec. Précisément, on s’intéresse a regarder
les objets de C a équivalences faibles pres. Les notions de fibration et cofibration
vont nous aider a étudier les morphismes dans C a équivalence pres, a donner une
bonne notion d’équivalence d’homotopie, a étudier des foncteurs entre théories ho-
motopiques etc...

On commence par la définition de la catégorie homotopique d’une catégorie de
modele (qui devrait rappeler celle de catégorie dérivée associée a un anneau).
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Soit, C une catégorie et 7 une classe de morphismes dans C.

Définition 2.2.1 (Localisation de Gabriel-Zisman). Une localisation de C par rapport
a W est la donnée d’une catégorie C[% '] et d’un foncteur £ : C — C[# 7] tel que
¢ satisfasse la propriété universelle suivante : pour toute catégorie D, le foncteur

¢* : Fun(C[7 " '],D) — Fun(C,D): F+s Fo/

est pleinement fidele et son image essentielle est constituée des foncteurs qui envoient
la classe 7" dans les isomorphismes de D.

Remarque 2.2.2. En particulier, le foncteur ¢ envoie les équivalences faibles sur des
isomorphismes (cela découle en prenant D = C[# '] et F' = Id).

Notons que si F,G : C — D sont deux foncteurs naturellement équivalents, alors
pour toute fleche f dans C, F(f) est un isomorphisme si et seulement si G(f) est

un isomorphisme d’apres le diagramme F/(X) Sy Y).

nxt~

G(X) —=G(Y)
En particulier, la définition se traduit par le fait que si un foncteur F': C —
D envoie les fleches de 7" dans des isomorphismes alors il s’écrit sous la forme G o ¢
et ceci pour un unique G.

Notation 2.2.3 (Catégorie homotopique). On notera
Ho(C) := C[w ]

et on appelera cette localisation la catégorie homotopique de C. Lorsque (C, %', €, F)
est une catégorie de modele, cette notation sera évidemment utilisée en prenant pour
W les équivalences faibles.

On prendra garde que par définition, pour une catégorie de modele (C, #", 6, F),
Ho(C) ne dépend pas de (€, F).

Proposition 2.2.4. 1l existe une localisation ¢ : C — C[# '] de (C, %) et celle-
ci est unique, a équivalence de catégorie pres, ’équivalence étant unique a unique
isomorphisme pres.

La proposition précédente et plus de détails sur cette construction sont donnés
dans la feuille de TD 2 et ses solutions.

Remarque 2.2.5 (multivers). Dans cette proposition garantissant 1’existence, il convient
de considérer que l'on s’autorise a changer d’univers, c¢’est a dire que 'on ne sup-
pose plus que les morphismes entre objets forment encore un ensemble, mais appar-
tiennent a un univers plus large. Nous verrons que dans le cas d'une catégorie de
modele, nous avons bien toujours un ensemble de morphismes; c’est le cas pour de
nombreux autres exemples lorsque #Z est par exemple un bon systeme multiplicatif.
Certaines constructions sont détaillées en TDs.

La preuve de la proposition [2.2.4] peut se faire en donnant une description explicite
de cette localisation. L’'unicité étant elle une conséquence immédiate du fait qu’on a
justement une propriété universelle.

Notons Pathg (C) la catégorie ayant les mémes objets et comme morphismes
les chemins (finis) dans la catégorie C[[ Z"° obtenue a partir de C en rajoutant
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formellement la classe 7P aux fleches de C. Ici la composition est donnée par la
concaténation des chemins, I'identité est le chemin vide ey.

Lemme 2.2.6. La catégorie Ho(C) a les mémes objets que C. Les morphismes de
Hompo(c)(X,Y) = Hompatn, (c)(X,Y)/ ~

sont le quotient de Pathsg, (C) par la relation ~ est engendrée par X %Y <& X ~ o

pOlll”tOUtUEW,Xi)Yﬁ)ZNXﬁZetXZ—d}XNOX.

Cette description explicite permet de vérifier que la catégorie construite est bien
solution de la propriété universelle de la définition [2.2.1]

Exercice 2.2.7. Démontrer le lemme et la proposition [2.2.4]

Remarque 2.2.8. 11 suit du lemme que les morphismes de Ho(C), entre 2 objets X
et Y, sont donnés par des zigzags de la forme

X=X+« Xo—=> X5+ ... X,—>Y,

ou toutes les fleches allant vers la gauche sont dans 7. La composition est donnée
par la concaténation de zigzags (et la composition des deux fleches de méme direction
consécutives au milieu). Précisément, Ho(C) est la catégorie dont les morphismes
sont des classes de tels zigzags modulo la relation d’équivalence (dont on demande
qu’elle soit stable par composition) engendrée par la relation identifiant 2 zigzags
s’il existe un diagramme commutatif

X1 Xo X3 Xn

/ N

X Y

\ /

X X —— X —— X

ou les fleches verticales sont dans 7 et ou on identifie ... X}, Lx ka1 L Xpro = Xi
avec 1’objet Xj.

Remarque 2.2.9. La construction donnée par le lemme [2.2.6| ne donne pas forcément
un ensemble de morphismes entre deux objets (nous avons évoqué ce probleme dans
la remarque [2.2.5)), puisque ce n’est (sauf cas particulier) pas le cas de Pathy(C).
On va voir (Théoreme qu’en fait, dans le cas d’une catégorie de modeles,
les données supplémentaires de &, € garantissent que c’est le cas et que l'on peut
exprimer ces morphismes sans recourir a des zigzags.

Commencgons par comparer les catégories homotopiques de C et de ses sous-
catégories d’objets (co)fibrants.

Notation 2.2.10. On note respectivement C., Cy et Cs les sous-catégories pleines
de C formées respectivements des objets cofibrants, des objets fibrants, et des objets
a la fois fibrants et cofibrants.
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Remarque 2.2.11. On peut se demander s’il y a beaucoup d’objets a la fois fibrants et
cofibrants. On va voir que oui. En effet, soit A un objet cofibrant. Son remplacement
fibrant R(A) s’insere dans le diagramme

00— A5 R(A) — {*}

d’ou il suit que R(A), qui est fibrant par définition, est aussi cofibrant (par stabilité
de la composition de cofibrations). De méme, si X est fibrant, son remplacement
cofibrant L(X) est a la fois cofibrant et fibrant. Par conséquent, pour tout objet X,
R(L(X)) et L(R(X)) sont des objets a la fois fibrants et cofibrants.

La naturalité des factorisations dans I'axiome |[(MC5)| nous assure que les rempla-
cements (co)fibrants sont des foncteurs et nous donne plus précisément le lemme
suivant (cf remarque [2.1.4)).

Lemme 2.2.12. On a que L et R définissent respectivements des foncteurs L(—) :
C — C,, R(—): C — C; munis de transformations naturelles.

De plus le foncteurs composé C L(—;) C. — C (resp. C R(—;) C; — C est muni
d’une transformations naturelle vers le foncteur identité (resp. admet une transfor-
mation naturelle provenant du foncteur identité) dont toutes les fleches sont respec-
tivement des fibrations acycliques (resp. cofibrations acycliques).

Il suit que R(L(—)) et L(R(—)) induisent aussi des foncteurs C — C.s. Ces deux
foncteurs sont en fait reliés par une transformation naturelle dont toutes les fleches
sont des équivalences faibles.

FEzercice 2.2.13. Démontrer qu’il existe une équivalence faible R(L(X)) — L(R(X)
(on pourra commencer par démontrer que les axiomes [(MC5)|, [((MC2)| induisent une

équivalence faible R(L(X)) — R(X) puis utiliser (MC4))).
C.

C.; C
Cr

valences de catégories en passant aux catégories homotopiques :

Lemme 2.2.14. Les inclusions canoniques induisent des équi-

Ho(C,)
N
Ho(C.y) Ho(C)

Ho(Cy) :

Démonstration. Démontrons le cas du foncteur I : C; — C donné par la sous-
catégorie des objets fibrants. Puisque une équivalence faible entre objets fibrants
est une équivalence faible, la composée C; — C — Ho(C) envoie les équivalences
faibles sur des isomorphismes et par propriété universelle de Ho(Cy) ce foncteur se

factorise au travers d'un foncteur Ho(Cy) EN Ho(C). Pour montrer que ce foncteur
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est une équivalence, on construit son “inverse” (voir I'appendice [6.2). Pour cela il
suffit de prendre le foncteur de remplacement fibrant R : C — Cy, X — R(X)
donné par [(MC5)| La propriété assure que R envoie une équivalence faible sur

une équivalence faible et passe donc encore a la catégorie homotopique pour donner

Ho(C) it Ho(Cy). Il ne nous reste plus qu’a montrer qu’il y a des équivalences
naturelles entre les foncteurs R o I (resp. I o C) et les foncteurs identité de Ho(C 7)
(resp. Ho(C)).

On on a vu (c’est le lemme que les applications canoniques X — R(X)
données par définissent une transformation naturelle entre les foncteurs Idc
et [ o R qui passe aux catégories homotopiques pour donner un isomorphisme natu-

rel entre Idpo(c) €t IoR (puisque X ~ R(X) est un isomorphisme dans Ho(C)).
On construit de méme un isomorphisme naturel entre Idgpo(c (c,) et Rol. O

On va introduire une notion générale d’homotopie pour une catégorie de modele.
On dispose déja d’une notion d’équivalence faible (comme relation engendrée par les
fleches de '), qui imite et généralise celle dans les espaces topologiques. On aura
besoin de plusieurs notions différentes, adaptées au type d’objet a la source et au
but. On va utiliser les notions usuelles de coprodultm AJ] B (dans le cas A = B)

et de produltE] X xY (cf Appendice 6.

Définition 2.2.15 (Relations d’homotopie dans les catégories de modele). Soit une
catégorie de modele (C, %", €, F).
-Un cylindre d’un objet X: c’est une factorisation

idy [Tidx : X[[X —C 5 X
de T'application canonique au travers d’une cofibration et d’une équivalence

faible. On notera ig, iy : X = X [[ X ~ C' les inclusions canoniques respec-
tives sur les composantes suivie de la fleche vers C.
-Un objet en chemins de Y: c’est une factorisation

ZdyXZdy Y—>P—»YXY

de 'application diagonale. On notera projg, proj; : P - Y X Y 2 Y les
fleches induites par les projections canoniques sur chaque facteur.
-Une homotopie a gauche entre f, g: X — Y: c’est une fleche H : Cx — Y, ou

Cx est un cylindre de X, telle que Hoig = f et Hoi; = g. On notera f L qg.
-Une homotopie a droite entre f, g : X — Y: c’est une fleche K : X — Py, ou Py
est un objet en chemin de Y, telle que projoo K = f, proj; o K = g. On
notera f ~ g
-Une homotopie entre f et g : c’est la donnée d’une homotopie a droite et d'une
homotopie a gauche entre f et g. On notera f ~ ¢ lorsque f et g sont
homotopes.

30. on pourrait, et devrait, dire que ces applications définissent une équivalence faible naturelle
entre les foncteurs aux niveaux des catégories de modeles

31. on rappelle que le coproduit vient avec deux applications canoniques i4 : A — AJ[B et
ip:B— AT] B que nous appelons abusivement “inclusions canoniques”

32. on rappelle que le produit vient avec deux applications canoniques px : X XY — X et

y : X XY — Y que nous appelons abusivement “projections canoniques”
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-Equivalence d’homotopie: on dira que f : X — Y est une équivalence d’homotopie
siil existe g : Y — X telle que fog ~ idy et go f ~ idx. Auquel cas on
dira aussi que X et Y sont homotopes.

Remarque 2.2.16. L’axiome de factorisation garantit bien entendu qu’il existe des
cylindres (resp. des objets en chemin) pour tout objet X et qu'on peut de plus les
choisir de telle sorte que I’équivalence faible soit de plus une fibration (resp. une
cofibration). On appelera un tel cylindre (resp. objet en chemin) fort

Mais attention, pour définir les homotopies, on considere de tels objets arbitraires,
et en général, on ne peut pas imposer un choix ; autrement dit il peut exister une
homotopie entre f,g: X — Y associée a un cylindre de X (ou objet en chemins) C'
sans qu’il n’y ait une telle homotopie pour un autre choix de cylindre C’ de X.

On pourra remarquer que si on note[*”| X x I la factorisation fonctorielle X [ X
X x> X de idx [[idx, alors, par , il existe, pour tout cylindre C' de X,
une équivalence faible ¢ = X x I rendant commutatif le diagramme suivant :

X[[X—>Xx1

7

En particulier une homotopie pour X x [ en induit une pour C. En revanche, il n’y
a en général pas d’équivalence dans 'autre sens, d’ou la nécessité d’autoriser des
objets en cylindre généraux dans la définition d’homotopie. Lorsque cependant tous
les objets de C sont fibrants, on peut toujours se ramener a des homotopies données
par X x I ou tout autre cylindre fortf), voir 'exercice

On a évidemment un résultat dual pour les objets en chemin.

Remarque 2.2.17. Puisque la composée X ‘4 XJ[X — C = X est l'identité,
qui est une équivalence faible, 'axiome [(MC2)| nous assure alors que la composée

X8 x [ X ~— C est une équivalence faible. Un argument similaire s’applique aux
objets en chemins et on obtient ainsi le lemme suivant.

Lemme 2.2.18. Pour tout cylindre C' et tout objet en chemin P de X, on a que les
applications

i X BX[[X—~C proj:P-XxXBXx
sont des équivalences faibles (pour j = 0,1).

Exemple 2.2.19. On peut constater que si X est un expace topologique, le cylindre
X x I (muni des inclusions id x {i}, i = 0,1) est bien un objet en cylindre essentiel-
lement en vertu de ’exemple m (il s’agit du cylindre de l'identité de X) et que
de méme, I'espace des chemins X! (muni des évaluations en 0 et 1) est un objet en
chemin de X, en vertu de '’exemple fondamental des fibrations associé a I'identité
de X.

33. X x I est une notation pour un objet qui n’a en général pas de raison d’étre le produit de
X avec un autre objet I. Ce choix de notation provient de I’analogie avec un cylindre évidemment
due au cas des espaces topologiques

34. c’est a dire tel que C' — X soit une fibration acyclique et pas seulement une équivalence
faible
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Ce sont méme respectivement un cylindre fort et un objet en chemin fort et on
retrouve que la notion d’homotopie usuelle X x [0,1] — Y suffit pour définir I’ho-
motopie a gauche. De méme 'homotopie a droite est complétement déterminé par
des applications continues X — Y91 et les 2 notions sont adjointes I'une de I’autre
via l'adjonction entre — X [0, 1] et I’espace des chemins.

La proposition suivante explique comment ces notions d’homotopie interagissent
efficacement avec les objets (co)fibrants. On pourra en retenir que ces notions se
comportent agréablement (et s’identifient) si la source est cofibrante et le but fibrant.

Proposition 2.2.20. a) On a que f L g implique h o f L ho g, autrement
dit ’homotopie a gauche est stable par composition a gauche (soit post-
composition).

b) Si A est cofibrant alors la relation d’homotopie a gauche L est une relation
d’équivalence sur Hom(A, X). Side plus h : X 5 Y ousi X, Y sont fibrants
et h: X =Y, alors la post-composition h,(f) = ho f induit une bijection

h. : Hom(A, X)/~ = Hom(4,Y)/~

sur le quotient.

c) SiY est fibrant et f,g: X — Y, alors f L g implique foh L goh (pour tout
WX ). Autrement dit, ’homotopie & gauche est stable par composition a
droite (soit précomposition) si le but des fleches est fibrant.

d) On a que f ~ g implique f o h ~ g o h, autrement dit I’homotopie & droite
est stable par composition a droite.

e) Si Y est fibrant alors la relation d’homotopie & droite ~ est une relation

d’équivalence sur Hom(B,Y). Side plus h : A — B ousi A, B sont cofibrants
et h: A= B, alors la précomposition h*(f) = f o h induit une bijection

h* : Hom(B,Y)/~ = Hom(A,Y)/~

sur le quotient.
f) Si A est cofibrant et f,g: A — Y, alors f ~ g implique ho f ~ ho g (pour

tout Y 25 Z ). Autrement dit, ’homotopie a droite est stable par composition
a gauche si la source des fleches est cofibrante.

On peut ne retenir que les 3 premiers résultats. Les 3 suivants en sont les “duaux”.
Un point clé de la preuve sera le suivant qui sert souvent :

Lemme 2.2.21. Soit A un objet cofibrant et Y un objet fibrant.

(1) pour tout X, on a que l'application canonique X — X [] A est une cofibra-
tion. De méme, ’application canonique X x Y — X est une fibration.

(2) Soit C4 un cylindre de A. Les deux applications canoniques i; : A —
AJJA — Cy4 sont des cofibrations acycliques. De méme si Py est un objet
en chemin de Y, les deux applications canoniques proj; : Py - Y xY — Y
sont des fibrations acycliques.
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Démonstration. Pour les cofibrations cela provient du diagramme () — X

P

A—AJ[X

et de la stabilité des cofibrations par poussé-en-avant. L’argument dual s’applique
pour les fibrations.

Pour le point (2), le lemme assure déja que les applications sont des équiva-

lences faibles. Par ailleurs le premier point assure lui que Ej : A — AJ]J A est une cofi-

bration et que p; : Y XY — Y une fibration. Donc par stabilité des (co)fibrations par
composition, les applications en question sont bien des (co)fibrations acycliques. [

Démonstration de la proposition [2.2.20, - a et d) C’est immédiat : soit H : Cx — Y
une “homotopie a gauche” entre f,g : X — Y et h : Y — Z. Alors la composée
hoH : Cx — Z vérifie bien que ho Hoty=ho fet hoH o4 =hog. Ainsi ho H
est une “homotopie a gauche” entre ho f et hog. Le méme raisonnement s’applique
pour les homotopies a droite et la pré-composition.

- b et ) On commence par remarquer que f L g=9 L f ce qui est immédiat
en remarquant que si on a un cylindre A[[ A — Cj4 alors on a aussi un cylindre
AJJA = AJJA — C4 ou l'isomorphisme du milieu est obtenu en échangeant les
deux Composantesﬁ. On a alors que si H : U4 — X était I’homotopie a gauche entre
f et g, alors H est aussi une homotopie a gauche entre f et g via 'objet en cylindre
AJJA= A A — C4 (la seule différence étant justement qu’on a inversé ig et iy).

Par ailleurs, si on remarque que la composée Cy — A o X définit une homotopie a

gauche entre f et f, donc f L f. On note que les deux points précédents sont vrai
méme si A n’est pas cofibrant.
Pour la transitivité, en revanche, on va utiliser que A est cofibrant et en particulier

le point (2) du Lemme [2.2.21| précédent. Si f L getg L h, on dispose de deux
cylindres C4 et C’; de A et de morphismes H : Cy — X et H' : C’) — X réalisant ces
homotopies a gauche. On veut construire un autre cylindre et un morphisme réalisant
I’homotopie a gauche entre f et h. L’idée, comme dans les espaces topologiques, est
de coller les cylindres le long d’une face (faire un dessin!) pour les construire. Dans le
cadre général, on regarde donc le pushout C'y Uy C’y donné par le carré cocartésien :

-/

A i C'A

~

Ca CAUACA.

Par stabilité des cofibrations acycliques par pushout, on note que les morphismes
Cly — Cyu Uy C et Cy — Cy Uy C"A dans le diagramme sont des cofibrations
acycliques.

Par ailleurs, les applications A -3 AJJA — Ca > CaUL Oy et A O, AlTA —
¢, — C4 Us €’y donnent un morphisme canonique

AHA%CAUACA.

35. c’est a dire en échangeant iy et iq
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Les équivalences faibles Cy = A et C’; = A induisent, par propriété universelle du
pushout, un morphisme Cy Uy C’y — A. Ce morphisme est une équivalence faible :

en effet la composée Cy — C4 Uq C’y — A en est une par définition d’un cylindre
et le résultat suit alors de la propriété 2 parmi 3 [] On a par ailleurs que

les composées A & Oy — Cy Uy C'y - Aet A N C'y — Cy Uy C'y — A sont

I'identité de A puisque c’est le cas de A X Cy — Aet A # C'y — A (et puisque
nécessairement id Uy id = id par unicité dans la propriété universelle du pushout).
Enfin, les applications H : C4 — X et H' : Cy — X induisent une application
H=HU,H": CaUpCy — X car Hoiy = g = H' oijy. On a alors que la composée

AB Oy CausCy 2 X vaut Hoig = f (par définition du pushout) et de méme
Ho iy = H oi} = h. Ainsi, pour conclure que H est une homotopie & gauche entre f
et h, il suffirait de vérifier que ig [] 7} : A][ A — CaUa C’) est un cylindre de A, et
plus précisément que c’est une cofibration (le reste a déja été montré). Ce n’est pas
évident ni nécessairement vrai mais heureusement pas non plus nécessaire car il nous
suffit en fait de factoriser cette construction sous la forme AJ]JA — D = CaU4 CY).
Alors la composée D 5 CaUs C'y = A est une équivalence faible et on a déja obtenu
que les précompositions de cette application avec iy et 7} sont des identités. Ainsi D

est un cylindre de A et la composée D 5 CaUgy 'y X est bien une homotopie a
gauche entre f et h!

Démontrons le deuxieme point de b). Par le a), on a que pour tout morphisme

h: X — Y, Dapplication f — ho f passe au quotient par la relation d’équivalence L,
Ainsi h, : Hom(A, X)/ Lo Hom(A,Y)/ L est bien définie. Vérifions la bijectivité
dans le cas ot h : X — Y est une fibration acyclique. Commencons par 'injectivité :
soit f,g: A — X tels que ho f L hoget H : Cy — Y réalisant cette homotopie. On
voudrait relever cette homotopie a X et on utilise donc 'axiome de relevement |(MC4)|
appliqué au diagramme

AHAng

CAL)Y

ce qui nous fournit immédiatement une homotopie a gauche entre f et g. Il reste a

voir la surjectivité. Celle-ci est assez facile : en effet, pour tout morphismeq: X — Y,

il suffit d’appliquer, par cofibrance de A, I'axiome de relevement dans le diagramme
) —— X pour trouver un antécédent par h,.

A"y

Le cas ot X , Y sont fibrants et f : X = Y se déduit du précédent par le lemme de
Brown appliqué au foncteur Hom(A, —) : C — Set ou Set est la catégorie de
modele des ensembles (munie des isomorphismes comme équivalence faibles comme
dans 'exercice . Ceci termine la preuve de b) et la proposition e) se démontre
dualement.

-cetf) Soit h : W — X et f,g: X — Y tels que f L g. Prenons donc
H : Cx — Y une homotopie a gauche entre f et g. Il faut remonter cette homotopie
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& un objet en cylindre de W. Prenons en un W [[W — Cy = W (on en choisit un
quelconque). On veut évidemment utiliser 'axiome de relevement pour construire
I’homotopie. Pour cela, on se ramene d’abord au cas ol le morphisme C'y — X dans
la définition du cylindre est une fibration acyclique. C’est la qu’on va utiliser que Y

est fibrant : en effet on factorise ’équivalence faible C'y = X sous la forme Cy »—

% — X par |(MC5)| (I(MC2)| garantissant que chaque fleche est une équivalence
faible). Alors le relevement dans le diagramme

CXL)Y

=]

Cx —={*}
fournit une homotopie C’y — Y pour 'objet en cylindre C de X.

Maintenant qu’on s’est ramené a un objet en cylindre X [[ X — C% = X dont
la derniere fleche est une fibration acyclique, on applique 1'axiome [(MC4)| au carré
commutatif

wiw i'o(h ]I R) 703(
O —— 7 X

oup:Cw — Weti: X][[X — C% sont les applications données par la structure
des cylindres. Finalement, la composée H' o H fournit I’homotopie voulue. Ceci
termine la preuve de c). Celle de f) est duale comme d’habitude. 0J

La proposition implique que si on se restreint a des objets cofibrants a la source et
fibrants au but, les relations d’homotopie se comportent agréablement comme nous
I’avons souligné. On obtient d’ailleurs le

Corollaire 2.2.22. a) Si A est cofibrant et Y fibrant, alors A=lersur Hom(A,Y).
b) La relation d’homotopie est une relation d’équivalence sur la sous-catégorie
C.s des objets a la fois cofibrants et fibrants.

Démonstration. On suppose que f L ¢; montrons que f ~ g. On a donc une homo-

topie a gauche C'y 2y ou C4 est un objet en cylindre de A. On veut trouver un
objet en chemin Y = Py - Y x Y et K : A — Py une homotopie & droite. Fixons
un tel objet en chemins quelconque pour Y. Par le lemme [2.2.21] précédent, on a
que l'application canonique 7o : A — AJ] A — Cj4 est une cofibration acyclique. On

note j la composition j : Cy — A LY et on aun diagramme commutatif :

A ! Y 7PY

ig |2

Cu Y xY
A GoH) %

(car H oig = f = j oiy) qui fournit le relevement K. On note alors K : A — Py la
composée K oi; (attention on prend i; et pas ig contrairement au diagramme). Par
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commutativité du diagramme, on a projoo K = joi; = foids = f et proj;o K =
H oi; = g. Ainsi, on a bien que K est une homotopie a droite. On peut remarquer
que 'on a utilisé le caractere cofibrant de A, et que par ailleurs ceci nous a permis de
prendre un objet en chemin quelconque. Pour démontrer qu'une homotopie a droite
est une homotopie a gauche, on fait une preuve duale en utilisant cette fois-ci que Y’
est fibrant et en prenant un cylindre quelconque de A. Ceci termine la preuve de a).

Par le a) et la proposition [2.2.20lb) et d), on obtient 1’énoncé b). O

FExercice 2.2.23. Soit q : P 5 X une résolution cofibrante de X et f:P— Pun
f

N

(1) Rappeler pourquoi f est une équivalence faible, puis démontrer que f est ho-
motope a gauche a l'identité. (indic : considérer, pour un cyclindre P[] P —

C % P de P, le diagramme PHPin>P ).

|

C X
(2) En déduire que deux résolutions cofibrantes d’un méme objet sont homotopes
a gauche en général, et homotopes plus généralement si X est fibrant.
(3) Quel résultats analogues peut on énoncer pour les résolutions fibrantes ?

morphisme tel que le triangle suivant P P soit commutatif.

qot

Une autre corollaire est le suivant :

Théoréme 2.2.24 (Théoreme de Whitehead pour les catégories de modéle). Si f :
X — Y est une fleche dans C,y, c’est une équivalence faible si et seulement si c’est
une équivalence d’homotopie.

On notera que ce résultat implique en particulier le théoréme de Whitehead
classique en prenant la structure de modele de Quillen sur Top (Exemple [2.1.15)
(en notant que tout objet est fibrant et que tout CW-complexe est cofibrant).

Démonstration. voir la feuille de TD 2. O

Un autre exemple de ce Théoreme est dans la catégorie de modele des complexes
de chaines Cso(R). Il implique alors que 2 résolutions projectives d'un module (ou
d’un complexe de chaines) sont homotopes (au sens des chaines).

FEzercice 2.2.25. Le montrer (apres avoir lu la partie sur les structures de modeles
sur les complexe de chaines)...

On obtient le théoreme principal de cette section :
Théoréme 2.2.26. Soit (C, %", ¢, F) une catégorie de modele.
a) L’inclusion C.; < C induit une équivalence de catégories
C.;/~ — Ho(C.s) = Ho(C)

ol C, s/~ est la catégorie C.s ot I'on a quotienté les ensembles de morphismes
par la relation d’équivalence donnée par la relation d’homotopie.
b) On a des isomorphismes naturels

Hompo(c)(X,Y) = Home(L(X), R(Y))/~
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¢) Si f: A — B est un morphisme qui devient un isomorphisme dans Ho(C),
alors f est une équivalence faible.

Remarque 2.2.27. Le théoreme identifie la catégorie homotopique avec un quotient
de la catégorie C.s. En particulier, c’est une catégorie sans avoir besoin de changer
d’univers et a les mémes “cardinalités ensemblistes” que C. Par ailleurs, le point
b) assure que pour calculer les morphismes dans la catégorie homotopique il suffit
de calculer ceux entre un remplacement cofibrant et un remplacement fibrant de la
source et du but respectivement ; il permet donc de calculer les morphismes de la
catégorie dérivée en se ramenant a un ensemble de morphismes entre objets fixés (et
ainsi d’éviter le passage aux zigzags).

Evidemment, si I’'objet source est déja cofibrant et le but fibrant, on n’a pas besoin
de faire ce remplacement d’apres le a). Notons d’ailleurs que si A est cofibrant et
Y est fibrant, on a des équivalences faibles L(A) — A entre objets cofibrants et
Y 5 R(Y) entre objets fibrants. Il découle alors de la proposition b) et e.) et
du corollaire [2.2.22]a) que I'on a des isomorphismes naturels :

Hompe(c)(4,Y) 22 Homg(L(A), R(Y))/ =~ «+— Homg(A, R(Y))/ ~
— Homg(A,Y)/ ~.

Une preuve similaire permet de démontrer le résultat suivant simplifiant le calcul
des morphismes.

Corollaire 2.2.28. Soit A = X une équivalence faible avec A cofibrant et Y = Z
une équivalence faible avec Z fibrant. Alors

HOIIlHO(C) (X, Y) = HOI’HHO(C)(A, Z)

Preuve du corollaire. Par fonctorialité, on a un diagramme commutatif
¢

L(A) —“~ L(X)
|
A X

dont les fleches verticales sont des équivalences faibles. Ainsi la propriété 3 pour 2
nous donne que ¢ est une équivalence faible aussi, entre objets cofibrants. D’ou en
appliquant la proposition [2.2.20, on obtient un zigzag de bijections

Hompe(cy(L(X), Z) Zi Hompe(cy(L(A), Z) +— Hompec) (A, Z).

En raisonnant symétriquement sur Z, on le complete en un zigzag de bijections
reliant Homggo(c) (L(X), R(Y)) avec Hompo(c)(A4, Z). O

FExemple 2.2.29. Un cas particulier de I’équivalence ci-dessus est si A 5 X est

une résolution cofibrante et ¥ »— Z une résolution fibrant de Y. Dans ce cas, (cf
Exemple 2.1.11)) on a des équivalences faibles a : L(X) — Aet f: Z — R(Y) de

sorte que 1’on a une bijection

a* o f, : Hompo(c) (4, Z) = Homg(A, Z)/ ~ — Hompo(c) (L(X), R(Y)).

Il est temps de paeer a la preuve du théoreme fondamental sur la catégorie homo-
topique.
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Démonstration du théoréme[2Z226. On a déja vu que Ho(C,y) = Ho(C) (Lemme[2.2.14).
Il reste & montrer que le foncteur C.y — C.;/ =~ vérifie la propriété universelle de
la localisation C.; — Ho(C,s) = C.¢[# ~!]. Soit D une catégorie et F : C.y — D
un foncteur qui envoie les équivalences faibles sur les isomorphismes. On veut mon-

d D

trer qu'il existe un unique foncteur F rendant le diagramme C, £

\ r 7
Ccf/ ~

commutatif. Par définition, sur les objets, on doit avoir F(X) = F(X) et sur les
morphismes on doit avoir que F' ([f]) = F(f) ou [f] désigne la classe d’équivalence
d’un morphisme f : X — Y. Le foncteur quotient C.; — C,s/ =~ étant plein, on en
déduit déja Dunicité. Il reste & voir que F est bien défini, c’est & dire que si f ~ ¢
alors F/(f) = F(g). L'idée (qui revient souvent) est de montrer que pour tout cy-
lindre F'(iy) = F(i1) et d’en déduire que deux applications homotopes & gauche ont
donc méme image par f.

Pour faire cela concretement, on considere une homotopie H : Cx — Y a gauche
entre fet gou X [[ X — Cx % X est un cylindre de X. Pour pouvoir appliquer F'

a ce diagramme on se ramene au cas ou C'x € C.s par un procédé déja vu. Comme X
est cofibrant, C'x aussi (car X — X [[ X est une cofibration également). On factorise
Cx — X sous la forme C'x s C% — X. Comme X est aussi fibrant, on obtient que

. aussi et il reste cofibrant par construction. Par ailleurs, le relevement H' dans

le diagramme C'x Ay permet de remonter I'homotopie H a C%. On est donc
H 7 $
R

Cx —{x}
ramené au cas ou C'y est fibrant et cofibrant et on peut appliquer F' a p. Comme
poipg =poiy, ona F(p)o F(ig) = F(p) o F(i1). Or F(p) est un isomorphisme de
D puisque p est une équivalence faible. Il suit que F'(ig) = F(i1). Mais maintenant
nous avons aussi H oty = f et Ho1; = g d’ou,

F(f) = F(H)o F(io) = F(H) o F(i1) = F(g)

ce qui conclut la preuve de a).

Pour b), on rappelle de la preuve du Lemme [2.2.14] que 1'équivalence réciproque de
Ho(C.;) — Ho(C) est donnée par le foncteur induit par LoR : X +— L(R(X)) ou L
et R sont les foncteurs de remplacement cofibrants et fibrants. D’ott Homge(c) (X, Y) =

Home (L(R(X)), L(R(Y)))/ ~ par le a). On a deux floches naturelles oy : L(Y) > Y
ot By 1 7 R(Z) pour tous objets. Rappelons que par le Corollaire [2.2.22) on a

que Homg(A4,Y)/ ~= Homg(A,Y)/ L= Homg(A,Y)/ ~ dés que A est cofibrant
et Y fibrant. On déduit alors une application

Home(L(X), R(Y))/ ~ " Homa(L(R(X)), R(Y))/ ~
" Home (L(R(X)), L(R(Y)))/ ~

qui est une bijection car chaque application 'est en vertu de la proposition [2.2.20\b)
et e). Ceci prouve b).
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Il reste a démontrer ¢). Par définition une équivalence faible devient un isomor-

phisme dans Ho(C). Réciproquement, supposons que [A EN B] € Ho(C) soit un
isomorphisme. En prenant les remplacements fibrants et cofibrants on obtient un dia-

LR L(R(B)) dont on déduit qu’il suffit de mon-
TR
A B
trer que L(R(f)) est une équivalence faible (par 'axiome [(MC2))). Sachant qu'une
équivalence faible devient un isomorphisme dans Ho(C), on a que [L(R(f))] est un
isomorphisme dans Ho(C) et on est ramené au cas d’un morphisme f entre objets
fibrant et cofibrant. Par le a) que nous avons déja montré, on en déduit qu’il existe
g tel que les composées fog et go f soient homotopes a I'identité. Autrement dit, f
est une équivalence d’homotopie et le Théoréme nous dit que ce morphisme
est une équivalence faible. O

gramme commutatif L(R(A))

FExercice 2.2.30. Soit C une catégorie de modele dans laquelle tous les objets sont

fibrants. Pour tout objet X, on fixe X [[ X — X x [ 5 X un objet en cylindre de
X déduit de I'axiome [(MC5)| appliqué a id[Jid: X [[ X — X.

(1) Montrer que dans la définition d’homotopie a gauche on peut toujours sup-

poser que le cylindre est donné par X x I. C’est a dire que si f L g (avec
f,g: X —Y), alors il existe un morphisme H : X x I — Y tel que Hoig = f
et Ho le =d.

(2) On munit Top de la structure de modele de Quillen (exemple [2.1.15]). Dé-
montrer que deux applications continues (de source un espace cofibrant) sont
homotopes a gauche si et seulement si elles sont homotopes au sens usuel (dé-
finition .

(3) On note [X, Y] 'ensemble des classes d’homotopie (pour la définition
usuelle) d’applications continues X — Y dans Top. Démontrer que si X est
un CW-complexe, alors

[X, Y] = HomHo(Top) (X, Y)

En déduire que pour tout z € X, on a m,(X, ) = Hompe(rop) (5™, X ), ol1
ce dernier est 'ensemble des morphismes de S™ — X dans Ho(Top) dont
la restriction * — S™ — X dans Ho(Top) est (la classe d’équivalence de)
* = T

2.3. EXEMPLES DES COMPLEXES DE CHAINES ET ARGUMENT DU PETIT OBJET

Soit R un anneau (ou une k-algebre) commutatif, unitaire. Rappelons que Ch(R)
est la catégorie des complexes (Cjez,d) de chaines de R-modules non-bornés et
Ch>o(R) sa sous-catégorie des complexes de chaines concentrés en degrés positifs
(C; =0sii<0). Enfin on note Ch<o(R) la sous-catégorie des complexes de chaines
concentrés en degrés négatifs (C; = 0 si ¢ > 0); cette sous-catégorie est isomorphe
(via C* = C_;) & celle des complexes de cochaines concentrés en degrés positifs.

Définition 2.3.1 (Structure de modéle projective). Soit C = Ch(R) ou Ch>o(R). On
définit la structure, dite projective, sur C en posant

Equivalences faibles 7": ce sont les quasi-isomorphismes (c’est a dire les morphismes
de complexes induisant des isomorphismes en homologie).
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Fibrations &: ce sont les morphismes de complexes surjectifs (en tout degré) dans
Ch(R) et les morphismes de complexes surjectifs en tout degré > 0 dans
Chso(R).

Cofibrations €: ce sont les morphismes de complexes qui ont la propriété de releve-
ment par rapport aux fibrations acycliques.

Théoréme 2.3.2. Les structures projectives ci-dessus munissent Ch(R) et Ch>o(R)
d’une structure de catégorie de modeles. De plus,

(1) Les cofibrations de Ch>o(R) sont exactement les inclusions en tout degré
dont le conoyau est projectif en tout degré.

(2) Les cofibrations de C'h(R) sont les morphismes de complexes, qui sont injec-
tifs et de conoyau projectif en tout degré, et dont le conoyau est cofibrant.

(3) Tout morphisme de complexe de Ch(R), injectif en tout degré, dont le co-
noyau est un complexe borné inférieurement@] de modules projectifs est une
cofibration.

Remarque 2.3.3 (les cofibrations sont scindées degré par degré). Tout morphisme
de R-modules injectif A < B de conoyau P = B/A projectif est nécessairement
scindé : c’est-a-dire qu'il existe s : P — B tel que la composée P = B 5 B/A=P
soit 'identité. Ce morphisme est donné par l'application en pointillé donné par le
relevement de la projection canonique dans le diagramme P . En particulier,
il
B—"=P
I'application R-linéaire A @ P — B définie par (a,y) — a+ s(y) a un inverse donné
par le morphisme x +— (z—son(z), 7(x)) et définit donc un isomorphisme B = AGP.

D’apres le Théoreme [2.3.2} cette propriété est vraie degré par degré pour toute
cofibration dans les structures de modeles projectives. Autrement dit

Une cofibration i : A, — B, pour la structure projective est nécessairement injec-
tive et scindée en tout degré : B; = A; ® (B;/A;).

Attention, ce scindement n’est cependant pas forcément un scindement de com-
plexes de chaines! L’inclusion de A, et la projection B, — P, sont bien des mor-
phismes de complexes mais il se peut que dans la décomposition B, = A, & P, la
restriction de la différentielle de B a P, ait une composante non-nulle a valeur dans
A, (ce qui est équivalent a dire que la section s, : P, — B, construite degré par
degré n’est pas un morphisme de complexe).

Remarque 2.3.4. Bien que le conoyau d’une cofibration, dans le cas Ch(R), soit
constitué en tout degré de modules projectifs on prendra garde, que pour les com-
plexes non-bornés, un complexe acyclique formé de projectifs n’est pas forcément
cofibrant (contrairement au cas de Chso(R)).

Ezemple 2.3.5. Par exemple, prenons C; = k[x]/(2?) muni de sa structure de k[x]/(x?)
module canonique. On a une différentielle d donnée par la multiplication par x. On
a immédiatement que ce complexe est acyclique (c’est a dire d’homologie nulle en
tout degré). D’apres le théoreme, si il était cofibrant, on pourrait remonter tout
morphisme de C' vers X le long de toute surjection ¥ — X. Prenons X = k et
p:Y = k[z]/(2?) — k la projection canonique. Soit f, : C'— X donnée par I’appli-
cation triviale en degré i # 0 et la projection k[z]/(z*) — k en degré 0. C’est bien

36. c’est a dire que C; = 0 pour i << 0
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un morphisme de complexes. Si il existait une factorisation f, = po f. de f., on
aurait pour x = x - 1 € k[x]/(x?) pris dans Cp, par linéarité, que

€ - fo(l) = fo(x) = fo(d<1)) = df1<1> =0
mais po (z- fo(1)) = z-po fo(1) = - fo(1) = z-1 = = # 0 ce qui est contradictoire.

On peut définir des structures de modeles duales qui font apparaitre le role par-
ticulier des modules injectifs.

Définition 2.3.6 (Structure de modéle injective). Soit C = Ch(R) ou Ch<y(R). On
définit la structure, dite injective, sur C en posant

Equivalences faibles 7: ce sont les quasi-isomorphismes.

Cofibrations &: ce sont les morphismes de complexes injectifs (en tout degré) dans
Ch(R) et les morphismes de complexes injectifs en tout degré < 0 dans
Ch<o(R).

Fibrations #: ce sont les morphismes de complexes qui ont la propriété de releve-
ment a droite par rapport aux cofibrations acycliques.

On peut démontrer le résultat suivant, par des méthodes essentiellement similaires

a celle de 2.3.21

Théoréme 2.3.7. Les structures injectives ci-dessus munissent Ch(R) et Ch<o(R)
d’une structure de catégorie de modeles. De plus,

(1) Les fibrations de C'h<o(R) sont exactement les morphismes qui, en tout degré,
sont des surjections dont le noyau est un R-module injectif.

(2) Les fibrations de Ch(R) sont les morphismes de complexes, qui sont surjectifs
en tout degré, de noyau constitué de modules injectifs en chaque degré, et
dont le noyau est fibrant.

(3) Tout morphisme de complexe de Ch(R), surjectif en tout degré, dont le
noyau est un complexe borné supérieurementﬂ de modules injectifs est une
fibration.

Remarque 2.3.8. Dans la structure projective, tout complexe de chaines est fibrant,
alors que dans la structure injective tout complexe de chaines est cofibrant.

Nous expliquons maintenant les différentes étapes de la preuve du Théoreme [2.3.2]
Cet exemple est symptomatique d'une grande catégorie d’exemples appelées caté-
gories de modeles cofibrement engendrées; le point essentiel de ces catégories est
qu’on peut caractériser les fibrations et fibrations acycliques en termes de propriété
de relevement par rapport a une famille tres simple de cofibrations, les cofibrations
acycliques de taille petite, voir la définition ci-dessous pour plus de précisions
sur “petite”.

Preuve des axiomes MC1, MC2, MCS3. L’existence des limites et colimites, et donc
I’axiome , pour les complexes de chaines est standard. Elle consiste a vérifier
que les (co)limites calculées dans les espaces graduésﬁ héritent de différentielles
naturelles.

37. c’est a dire que C; = 0 pour i >> 0

38. on prendra garde qu’on définit les limites et colimites pour les espaces gradués degré par degré
(ce qui est possible puisque on regarde des morphismes de complexes qui préservent donc le degré),
c’est a dire que le sous-espace des éléments homogenes de degré ¢ d’une (co)limite de modules se
calcule en prenant la (co)limite des parties homogenes de degré i. On ne calcule pas les limites
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L’axiomes’obtient en passant aux groupes d’homologie. Il devient alors que
si deux fleches parmi H,(f), H.(g) et H.(g) o H.(f) = H.(g o f) sont des isomor-
phismes alors la troisieme l’est, ce qui est une propriété immédiate des morphismes
inversibles.

Pour I'axiome |(MC3)} soit

ida
/\
A= X ———=4
q f q
B—7' .y % _p
\_/'
idp

un rétracte. Puisque les fleches horizontales sont I'identité, on a automatiquement
quei: A — Xeti,: H(A) — H.(X) sont injectives en tout degré et que  : Y — B
et B, : H,(Y) — H,(B) sont surjectives en tout degré.

Supposons maintenant que f soit un quasi-isomorphisme, alors f, = H,(f) est un
isomorphisme et donc la commutativité du diagramme implique que j,oq, = f,0i, est
injective. En particulier ¢, est injective. De méme, de la surjectivité de .0 f, = g0,
suit la surjectivité de ¢,. Ainsi g, est un isomorphisme et donc ¢ est un quasi-
isomorphisme.

On voit par ailleurs que le méme argument assure que ¢ est surjective en tout
degré (resp > 0) si f l'est. Ce qui démontre que le rétracte d’une fibration est une
fibration.

Enfin supposons que f est une cofibration et montrons que g est une cofibration,
c’est a dire, par définition des cofibrations dans la structure projective, qu’elle a
la propriété de relevement par rapport a toute fibration qui est aussi un quasi-

isomorphisme P S Q. La rétraction et le fait que f soit une cofibration nous fournit
un diagramme commutatif

ida
v T
A , X A P
% a 7
q f h q ~
B—' .y~ "% .p 0.
v
idp

Le relevement cherché est alors la composée h o j précisément grace au fait que les
composées des fleches horizontales de la rétraction sont des identités.

Notons que la preuve que l'on vient de faire montre directement la propriété
suivante :

de modules gradués (R, ;)icr en considérant la limite des sommes directes (D, <, Rn,i)icr car ces
dernieéres limites n’ont pas forcément une décomposition en somme directe de partie homogene
compatible avec celles des objets de départ (par exemple on peut avoir un produit infini de parties
homogenes).
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Lemme 2.3.9. Soit & une sous-classe de morphismes d’une catégorie C, LLP(S)
(resp. RLP(G)) la classe des morphismes de C vérifiant la propriété de relevement
a gauche (resp. a droite) par rapport a tous les morphismes de &. Les classes LLP(S)
et RLP(G) sont stables par rétract.

O

Expliquons maintenant d’ot viennent les conditions (1), (2) et (3) du théoréme|[2.3.2]
(en utilisant uniquement la définition de la structure projective, pas qu’elle forme
une catégorie de modele). Cela nous aidera aussi pour établir la propriété .
Pour cela on commence par exhiber des complexes de chaines canoniques qui vont
nous aider & caractériser nos (co)fibrations.

Définition 2.3.10. Soit M un R-module.

e On définit le complexe

D"(M) = ... 0 MM 0 0

n n—1

donné, en degré i, par D"(M); = 0 sii # n,n—1et DI(M) = M si
1 =n,n — 1, la différentielle étant I'identité au seul endroit non trivial.

e On définit le complexe S™(M) comme le complexe S (M) = M sii =n et
SHM(M) =0 si ¢ # n muni de la seule différentielle possible...

Il est clair que D"(M) est acyclique, donc que D"(M) — 0 est une fibration acy-
clique, et on a par ailleurs un morphisme de complexe injectif S"~ (M) < D"(M)
canonique

(8) i 0 ——= M N 0 ——0
R
0 0 M 0 0
ainsi qu’une fibration canonique D"(M) — S™(M)
0 M —>0—>0
T
0 M 0 0 0

Ce dernier morphisme est bien défini dans C'hso(R) dés que n > 1.

Remarque 2.3.11. La notation est précisément faite pour rappeler 'inclusion du bord
d’un disque D" et le recollement d’'un disque D™ — S™ sur un point. On notera que
ces (morphismes de) complexes s’identifient d’ailleurs avec ceux des complexes de
chaines cellulaires réduits des disques et spheres.

Remarquons qu’un morphisme de complexes C, — D"(M) est trivial en degré
i #n,n+ 1 et que de plus on a f,1(x) = f,(d(x)) pour tout z € C, ;. Il suit que

Lemme 2.3.12. Les morphismes de complexes de C, dans D™(M) sont en bijection
avec les applications R-linéaires C,, — M.
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Démonstration des propriétés (1), (2), (3) du Théoréme[2.3.3, On commence par le
sens direct. Soit f : A — B une cofibration dans Ch(R) (resp. Ch>o(R)), c’est a
dire une application vérifiant la propriété de relevement a gauche par rapport a une
fibration acyclique. Considérons le morphisme de complexe canonique ¢ : A —

D""1(A,,) donné par

N Ly . Sy N An_s
I
0 A, A, 0 0
On en déduit (comme dans le lemme un diagramme commutatif
A——= D"(A,)
B 0

et 'existence du relevement h. Ce relevement nous donne donc un diagramme com-

mutatif B, L A, satisfaisant de plus h, o f, = idy,. Ceci prouve a la fois

hn
BTL ATL
I'injectivité de f et le fait que le conoyau est scindé en tout degré.

Que le poussé en avant d’une cofibration soit une cofibration découle immédia-
tement du lemme puisque les cofibrations sont définies par une propriété de

relevement a gauche. Il suit du poussé en avant A 2.0 que le complexe P, des

|
B——P,
conoyaux est cofibrant.

Montrons maintenant qu’en tout degré, le conoyau P, := B, /A, est projectifﬂ
Pour cela il faut montrer qu’il a la propriété de relevement par rapport a toute
surjection u : M — N de morphismes de R-modules. Soit ¢ : P, — N un morphisme.
Pour cela on considere encore le morphisme canonique ¢ : P, — D"(P,), la
surjection induite D"™(f) : D"Y(M) — D""(N) qui est une équivalence faible
puisque les deux complexes sont acycliques, et le diagramme commutatif

0 D”+1 (M)
. o D™L(N).
Dn+1 (q)ocp;g*

Le relevement en pointilé dans ce diagramme fournit précisément un relevement de
q (en degré n).

Il reste & montrer les réciproques. On commence par celles dans les affirmations (1)
et (3), c’est a dire que les morphismes de complexes vérifiant les conditions énoncées
ont bien la propriété de rélevement par rapport a toutes les fibrations acycliques. Le

39. la preuve marchant et pour Ch>o(R) et pour Ch(R)
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résultat est similaire dans les deux cas (le cas borné inférieurement se traitant comme
le cas concentré en degré positif). Il faut montrer que pour tout quasi-isomorphisme
f: X — Y qui est sujectif en degré > 1, alors, pour tout diagramme commutatif

¢

— - X

A
L no
5

I Ve

¥

un relevement h existe rendant les deux triangles commutatifs. Ceci est l'exercice
6 du TD 1 et c’est essentiellement la méme chose que l'exercice [1.5.18] En fait,
on peut remarquer que comme f est un quasi-isomorphisme, on a que fy : Xo —
Yy est aussi surjective et donc f est surjectif en tout degré. On construit alors
le relevement par récurrence en partant d'un choix du relevement en degré 0 en
utilisant la décomposition By = Ay & Py que nous avons vu, le fait que le noyau
Ker(f. : Xi. — Y,) est acyclique (par une utilisation directe de la suite exacte
longue d’homologie associée a la suite exacte Ker(f,) — X, — Y,); argument est
une variante un peu plus sophistiqué que celui du lemme [1.5.15| et a été vu en TD.

La réciproque de (2) est aussi similaire, en effet, par projectivité des P, que
nous avons établi, on a une application linéaire k, : P, : B,/A, — X, rele-
vant la restriction de ¢ : B, — Y,, a la composante P, en utilisant qu’on a vu
que B, =2 A, @& P,. Cette derniere identité assure que la différentielle de B s’écrit
d(a,p) = (da(a)+t(p),d(p)) ot d est la différentielle sur A, d la différentielle induite
par celle de B sur le quotient P = B/A (on a forcément dt + td = 0). On a alors
une application dk — kd — ¢t : P, — Ker(f,—1: X,—1 — Y,_1). En utilisant que P
est cofibrant et le noyau Ker(f) acyclique, on peut montrer que cette application
est homotope a 0.

Lemme 2.3.13. Soit P, un complexe de chaines cofibrant et K, un complexe acy-
clique. Alors tout morphisme f : P, — K, est homotope (au sens des complexes de
chaines) a 0.

Preuve du lemme. Soit C\,(K) = K, + 1 ® K, le cocone of K,. Sa différentielle est
donc donnée par d(z,y) = ( — d(z) + y,d(y)) et en particulier H,(C.(K)) = 0
en tout degré. La projection (x,y) — y est un morphisme de complexes. Donc
7 C.(K) — K est surjective en tout degré et un quasi-isomorphisme puisque que
K, a une homologie triviale. C’est donc une fibration acyclique et puisque P est
cofibrant, par définition, nous avons un relevé H dans le diagramme

T - K*+l % K*
7

P- K.

f

Ce morphisme de complexes H se décompose comme H(p) = (h(p), f(p)) ou h =
(hy : Pp — Kpi1)nez puisque to H = f. Comme H est comaptible aux différentielles
on a do H(p) = H(d(p)) qui, sur le premier facteur, implique —d o h(p) + f(p) =
hod(p). Ainsi f —0 =doh+hodet f: P— K est homotope a I’application
nulle. 0
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En notant H 'homotopie donnée par ce lemme, nous avons que la somme (f, x +
H): B, = A, ® P, — X, est le relevement cherché. O

Preuve de la propriété|(MC/ ). Par définition, on a déja la propriété de relevement
des cofibrations par rapports aux fibrations acycliques. Il faut montrer que toute

cofibration i : A — B qui est une équivalence faible a la propriété de relevement par
rapport aux fibrations.

Comme on a déja vu qu’une cofibration est injective en tout degré, on a déja que
le conoyau P, est acyclique (par la longue suite exacte d’homologie associée a la
suite exacte courte de complexes A — B — P, — 0).

Dans le cas de Ch>o(R), on peut utiliser alors le lemme suivant (qui se démontre
encore une fois par récurrence).

Lemme 2.3.14. Soit P, un complexe acyclique dans Chso(R), constitué de modules
projectifs. Alors les cycles Zi(P,) sont aussi projectifs et de plus on a un isomor-
phisme de complexes de chaines

P, = @ D" (Z(P.)).

k>0

Le résultat découle alors du fait que chaque D¥T1(M) est projectif en tant que
complexe de chaines, c’est a dire qu’il a la propriété de relevement par rapport aux
fibrations, c’est le sens de la proposition [2.3.16]

Dans le cas de Ch(R) (la preuve s’appliquant aussi a Ch>o(R)), le résultat découle
du

Lemme 2.3.15. Soit P, un complexe de chaines cofibrant de C'h(R) qui est de plus
acyclique. Alors P, est un objet projectif dans la catégorie des complexes de chaines
(c’est a dire vérifie la propriété de relevement par rapports a toutes les fibrations).

Preuve du Lemme[2.3.15. On commence par remarquer que P est contractile, c’est &
dire que l'identité de P, est homotope a 0. La preuve est un argument que 1’on a déja
vu : soit P, 1® P, le cocone de I'identité. C’est a dire le complexe donné par la somme
de P, et P,y et dont la différentielle est définie par d(w,z) = (—d(w) + z,d(z)).
Ce complexe est contractile et on a la projection (w,z) — x qui est donc une
fibration acyclique. Alors on dispose d'un relevement () —— P,,; ® P, puisque

P,———P,
P, est cofibrant. L’application linéaire H s’écrit sous la forme H(z) = (h(x),x)
par commutatitvité du diagramme, ou h : P, — P,,;. La condition que H est un
morphisme de complexe donne que —dh(x) + = = h(d(z), c’est a dire que h est
une homotopie entre 0 et l'identité. On en déduit que l'on a une décomposition
P, =Z,® R, ou Z, est le sous espace des cycles et la différentielle de P, s’identifie
avec un isomorphisme entre R, ; et Z,. Cette décomposition est donnée en prenant
R, =Im(hod) par x — (dh(z),hd(z)) : en effet la somme est directe car dh(z) =
hd(y) implique 0 = dhd(y) = d(y) et donc hd(y) = 0 et elle engendre puisque
x = dh(x)+ hd(x) pour tout x ; de plus dhd(x) = dx montre la propriété énoncée sur
la différentielle puisque Z, est égal au sous-espace des bords d(P.), 'homologie étant
nulle. Cette décomposition étant donnée, il devient facile de construire le relevement.
En effet, les morphismes de complexe de Z,® R, dans un complexe quelconque A sont
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donnés par les collections de morphismes linéaires (¢, : R, — A, )nez sans aucune
condition. La bijection se faisant en définissant le morphisme de complexe sous la
forme (d(s),r) — di,11(s) + ¥, (r) (en se rappelant que les cycles sont des bords).
En particulier, on peut appliquer cette construction pour relever tout morphisme
surjectif en un diagramme commutatif. O

En effet, ce lemme permet d’abord de remarquer que si A ~ B est une co-
fibration qui est un quasi-isomorphisme, alors, en notant P le complexe quotient
B/A (qui est donc cofibrant et acyclique parce qu'on a vu avant), le relevé dans

le diagramme () —— B assure que la projection B — P est scindée et donc

P——P
B = A® P comme complexe de chaines. Par suite, un relevement dans tout dia-

f N . . f .
gramme A X se ramene a un relevement de () —— X ce qui

BA@P——Y P——>Y
existe par le lemme précédent. O

Les propriétés de factorisation découlent de ce que I'on appelle I'argument du
petit objet. C’est une construction permettant de construire fonctoriellement des
objets ayant des propriétés de relevement par rapport a une famille raisonnable de
fleches issus de “petits” objets. Avant de I’énoncer, on note une propriété clé de
cette structure projective : les fibrations et fibrations acycliques sont exactement les
morphismes de complexes ayant la propriété de relevement a droite par rapport a
une certaine famille dénombrable de morphismes de complexes.

Proposition 2.3.16. Soit f : X — Y un morphisme de complexes dans Ch(R) (resp.
Ch>o(R)).

(1) f: X — Y est une fibration si et seulement si il a la propriété de relevement
a droite par rapport a tous les morphismes 0 — D"(R) (resp. pour n > 1);

(2) f: X — Y est une fibration acyclique si et seulement si il a la propriété de
relevement & droite par rapport a tous les morphismes S"'(R) — D"(R)
(resp. pour n > 1)

Démonstration. La preuve est simplement une petite chasse au diagramme degré
par degré. La premiere remarque a faire est la suivante : un morphisme de complexe
de D"(R) — Z, est équivalent a la donnée d’un élément z € Z, en degré n (via
r=r-1l—r-zendegrénetr— r-d(z) =d(r-z)en degré n — 1 et nécessairement
0 en tout autre degré). Il suit immédiatement que si p : X — Y est un morphisme
0

de complexe, il existe un relevement dans tout diagramme 0 X siet
7
IE ‘p
D"(R) —=Y

seulement si tout élément de 1, admet un antécédent par p, c’est a dire que p
est surjective en degré mn. Ainsi (1) est démontré. Pour (2), on remarque qu’un
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diagramme commutatif S" !(R) T X est équivalent a la donnée d’une paire

| )

g

D"(R) ——Y

(Tn—1,Yn) € Xp_1 XY, vérifiant p(z,_1) = d(y,) et d(z,—1) = 0 (autrement dit z,_;
est un cycle) (via f(r) = r-x,_; en degré n — 1, 0 sinon et g est déterminée par
g(r) = r-y, comme ci-dessus). En vertu de la premiére remarque, un reléevement dans
ce diagramme est équivalent a la donnée d’un élément z,, € X,, tel que d(z,) = x,,_1
et p(z,) = y,. Montrons maintenant (2). Si p est une fibration acyclique["} alors
son noyau Ker(p) est un complexe de chaines qui a une homologie nulle en tout
degré par la longue suite exacte d'une suite exacte courte en homologie (associée
a Ker(p) — X — Y). Par surjectivité, on peut trouver un élément z, € X, tel
que p(Z,) = y,. I suit que d(z,) — z,—1 € Ker(p),_1. C’est par ailleurs un cycle
de Ker(p) puisque d(x,—1) = 0. Ainsi il existe un élément w € Ker(p), tel que
d(w) = d(z,) — xp—1). On en déduit que I'élément z,, := &, — w vérifie bien les
conditions voulues : d(x,) = z,_1 et p(z,) = y,. 1l reste a voir la réciproque.

On suppose donc que p : X — Y vérifie la propriété de relevement a droite par
rapport a toutes les diagrames avec S !(R) < D"(R) & gauche (oun > 1oun € Z
selon les cas) . Il est immédiat que p est surjective sur les n-cycles car, pour tout cycle
Yn, la paire (0, y,,) définit bien un diagramme commutatif et que le relevement donne
donc un antécédent de y,,. En passant au quotient, on obtient donc que H,(p) est
également surjective. Montrons que p elle méme est surjective : si y, € Y,,, comme
d(y,) est un cycle, par surjectivité pour n — 1[7] on obtient que d(y,) = p(,-1)
avec T, un cycle. C’est a dire que le couple (x,_1,y,) définit bien un diagramme.
L’existence du relevement donne donc un antécédent z,, de y,. On a bien obtenu
que p : X — Y est une fibration. Pour montrer qu’elle est acyclique, il reste a voir
que H,(p) est injective. Supposons que p([z,]) = 0 € H,(Y). Alors p(x,) est un
bord, c’est a dire p(x,) = d(yn+1) et la paire (x,, y,+1) fournit encore un diagramme
commutatif (associé¢ a S"(R) — D"(R)) pour lequel on a donc un relévement, en
particulier un élément z,, tel que d(z,41) = x,. 1l suit que [z,] =0 € H,(X) et
on a bien l'injectivité. O

Remarque 2.3.17. Comme on a déja démontré les propriétés (1) et (3) du Théo-
reme et 'axiome , on obtenait le sens direct en remarquant que les
morphismes 0 — D"(R) et S""!(R) — D"(R) sont respectivement des cofibrations
acycliques et des cofibrations.

Pour énoncer I'argument du petit objet on a besoin de la terminologie suivante :

Définition 2.3.18. Un objet A € C est dit N-compact ou N-petit (ou parfois séquen-
tiellement petit) si, pour tout foncteur F': N — C, on a que 'application canonique

coll\]im Homcg (A, F(n)) — Homg(A4, colim(F'(n)))

est une bijection.
Si on remplace N par n’importe quel ordinal x, on définit de méme la notion de
k-compact ou k-petit.

40. on a vu qu’en particulier cela implique que p est surjectif méme pour la structure de Ch>o(R)
41. qui est automatique pour n — 1 < 0 dans le cas de Ch>(R)
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Enfin un objet A € C est appelé simplement compact si 'application canonique

colim Homg(A4, C;) — Homg(A4, colim C))
jed jeJ

est un isomorphisme pour toute colimite filtrée.
Un objet compact est a fortiori xk-compact.

Ezemple 2.3.19 (Modules et complexes de chaines). On peut vérifier qu'un R-module
est N-compact (et méme compact) si et seulement il est de présentation finie.

Plus généralement un complexe X, € Ch(R) de R-modules est compact si c¢’est
un complexe borné (c’est qu’il n’y a qu'un nombre fini de composantes non-nulles)
de R-modules de présentation finie.

Ezemple 2.3.20 (Ens, sEns et Top). Dans la catégorie des ensembles, les objets
compacts sont les ensembles finis.

Dans la catégorie de tous les espaces topologiques généraux, les objets compacts
ne sont pas si intéressants car il s’agit des ensembles finis munis de la topologie
discrete (cela se voit en regardant des morphismes dans des espaces grossiers mais
ce n'est pas évident). En revanche, les complexes cellulaires compacts (au sens de
la topologie usuelle) sont bien des objets compacts de la sous-catégorie des espaces
cellulaires.

Les objets compacts de la catégorie sEns des ensembles simpliciaux (voir
sont les ensembles simpliciaux finis (c’est a dire avec un nombre fini de simplexes
non-dégénérés ; il sa’git précisément de ceux dont la réalisation géométrique est un
espace compact au sens usuel et frangais de la topologie).

On va maintenant expliquer une méthode due a Quillen pour construire des appli-
cations ayant la propriété de relevement par rapport a une famille de morphismes.

Soit J une famille de fleches (A; 2% B;)ie; dans C. Soit f : X — Y une floche
de C. Notre but est donc de construire une factorisation naturelle de f au travers
d’une fleche qui a la propriété de relevement par rapport a toutes les applications
de la famille J. On procede comme suit. On introduit un nouvel ensemble

( 3
9) S7(f) =4 A;——= X | tel que le diagramme commute et i € J
‘il
\ Bz — Y y,

constitué de tous les diagrammes commutatifs dans C dont les fleches verticales de
gauche sont dans J et celle de droite est f. Si d € S?(f) est un objet de S”(f), on

. $d
notera[*| le diagramme correspondant sous la forme — A;, —= X .

s

Bidi)y

42. cette écriture n’a pour but que de donner un nom aux fleches du diagramme, sauf f bien sur
qui est la seule fixée
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A partir de ce (gros) ensemble S?(f) on construit l'objet R(f,J) comme le poussé-
en-avant X Ullesacs) Aig [ s3(f) Big- On a donc le diagramme commutatif suivant

deS(f) f
Haidl
I B, — R'(f,9) oy
deS7(f)
[a

ot fi: RY(f,J) = Y est la fleche donnée par la propriété universelle du poussé-en-
avant.

On itere alors la construction en posant R*(f,J) := R'(f;,J) et en notant f :
R%*(f,3) = RY(f1,3) — Y la fleche canonique (obtenue par propriété du poussé
en avant appliqué au diagramme obtenu a partir de S?(f1)). Par récurrence, plus
généralement, on définit

(11)  R™(f,7) := R*(f,_1,7) et on note f, : R*(f,J) — Y la fleche canonique.
Notons que l'on a, par définition du poussé en avant, des fleches canoniques X —

RY(f,7), R'(f,3) — R*(f,7J), ..., R Y(f,7) — R"(f,J) etc. On a donc un dia-

gramme commutatif

X —=RY(f,3)—= ... —= R"(f,7) — ...

A

On note enfin
(12) R*(f,7) := colim R"(f,J)

et foo : R®(f,J) — Y la fleche canonique induite par le diagramme précédent. On

a donc une factorisation X — R*(f,7) 5 Y de f (qui se factorise au travers de
chaque R"(f,7)).

Remarque 2.3.21. La construction a pour but de définir objet R"*!(f) comme un
objet muni d’une fleche issue de B; pour tout carré commutatif avec f sur la
verticale droite et A; — B; a gauche. Cette fleche va étre le relevement dans le carré
en passant a la colimite comme 1’énonce le résultat suivant.

Proposition 2.3.22 (Argument du petit objet de Quillen). Supposons que pour tout
i € J, lobjet A; est N-compact (définition [2.3.18). Alors fo : R*(f,J) - Y ala
propriété de relevement a droite par rapport a tous les morphismes de J.

Ce résultat se généralise par une preuve similaire au cas de tout ordinal kK > N
(ou R*(f,J) doit étre remplacé par une suite indicée par k de poussés en avant).
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Démonstration. Comme chaque A; est petit, toute fleche p : A; — R*°(f,7J) se facto-

rise au travers d’'un R"(f,J). Ainsi tout diagramme commutatif A; —L R>(f,7)

L lfm

B; Y

se factorise sous la forme

Ai—5 R(1.3) — R™([,3) —~ B(1.9)

L ll/ Lf jfm

B; — Y Y.

nt ¢ provient de la définition de R"™!(f,J). En effet, le
diagramme A; —> R™(f,7J) est un objet de la catégorie S7(f,,) et donc on a bien

aij fn

L’existence du releveme

B; 7 Y
une fleche B; — RY(f,,J) = R""(f,J) par construction du poussé-en-avant. Ceci
nous fournit en particulier un relevement pour R>*(f, 7). O

Remarque 2.3.23. Notons que par construction, l'objet R>(f,J) est construit est
une colimite séquentielle (c’est a dire indicée par un poset totalement ordonné) a
partir de pushouts des morphismes de J. En particulier, ¢’est un objet cellulaire gé-
néralisé [2.4.1] construit a partir des morphismes de J. Notons qu'un objet J-cellulaire
a la propriété de relevement a gauche par rapport a fo et plus généralement par
rapport a tout morphisme ayant la propriété de relevement a droite par rapport
aux morphismes de J. En effet, c’est immédiat pour des poussés-en-avant par des
morphismes de J par le lemme et une colimite séquentielle de tels pushouts se
réécrit comme un (gros) pushout. Alternativement, on peut simplement appliquer le

Lemme 2.3.24. Soit Xy — X; — --- ... une tour (indicée par un cardinal x) de
morphismes de C et 7 : X — colim, X; le morphisme canonique. Si chaque X; —
X411 a la propriété de relevement a gauche par rapport a un morphisme f, alors
1 : X — colim, X; 'a aussi.

Démonstration. Par le lemme [2.1.17, chaque Xy — X, a la propriété de releve-
ment. Il suit que pour tout diagramme Xo W on a une factorisation

| |s

colim, X; ——= 7

Xo =W et l'existence de hy. La compatibilité des hj nous donne

Xy “— colim, X; — Z
alors le relevement h = colim hy, : colim, X; — W de f. [

Par ailleurs, la construction de la factorisation f — (X — R¥(f,J), R>(f,J) I
Y') est fonctorielle puisque les morphismes en question sont construits par propriété
universelle des poussés-en-avant indicés par tous les diagrammes commutatifs avec
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f et que tout morphisme dans la catégorie des fleches de f vers g (c’est a dire
carré commutatif avec f et g paralleles) induit une application canonique entre les
diagrammes commutatifs.

Preuve de|(MC5). On fait le cas de Ch(R), 'autre cas est completement analogue.
Montrons que tout morphisme de complexes f : X — Y admet une factorisation

fonctorielle f : X — Z < Y. Pour cela on choisit la classe 3 = (S"(R) —
D™(R))pez. L’argument du petit objet (proposition [2.3.22] les S"7!(R) étant com-
pacts) nous dit que I'on a une factorisation

FiX — RT3 Iy

telle que f., a la propriété de relevement a droite par rapport a toutes les fleches
S"~1(R) — D"(R) et donc c’est une fibration acyclique par la proposition
La premiere fleche est une cofibration car c’est une succession de coproduits et
poussés en avants de cofibrations (puisque S™(R) — D™(R) est une cofibration par
la preuve de la propriété (3) du théoreme ﬁ, cf . Comme la construction
des R™(f,J) est fonctorielle en f : X — Y, on en déduit sans difficulté que la
factorisation obtenue est fonctorielle.

Montrons maintenant 'autre factorisation. On prend cette fois ¢ci I = (0 —
D"(R))nez et Pargument du petit objet nous donne une factorisation

FiX — R2(f,3) =y

telle que f, a la propriété de relevement a droite par rapport a toutes les fleches
0 — D™(R) et donc c’est une fibration par la proposition . La premiere fleche
est maintenant une succession de poussés en avant de X le long de cofibrations
acycliques. On en déduit que c’est encore une cofibration acyclique. La fonctorialité
du remplacement découle encore de celle de la construction des R™(f,J). 0J

Remarque 2.3.25. La preuve montre que pour utiliser I'argument du petit objet, il
suffit que les A; soient N-petits et méme simplement petits par rapport a la famille
des applications qu’on peut construire en prenant des poussés-en-avant et coproduits
construits a partir des «;.

Par ailleurs, on note que la factorisation obtenu se fait au travers tout d’abord dun
morphisme cellulaire généralisé construit sur notre famille J suivie d’'un morphisme
ayant la proproété de relevement a droite.

FEzercice 2.3.26. On se place dans Ch(R) ou Chs(R) munis de la structure projec-
tive.

(1) Démontrer que dans la structure de modele projective, si X est cofibrant et
f,g: X =Y, alors f ~ g est équivalent & f et g sont homotopes au sens des
complexes de chaines : f — g = dh + hd.

(2) Soit M un R-module vu comme un complexe de chaines concentré en degré
0. Démontrer qu'un remplacement cofibrant de M dans Ch>o(R) est exacte-
ment une résolution projective de M.

43. On démontre comme dans la preuve du lemme [2.1.17] qu’une colimite séquentielle de mor-
phismes satifaisant une propriété de relevement a gauche satisfait cette propriété aussi. Alternati-
vement, on peut aussir remarquer qu’on peut écrire cette colimite comme un pushout
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Ezemple 2.3.27 (Cas des complexes bornés). Il existe d’autres sous-catégories de
complexes de chaines intéressantes et naturelles. En particulier on peut considérer
les sous-catégories (pleines[) suivantes[™| de Ch(R) :

e la catégorie Chy(R) des complexes bornés constituée des complexes C, tel
que C; est non-nul en un nombre fini de degré seulement (autrement dit il
existe n < m € Z tel que C; = {0} sii >m oui <n);

e la catégorie C'h, (R) des complexes bornés inférieurement constituée des com-
plexes C. tel qu’il existe n € Z tel que C; = {0} sii < n;

e la catégorie Ch_(R) des complexes bornés supérieurement constituée des
complexes C, tel qu’il existe m € Z tel que C; = {0} si i > m.

Notons que ces sous-catégories sont stables par suspension et désuspension, c¢’est a
dire par les foncteurs C' +— C[n] o C[n]; = C,4; pour tout n € Z. (et la différentielle
est (—1)"dc ol de est la différentielle de C'). Ce n’est pas le cas de Ch>o(R) qui
n’est stable que par suspension C' — C[n] ou n > 0.

La preuve du théoreme montre que la structure de modele de Ch(R) se
restreint & Chy(R), Chy(R) et Ch_(R) de maniere suivante :

Corollaire 2.3.28. Les structures projective et injectives font de Chy(R), Chy(R)
et Ch_(R) des catégories de modele d(co)limites finies["| et factorisations non-
fonctorielles. De plus

(1) Pour la structure projective, les cofibrations C'hy(R) sont exactement les
morphismes de complexes injectifs en tout degré, dont le conoyau est un
complexe de modules projectifs;

(2) pour la structure injective, les fibrations Ch_(R) sont exactement les mor-
phismes de complexes surjectifs en tout degré, dont le noyau est un complexe
de modules injectifs.

(3) La proposition reste vraie pour la structure projective et les structures
de modele sont cofibrement engendrées (cf. Définition [2.4.5)).

Ebauche de preuve. La preuve de la proposition (avec m décrivant Z) s’ap-
plique wverbatim aux catégories Chy(R),Chy(R),Ch_(R). Les affirmations (1) (et
respectivement (2)) sur les (co)fibrations découlent immédiatement des conditions
(3) du théoreme (resp. et du fait que les objets dans les catégories concer-
nées sont nécessairement bornés inférieurement (resp. supérieurement).

La seule subtilité pour appliquer directement la preuve du théoreme [2.3.2] est dans
I’aplication de I'argument du petit objet pour garantir I'existence des factorisations
dans les sous-catégories concernées. Une fois fixé un morphisme de complexes f :
X — Y dans Chy(R).

On est alors ramené, dans I'argument du petit objet, a ne regarder que des
diagrammes commutatifs olt les fleches verticales de gauche 0 — D'(R) (resp.
S™Y(R) — D'(R)) sont restreintes a i € [n,m] (resp. [n,m + 1]) ce qui garantit

44. c’est a dire qu’on restreint les objets, mais pas les morphismes entre objets conservés

45. On pourra noter que via l’équivalence entre complexes de chaines et cochaines, on a que
Chy(R) est équivalente a celle des complexes de cochaines bornés, Ch, (R) est équivalente & celle
de complexes de cochaines bornés supérieurement et Ch_(R) est équivalente a celle de complexes
de cochaines bornés inférieurement

46. c’est a dire que doit étre remplacé par le fait que la catégorie a toute les (co)limites
finies
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que la factorisation se fait dans Chy(R). Le méme argument s’applique pour les

autres catégories.
OJ

Notons que par définition des colimites, on a un quasi-isomorphisme Cj, ; — C
ou Cy ¢, Uy sont les factorisation induites par I'argument du petit objet dans le
cas borné et l'autre dans le cas non-borné. De méme, un remplacement (co)fibrant
calculé dans la catégorie bornée est encore (co)fibrant dans la catégorie bornée.

Ceci permet en fait en pratique de transférer essentiellement tous les résultats et
calculs que l'on fait de maniére non-bornée au cas borné et de ne pas se soucier de
cette catégorie de modele “non-bornée” mais de se contenter d’utiliser la propriété
(3) des Théoremes : pour identifier des (co)fibrations et de l'existence
de remplacement borné (resp. supérieurement, inférieurement) pour les complexes
bornés (resp. supérieurement, inférieurement).

2.4. CATEGORIES DE MODELES COFIBREMENT ENGENDREES

Les structures de modeles projectives font partie d’'un type de structure tres cou-
rant de catégorie de modele, pour lesquelles 'argument du petit objet permet de
construire les factorisations. Ces structures sont caractérisées par le fait que les
fibrations et fibrations acycliques sont caractérisées par le fait qu’elles ont la pro-
priété de relevement a droite par rapport a une famille “petite” de morphismes, cf.
la proposition [2.3.16] On peut remarquer que les fibrations de Serre ont été défi-
nies similairement. Cette propriété et 'argument du petit objet ont plein de consé-
quences agréables car elles donnent non seulement un moyen efficace de construire
des structures de modeles mais aussi qu’elles permettent de construire et étudier
leurs (co)limites homotopiques, cf. Remarque . Une telle catégorie de modele
est dite cofibrement engendrée. Elles sont par ailleurs une source d’exemple primor-
diale de catégories de modeles. Avant de donner la définition précise, nous avons
besoin d’introduire encore un peu de terminologie...

La définition suivante est la généralisation, dans toute catégorie, de la notion de
complexe cellulaire relatif dans les espaces topologiques. Comme d’habitude la notion
topologique de recollement est remplacée par celle de poussé-en-avant.

Définition 2.4.1 (Morphisme cellulaire relatif). Soit J := (4; =% B;)ic; une famille
fixée de morphismes de C. Un complexe (ou morphisme) J-cellulaire relatif est un
morphisme X — Y ou Y est une colimite colim,e, X; ot k est un ordinallﬂ et

X,.1 est obtenu comme un poussé en avant de la forme . A, — X, clest
s+1 p is€ls L His s

"]

g
Hz‘sefs B, = Xt

a dire de coproduits de fleches de J. On notera J—Cell la classe des morphismes
J-cellulaires relatifs.
Un complexe J-cellulaire est un objet Y tel que 0 — Y est J-cellulaire relatif.

47. De maniere générale, c’est donc une suite transfinie de poussés-en-avant. On peut se contenter
de regarder que les cas de suite usuelle, c’est & dire pour K = N ou un ensemble fini {1,...,n},
pour comprendre la théorie générale.
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Les isomorphismes sont des complexes J-cellulaires relatifs (correspondant a 1’or-
dinal trivial).

Remarque 2.4.2. Les complexes cellulaires relatifs, correspondent exactement dans
Top a ceux associés a la famille (0I™ < I"),>o de la définition précédente. La
définition peut s’interpréter comme un recollement d’une famille d’objets de la forme
B; sur X le long de A; (ou de son image dans X).

On considere encore une famille J := (A; & B;)er.

Définition 2.4.3 (Objets J-injectifs et J-cofibrants). Une fleche f : X — Y est
J-injective si elle a la propriété de relevement a droite par rapport a tous les mor-
phismes de J. On notera J—1Inj la classe des morphismes J-injectifs (ou parfois
RLP(7)).

Une fleche g : A — B est dite J-cofibrante si elle a la propriété de relevement a

gauche par rapport a toutes les fleches J-injectives. On notera J— Cof la classe des
morphismes J-cofibrants (ou parfois LLP(RLP(J))).

Remarque 2.4.4. On définit dualement des notions de J-projectifs et J-fibrations. On
peut remarquer alors que J— Cof = (J—Inj ))—Proj.

L’idée sous-jacente a la définition précédente est que les fleches J-injectives sont
précisément celles que 1'on souhaite étre les fibrations ou fibrations acyliques (comme
dans la proposition . Les J-cofibrations seront alors, par définition, ce que
doivent étre les cofibrations acycliques ou cofibrations dans une catégorie de modele.

Ceci est articulé précisément dans la définition suivante.

Définition 2.4.5. Une catégorie de modele (C, %', €, F) est cofibrement engendrée
si il existe des ensembles de morphismes J := (A; 2% B;)ics et Foo i= (A 64 B)jer
tels que

1) les fibrations acycliques sont exactement les J-injectives,

2) les fibrations sont exactement les 7, -injectives,

3) Les domaines des fleches «; de J sont petits par rapport a la classe J— Cell,
4) Les domaines des fleches 3; de 7, sont petits par rapport a la classe 7,.— Cell.

(

(

(

(
Les deux dernieres hypotheses techniques sont vérifiées si les domaines sont com-
pacts (et c’est souvent comme ¢a qu’on le vérifie). Le role de ces hypotheses est de
garantir que certaines constructions par colimites se comportent bien (comme ’ar-

gument du petit objet) dans ces catégories de modeles et de pouvoir caractériser les
cofibrations et cofibrations acycliques facilement, voir la proposition [2.4.8]

Remarque 2.4.6. 11 suit de la définition que les fleches de J sont des cofibrations
et celles de 7, des cofibrations acycliques. On les appelle respectivement cofibra-
tions génératrices et cofibrations acycliques génératrices. La définition et la proposi-
tion [2.4.8] impliquent de fait que toute la structure des fibrations, cofibrations et les
variantes acycliques sont déterminées par les ensembles J et 7, par propriétés de re-
levement successives. Il suit alors aussi que les équivalences faibles sont déterminées
par elles aussi d’apres le Corollaire [2.1.14}

Ezemple 2.4.7. e On a vu (Proposition [2.3.16/et Théoreme[2.3.2)) que les struc-
tures de modeles projectives forment une structure de modeles cofibrement
engendrées.
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e La structure de Quillen sur les espaces topologiques est aussi une structure
de modele cofibrement engendrée (cf la feuille de TD 3).
e La structure de modele de Strgm n’en est pas une en revanche.

Un des avantages d’avoir une structure de modele cofibrement engendrée est que
I’on peut caractériser facilement les cofibrations a partir de la famille génératrice.

Proposition 2.4.8. Soit C une catégorie de modele cofibrement engendrée.

(1) Les cofibrations sont des rétractes de morphismes J-cellulaires,

(2) les cofibrations acycliques sont des rétractes de morphismes 7, -cellulaires

(3) les cofibrations sont exactement les fleches J-cofibrantes, c’est a dire € =
J—Cof,

(4) Les cofibrations acycliques sont exactement les fleches 7, .-cofibrantes, c¢’est
adire 6 NNW = f..—Cof.

Démonstration. Les arguments pour démontrer cette proposition sont essentielle-
ment ceux de la preuve du théoreme Démontrons les point (2) et (4) par
exemple ; les autres étant similaires. Par définition, #,.—Cof = LLP( %, — Inj) =
LLP(%) par la propriété (2) de la définition d’une catégorie de modele cofibrante.
Ainsi le point (4) est juste la proposition[2.1.13 Passons a (2) : soit maintenant f une
cofibration acyclique. Par 'argument du petit objet (valide par la propriété (4)
de la définition , un tel morphisme se factorise sous la forme f = poq ou ¢ est
Fac-cellulaire donc une cofibration acyclique (cf remarque et p une fibration
(par la propriété (2) de[2.4.5). Comme [ a la propriété de relevement par rapport &

p: X 1.0 , on en déduit que f est un rétracte de ¢ : X X X
Y —— Y C Y
h P
et donc le point (2) est démontré. O

On en arrive au théoreme important de cette sous-partie.

Théoreme 2.4.9. Soit C une catégorie complete et cocomplete, et #° une classe
de morphismes et J, %, deux ensembles de morphismes de C. Alors il existe une
structure de catégorie de modele cofibrement engendrée sur C, avec #° comme équi-
valences faibles, J (resp. %) comme cofibrations (resp. cofibrations acycliques) gé-
nératrices, si et seulement si les conditions suivantes sont vérifiées :

(1) La classe 7 vérifie I’axiome et est stable par rétracte.

(2) Les domaines des fleches de J sont petits par rapport a J— Cell,

(3) Les domaines des fleches de 7, sont petits par rapport a Z,.— Cell.
(4) On a f,.—Cell C W N (J—Cof).

(5) OnaJ—Inj C W N (Fue—1Ing).

(6) Soit I—Cof "W C Fue— Cof soit Foe—Ing N W C T—1Inj.

Les propriétés 2 et 3 sont vérifiées si les objets sont compacts. Les propriétés 4)
et 5) énoncent que ce qui doit étre une (co)fibration acyclique en est bien une. La
derniere permet de vérifier ’axiome de recollement.

Démonstration. On définit les fibrations comme étant celles qui sont #,.-injectives et
les cofibrations comme étant celles qui sont dans J— Cof. Notons que par définition
J et de méme les J-cellulaires sont donc des cofibrations.
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Que les conditions soient nécessaires découle immédiatement de la définition d’une
catégorie de modele et d’'une catégorie de modele cofibrement engendrée. Les condi-
tions [(MC1)| et [(MC2)| découlent de I’énoncé et de 1) tout comme la stabilité de 7
par rétracte. Notons que assure que 7 est une sous-catégorie. Les (co)fibrations
étant définies comme toutes les applications vérifiant certaines propriétés de releve-
ment, la stabilité par rétracte se démontre comme dans le cas des cofibrations pour la
structure projective. C’est donc aussi le cas pour les versions acycliques en combinant
les résultats.

Notons d’abord que I'argument du petit objet (tel que nous 'avons démontré)
donne des factorisations de tout morphisme f : X — Y sous la forme d’un mor-
phisme %, .-cellulaire suivi d'un morphisme %, -injectif et de méme avec J a la place

j[lC'

Les conditions 5) et 4) garantissent que les morphismes de J—Inj sont des fibra-
tions acycliques, que ceux de ,.—Cell sont des cofibrations acycliques. Ainsi ces
factorisations fonctorielles données par 'argument du petit objet nous donne donc
bien I'axiome (car I—Cell C €, T—Inj = FNW, Fue—Cell C W NE et
Fae—Inj = F).

Il nous faut alors encore vérifier I’axiome . On utilise (6). Supposons que
l'on a 3—Cof N W C fF..—Cof (autre cas se traitant de maniere duale). Alors
les cofibrations acycliques ont bien la propriété de relevement par rapport a toutes
les fibrations ce qui est la moitié de I'axiome. Si maintenant f : X — Y est une
fibration acyclique, on doit vérifier qu’il a la propriété de relevement par rapport
a toutes les cofibrations. Par définition de ces dernieres, il suffit de voir qu’il a la
propriété de relevement par rapport a celles de J. On factorise alors f = pogq
avec ¢ une cofibration (car J-cellulaire) et p dans J-injective d’apres I'argument
du petit objet; en particulier p € % par (5) et on déduit de I'axiome 2-pour-3
((MC2))) que ¢ € #" aussi. En particulier, vu que 'on a la premiere partie de (6),
on a que f, qui est dans f,.—Inj, a la propriété de relevement par rapport a ¢ qui
est dans 7" N J—Cof C f..-Cof. Ainsi on a une factorisation dans le diagramme
X et on en déduit que f est un rétracte de p et donc dans JInj comme

qt o Jf
W——>Y
souhaité : X X L’autre cas de figure se fait dualement.
| b
Y Y Y.
Notons enfin que les points (1) et (2) de la définition sont des conséquences

des définition choisies pour les (co)fibrations car RLP(LLP(RLP(J))) = RLP(J)
par double inclusion. O

h

2.5. FONCTEURS DE QUILLEN, FONCTEURS DERIVES

On va étudier dans cette partie des foncteurs de Quillen qui permettent de com-
parer des catégories de modeles et en particulier leurs catégories homotopiques. Cela
va nous donner également un sens précis pour définir des "foncteurs a équivalence
faible pres®.
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Définition 2.5.1 (Foncteurs de Quillen). Soit C, D deux catégories de modele.

(1) Un foncteur F' : C — D est de Quillen a gauche si ¢’est un adjoint a gaucheﬁ
qui préserve les cofibrations et cofibrations acycliques@

(2) Un foncteur G : D — C est de Quillen a droite si ¢’est un adjoint a droite
qui préserve les fibrations et fibrations acycliques.

Remarque 2.5.2. Un foncteur de Quillen a gauche commute avec les colimites (comme
tout adjoint a gauche) et et un foncteur de Quillen a droite commute avec les limites
(comme tout adjoint a droite).

Par ailleurs, nos catégories étant supposées (co)completes, cette derniere condition
est équivalente a celle d’avoir un adjoint si nos catégories sont d’une taille “raison-
nable” (voir ou la feuille de TD 4 pour plus de détails). On peut noter aussi
que cette notion ressemble donc a celle d’étre exact a droite et a gauche dans une
catégorie abélienne.

Un foncteur qui préserve les colimites préserve I'objet initial () alors qu’un foncteur
qui préserve les limites préserve 1'objet terminal {*}. On en déduit alors que

(1) Un foncteur de Quillen & gauche préserve les objets cofibrants.
(2) Un foncteur de Quillen & droite préserve les objets fibrants.

FEzxercice 2.5.3. Démontrer les affirmations précédentes.

Définition 2.5.4 (Adjonction de Quillen). Une adjonction de Quillen est une adjonc-

tion FF': C__ ~D : R entre catégories de modele telle que I'adjoint a gauche F'
est de Quillen a gauche et I’adjoint a droite est de Quillen a droite.

Les adjonctions de Quillen sont les foncteurs idoines pour comparer des structures
de modeles.

Le lemme suivant nous dit qu’il suffit de vérifier qu'un seul des foncteurs de I’ad-
jonction est de Quillen.

Lemme 2.5.5. Soit F': C__ D : R une adjonction entre catégories de modeles.
Alors F' est de Quillen a gauche si et seulement si R est de Quillen a droite.

Démonstration. Supposons que F soit de Quillen a gauche. Montrons que R est
de Quillen a droite. Il faut montrer que si f : P — (@ est une fibration alors
R(f) : R(P) — R(Q) en est une, ce qui revient, d’apres la proposition a
R(P) la fleche poin-

montrer que pour tout diagramme commutatif A
i R(f)

)

tillée rendant le diagramme commutatif existe. Mais comme F': C____ D : R est
une adjonction, le diagramme précédent (et I'existence de la fleche pointillée) est

48. cf 'appendice
49. c’est a dire qui envoie une cofibration sur une cofibration et une cofibration acyclique sur une

cofibration acyclique
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équivalent au diagramme L(A) P pour lequel la fleche pointillée existe

L(C) Q
puisque L(7) est une cofibration acyclique étant donné que L est de Quillen a gauche.
Le cas d’une fibration acyclique ou la réciproque se démontre de méme. O]

Exemple 2.5.6. Soit f : A — B un morphisme d’algebres commutatives. Munissons
Ch(A) et Ch(B) de leur structure de modele projective. Alors le foncteur B®y4 :
Ch(A) — Ch(B) est de Quillen a gauche. Son adjoint a droite est donné par le
foncteur qui & un (complexe de) B-module associe le méme (complexe) mais muni
de la structure de A -module donnée par a-m = f(a) - m.

Un autre exemple standard est donné sous forme d’exercice :

FExercice 2.5.7. Soit Top, la catégorie des espaces topologiques pointés et U : Top, —
Top le foncteur oubli.

(1) Démontrer que c’est un adjoint a droite.

(2) On munit Top de la stucture de modele de Quillen (Exemple[2.1.15)). Trouver
une structure de modele sur Top, telle que U soit de Quillen a droite.

(3) Méme question que la question précédente en munissant Top de la stucture
de modele de Strom (Exemple [2.1.16)).

(4) A-t-on une généralisation des résultats précédents pour toute catégorie de
modele C?

Le lemme suivant sera tres pratique pour garantir que certains foncteurs passent
aux catégories homotopiques.

Lemme 2.5.8 (de Brown). Soit H : C — D, un foncteur entre deux catégories de
modeles.

(1) Si H envoie les cofibrations acycliques entre objets cofibrants sur des équiva-
lences faibles, alors H envoie toute équivalence faible entre objets cofibrants
sur une équivalence faible.

(2) Si H envoie les fibrations acycliques entre objets fibrants sur des équivalences
faibles, alors H envoie toute équivalence faible entre objets fibrants sur une
équivalence faible.

Remarque 2.5.9. Un foncteur de Quillen & gauche (resp. a droite) vérifie les hypo-
theses du 1) (resp. 2)) et envoie donc tout équivalence faible entre objets cofibrants
(resp. fibrants) sur des équivalences faibles.

Preuve du Lemme de Brown. Les deux preuves sont duales et on ne prouve donc

que la premiere assertion. L’idée est de factoriser une équivalence faible f : A — B

entre objets cofibrants de maniere intelligente. Le fait que A et B soient cofibrants

nous dit que les morphismes canoniques iy : A — A[[B et ig : B — A[[B

sont des cofibrations (Lemme et on a par ailleurs que f est la composée
p

AL A [IB T B On note A [I1B L ¢ 5 B une factorisation de f1lid. Comme
f est une équivalence faible, il suit de la premiere factorisation et de|(MC2)|que joiy
est une équivalence faible, et une cofibration entre objets cofibrants (puisque A[[ B
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I'est et que j est une cofibration alors C' est bien cofibrant). Ainsi H(j o i) est
une équivalence faible. De méme H(j o ig) € W'. Mais H(f) = H(pojois) =
H(p) o H(j oia) et il suffit de vérifier que H(p) est une équivalence faible. Or ceci
découle encore de car H(p)o H(joig) = H(pojoig)= H(idg) qui est une

équivalence faible ainsi que H(j oig). OJ

Donnons une notion de foncteur dérivé générale pour les catégories avec équiva-
lence faible : ¢’est a dire une catégorie C munie d’une classe de morphismes stable par
composition #" (appelées les équivalences faibles). Nous notons encore, comme pour
les catégories de modeles qui seront notre principal exemple, Ho(C) : C[# '] sa
localisée par rapport a % (Définition [2.2.1)). On notera 7 : C — C[% "] = Ho(C)

le foncteur canonique.

Définition 2.5.10 (foncteurs dérivés). Soit (C,#") une catégorie avec équivalence
faible et £': C — D un foncteur.

(1) Un foncteur dérivé a gauche de F est la donnée d’un foncteur LF' : Ho(C) —
D et d’'une transformation naturellem Lrg : LF o — F qui vérifient la
propriété universelle suivante : pour toute paire (G,«) ou G : Ho(C) — F
est un foncteur et v : G o™ — F est une transformation naturelle, il existe
une unique transformation naturelle 6% : G — LF qui factorise a, c’est &
dire que

G
Oé:GOﬂ'GF—o;rLFOT&'E)F.

(2) Un foncteur dérivé a droite de F' est la donnée d’un foncteur RF' : Ho(C) —
D et d'une transformation naturelleP] R7z : F' — ILF o 7 qui vérifient la
propriété universelle suivante : pour toute paire (G, ) ou G : Ho(C) — F
est un foncteur et v : G o — F est une transformation naturelle, il existe
une unique transformation naturelle 6% : RF — G qui factorise 3, c’est &
dire que

Eor
ﬂ:RFOﬂ'QG—>Go7Ti>F.

Lemme 2.5.11. Un foncteur dérivé a gauche (resp. a droite), si il existe, est unique
a unique isomorphisme naturel pres.

Démonstration. C’est une conséquence habituelle de la propriété universelle, voir la
feuille de TD 4 également. OJ

50. c’est a dire, en suivant les notations de 2-catégories, qu’on a un diagramme
F

C
\ WM L
Ho(C)

controlé par la transformation naturelle L7z

51. c’est a dire, en suivant les notations de 2-catégories, qu’on a un diagramme
F

\ HRTF RF
Ho(C)

controlé par la transformation naturelle R7g

D qui n’est pas commutatif, mais dont le défaut de commutativité est

D qui n’est pas commutatif, mais dont le défaut de commutativité est
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Remarque 2.5.12. Un foncteur dérivé a gauche est la meilleure approximation par la
gauche de F'. C’est par définition, ce qui s’appelle une extension de Kan a droite du
foncteur canonique C — Ho(C).

Lorsque C est une catégorie de modele, on dispose du critere suivant pratique
pour vérifier I’existence des foncteurs dérivés.

Proposition 2.5.13. Soit F': C — D ou C est de modele.

(1) Si F envoie les cofibrations acycliques entre objets cofibrants sur des isomor-
phismes, alors son foncteur dérivé a gauche existe.

(2) Si F envoie les fibrations acycliques entre objets fibrants sur des isomor-
phismes, alors son foncteur dérivé a droite existe.

Démonstration. Les deux preuves sont duales. Montrons seulement la premiere af-
firmation. Rappelons que 1'on a une équivalence Ho(C) = Ho(C,) données par le

foncteur de remplacement cofibrant X +— L(X) (voir le Lemme [2.2.14)). On définit
alors le foncteur LF' comme étant donné par X — F(L(X)) et on a bien que 1’équi-

valence faible L(X) — X induit une floche naturelle F(L(X)) — F(X) qui définit
une transformation naturelle L7g. Il reste a vérifier que ILF' est bien définie. Par le
lemme de Brown[s_gl, F envoie les equivalences faibles entre objets cofibrants sur des
isomorphismes. Ainsi, le foncteur Y — F(Y") se factorise bien au travers de Ho(C,)
ce qui termine la construction de ILF'.

Il reste a voir la propriété universelle. Soit (G, 3) comme dans 1'énoncé; c’est
a dire G : Ho(C') — F est un foncteur et @ : Gom — F est une transforma-
tion naturelle. Comme L(X) — X est un isomorphisme dans Ho(C), on a que

G(L(X)) = G(X) est un isomorphisme dans D. Par suite, le diagramme commu-

tatif G(X) ——=— F(X) montre d’une part que 3 se factorise au travers de

N] [mx

G(L(X)) = F(L(X)).

ar(x
L7r et d’autre part que toute factorisation (symbolisée par la fleche en pointillé
rendant le triangle supérieur commutatif) est donnée par celle-ci (puisque, le carré
commutant, le triangle inférieur commute alors nécessairement aussi). 0J

Remarque 2.5.14. 11 découle de la preuve de la proposition [2.5.13}(1), que si A est
cofibrant, alors, L7p : LF(A) — F(A) est un isomorphisme. De méme, dans le cas
(2), si Y est fibrant alors Rrp : FI(Y) — RF(Y') est un isomorphisme.

Lorsque la catégorie but D est aussi une catégorie de modele (ou méme simplement
une catégorie avec équivalence faible), la notion de foncteur dérivé a valeur dans D
n’est plus forcément celle que I’on souhaite ; on peut souvent en pratique s’intéresser
aux foncteurs dérivés a équivalence faible pres dans D. Cette notion est précisément
la suivante :

Définition 2.5.15 (foncteurs dérivés totauz). Soit F' : C — D un foncteur entre
catégories de modeles (ou avec équivalences faibles).

52. ou on met la structure de modele triviale sur D, c’est a dire celle dont les équivalences faibles
sont les isomorphismes, et les (co)fibrations des morphismes quelconques
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(1) Un foncteur dérivé total a gauche de F est la donnée d’un foncteur dérivé a

gauche du foncteur composé C 5 D 5 Ho(D).
(2) Un foncteur dérivé total a droite de F est la donnée d’un foncteur dérivé a

droite du foncteur composé C 5 D 5 Ho(D).

Notation 2.5.16. On notera (abusivement) en général LF : Ho(C) — Ho(D) et
RF : Ho(C) — Ho(D) les foncteurs dérivés totaux gauche et droite de F. C’est
a dire que si nous regardons un foncteur entre catégories de modeles, par défaut,
nous ne considérerons que des foncteurs dérivés totaux, sauf mention explicite du
contraire. Si on doit distinguer entre les deux notions, nous utiliserons la notation
LPF et R™F pour les foncteurs dérivés totaux

Lorsque C est une catégorie de modele, on dispose du critere suivant pratique
pour vérifier I'existence des foncteurs dérivés.

Proposition 2.5.17. Soit F': C — D ou C et D sont de modele.

(1) Si F envoie les cofibrations acycliques entre objets cofibrants sur des équiva-
lences faibles, alors son foncteur dérivé total a gauche existe.

(2) Si F envoie les fibrations acycliques entre objets fibrants sur des équivalences
faibles, alors son foncteur dérivé total a droite existe.

(3) En particulier si F' est de Quillen a gauche, son foncteur dérivé total a gauche
existe et si G est de Quillen a droite, alors son foncteur derivé total a droite
existe.

Démonstration. 11 suffit d’appliquer la proposition [2.5.13 au foncteur composé 7o F
puisque 7 envoie des équivalences faibles en isomorphismes. La derniere remarque
découle de la remarque [2.5.9] O

Remarque 2.5.18. 11 découle de la remarque [2.5.14] que, dans le cas (1), si A est
cofibrant, et, ans le cas (2), si Y est fibrant, alors les applications naturelles L7p :
LF(A) - mo F(A) ou Rrp : mo F(Y) — RF(Y) sont des isomorphismes dans
Ho(D).

FEzercice 2.5.19. Soit R un anneau commutatif unitaire et A/ un R-module (on pourra
choisir des catégories de modeles adéquats dans les différents cas).

(1) Démontrer I'existence et identifier les foncteurs dérivés totaux de M ®@p — :
Chso(R) = Ch>o(R). Les identifier avec les foncteurs dérivés et Tor;(—, —)
de la définition [L.5.25]

(2) Démontrer 'existence et identifier les foncteurs dérivés totaux de Hompg(—, M) :
Ch>o(R)? — Chxo(R) et de Hom(M, —). Les identifier avec les foncteurs
dérivés et Ext/(—,—) de la définition [1.5.25] On distinguera les cas de la
structure projective et injective et comment cela affecte les calculs.

(3) En déduire que pour calculer RHom (M, N) dans la catégorie homotopique,
on peut remplacer M par une résolution projective, N par une résolution
injective, ou les deux sans changer le résultat.

(4) Que se passe-t-il si on remplace Chso(R) par Ch(R)?

(5) Les foncteurs — ® — : Chxo(R) X Ch>o(R) — Ch>¢(R) et Hom(—,—) :
Ch>o(R)? x Chx>o(R) — Chxo(R) ont-ils des foncteurs dérivés totaux ?

On va maintenant vérifier qu'une adjonction de Quillen induit une adjonction au
niveau des catégories homotopiques.
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D’apres la remarque [2.5.9| et la proposition les foncteurs dérivés totaux a
gauche (resp. a droite) de foncteurs de Quillen & gauche (resp. a droite) existent
toujours.

Théoréme 2.5.20. Soit F: C____ D : G une adjonction de Quillen. Les foncteurs
dérivés totaux de F', GG, forment une adjonction

—_—

LF: Ho(C) ___ Ho(D) :RG

entre les catégories homotopiques.

Démonstration. Rappelons que la preuve de la proposition [2.5.13| nous dit que LF
se factorise sous la forme

LF : Ho(C) =5 Ho(C.) ™% Ho(D)

ou Ho(F) est foncteur induit par F' entre les catégories homotopiques et le premier
foncteur est l'inverse de l'inclusion canonique C. — C, explicitement donné par le
remplacement cofibrant X — L(X).

De méme RG se factorise sous la forme

)

RG : Ho(D) =5 Ho(D;) "2 Ho(C)

ou le premier foncteur est 'inverse de 'inclusion canonique C; — C, explicitement
donné par le remplacement fibrant X — R(X).
Il reste donc a vérifier que nous avons des isomorphismes fonctoriels

HomHo(D) (LF(X), Y) = HomHO(C) (X, RG(Y))

c’est a dire, par construction des foncteurs dérivés et en vertu du Théoreme [2.2.26],
des bijections naturelles

Homp(F(L(X)), R(Y))/~ = Home(L(X),G(R(Y))/~.

Comme F et G sont adjoints, on a déja des bijections naturelles ¢(—) : Homp(G(L(X)), R(Y)) =
Homc(L(X),G(R(Y)). Il faut donc voir que cette bijection naturelle passe au quo-
tient.
Montrons que si f,g : F(L(X) — R(Y) sont homotopes, et que H : F(L(X) —
Pr(yy est une homotopie a droite ott Pg(y) est un objet en chemin de R(Y'), alors
o(f),0(g9) : L(X) — G(R(Y)) sont homotopes. Comme G préserve les fibrations
et produits, on a que G(Pp,,,) = G(R(Y) x R(Y)) = G(R(Y)) x G(R(Y)) est
une fibration et par ailleurs, R(Y') étant fibrant, Pr(y) I'est aussi et donc G envoie
équivalence faible R(Y') = Pp(yy sur une équivalence faible. Conclusion :

G(Y) = G(Pre)) = GR(Y)) x G(R(Y))

est un objet en chemin de G(R(Y)). La fonctorialité, nous donne alors que ¢(H) :
L(X) = G(Pg(y)) est une homotopie a droite pour ¢(f) et ¢(g). Le sens réciproque
se fait de maniere duale. 0

Définition 2.5.21 (équivalence de Quillen). Une adjonction de Quillen F: C____D :
G est une équivalence de Quillen si I’adjonction induite LF : Ho(C) Ho(D) :

RG est une équivalence de catégorie.
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On ne demande en revanche évidemment pas que l'adjonction F': C :_j D :G
soit une équivalence.

Le critere suivant permet de caractériser les équivalences de Quillen via la structure
de modele.

Proposition 2.5.22. Soit une adjonction de Quillen F' : C C D : G. Les trois
assertions suivantes sont équivalentes :

(1) L’adjonction F : C____ D : G est une équivalence de Quillen.

(2) Les foncteurs F et G vérifient que : pour tout objet cofibrant A et tout objet
fibrant Y on a qu'une fleche f : F(A) — Y est une équivalence faible si et
seulement si son adjoint A — G(Y') est une équivalence faible.

(3) Pour tout objet cofibrant A et tout objet fibrant Y, on a que les fleches

G(Rp(a))
=

AL GoF(A) G(R(F(A)))

et

FILGY) " Foay) sy

, induites par 'unité n et la counité o de I'adjonction, sont des équivalences
faibles. Ici on a noté R : C — R(C') et Lp : L(D) — D les fleches données
par les remplacements fibrants et cofibrants.

G(R
Démonstration. Montrons que (2) < (3) : Le morphisme A —5 G o F(A) (i(f))

G(R(F(A))) est, par définition d'une adjonction, l'adjoint de Rpay : F(A) —
R(F(A)) € Homc(F(A), R(F(A)). Ce dernier est une équivalence faible entre un
objet cofibrant, car F' préserve les cofibrants, et un objet fibrant donc (2) implique
que le premier morphisme est une équivalence faible. La preuve de la deuxieme partie
de (3) est évidemment duale.

Réciproquement, supposons que A soit cofibrant, Y fibrant, (3) est vérifié et soit f :
F(A) — Y ; on note ¢(f) : A — G(Y) son adjoint. Par définition d’une adjonction,

on a que ¢(f) = A -5 G(F(A)) au) G(Y). On a alors un diagramme commutatif

A—" s ara) — Gy
G(Rpay) G(Ry) |2
A G(R(F(A))) 5o GIR(Y))

puisque R est fonctoriel. Si f est une équivalence faible, alors R(f) est une équiva-
lence faible entre objets fibrants et donc G(R(f)) est une équivalence faible car G
est de Quillen a droite. Il suit alors de la commutativité du diagramme et de
que la premiere ligne, c’est a dire ¢(f) est une équivalence faible. Si c’est A — G(Y)
qui est une équivalence, alors on obtient que f l'est en dualisant cette preuve en
utilisant la counité a la place de I'unité.
Montrons que (1) < (2). L'unit¢ de I'adjonction LF : Ho(C) ___ Ho(D)

RG est, par définition, donnée par I'adjoint 77 : A — RG o LF(A) de idLpa) €
Homygom)(LF(A), LF(A)). On a vu dans la preuve du Théoreme que cette
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adjonction est donnée par I'isomorphisme

¢(=) : Homp(F(L(A)), R(F(L(A)))) = Homgc(L(A), G(R(F(L(A))))

apres passage au quotient par la relation d’homotopie. L'unité est donc ¢(F'(L(A) —
R(F(L(A)))). Si (2) est vérifiée, alors, comme L(A) est cofibrant, la fleche L(A) —
G(R(F(L(A))) est une équivalence faible si et seulement si FI(L(A)) — R(F(L(A)))
en est une ce qui est le cas puisque il s’agit juste de celle donnée par le remplacement
fibrant. L'unité de I'adjonction est donc bien un isomorphisme dans Ho(D). On
monte dualement que la counité I'est.

Réciproquement, montrons que (1) = (3). Si I'unité de I'adjonction dérivée est
un isomorphisme, on a que L(A) — G(R(F(L(A))) est une équivalence faible
(par le théoreme . Déduisons en que, pour A cofibrant, la flecche A —-

e
GoF(A) W) g (R(F(A))) est une équivalence faible. On a un diagramme com-
mutatif
G(Rr(rca))
L(A) G o F(L(A)) G o Ro F(L(A))
U La GOF(LA) GOROF(LA)
A F(A F(A).
Go F(A)) TR GoRoF(A)

Comme A est cofibrant, L(A) — A est une équivalence faible entre cofibrants et donc
son image par F' est une équivalence faible (puisque F est de Quillen a gauche). En
appliquant le foncteur R on obtient une équivalence Ro F'(L(A)) — Ro F(A) entre
objets fibrants et donc encore une équivalence faible en appliquant GG. Finalement les
deux fleches verticales a droite et gauche sont des équivalences faibles, et la composée
horizontale supérieure aussi. Ainsi la composée horizontale inférieure ’est aussi ce
qui conclut. Evidemment la deuxieme partie de la preuve est duale. O

On donne quelques exemples sous forme d’exercices.

Exercice 2.5.23. (1) Démontrer que les structures de modeles projectives et injec-

tives sur Ch(R) (resp. entre Ch>o(R) et Ch<o(R)) sont Quillen équivalentes.

(2) Démontrer que le foncteur identité induit une adjonction de Quillen entre les

structures de modeles de Quillen et de Strgm sur Top. Est-ce une équiva-

lence de Quillen? Peut-on trouver une sous-catégorie pleine de Top sur la
restriction desquelles cette adjonction devient une équivalence ?

(3) On admet que les structures de modeles projectives sur les complexes de

chaines Ch(R), Ch>o(R) s’étendent aux modules sur des algebres commuta-

tives différentielles graduée. Démontrer que 'adjonction de Quillen de I’exemple

s’étend a ce cadre, et que cette adjonction est une équivalence de Quillen
si f : A — B est un morphismes d’algebres qui est de plus un quasi-
isomorphisme.

2.6. COLIMITES ET LIMITES HOMOTOPIQUES

Nous allons utiliser les notions de foncteurs dérivés totaux pour donner un sens
précis aux limites et colimites a équivalence faibles pres. Ces notions sont fondamen-
tales en topologie algébrique. Nous allons présenter ici sommairement les idées de
base, suivant les idées originales de Quillen et Bousfield-Kan. L’idée que nous allons
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suivre est que les limites et colimites homotopiques sont les foncteurs dérivés totaux
associées a limite et colimite. Pour cela précisons en quoi ce sont des foncteurs en
commencant par une remarque élémentaire

Soit & une petiteﬁ catégorie. Un foncteur & — C est simplement un diagramme
de forme 9 dans C. C’est a dire, la donnée, pour tout objet 1 € &2 d'un objet X; € C
et, pour toute fleche o : i — j dans 9, d’une fleche f(a) : X; — X;. Et ceci de telle
sorte que tout diagramme commutatif de & s’envoie sur un diagramme commutatif
dans C (en particulier f(awo ) = f(a) o f(B)) et que les identités s’envoient sur
I'identité.

Un morphisme de foncteurs, c’est a dire une transformation naturelle, est alors
simplement un systeme de fleches 7; : X; — Y; pour chaque objet i € @ tel que les

diagrammes Xi&Xj soient commutatifs.

Notation 2.6.1. On note C? := Fun(P, C) la catégorie des foncteurs de & dans C
(ses objets sont les foncteurs, ses fleches les transformations naturelles).

Si C est cocomplete, alors, pour toute catégorie 9, la colimite définit un foncteur
Cogm :C? — C
défini par F' — coli@m F (7). La propriété universelle des colimites définit le foncteur
1€

sur les transformations naturelles (c’est a dire les fleches de C?). De méme, si C est
complete, pour toute catégorie 9, la limite donne le foncteur

liggn :C? — C
défini par F' — 1161[% F(i).

Réciproquement, on dispose du foncteur constant cst : C —s C? qui a tout objet
C' € C associe le foncteur constant cst(C') donné sur les objets de @ par j — C' et
sur les fleches par o — C' “4c.

Lemme 2.6.2. S’il existe, le foncteur coglzim : C? — C est adjoint & gauche du

foncteur constant et, s’il existe, le foncteur lgn : C? — C est adjoint a droite du

foncteur constant.

Démonstration. On peut consulter la feuille de TD 4. O

colimg

Remarque 2.6.3. L'unité de I’adjonction C? : C nous donne les morphismes ca-
cst

noniques F'(i) — colimg F de la colimite et de méme la counité de 'autre adjonction
nous donne les morphismes canoniques limg F' — F(7).

Si, de plus, C est munie d'une classe #  d’équivalences faibles, alors on peut
munir la catégorie C? des @-diagrammes dans C d'une classe d’équivalences faibles
induites. On dira qu'une fleche 7 : X — Y de C? est une équivalence faible si chaque

53. c’est a dire qu’on a un ensemble d’objet
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7; + X; — Y; est une équivalence faible. Autrement dit les équivalences faibles sont
définies objet par objet.

Notation 2.6.4. On note #'? les équivalences faibles de C?.

Remarque 2.6.5. Bien entendu on peut imaginer des cas ou on va se donner une
notion différente d’équivalences faibles, ce qui ne changera rien a la définition [2.6.0]
ci-dessous ni a la premiere moitié de chaque énoncé du lemme En revanche les
structures projectives et injectives n’ont plus lieu d’étre considéré dans ce cas
bien sir.

Définition 2.6.6 ((co)limites homotopiques). Soit (C, #") une catégorie avec des équi-
valences faibles et & une petite catégorie.

(1) une colimite homotopique est un foncteur dérivé total a gauche Lc%lim :
Ho(C?) — Ho(C) du foncteur Cogl/)jm :C? = C.

(2) une limite homotopique est un foncteur dérivé total a droite Rgm : HO(C‘@) —
Ho(C) du foncteur lim - C? — C.

S’ils existent, ces foncteurs de (co)limites homotopiques sont uniques a unique
isomorphisme naturel pres.

Notation 2.6.7. Ces foncteurs sont souvent aussi dénotés hocolim = Lcolim et
holim = Rlim dans la littérature.

Remarque 2.6.8. On prendra garde que Lcolim n’est pas une colimite dans la ca-
tégorie homotopique en général et que Rlim n’est pas une limite dans la catégorie
homotopique non plus en général. Voir la feuille de TD 4. De maniere générale, méme
si C est complete et cocomplete, sa catégorie homotopique ne 'est pas forcément
et ses (co)limites n’ont pas forcément le sens voulu. la raison en est que passer a la
catégorie homotopique est une opération assez brutale qui oublie beaucoup d’infor-
mations et que les (co)limites dans cette catégorie perdent trop d’informations par
rapport a C. Un moyen de circonvenir a cet ennui (en dehors du cadre de ce cours)
est de travailler avec une version enrichie/supérieure des catégories homotopiques
appelées oo-catégories et de définir des (co)limites dans ce contexte.

Comme on I’a vu dans la partie précédente, il est commode d’avoir des structures
de modele pour garantir I’existence (et comprendre leur structure) des foncteurs dé-
rivés. Ainsi, on a envie, étant donné une structure de modele (C, %", ¢,% ), d’en
définir une sur C?. Rappelons qu’on a défini une structure de catégorie avec équi-
valences faibles sur C?.

On dira qu'une structure de modéle sur C? étend les équivalences faibles W2 si
les équivalences faibles de C? contiennent #?.

Lemme 2.6.9. Soit C une catégorie de modele.

(1) Si C? admet une structure de modele étendant les équivalences faibles telle
que le foncteur constant cst : C — C? soit de Quillen & droite, alors la
colimite homotopique chzlim existe.

De plus si a : F' — F’ est une transformation naturelle entre diagrammes
qui est une équivalence faible objet par objet, alors la fleche naturelle Lc%lim(@) ;

Lc%hm(F ) — ]chzlirn(F ') est un isomorphisme dans Ho(C).
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(2) Si C? admet une structure de modele étendant les équivalences faibles telle
que le foncteur constant cst : C — C? soit de Quillen & gauche, alors la
limite homotopique ]Rgm existe.

De plus si a : F — F’ est une transformation naturelle entre diagrammes
qui est une équivalence faible objet par objet, alors la fleche naturelle Rgm(a) :

Rgm(F) — Rgm(F’) est un isomorphisme dans Ho(C).

Démonstration. C’est une conséquence immédiate de la proposition et de la
définition des équivalences faibles sur les diagrammes. O

Il n’est cependant pas du tout évident de construire de telles structures de modeles
pour des paires D et (C, %', 6, F) quelconques.
On a cependant des candidats évidents.

Définition 2.6.10. Soit (C, %", €, F) une catégorie de modele et P une petite caté-
gorie.

(1) On appelle structure projective sur C? la classe dont les équivalences faibles
sont les équivalences faibles objets par objets (soit #?), les fibrations sont les
fibrations objets par objets (soit F) et les cofibrations sont les transforma-
tions naturelles ayant la propriété de relevement par rapport aux fibrations
acycliques.

(2) On appelle structure injective sur C? la classe dont les équivalences faibles
sont les équivalences faibles objets par objets (soit #'?), les cofibrations
sont les cofibrations objets par objets (soit €?) et les fibrations sont les
transformations naturelles ayant la propriété de relevement par rapport aux
cofibrations acycliques.

Proposition 2.6.11. Si la structure projective définit une structure de catégorie de
modele, alors la colimite homotopique Lc%}im existe et est invariante par équivalences

faiblesP4
Si la structure injective définit une structure de catégorie de modele, alors la limite
homotopique Rgm existe et est invariante par équivalences faiblesﬁ.

Démonstration. Si la structure projective existe, alors le foncteur constant préserve
les fibrations et fibrations acycliques (puisqu’elles sont définies objet par objet). On
applique alors le lemme [2.6.9. De méme avec la structure injective. O

Remarque 2.6.12. Dans le cas de figure du lemme, d’apres la remarque si
la structure projective existe, pour calculer la colimite homotopique, il suffit de
remplacer le diagramme F' : @ — C par un remplacement cofibrant L(F') et de
calculer coglzim L(F) pour calculer ]Lc%lim. Cela peut étre plus ou moins dur. Mais

dans plusieurs cas simples (par exemple un poussé-en-avant ou une suite de fleches
composables), on peut faire des constructions plus simples. Voir I'exemple [2.6.19

54. c’est a dire qu’une transformation naturelle qui est une équivalence faible objet par objet
induit un isomorphisme entre les colimites homotopiques comme dans le lemme @

55. c’est & dire qu’une transformation naturelle qui est une équivalence faible objet par objet
induit un isomorphisme entre les limites homotopiques.
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Nous donnons maintenant un théoreme (qui combine plusieurs théorémes non-
triviaux...) garantissant 1'existence de ces structures. Avant cela nous introduisons
la terminologie suivante.

Définition 2.6.13. Nous dirons qu'une catégorie D est tres petite si elle a un nombre
fini d’objets, un nombre fini de morphismes et qu’il existe un entier N tel que toute

suite Ay EES Ay Ay I A, de fleches composables ne contienne qu’au plus N
fleches qui ne sont pas 'identité.

Une classe d’exemple de tres petite catégorie est donnée par un ensemble fini
partiellement ordonné[ﬂ. C’est en particulier le cas des diagrammes décrivant des
poussés-en-avant, tires en arrieres, (co)produits finis. On a bien entendu également
toute catégorie avec un nombre fini de fleches.

Définition 2.6.14. Une catégorie de modele est dite combinatoire si elle est cofibre-
ment engendrée et qu’il existe un ensemble d’objets S qui sont compacts[f] tel que
tout objet est une colimite filtrée d’objets de S.

Ces hypotheses supplémentaires sont essentiellement des hypotheses garantissant
que la taille des structures de notre catégorie de modele ne sont pas trop grandes.
On appelle parfois ces catégories de modele présentables.

Ezxemple 2.6.15. Les catégories de modeles C = Ch(R), Ch>o(R) (munie des struc-
tures projectives ou injectives), celle des ensembles simpliciaux sEns (voir Sec-
tion sont combinatoires. La catégorie Top (munie de la structure de Quillen)
ne lest pas, mais est Quillen équivalente (Théoréme a sEns qui l'est. Ceci
garantit que le résultat du Théoreme [2.6.16](3) s’applique a Top aussi.

Théoreme 2.6.16. Soit C une catégorie de modele et & une petite catégorie.

(1) Les structures projectives et injectives forment une catégorie de modele si @
est tres petite.

(2) Si C est une catégorie de modele cofibrement engendrée alors les structures
projectives forment une structure de modele pour toute petite catégorie 9.

(3) Si C est de plus combinatoire, alors alors les structures injectives forment
aussi une structure de modele pour toute petite catégorie 9.

Remarque 2.6.17. En particulier, il suit des deux derniers points que les (co)limites
homotopiques sont toutes définies dans les complexes de chaines ou espaces topolo-
giques ou ensembles simpliciaux.

Par ailleurs, on peut montrer que si C est cofibrement engendrée (resp. combi-
natoire) alors les structures de modele sur C? sont cofibrement engendrée (resp.
combinatoires).

Ainsi, lorsque C est combinatoire (par exemple donc si C = Ch(R) ousi C = sEns
est la catégorie de modele des ensembles simpliciaux), alors la catégorie de modele
Fun(8°,C) des préfaisceaux, que 1’'on a muni de la structure de modele projective
sur les préfaisceaux, est encore combinatoire. On peut donc définir ses (co)limites
homotopiques.

56. que l'on voit comme une catégorie avec une fleche i — j, pour i # j, si et seulement si ¢ < j
57. on peut se restreindre a k-petit pour un cardinal £ a condition d’exiger que les colimites
filtrées que l'on prend pour engendrer tout objet soit de taille au plus &
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Par ailleurs, il existe d’autres hypotheses sur &, par exemple étre de Reedy, qui
garantissent 'existence de structures de modeles étendant les équivalences faibles
pour des catégories de modeles simpliciales.

Idée de la preuve de (2) et (3). Que les propriétés d’engendrement par une famille
de petits objets d’une catégorie C s’étendent aux catégories de foncteurs C? sont
des résultats généraux indépendants des catégories de modele (mais pas du tout
évident). Pour (2) et (3), le reste de I'idée est en fait de montrer que la structure
de modele est encore cofibrement engendrée. Dans le cas projectif, si on note J =

(A; 2% By)ier (respectivement 7, = (A it Bj)jes) les cofibrations (resp. acycliques)
génératrices de C, alors on montre en fait que C? est cofibrement engendrée avec
comme cofibrations (resp. acycliques) génératrices I’ensemble

(Fd<Ai) Fieg) Fd(BZ-)) (resp. (Fd(A;) (8 FU(B)

iel,ded’ J >j€J,d€9 '

Dans la définition ci-dessus, on a noté, pour tout objet d € « et tout objet C' € C,

FiC): D — C? le foncteur D > x — [[ C et agit sur une fleche ¢ : x — y
{f:d—z}

dans & en envoyant la “composante” C' correspondant a f par I'identité sur celle

correspondant & ¢ o f. Une fleche v : C' — C” dans C induit alors la transformation

naturelle F'¢(y) : F4(C) — F?(C") donnée, pour tout objet d € @, par [[ ~.On
{f:d—d'}
applique alors le Théoreme [2.4.9] Démontrer (3) est un peu plus ardu et utilise le fait
que la “petitesse” de la catégorie donnée par l'existence des générateurs compacts
permet de garantir 'existence de générateurs pour les cofibrations de la structure
injective et a partir de la de reproduire le schéma précédent. O

FEzemple 2.6.18. Dans Ch(R), la colimite homotopique d'un diagramme f : P — @
(autrement dit le conoyau homotopique) est donné par le cone (définition [1.4.14)
(Pae1 @ Qn, d(p,q) = (—d(p),d(q) — f(p))) du morphisme (voir la feuille de TD 4).

Ezemple 2.6.19 (Poussé-en-avant homotopique). Par définition, pour calculer un
poussé-en-avant homotopique, c’est a dire la colimite d'un diagramme X € C?
(avec @ = x « z — y), lorsque la structure projective est de modele, on calcule
L colimg F' = colimg L(F') ou L(F') est un remplacement cofibrant de F' := X «+
Z — Y dans C?. D’apres le TD 4, un tel remplacement est donné par un diagramme
Ly <——<Lz=—— Ly , ott Ly est cofibrant, et une équivalence faible L(F) = F.
Dans le cas de Top ou sEns ou des complexes de chaines Ch(R) et plus généralement
des catégories propres a gaucheﬁ], il existe un moyen plus simple :

Proposition 2.6.20. Soit f : Z — Y une fleche dans Top ou sEns munie de leur
structure de Quillen ou C'h(R) munie de la structure projective. Si f : Z — Y est
un remplacement de f : Z — Y par une cofibration, c’est a dire que f se factorise

f S~ , C N
sous la forme f : Z =Y — Y, alors le poussé-en-avant X [[, Y est un modele pour

le pushout homotopique de tout diagramme X < Z Ly, Plus précisément, on a

58. Plus précisément ce résultat est vrai pour toute catégorie de modele dite propre a gauche,
c’est a dire telle que les poussés en avant d’équivalences faibles sont des équivalences faibles.
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une équivalence faible naturelle
Leolim ( X+~ Z =Y ) =colim ( Ly <=Lz Ly )
P P

;cogm(X%ZH}})—X]EI}N/.

Démonstration. Voir les solutions du TD 4. O
En particulier, étant donné deux applications continues A L XetAD Y, leur
h
pushout homotopique est donné par X [[Cyl(i) = X [[Y le poussé-en-avant ho-
A A

motopique de la définition [I.8.9] On obtient donc bien que ce dernier est invariant
par homotopie faible et en particulier la proposition [I.8.12] en est une conséquence
directe.

La linéarité fait que l'exemple [2.6.18] du cone se généralise au poussé-en-avant
homotopique dans les complexes.

Proposition 2.6.21. Le quotient homotopique d'un complexe de chaines P EN Q, c’est
a dire la colimite homotopique L colim(P EN Q) est équivalent au cone C(f) du

morphisme f. Plus généralement si A L PetsiAS @ sont des morphismes de
complexes, alors le poussé-en-avant homotopique est équivalent au cone C'(f —g) du
morphisme f — g.

Démonstration. Voir les solutions du TD 4. O

De maniére duale, dans les catégories de modeles citées ci-dessus (ou celles qui
sont propres a droite), un tiré-en-arriere homotopique se calcule en rempagant une
des fleches par une fibration et en prenant le tiré-en-arriere. Dans les complexes de
chaines, on calcule ceci par le cocone C(f)[1], qui n’est rien d’autre que le cone
décalé de 1.

Proposition 2.6.22. Le tire-en-arriere homotopiquede f: A — X et g : A — Y dans
les complexes de chaines est équivalent au cocone coC(f — g).

FExercice 2.6.23. Démontre le résultat cité ci-dessus sur le calcul du noyau homoto-
pique dans C'h(R), ainsi que le poussé-en-avant homotopique.

FEzercice 2.6.24. On munit Top de la structure de Quillen (Exemple [2.1.15]).

(1) Démontrer que le pushout homotopique X HZ Y est bien le poussé-en-avant
homotopique au sens de la définition [2.6.6] c’est a dire est un objet représen-
tant cette colimite homotopique dans Ho(Top) (on commencera par montrer
que les cofibrations de la structure de modele projective sur les diagrammes
1 < 0 — 2 sont données par les cofibrations objets par objets, puis par
identifier la colimite homotopique associée).

(2) Quel est le tiré-en-arriere homotopique 7

59. qui est équivalente au pushout homotopique L colim (O — P i) Q)
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II1I. ENSEMBLES SIMPLICIAUX

Les ensembles simpliciaux sont un modele combinatoire tres puissant du type
d’homotopie faible des espaces. En topologie algébrique, et plus encore en théorie
de ’homotopie, le mot espace (en anglais ou en frangais) désigne tres (voire le plus)
souvent un ensemble simplicial.

On pourra consulter [8] pour une introduction aux ensembles simpliciaux, [13]
pour une étude détaillée ainsi que les chapitres correspondants de [12] et de [20]. On
pourra aussi consulter [I chapitre Polyedres, applications et variétés PL]

3.1. COMPLEXES SIMPLICIAUX ET ENSEMBLES SIMPLICIAUX

La notion d’ensemble simplicial est provient (et est une abstraction) de la notion
de complexe simplicial, aussi connu comme polyedres. Nous rappelons ici la notion
de complexe simplicial (plongé).

Définition 3.1.1 (Simplexes). Un simplexe o de dimension r dans un espace euclidien
R™, pour un certain n > r, est 'enveloppe convexe de r + 1 points indépendantsm
Sg,...Sq. Les s; sont appelés sommets de o. Les faces de o sont les simplexes de
dimension r — 1 dont les sommets sont des sommets de o. Une orientation de o est
le choix d’un ordre sur ses sommets modulo les permutations paires.

Exemple 3.1.2. (simplexes standards) Le simplexe standard de dimension n, A" C
R™*! est le sous-espace
A" = {(xg,...,2,) € R"™/ 2, > 0 (pour tout i) et xg+ -+ x, = 1}.
On peut aussi l'identifier canoniquement avec le sous-ensemble
A" {(ty, . t) ERYJO<tg < - t, <1}
via les relations t; = xg + - - - + T;_1.

La notation A" suggere la forme du simplexe standard. On notera que A° est
juste un point et que A! 2 [0, 1]. Plus généralement, A™ = [0, 1]" et son bord, c’est
a dire la réunion de ses faces, OA™ = S 1,

Définition 3.1.3 (Complexe simplicial). Un complexe simplicial dans un espace eu-
clidien R™ est un ensemble K de simplexes dans R" tel que :

(1) si 0 € K alors toute face de o appartient également a K ;

(2) sio,7 € K et ont # () alors 0 N7 est le simplexe dont tous les sommets
sont des sommets commun a o et 7;

(3) siz € 0 € K, il existe un voisinage U de x dans R" tel que U ne rencontre
qu'un nombre fini de simplexes de K.

On appelle polyedre associé a un complexe simplicial K — ou réalisation de K —
la réunion |K| de ses simplexes :
Kl=Jo

ceK

que I'on munit de la topologie induite par celle de I'espace euclidien ambiant.

60. C’est-a-dire que les vecteurs v1 = s1 — Sg, ...,V = S, — Sg sont linéairement indépendants.
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La derniere condition est une condition de finitude locale; elle garantit que la
topologie de K est compatible avec celle de la réunion des simplexes. En particulier
un sous-espace est fermé si et seulement si son intersection avec tout simplexe est
fermée. On a en fait que le polyedre |K| est un CW-complexe, pour lequel les appli-
cations de recollement sont en fait injectives. Un contre exemple a cette condition
est par exemple donné par la réunion d’intervalles dans R? passant par (0,1) et les
points (0,0), (1/n,0) (n > 0).

La dimension maximale d’un simplexe de K est appelée dimension de K. Noter
que les complexes simpliciaux forment une catégorie : un morphisme f : K — L est
un ensemble d’applications linéaires sur les simplexes compatibles sur les faces.

Par ailleurs un complexe simplicial K est fini si et seulement si le polyedre associé
| K| est compact.

La définition ci-dessus est une définition concrete (et essentiellement géométrique)
des complexes simpliciaux, c’est a dire provenant d’un sous-espace de R™ avec une
topologie qui, localement, coincide avec celle des simplexes.

Il existe aussi une notion purement combinatoire, et plus générale, de compleze
simplicial abstrait. Cette derniere est définie comme un ensemble de sommets {v;, i € I'}
et un ensemble “abstrait” de faces, qui sont des sous-ensembles finis de {v;, i € I},
vérifiant les propriétés B.1.3[ (L) et [B.1.3[(2). A un tel espace, on peut définir une
réalisation géométrique mais qui ne se plonge pas nécéssairement dans R™ (a moins
de supposer une condition analogue a .); en général on peut cependant le
plonger dans un R! de la méme maniére que les complexes simpliciaux ci-dessus
en imposant la topologie de la réunion. On ne va pas s’attarder sur cette défini-
tion car nous donnerons directement la définition de la réalisation adéquate pour les
ensembles simpliciaux.

Cette version générale des complexes simpliciaux abstrait permet de traiter plus
d’exemples mais souffre de trois défauts majeurs des complexes simpliciaux. Premie-
rement, le produit de deux complexes simpliciaux n’est pas un complexe simplicial.
Plus exactement, le produit de deux polyedres est bien un polyedre, mais sa struc-
ture de complexe simplicial ne se détermine pas directement a partir de la donnée
de la structure des complexes simpliciaux (regarder I'exemple de A! x Al est par-
lant). Par ailleurs, il existe un certain nombre de CW-complexes simplesﬂ que l'on
souhaite voir comme des objets triangulés mais qui ne sont pas des polyedres. Par
exemple, la présentation d’un cercle comme la donnée d’un intervalle dont on a iden-
tifié les deux extrémités n’est pas un polyedre. Ce dernier point est lié au fait qu’il
n’y a que trop peu d’applications “simpliciales” en tout cas dans un sens naif. Enfin,
la donnée combinatoire donnée, n’est pas suffisante pour encoder toute la structure
homotopique d'un polyedre. Un premier indice de ce point est que pour voir I'in-
variance par homotopie de 'homologie singuliere, il faut décomposer des prismes
en sous-simplexes et que de méme, 'invariance de I’homologie simpliciale n’est pas
aisée.

Ces problemes peuvent étre résolus par les ensembles simpliciauz, qui consistent
a rajouter aux complexes simpliciaux des simplexes “dégénérés”[?] c’est a dire des

61. par exemple les A-complexes de [10]

62. plus précisément, on va autoriser dans un simplexe a avoir plusieurs fois un méme sommet. En
particulier pour chaque i-simplexe on aura ¢+1 simplexes dégénérés de dimension ¢+1 correspondant
aux 7 + 1 sommets qu’on peut doubler. Chacun de ces i + 1-simplexes va lui méme engendré i + 2
simplexes de dimension i 4 2 etc...
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simplexes qu’on a écrasé sur des faces (voir des sous-faces), qui tiennent compte de
la structure cellulaire des produits et de données homotopiques.
Pour cela nous introduisons la catégorie suivante

Définition 3.1.4. La catégorie A est la catégorie des ordinaux finis et des applica-
tions préservant 'ordre. Précisément, ses objets sont les ensembles ordonnés [n] :=
{0,1...,n} (munis de 'ordre naturel 0 < 1--- ...) et ses morphismes sont les appli-
cations croissantes (au sens large).

On a donc un objet par entier naturel.

Lemme 3.1.5. Toute application [n] — [m] dans A se factorise uniquement sous la
forme de la composée d'une surjection croissante suivie d’une inclusion croissante.
De plus

e Les injections croissantes sont engendrées par les applications d' : [n — 1] —
[n] (oui=0,...,n) définies par

di(j)=jsij<ietd(j)=j+1sij>i,
e les surjections croissantes sont engendrées par les s/ : [n] — [n — 1] (ou
j=0...n—1) définies par
sk)y=ksik<jets/(k)=k—1sik>j+1.
e Les relations entre les s7 et d sont engendrées par

ddi = didi=t (sii<j)

sidt = disT! (sii<j)
(13) sid =id  (sii=j,j+1)

sd=d1s? (sii>j+1)

slst = g7lgl (sii>j)

Les relations sont appelées les relations cosimpliciales.

Définition 3.1.6 (ensemble (co)simplicial). Soit Ens la catégorie des ensembles.

e Un ensemble simplicial est un foncteur A°’? — Ens.

e Un ensemble cosimplicial est un foncteur A — Ens.

e Plus généralement un objet simplicial dans une catégorie C est un un foncteur
A°P — C et un objet cosimplicial dans C est un foncteur A — C.

e Les morphismes entre ensembles (co)simpliciaux sont les transformations na-
turelles.

Notation 3.1.7. On notera sEns la catégorie des ensembles simpliciaux ainsi définie,
et plus généralement sC la catégorie des objets simpliciaux de C.

Exemple 3.1.8 (le retour des simplexes standards). La collection des simplexes stan-
dards A" (exemple [3.1.2) forme un espace topologique cosimplicialm. Plus précisé-
ment on définit le foncteur [n] — A™ sur les objets et, sur les fleches génératrices de
A, on définit di : A" — A" et 57 : A" — A" par les formules

di(zo,...,2n) = (To,..., 25,0, Tig1,...,T0)

Si(mo,...,xn) = (xo,...,xj_l,xj+xj+1,xj+2,...,xn).

63. autrement dit un objet cosimplicial dans Top
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En termes des coordonnées t = (t; < --- < t,), on a de maniére équivalente :
di(t) = (to<t1 < - <ty <ty <tigq--- <ty)
sit) = (ty<t; < 72 < tn).

(avec la convention tg = 0, t,,41 = 1).
Cet exemple, outre qu’il est fondamental comme nous allons le voir, a la vertu
qu’il permet de se retrouver facilement les identités cosimpliciales.

Le lemme (3.1.5( implique

Proposition 3.1.9. Un ensemble simplicial est la méme chose que la donnée d’une
suite (X, )n>0 d’ensembles et d’applications, appelées faces, d; : X,, — X1 (i =
0...n) et s; : X;, = Xyp1 (j = 0...n), appelées dégénérescences, soumis aux
relations

didj = dj—ldi (Sl 1< j)

diSj = Sj—ldi (Sl 1< ])
diSj = dei,1 (Sl 7> ] + 1)
$iSj; = SjSi—1 (Sl 1> j)

De méme, un ensemble cosimplicial est la méme chose que la donnée d’une suite
(X5 )n>0 d’ensembles et d’applications, appelées cofaces, d' : X;,—1 — X, (i =10...n)

et 87 X1 — X, (J = 0...n), appelées codégénérescences, soumis aux relations
13l

Un morphisme entre ensembles (co)simpliciauz est la donnée d’une suite d’appli-
cations f, : X,, — Y, qui commutent avec les (co)faces et (co)dégénérescences.

La méme description s’applique pour les objets (co)simpliciaux dans C, en prenant
une suite d’objets et en imposant que les (co)faces, (co)dégénérescences soit des
fleches de C bien str.

On appelle un élément de X,, (dans le cas d'un ensemble ou objet simplicial X,),
un n-simplexe de X,. On qualifiera parfois n de dimension ou de degré du simplexe.

Notation 3.1.10. On rencontre souvent la notation suivante
ds

—_—
s
d2 -
2 51 dy
S1 dy S0
X3 d X2 —_— Xl XO
> S0 T—
S0 0
N do
do

pour un objet simplicial (qui permet de se rappeler du nombre de faces et de dégé-
nérescences).

Les identités simpliciales ont la conséquence suivante : on peut écrire toute
itération de dégénérescences sous la forme s;, - - s;, avec ig < i3 < -+ <4 et toute
composée de faces sous la forme d;,, ... d;, avec lp < --- <.

Définition 3.1.11 (simplexes (non)-dégénérés). Soit X un ensemble simplicial et
xr € X,. On dira que = est dégénéré s’il est dans I'image d’une dégénérescence (c’est
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a dire dans (s;) pour un j quelconque). Dans le cas contraire on dira qu’il est
non-dégéenére.

On dira qu'un ensemble simplicial est fini s’il n’a qu'un nombre fini de simplexes
non-dégénérés.

Ezemple 3.1.12 (le n-simplexe simplicial). On note A} I'ensemble simplicial Homa (—, [n])
c’est a dire

[k] — Homa ([%], [n]).
Le lemme de Yoneda donne

Lemme 3.1.13. On a un isomorphisme naturel
HomsEnS(A:la Xo) = Xn

, id
donné par f — f([n] = [n]).
Démonstration. Les identités simpliciales (14]) assurent qu'il suffit de connaitre un
morphisme d’ensembles simpliciaux sur les simplexes non-dégénérés pour le connaitre
sur tout X,. Notons que Al a exactement un simplexe non-dégénéré en dimension

n, donné par I'identité de [n] “ [n] et aucun en dimension > n + 1. Il suit alors des
relations simpliciales que si f, : A? — X, est un morphisme d’ensemble simpliciaux,
alors f-,, est déterminée par les f<,. Par ailleurs, tous les simplexes non-dégénérés de

A7 en dimension < n sont des (itérations de) faces de [n] “ [n]. Ainsi en vertu des
identités simpliciales, il suffit de connaitre I'image de [n] “ [n] pour connaitre leur

valeur. Réciproquement étant donné z,, € X,,, on peut lui associer [n] “ n] — z,
et en vertu des relations simpliciales ceci s’étend bien en un morphisme d’ensemble
simpliciaux (on a pas d’autres relations a vérifier puisque A} est l'ensemble des
morphismes [k] — [n] dans A sans aucune autre condition. O

On déduit du lemme précédent que pour tout ensemble simplicial X,, on a un
isomorphisme naturel
(15) colim Ay} = X,.
A? — X,
(n>0)

Remarque 3.1.14. La collection des ensembles simpliciaux A7 forme elle méme un
objet cosimplicial dans les ensembles simpliciaux. C’est une instance du fait que
Homa (—, —) est un foncteur A x A — Ens et donc naturellement un objet sim-
plicial et cosimplicial.

Le lemme suivant explique pourquoi la connaissance des simplexes non-dégénérés
détermine canoniquement un ensemble simplicial.

Lemme 3.1.15. Un simplexe dégénéré est obtenu comme une composée de dégéné-
rescences d'un unique simplexe non-dégénéré.

Démonstration. La preuve est liée au fait que I'on peut scinder les dégénérescences.
) i PPN _ _

Supposons qu’un simplexe dégénéré s'écrive a = s;,0- - s;, (z) = sj,0---0s;,(y) avec

x,y non-dégénérés (les i et j étant en ordre croissant) ; notons |z| et |y| la dimension

de z et y. Alors, en vertu des identités simpliciales,

T = dik O"'dio(a) = dik O"'dio(sjo o"'osje(y)'
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En utilisant les identités simpliciales, on peut faire passer tous les s;, a gauche dans
I’écriture de droite pour obtenir & = sjq 0 ---sj diy 0 - - dyrn (y). Mais comme x est
non-dégénéré par hypothese, nécessairement m = 0 et donc z = djq o - - - dyr,(y) En
particulier |z| = |y| — n. Mais en inversant les roles de y et x on obtient aussi que
ly| < |z| ce qui prouve que |z| = |y| et donc n =0 et z = y. O]

Ezemple 3.1.16 (complexes simpliciaux). Tout complexe simplicial donne lieu
a un ensemble simplicial canoniqueﬁ obtenu comme 'ensemble simplicial dont les
simplexes non-dégénérés sont exactement les simplexes de K auquel on a rajouté
“librement” toutes leur dégénérescences itérées (en respectant bien sur les relations
simpliciales ce qui détermine les faces des simplexes dégénérés ainsi ajoutés
et lesquels sont identifiés entre eux). Une formule précise est obtenue ainsi. On
choisit un ordre total (préservant l'orientation si on en a choisi une) sur les sommets
{vi,i € I} de K et on consideére I'ensemble simplicial K, donné par

K, ={(vi, <wv;, <--- <)/ {vig, -+ , v, } est un simplexe de K}

les suites ordonnées de sommets (avec répétitions éventuelles) de longueur n + 1
dont la réunion des sommets distincts est un simplexe de K (de dimension forcément
inférieure ou égale a n). On définit les faces et dégénérescences par

dj(UiO < Vs <. < Uin) = (Uio <-..- < Vi;_q < Vij4q <-..- < Uin),

5i(Vig SV <+ Swy,) = (U S S-Sy, Sy <-e <),
c’est a dire en omettant le j-ieme sommet ou en doublant le j-ieme sommet respec-
tivement.

Un simplexe non-dégénéré de dimension n est donc précisément une suite stricte-

ment croissante (v, < v, < --- < v;,) qui correspond a un simplexe de dimension

n de K. Les faces d'un simplexe non-dégénéré sont alors exactement les restrictions
aux faces respectives du simplexe dans K.

Remarque 3.1.17. L’ensemble simplicial correspondant (via la construction précé-
dente) au simplexe standard A" (muni de 'ordre correspondant a la numérotation
des coordonnées) est exactement le n-simplexe simplicial A} de 'exemple [3.1.2]

Définition 3.1.18 (réalisation géométrique). Soit X, un ensemble simplicial. Sa réa-
lisation géométrique est ’espace topologique quotient

| Xo| =[] X0 x A"/ ~
neN

ou X, est muni de la topologie discrete et la relation d’équivalence est donnée par
(di(@).t) ~ (@, d'©), (55,8 ~ (5, 8'(8)  pour.
L’ensemble singulier d’un espace topologique Y est ’ensemble simplicial
Sing, (Y) := Homop (A®,Y)

ou la structure simpliciale est donnée par la structure cosimpliciale des simplexes
standards (voir exemple |3.1.8]).

La réalisation géométrique et 1’ensemble singuliers réalisent naturellement des
foncteurs skns — Top, Top — sEns respectivement.

64. a un choix de bijection entre les sommets de K pres
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Proposition 3.1.19.

(1) La réalisation géométrique est adjoint a gauche du foncteur ensemble singu-
lier : | —|: sEns:Top : Sing, (—).

(2) Laréalisation géométrique | X,| d’'un complexe simplicial est un CW-complexe
dont les cellules de dimension n sont en bijection avec les n-simplexes non-
dégénérés de X et les applications de recollement sont données par la réunion
des faces.

Remarque 3.1.20.

(1) En particulier la réalisation géométrique commute avec les colimites (comme
tout adjoint a gauche) et le foncteur ensemble singulier Sing,(—) commute
avec les limites (comme tout adjoint a droite).

(2) Si X, est fini, alors sa réalisation géométrique est un CW-complexe fini et
donc est compact.

(3) L’adjonction de la proposition s’étend aux catégories pointées.

Démonstration. Soit f. € Homggns(X,, Sing,(Y')). Par définition cela veut dire que
p on a des applications f, : X,, = Homgep(A™, Y) qui commutent avec les faces et
dégénérescences. On lui associe une application 1(f,) : [,en Xn x A" — Y définie
sur chaque composante X,, x A" par la formule (z,,,t) — f,(z,)(t). Cette application
est continue puisque X, est discret et que f,,(z,) : A™ — Y lest. Par ailleurs, puisque

fe est simpliciale, on a que f,(d;(z,41)(t) = (dz-fnﬂ(xnﬂ))(f) = fri1(ni1)(dL(2))
et de méme f,,(s;(2n1)(E) = fao1(zn_1)(s1(?)). 1l suit que ¢(f,) passe au quotient
pour définir une application continue ¢ (f,) : | Xo| = Y.

Réciproquement, si h : |X4| — Y est une application continue, on lui associe,
pour tout n € N, lapplication ¢(h), : X,, = Hommep(A™, Y) donnée par z,, +—
O(h)n(zn) = (t = h([zn,1])) ou [z,,7] € |X4| est la classe de (z,,7) € X, x A"
vu dans le quotient qu’est la réalisation géométrique. De maniere analogue a ci-
dessus, on voit que pour tout x, € X, on a que ¢(h),(z,) est bien continue et
que la collection ¢(h) = (¢(h),)nen est un morphisme d’ensemble simpliciaux. Les
formules explicites nous donnent que ¢ o ¥ (f,) = fo et que ¥ o ¢p(h) = h et ce sont
donc des bijections. Leur naturalité se déduit des mémes formules. Ainsi ¢ est un
isomorphisme naturel Homrep (| Xe|,Y") = Homggns(Xe, Sing,(Y)) (d’inverse ¢). O

Remarque 3.1.21. De la preuve découle immédiatement que 'unité de l’adjonction
est le morphisme 7y, : X, — Sing,(|X,|) donné par X,, 3 z — (& — [(z,?)]) ol [—]
désigne la classe dans le quotient définissant la réalisation géométrique.

La counité de I'adjonction est I'application naturelle dy : [Sing,(Y)| — Y donnée

par [(A" EN Y,t)] — f(2).

Ezxemple 3.1.22 (le retour des complexes simpliciaux). La réalisation géomé-
trique de I’ensemble simplicial K, associé a un complexe simplicial (exemple
est canoniquement homéomorphe a la réalisation du complexe simplicial |K|. En
effet, il s’agit simplement du complexe cellulaire obtenu en identifiant en dimension
n les faces de chaque n-simplexe de K & leur image dans K™Y En fait, la réali-
sation | K| est un CW-complexe dont les applications de recollement sont injectives
(et affines une fois plongée).
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Ezxercice 3.1.23. Identifier la structure simpliciale de I’ensemble simplicial qui a exac-
tement deux simplexes non-dégénérés, un en degré 0 et 1 en degré 1. Démontrer que
sa réalisation géométrique est un cercle.

Donner un ensemble simplicial S} modélisant une sphere de dimension n tel que
Si est de cardinal 1 + £".

Ezemple 3.1.24 (ensemble simplicial constant). Un ensemble E donne lieu & un en-
semble simplicial constant F, défini par F,, = E avec les faces et les dégénérescences
données par l'identité. Sa réalisation géométrique est juste £ muni de la topologie
discrete.

Plus généralement tout ensemble simplicial dont la réalisation géométrique est
homotope (faiblement homotope suffit en vertu du théoreme de Whitehead) a un
espace topologique discret est appelé discret également.

Remarque 3.1.25. La construction de la réalisation géométrique utilise le fait qu’on
a un espace topologique cosimplicial “naturel”, donné par les A™. Cette construction
s’applique ainsi plus généralement pour des objets simpliciaux lorsque on a un objet
cosimplicial naturel, voir I’exercice 6 de la feuille de TD 5.

Une conséquence de la proposition est que la réalisation géométrique a son
image essentielle dans la catégorie des CW-complexes et en particulier dans celle
des espaces Hausdorff compactement engendrésﬁ. On note CGH — Top cette sous-
catégorie de Top. La réalisation géométrique a la propriété remarquable suivante.

Proposition 3.1.26. Le foncteur de réalisation géométrique commute aux limites
(en particulier aux produits) finies dans CGH — Top. En particulier, la réalisation
géométrique d’un produit d’ensembles simpliciaux finis commute avec les produits.

Démonstration. Le point essentiel pour les produits est le fait que A} x A" est une
décomposition cellulaire de "™ = Am+t™ = |A7™| Voir [13] pour une preuve. O

Des propriétés de finitude sont essentielles si on veut obtenir des limites dans Top.
En effet, le produit dans Top de deux CW-complexes non localement finis n’est pas
un CW-complexe en général.

Remarque 3.1.27 (Filtration canonique). On a vu que la réalisation géométrique d’un
ensemble simplicial est un CW-complexe. La filtration canonique de ce CW-complexe
provient en fait d’une filtration au niveau de ’ensemble simplicial. Soit X, un en-
semble simplicial. Le n-squelette de X, est le sous-ensemble simplicial X=" C X,
engendré par les simplexes non-dégénérés de X, de dimension < n (autrement dit, on
retire tous les simplexes non-dégénérés de dimension > n et leurs dégénéréscences).

On a
(16) X, = colim X=".

Tout comme les CW-complexes s’obtiennent inductivement en recollant des cellules
de dimension de plus en plus grande, les ensembles simpliciaux se reconstruisent a
partir de leurs sommets. Soit X, € sEns. Notons, pour tout n € N, ND(X), le
sous-ensemble des n-simplexes non-dégénérés de X,. Pour tout x € ND(X),, par
I'exemple , on obtient un morphisme d’ensemble simplicial z : A? — X=". La

65. c’est a dire ceux qui sont Hausdorff et tels qu'un ensemble est fermé si et seulement si son
intersection avec tout compact est fermée. Par exemple un CW-complexe!
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FIGURE 8. La réalisation (en rouge) des 3 cornets possibles dans AZ
(la face retirée est représentée en pointillé).

composition OA? — A" 5 X=" a son image dans X=""! puisque OA” n’a que des
simplexes non-dégénérés en degré < n — 1.

Lemme 3.1.28. Le carré commutatif suivant

[[ oA — x5

ND(X),

|

[ A —— X5
ND(X)n

est un poussé en avant ; autrement dit X" = ( [[ A7) ] X=L
ND(X)n [10A%

ND(X)n
Démonstration. Cela suit du lemme [3.1.13] et du fait que les (co)limites se calculent
degré par degré dans sEns. O

3.2. STRUCTURE DE MODELE

On va ici définir une structure de modele Quillen équivalente a celle de Top. On
commence par définir deux familles d’ensembles simpliciaux utiles.

Définition 3.2.1. On note JAY} le sous-ensemble simplicial déduit de A} en enlevant
le n-simplexe non-dégénéré.

Pour tout 0 < r < n, on définit aussi A7,, appelé le r-cornet, le sous-ensemble
simplicial de OAY obtenu en retirant aussi la face opposée au sommet r. Autrement
dit A7, est le sous-ensemble des applications croissante f : [m] — [n] dont I'image
ne contient pas 'ensemble [n] — {r}.

Par définition, QA7 est 'ensemble simplicial correspondant au complexe simplicial
OA"™ obenu en prenant toutes les faces du complexe standard. Sa structure est donc
donnée par I'exemple et sa réalisation géométrique est la spheére de dimension
n — 1. On a en particulier que A} = {f : [k] = [n] € A, f non-surjective}

De méme, le r-cornet A}, est I'ensemble simplicial correspondant au complexe
simplicial obtenu en prenant toutes les faces sauf l'intérieur de la r-ieme dans le
complexe simplicial standard. Sa réalisation géométrique est donc un cone de sommet
r. En particulier, [0AY| = 0A™ — A" = |A]| est une cofibration et A := [A],[ —
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1:d0(0<1) 1

[N, — A2 id: A3, — A2

_— >
-

2=4dp(0 < 2)

0= £(0) 2= f(1) 0:d1(0<1):d12(0<2) 0 2

Ag

FIGURE 9. Deux morphismes de A§, — Af. Celui de droite, qui est
l'identité admet évidement un relévement depuis A2 mais celui de
gauche n’en admet pas car f(1) > f(2).

A" = |A7] est une cofibration acyclique (et méme un rétract par déformation forte,
homéomorphe & P'inclusion d'une face I"~* x {0} un cube I").

On notera aussi *, 1’ensemble simplicial terminal qui est donné par le point {x}
en tout degré n.

Définition 3.2.2 (Fibrations de Kan). Un morphisme f : X, — Y, d’ensemble sim-
pliciaux est une fibration de Kan si elle vérifie la propriété de relevement a droite
par rapport aux inclusions A?, < A7 pour tout n et tout r = 0...n. C’est a dire

qu’il existe un relevement h dans le diagramme suivant

A —— X,

AT -,

rendant les deux triangles commutatifs.
Un ensemble simplicial X, est fibrant (on dit aussi de Kan ou Kan-fibrant) si
Xo — *o st une fibration de Kan.

De la définition des cornets comme sous-ensembles simpliciaux de Al et du lemme
de Yoneda on déduit

Lemme 3.2.3. L’ensemble Homgg,s(A”,, Xo) est en bijection avec ’ensemble des n-
uplets de n — 1-simplexes (zg, ..., Ty, ...x,) de X, vérifiants que pour tout i,j # r

et i < j,onadz; =d;_ ;.

n
X )

Démonstration. Voir le TD 5. O
Remarque 3.2.4. Un ensemble simplicial n’est pas toujours fibrant. Par exemple A}

n'est pas fibrant pour n > 1 comme le montre la figure [9] ou I'exemple [3.3.4)).

Lemme 3.2.5. Une application f : X — Y entre espaces topologiques est une fibra-
tion de Serre si et seulement si Sing, (f) : Sing,(X) — Sing,(Y") est une fibration de
Kan.

En particulier Sing,(X) est fibrant.
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Démonstration. L’adjonction|3.1.19/donnée par la réalisation géométrique donne une
bijection entre les diagrammes

A"y — Sing,(X) et AP — X
y lsmg,(f) |: Lf
AT . Sing,(Y) A" —Y.

Comme A? est un rétracte par déformation de A™ et un sous complexe, la propriété
de relevement a droite caractérise les fibrations de Serre (cf lemme|1.6.9)). Le résultat
en découle. O

Théoréme 3.2.6 (Quillen). La catégorie sEns a une structure de modele dont les

équivalences faibles: sont les morphismes f : X, — Y, tels que |f| : |X¢| — |Y4]
sont des équivalences d’homotopie faibles,

fibrations : sont les fibrations de Kan,

cofibrations : sont les morphismes f : X, — Y, ayant la propriété de relevement a
gauche par rapport aux fibrations acycliques.

Muni de cette structure de modele, sEns est cofibrement engendrée, combinatoire,
avec les applications (OAY < A7),y comme cofibrations génératrices et les applica-
tions A7 — A7 (ou 0 < r < netn > 0) comme cofibrations acycliques génératrices.

Quillen démontre aussi la caractérisation tres simple et remarquable suivante des
cofibrations : il s’agit de celles qui sont des inclusions en chaque degré, cf le corol-

laire 3.2.7 ci-dessous.

Nous renvoyons a [9], [12] et [14] pour une preuve détaillée. Nous nous bornons
ci-dessous a donner les grandes lignes et résultats intermédiaires principaux et im-
portants.

Corollaire 3.2.7. Un morphisme f : X, — Y, est une cofibration si et seulement si
c’est une inclusion en tout degré.

Démonstration. Cela découle essentiellement du point (1) de la proposition
Notons que la propriété d’étre une injection est stable par rétracte comme on I’a vu,
mais aussi par poussé-en-avant et colimite indicée par un ordinal. Il suit alors que,
comme les morphismes A7 — A7 sont injectifs et les cofibrations des rétractes
de compositions de poussés-en-avant par des cofibrations génératrices, que toute
cofibration est injective. La réciproque se voit ainsi : il suffit de montrer que tout
morphisme X, — Y, injectif est une colimite séquentielle de tels poussés en avant.
On pose Y = X, et on construit inductivement Y < Y, comme le poussé
en avant Y = Y™ ][ [Iyp An ot ND, est ensemble des n-simplexes

Linp, 0As
non dégénérés de Y, qui ne sont pas dans Y"; chaque tel simplexe définissant un

morphisme simplicial z : A? — Y, par le lemme dont la restriction a 9A”
a son image dans Y™. L’application Y™™ < Y, est alors donné par le poussé en
avant. On peut vérifier que l'inclusion Y+ < Y, ainsi définie est un isomorphisme
en degré inférieur ou égal a n. La colimite colim,, Y est égale a Y,. O

Remarque 3.2.8. En particulier, tout ensemble simplicial est cofibrant.

Les fibrations et fibrations acycliques sont caractérisées par le lemme suivant qui
est un point clé de la preuve..
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Lemme 3.2.9. Soit f : X, — Y, un morphisme dans sEns.

(1) On a que f est une fibration acyclique si et seulement si elle a la propriété
de relevement par rapport aux applications 0A} — AZ.

(2) On aque f est une fibration si et seulement si elle a la propriété de relevement
par rapport aux applications L, x Al U K, x {0} — K, x Al pour toute
inclusion (degré par degré) Lo — K,.

(3) Si A, — B, est une cofibration acyclique, alors pour toute inclusion (degré
par degré) L, — K,, le morphisme Ly X By Up,xa, Ko X Ag — K¢ X B, est
une cofibration acyclique.

Démonstration. Pour le point (1), on renvoie a [12] ou [9] pour une preuve compléte
(et non-triviale ; les ingrédients sont la théorie des fibrations de Kan minimales et la
proposition [3.2.11]).

Explicitons un peu la preuve de (2). L’idée est de montrer que la classe des ap-
plications stables par poussés-en-avant et rétractes a partir des inclusions de cornet
ou a partir des inclusions de type (2) sont les mémes. En effet, si c’est le cas, les
applications définies par propriété de relevement a droite seront bien les mémes et
la premiere classe est par définition celle des fibrations.

Esquissons pourquoi L, X ALUK, x {0} < K, x Al avec L, — K, une inclusion,
est une composition (dénombrable) de pushouts par des applications du type A" —
AT, on procede comme suit. Notons pour simplifier Y := L, x ALlUK,x{0}. On note
So les 0-simplexes de K, x Al qui ne sont pas dans Y. Un simplexe s € Sy est un
simplexe de la forme k x {1} € K, x Al ot k ¢ Ly. On note Y! :=Y? ] (J[A!) le

1AL So
So

poussé en avant obtenu en recollant les points de Sy comme 'extrémité d'un segment
Al (faire un dessin). Par construction, tout sommet de K, x Al est inclus dans Y,
de méme que tout 1-simplexe de la forme v x idp; o1 v € K est dégénéré (autrement
dit 'image d’un sommet) et idy; € Aj est Punique 1-simplexe non dégénéré. Soit
2z € Y], un l-simplexe de K, x Al qui ne soit pas dans Y!. Alors z s’écrit sous
la forme z = ki x {1} ou 2z = ky x idpy) (avec ki ¢ L et non dégénéré) (en effet
tous ceux de la forme z = ko X idp), avec ky un simplexe dégénéré identifié avec
un sommet de Ky \ Lo, ont été ajouté a la premiere étape et les autres sont déja
dans Y?). Soit S; 'ensemble de ceux de la premicre forme. Considérons ce premier
cas : alors d;(ky x {1}) = d;(k1) x {1} et on est dans une situation correspondant au
diagrame suivant :

do(kl)X’id[l]
do(k1) X {0} ————do(k1) x {1}
A

k1 Xid[l] 7
k1x{0}

ki {1}
dy (k1) % {0} ———= dy (k1) x {1}

dl (k’l) X’id[l]

dans lequel les fleches solides représentent des 1-simplexes de Y'!, les pointillées et les
faces[ sont dans (K, x AL)<2. On a une application canonique de A? — Y donnée
par la fleche verticale de gauche et la feche horizontale du dessus. Le poussé en
avant AZ][ Y associé permet de rajouter le triangle supérieur du diagramme a Y''.
AY
66. ces faces sont précisément données par so(k1) x s1(idp) et s1(k1) x so(idj1)) qui ne sont pas
dégénérées
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Ce faisant, nous avons aussi nécessairement recollé tous les 1-simplexes de la forme
k1 x idp) (puisque ceux-ci viennent nécessairement en compagnie d'un 1-simplexe
adjacent k; x {1}). On appelle Y2 le recollement obtenu indicé par tous les éléments
de S7. On construit de méme Sy et Y3 en recollant des prismes ouverts et ainsi de
suite. On renvoie a [9] pour une preuve détaillé.

Pour démontrer que les rétractes et compositions vis a vis des cornets sont bien
dans la classe des applications stables par poussés-en-avant et rétractes a partir
de celles données par (2), il suffit de remarquer que les inclusions de cornet sont
des rétracts d’applications simpliciales du type (2), plus précisément un rétract de
AR g X AJUAT x {0} = A7 x Alsik <mn, et de Al , x AJUAD x {1} — A7 x A]
si k =n.

Pour (3), I'idée est similaire a (2). Ayant fixé L, — K,, on obtient que la classe
des morphismes de la forme Ly X By Uy, x4, Ko X A, — K, X B, stables par poussés-
en-avant et rétractes des morphismes [13] ou [12]. O

Armé du lemme [3.2.9] on peut maintenant passer a la

Preuve du Théoreme sur la structure de modéle de sEns. Par définition, les fi-
brations de Kan sont exactement les applications avec la propriété de relevement a
droite par rapport aux cofibrations acycliques génératrices énoncées. Puisque la don-
née des fibrations et équivalence fiable détermine toute la structure, il suffit donc de
vérifier les hypotheses du Théoréme [2.4.9] pour vérfier que les cofibrations et cofi-
bration acycliques génératrices engendrent bien une structure de modele sur sEns.
La vérification de la propriété (1) pour les équivalences faibles se ramene a celle
dans Top qui a déja été vue (en TD). Il suit essentiellement du Lemme que
les sources des cofibrations génératrices sont petites (et qu’en fait tout ensemble
simplicial est petit relativement au cardinal de ’ensemble de ses sommets comme
il suit de et du lemme . Le reste des axiomes découle pour moitié de la
définition des fibrations comme étant exactement celles qui sont injectives par rap-
port aux cofibrations acycliques génératrices et le lemme (3) garantit que les
Jac-cellulaires sont bien des cofibrations acycliques. Finalement le Lemme [3.2.9(1)
assure que les fibrations sont bien les applications injectives par rapport a ’ensemble
(OAL — Al),en ce qui démontre I'autre moitié restante des propriétés énoncées dans
les hypotheses du théoreme [2.4.9|

Sachant maintenant que la catégorie est cofibrement engendrée, qu’elle soit com-
binatoire découle du lemme ; les objets (OAY, A7),>o sont en effet générateurs
de la catégorie (et compacts, en particulier petits). 0

Ezercice 3.2.10. (1) Démontrer qu'il existe des fibrations de Kan qui ne sont pas
surjectives en tout degré simplicial. A quelle autre structure de modele ce
résultat vous-fait il penser ?

(2) Démontrer qu’'une fibration de Kan acyclique est surjective en tout degré
simplicial.

La réalisation géométrique se comporte par ailleurs bien par rapport aux fibra-
tions :

Proposition 3.2.11 (Quillen). La réalisation géométrique d’une fibration de Kan est
une fibration de Serre.
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On renvoie & [I2] pour une preuve["’}

Soit X,, Y, des ensembles simpliciaux. L’ensemble des morphismes Homggps (X, Ys)
peut étre enrichi dans sEns (c’est a dire muni d’une structure d’ensemble simplicial
dont les sommets sont exactements les morphismes d’ensembles simpliciaux).

Définition 3.2.12. On note Map,(X,, Y,) ’ensemble simplicial dont les n-simplexes
sont
Map,, (X, Y,) := Homggns(Xe X A7, Y,)

dont la structure simpliciale est donnée par la structure cosimpliciale de n — A7

(voir remarque (3.1.14)).

Terminologie 3.2.13. On appellera Map,(X,, Ys) I'espace des morphismes simpli-
ciaux de X, vers Y,.

Les 0-simplexes de Map,(X,,Y,) sont donc précisément les morphismes d’en-
sembles simpliciaux de X, vers Y, [

Remarque 3.2.14. Le lemme de Yoneda pour les ensembles simpliciaux [3.1.13] se
retraduit en termes d’espace des morphismes.

Lemme 3.2.15. Il y a un ismomorphisme naturel Map, (A2, X,) = X, d’ensembles
simpliciaux.

Démonstration. Comme AY x AT =2 A" le lemme [3.1.13| nous donne pour chaque n
un isomorphisme v, : Map,,(AY, X,) = Homggas(AZ, X,) = X,,, qui est défini par
fo > fu([n] <4 [n]). La structure simpliciale de Map,(Za, X,) est déterminée par la
structure cosimpliciale de ([n] — A? = Homa([e], [n]) donnée par composition au
but, notée h,. Ainsi pour tout h : [n] — [m] croissante et f, : Homa([e], [m]) — X,
on a

Yo h*(fe) = Yn(foo hi) = ((fo o h*)n(id[n]) = fm(h) = h* oy (f)

ce qui nous donne bien que 1, est un morphisme d’ensembles simpliciaux. O

Lemme 3.2.16. On a un isomorphisme naturel (en les 3 variables)
Homggps (L., Map, (K, X.)) =~ Homggns(Le X Ko, X,)

Démonstration. L’application ¢ : Homggns (L., Map, (Ko, X.)) — Homggns(Le X
K,, X,) est donnée explicitement par
fxid eval
f = (fn)nzo — (Lo X Ko ? Map.(K.,X.) X K. — X.)
ou le morphisme d’évaluation eval = (eval, : Map, (Ko, Xo) X K, = X, )nen est
donnée, en tout degré n € N, pour h,, € Map,, (K., Xo) = Homggns( Ko X A’},X.)E]
et k, € K,, par
id
evaly, (hp, kn) = hp(Kn, [n] = [n]).

67. si la fibration de Kan X, — Ye est acyclique, on peut démontrer plus facilement que sa
réalisation est un rétracte d’une projection |W| x |Yo| — |Ya| (ce qui provient du résultat analogue
avant de passer aux réalisations) ol W, est contractile et donc une fibration de Serre; forcément
acyclique par définition des équivalencees faibles

68. et on doit penser a ses 1-simplexes comme les chemins ou homotopies entre morphismes etc

69. on a donc que chaque h,, est une collection A, ; : K; x A — X; (pour i € N) qui commute
avec les opérateurs de face et dégénérescences. On omettra l'indice 7 dans la notation dans la suite
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On notera que dans la formule on utilise que la composante h,, ,, de de degré n dans
hyp = (hpi » K; x AT — X;)i>0. On a que pour tout h, : K¢ X A} = X, &, € K,

di(evaly(hy, k) = di (R (Kn, [n] “ [n])) = ha(di(kn), [n — 1] LR [n]) car h,, est simpliciale.
Mais, comme la face d;(h,) : K¢ x A?! — X, est donné, pour tout j € N, par

di(hn) (K5, [7] 2 [n — 1)) = hn(k;, [4] Loy [n]), on a aussi que
eval,_1(d;(hy), di(kn)) = di(hy)(di(kn), [n — 1] 4 [n—1]))
= ha(di(sn), [1 = 1] [n])

ce qui assure que eval commute bien avec les faces. On montre de méme qu’il com-
mute avec les s; et ainsi que eval est bien un morphisme d’ensembles simpliciaux.
Donc ewvalo f xid est également un morphisme d’ensembles simpliciaux. la réciproque
de v est construite comme suit. Notons, pour tout morphisme f : [k] — [m] dans A et
tout ensemble simplicial Z,, f* : Z,, — Z; 'application induite par la structure sim-
pliciale de Z,. On définit ¢ : Homggns(Le X Ko, Xo) — Homggns (Le, Map, (K., X))
comme donné, pour tout morphisme simplicial hy : L, X K, — X, et pour tout
ly € Ly, par Uélément p(he)(l,) : K¢ X A} — X,, défini par la formule, pour tout

ki € K; et [i] EN [n] € A, donnée par

p(he) (L) (ki [i] L [n]) = hi(£7(6), K1) € X

Que p(he)(ly) : K¢ x A? — X, soit un morphisme d’ensemble simpliciaux découle
du fait que he en est un et que d; = (d')*. Par ailleurs, on vérifie comme pour ¥ que
l, — @(he) est un morphisme d’ensembles simpliciaux de L, dans Map, (K, X,).
On vérifie alors que ¢ est bien un inverse de ¥ (ce qui revient au méme genre de
calcul que le dernier point). O

Le point suivant est un point important et a des variantes et généralisations dans
de nombreuses catégories de modeles. Notons que siz : Ly — Ko et f: X, — Y, sont
des morphismes simpliciaux, alors, la pré-composition par ¢ et la post-composition
par f donne un diagramme commutatif

Map, (K., X.) 22" Map, (K., Y.)
Map, (Le, Xo) 2" Map, (Lo, Y.)

dont on déduit un morphisme d’ensemble simplicial canonique Map,(K,, Xo) —
Map,(L., X.) X Mapg(Le,Ye) Map,(K., Y;)

Lemme 3.2.17. Soit L, C K, une cofibration et f : X, — Y, une fibration de Kan.
Alors le morphisme canonique
Mapo(K.7X.) — Mapo(L.7X.> XMap.(L.,Y.) Mapo(K.7 }/’)

est une fibration de Kan.
Si de plus L, C K, est une cofibration acycliquem ou que f est une fibration
acyclique, alors c’est une fibration acyclique.

70. ce qui implique que sa réalisation géométrique est un rétracte par déformation



INTRODUCTION A L’HOMOTOPIE 107

Démonstration. Pour la premiere assertion, il faut montrer que Map, (AL, X,) — X,
a la propriété de relevement a droite par rapport aux inclusions A7, — Ag. Pour
la deuxieme partie, par la caractérisation des fibrations acycliques (lemme ,
il faut montrer que Map,(Al, X,) — X, a la propriété de relevement & droite par
rapport aux inclusions A7 — A?. Démontrons la deuxieme dans le cas L, C K,
est une cofibration acyclique.

De la propriété fondamentale de Map,(Z,, W,) donnée par le lemme on
déduit qu’'un diagramme commutatif

OAY] Map, (K, X)

A:L _> Mapo(Lh X') X Map°(K.’ Y;)
Map, (Le,Ys)

est équivalent a un diagramme

OAY X Ko Upazxr, Ay X Le —= X,

|

A" % K, - Y,

La fleche de gauche est une cofibration acyclique, c’est a dire a la propriété de
relevement par rapport a toutes les fibrations de Kan, d’apres le lemme M(B) Le
relevement existe donc puisque la fleche de droite est une fibration de Kan. Si on a
supposé que c’est f: X — Y qui est une fibration acyclique, alors on raisonne de la
méme fagon en utilisant seulement que la fleche de gauche est une cofibration (elle
est injective).

Pour la premiere assertion, par le méme argument, on est ramené a étudier 1’exis-
tence de relevement dans le diagramme

A’,T‘L’. X Ko UAZ},.XL. A:L X Lo - X.

A x K, Y,

et on a encore que la fleche de gauche est une cofibration acyclique (cette fois ci car
AT, C A7 lest). O

La structure de modele a pour conséquence le corollaire important suivant, qui
explique pourquoi les ensembles simpliciaux encodent les types d’homotopie faibles.

Corollaire 3.2.18 (Quillen). ) L’adjonction | — | : sEns Top : Sing,(—). est
une équivalence de Quillen. En particulier les catégories homotopiques de Top et
sEns sont équivalentes.

Remarque 3.2.19. Comme la réalisation géométrique se factorise au travers des CW-
complexes et donc des espaces compactement engendrés de Hausdorff, cette équiva-
lence de Quillen identifie aussi les catégories homotopiques des ensembles simpliciaux
avec celle des types d’homotopies d’espaces homotopes a des CW-complexes.
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En particulier la counité de l'adjonction dy : [Sing,(Y)| — Y est donc une
équivalence d’homotopie faible pour tout espace Y. Comme [Sing,(Y’)| est un CW-
complexe, cela prouve que tout espace topologique est fonctoriellement faiblement
homotopiquement équivalent a un CW-complexe.

Démonstration. Nous ne donnons que les grandes lignes de ’argument. Il faut com-
mencer par montrer que l’adjonction est de Quillen. Pour cela, il suffit de voir
que l'ensemble simplicial Sing, préserve fibrations et fibrations acycliques (d’ou il
découlera immédaitement que la réalisation géométrique préserve cofibrations et
cofibrations acycliques Lemme . Or on a vu que Sing, préserve les fibra-
tions (lemme [3.2.5). Il préserve aussi les fibrations acycliques. En effet : par le
lemme (1) et 'argument du lemme , on a que Sing, envoie les fibrations
acycliques sur les applications ayant la propriété de relevement par rapport aux
inclusions S™~ ! < I"™. Or ces dernieres sont exactement les fibrations de Serre acy-
cliques (voir la feuille de TD 3). Ainsi Sing, est de Quillen a droite et donc | — | de
Quillen a gauche.

Pour voir que c’est une équivalence de Quillen, en vertu de la Proposition [2.5.22] il
suffit de montrer que pour tout ensemble simplicial A, (nécessairement cofibrant) et
tout espace topologique Y (nécessairement fibrant), on a qu’une application continue
f i |As] = Y est une équivalence d’homotopie faible si et seulement si le morphisme
adjoint ¢y : Ae — Sing,(Y') est une équivalence faible dans sEns, c’est a dire que
|of| : |As] — [Sing,(Y')| est une équivalence d’homotopie faible.

La counité de I’adjonction nous donne le diagramme commutatif :

f

[Sing, (V)]

A, | Y.

Ainsi il suffit de montrer que la counité dy : [Sing,(Y)| — Y est une équivalence
d’homotopie faible. Pour cela on va utiliser les groupes d’homotopie simpliciaux de
la section [3.3]

Comme Sing,(Y") est fibrant, il résulte de la proposition dans la section
suivante que pour tout v € Y (également identifié avec I'application constante A™ —
Y qui vaut v en tout point), on a m,(|Sing, (Y|, |v|) = m,(Sing,(Y"), v) ou les groupes
d’homotopie a droite sont les groupes d’homotopie simpliciaux. Or on a vu dans le
lemme que tout élément de 7,(Sing,(Y"),v) est représenté par un morphisme
a : A? — Sing,(Y) dont la restriction a 9A} est le morphisme constant v. Par
adjonction, on a que ces morphismes sont en bijection avec ceux de A" = |A?| - Y
qui envoie S"1 = |9A”| sur v. De méme,

Homggpns (A7 X Al Sing,(Y)) = Hommrep(|AY X A1|, Y)
>~ Hommpep(|AY| X |ALY) = Hompep(A" x 1,Y)

car le produit d’ensembles simpliciaux finis commute avec la réalisation géométrique

(Proposition [3.1.26)). O
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Lo T2

FI1GURE 10. La relation de symétrie a gauche et de transitivité a droite.

3.3. GROUPES D’HOMOTOPIE SIMPLICIAUX

On explique ici une version purement combinatoire des groupes d’homotopie. Au
vu de la Proposition les relations d’homotopie donnent une relation d’équi-
valence sur les morphismes si la source est cofibrante et la cible est fibrante. Dans
les espaces topologiques, pour étudier les groupes d’homotopie, cela ne pose aucun
probléme puisque tout espace est fibrant et que les spheres sont cofibrantes (voir
par ailleurs exercice . En revanche cette hypothese ne tient plus pour des
ensembles simpliciaux et va nous obliger a considérer des ensembles simpliciaux fi-
brants.

Commencons par la relation d’homotopie entre sommets.

Définition 3.3.1. Deux sommets xq, x1 dans X, sont dits homotopes, noté xy ~ x;
si il existe un 1-simplexe H € X, tel que

do(O') = I et dl(O') = 2.

Lemme 3.3.2. Si X, est fibrant, la relation d’homotopie entre les sommets est une
relation d’équivalence.

Notation 3.3.3. On note mo(X,) := Xo/ ~ le quotient de X, par la relation d’ho-
motopie sur les sommets.

Démonstration. La réflexivité de ~ est donnée par so(z) et la relation dpso(z) =
dyso(r) = x. La symétrie et la transitivité sont exhibées par la figure oll on
a dessiné en rouge deux arétes données et en pointillé bleu I'aréte qui existe par
proprieté de relevement d’un morphisme du 2-simplexe par rapport a un morphisme
défini seulement sur un cornet.

O

FEzxemple 3.3.4. Montrons que la relation d’homotopie n’est pas symétrique sur A}
(pour n > 1). Ce qui en particulier prouve que ce dernier n’est pas fibrant. Consi-
dérons les sommets 0 et 1 (donné par les applications 0 — 0,1), le 1-simplexe non
dégénéré f(0) =0, f(1) = 1 donne une homotopie entre 0 et 1. Mais il n’y a aucune
aréte de 1 vers 0 car une telle aréte serait une application strictement décroissante
de [1] dans [n].

Lemme 3.3.5. Si X, est fibrant, on a un isomorphisme naturel m(X,) = mo(| Xe|).

Démonstration. Notons, pour v € Xy, X,, le sous-ensemble simplicial formés de
tous les simplexes dont I'une des faces itérées est v. Par le lemme précédent, on a



110 GREGORY GINOT

que si v ~ w, alors X, = X,|,,- On en déduit que X, = H[v]eno(x.) Xely- Puisque la
réalisation géométrique commute avec les colimites, on a | X,| = H[U]Eﬂo(X.) olol-
Par ailleurs, tout simplexe de X, est reli¢ a v par une suite de faces. Il suit de la
description explicite de la réalisation géométrique que |X,,| est connexe par arcs.
Ce qui conclut la preuve. |

Il y a plusieurs fagons équivalentes de définir les groupes d’homotopie supérieurs.
Nous allons en donner une qui généralise trivialement la précédente. Remarquons que
les groupes d’homotopie supérieurs m,(X,z) d'un espace topologique sont simple-
ment les classes d’homotopie de l'espace topologique (muni de la topologie compact-
ouverte) QX = {f : I" — X,/ f(0I") = z}. Cet espace étant la fibre de I'appli-
cation de restriction envoyant f : I — X sur f : 0" — X, on généralise cette
définition comme suit. On définit

Notation 3.3.6. Soit v € X,y. On note
Q(X.)e := Fibre, (Map, (A7, X,) = Map, (0A7, X,))
la fibre en 'application constante v de I'application de restriction.

Comme 0AY — A7 est une cofibration (elle est injective), ’ensemble simplicial
Q7 (X,)e est fibrant par le lemme [3.2.17

Définition 3.3.7. Soit X, un ensemble simplicial fibrant. Pour tout sommet v € X,,
on définit, le nieme groupe d’homotopie simpliciale en v de X, par

Tn(Xe, v) 1= T (QL‘(X.).)

Remarque 3.3.8. Les O-simplexes de 2"(X,). sont donc exactement les morphismes
d’ensembles simpliciaux A} — X, dont la restriction a JA7} est constante égale
a v. Leur réalisation est donc une application continue de I™ dans |X,| dont la
restriction au bord est constante égale au point |v|. En particulier un 0-simplexe
définit un élément de 7, (| X,|, |v]).

Par ailleurs les 1l-simplexe de I'(X,.)e sont exactement les morphismes d’en-
sembles simpliciaux A” x Al — X, dont la restriction & (A7) x Al est constante
égale a v. Ses restriction a A} x {0} et A? x {0} définissent deux O-simplexes f,, ge
comme ci-dessus et sa réalisation géométrique définit une homotopie entre les réali-
sations de f, et ge.

Le lemme suivant donne deux autres caractérisations naturelles des groupes d’ho-
motopie supérieurs. Le premier point découle essentiellement de la remarque précé-
dente.

Lemme 3.3.9. Soit X, un ensemble simplicial fibrant et v € X. On a des bijections
naturelles entre 7,(X,,v) et

(1) lensemble des classes d’équivalence { f € Homggns(AY, Xo) / f(OA?) = v}/ ~
oll la relation d’homotopie est la relation f ~ g siil existe H : AT x Al — X,
tel que H |8MxA1 =v, H |A?><{O} =fetH |Afx{1} = 9E|v

71. on utilise la notation évidente {0} et {1} pour les deux sommets de Al, c’est a dire que
id id
do([1] = [1]) = {1} et i ([1] = [1]) = {0}
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(2) ainsi que l’ensemble des classes d’équivalences de {0 € X,, /d;(0) = v}/ ~
de n-simplexes dont toutes les faces sont (I'image par des dégénérescences

de) v et ou la relation ~ est donnée par o ~ 7 si il existe un n + 1-simplexe
K e X, tel que dyyi1(K) =0, dp(K) =T et dicpy(K) = 0.

Le fait que les relations sont bien des relations d’équivalence se démontre par des

méthodes similaires & celle du lemme [3.3.2, On peut remarquer que A” x Al Pres A}
est un cylindre fonctoriel pour A7 (et utiliser une preuve similaire a celle de la
proposition [2.2.20| et 'universalité de ce cylindre pour en déduire le résultat).

Remarque 3.3.10. Si f : X, — Y, est un morphisme d’ensembles simpliciaux,
alors les morphismes induits Map, (A7, X,) — Map,(AZ,Y,), Map,(0A?, X,) —
Map, (0AL,Y,) et par suite des applications f, : m,(X.,v) — m,(Ys, f(v)) (pour
n’importe quel modele choisi) vérifiant évidemment f, o g. = (f o g)., id. = id.

Lemme 3.3.11. Soit f : X, — Y, une fibration de Kan acyclique entre ensembles
simpliciaux fibrants. Alors f, : mo(Xe) — mo(Ys) est une bijection et, pour tout
ve Xog,n>0, fo: m(Xe,v) = m(Ys, f(v)) est également une bijection.

Remarque 3.3.12. En utilisant le lemme de Brown [2.5.8] on en déduit que toute
équivalence faible entre ensembles simpliciaux fibrants induits des bijection sur les
-

Preuwve du Lemme[3.3.11. Montrons U'injectivité de f,. Soit a, 8 : A" — X, repré-
sentant des classes de 7,(X,,v); on note encore « et § leurs restrictions, qui sont
constantes egales a v, a JAL. Supposons que « et [ sont équivalentes dans Y,. Donc
qu’il existe H : A" x Al — Y, une homotopie entre f o v et f o 3. On a un carré
commutatif

AP x OAL P x,

i T

A x Al —— Y,
H
Le relovement H existe car la floche verticale de gauche est une cofibration (elle est
injective) et donne que a ~ (3. La surjectivité est similaire en utilisant le relevement :

ter—v

AN 7% X,
-7
A? ..—a> Y;
O

Les groupes d’homotopie d'un ensemble simplicial fibrant s’identifient avec ceux
de la réalisation géométrique.

Proposition 3.3.13. Soit X, un ensemble simplicial fibrant. On a une bijection na-
turelle

7Tn(X07U) = 7Tn(|X0|v |U|)

Ceci démontre qu’en particulier les groupes d’homotopie simpliciaux sont bien des
groupes pour n > 1.
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FEzercice 3.3.14. Définir la structure de groupe de m,(X,,v) en utilisant les modeles
simpliciaux du lemme [3.3.9

Une méthode pour démontrer la proposition précédente est d’utiliser la longue
suite exacte d’'une fibration de Kan. Soit p : F, — B, une fibration de Kan entre
ensembles simpliciaux fibrants. Soit b € By et v € Ey tel que p(v) = b. On note
Fyo la fibre en b de p, et ¢ son inclusion dans E,. Cette fibre est fibrante puisque
le tiré en arriere d’une fibration est une fibration. On a une application naturelle
0 : Tp(Be,b) = mp—1(Fpe,v) donnée par la construction suivante. Soit f : A} — B,
un représentant d’une classe dans m,(B,,b). On a un carré commutatif

ar, R,

n,e

A ——B
!
et, comme p est une fibration de Kan, le relevement h dans ce diagramme existe
et fait commuter les triangles. En particulier, p o d,(h) = b impliquem que dy(h) :
APt — E, est a valeur dans F,. et vaut v sur ses faces (par la commutativité
du diagramme supérieur). Ainsi d,(h) définit une classe, que 'on note 9([f]) dans
Tn—1(Fpe,v). Une preuve similaire a celle du lemme montre

Lemme 3.3.15. L’application [f] + O([f]) est indépendante du choix du représentant
f dans 7,(B,,b).

La proposition suivante peut se démontrer essentiellement comme son analogue
topologique (théoreme [1.6.14]) en introduisant des groupes d’homotopie simpliciaux
relatifs (en utilisant la définition [3.3.9(1)).

Proposition 3.3.16. Soit p : F, — B, une fibration de Kan entre ensembles simpli-
ciaux fibrants. La suite longue suivante est exacte

e T (Fres ) 3 T (Eay0) 2 70(Bay b) 3 Tt (Fhayv) — - ..

Démonstration de la proposition[3.53.13. La preuve se fait par récurrence en partant
du lemme [3.3.2] qui établit I'initialisation. Plus exactement supposons avoir démon-
tré que pour tout ensemble simplicial fibrant Z, on a, pour tout point z € Z; que
Ti<cn-1(Ze, 2) = Ti<n-1(|Zs|, |2|) et démontrons la bijection entre les groupes d’hom-
topies pour tout ensemble simplicial X, en degré n. On définit ensuite ’espace des
chemins P,(X,)s en v € X, comme le tiré en arriere

P,(X,)e —= Map(Al, X,)

Wl l(d?ivdf)

X. Xe X Xo

ou la fleche verticale de droite est donnée par les deux restrictions aux inclusions
{0,1} = OAl — Al. L’application verticale de droite est une fibration de Kan par le
lemme et donc celle de gauche aussi. On a de plus que Q!(X,), est isomorphe
a la fibre en v de cette fibration 7 : P,(X,)s — X,. Par ailleurs on peut montrer que

vXid

72. on utilise qu'un morphisme A7" — Y, est la méme chose qu’'un élément, ici donné par une
face d’un élément, de Y,,
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la composée : P,(Xe)e — Xo — {v} est une fibration acyclique. Pour le voir, il suf-
fit de montrer que Map, (AL, X,) — Map,(A?, X,) = X, est une fibration acyclique
(puisque la précédente est un tiré en arriere de celle-ci) ce qui découle du lemme [3.2.9]
Le lemme garantit alors que les m,(P,(X,).,v) sont triviaux. Il suit alors de
la longue suite exacte d’'une fibration que m, 1(Q!(X,)s) = 7,(X,,v). La réalisa-
tion géométrique d’une fibration (acyclique en l'occurence) est une fibration par le
lemme [3.2.11] et |P,(X.)s| = |AY = {x} est une équivalence faible (puisque c’est
la réalisation d’une fibration acyclique, donc d’une équivalence faible). Il suit qu’on
a aussi un isomorphisme 7, 1(|QL(Xa)s] = 7,(|X.|,|v]) qui provient de la longue
suite exacte d’une fibration de Serre (théoreme [1.6.14). L’hypothese de récurrence
nous permet alors de conclure. La difficulté dans les derniers arguments provient du
fait qu’on a pas que la réalisation géométrique de 27 (X,)s) est Q"(|X,|). La preuve
ci-dessus nous indique cependant que ces deux espaces topologiques sont faiblements
homotopiquement équivalents. U

Remarque 3.3.17. Pour tout ensemble simplicial X, on peut définir ses groupes d’ho-
motopie en considérant ceux d’un remplacement fibrant. Puisque deux remplacement
fibrants sont faiblement équivalents, et que leur groupes d’homotopie sont équiva-
lents a ceux de leur réalisation géométrique il suit que les groupes d’homotopie
simpliciaux ne dépendent pas du remplacement fibrants par la remarque [3.3.12]

Notation 3.3.18. Soit X, un ensemble simplicial et v € Xy un sommet. On note
Tn(Xe, ) = m,(R(X,), R(x)) le n-itme groupe d’homotopie simpliciale de X en z.
Ici on note R(v) l'image de v par le morphisme Xy — R(X.)o.

Par ailleurs, nous pouvons choisir un remplacement fibrant fonctoriel X — R(X)
et pour tout morphisme f : X — Y un morphisme d’ensembles simpliciaux R(f) :
R(X) — R(Y) qui par composition induit un morphisme de groupes f, := R(f). :
7(R(X),z) = n(R(Y), R(f)(z)). On en déduit
Proposition 3.3.19. Les groupes d’homotopie simpliciauxm sont fonctoriels sur sEns
et f: X — Y est une équivalence faible si et seulement si f, : mo(X) — Ip(Y) est
une bijection et f, : m,(X,z) = m,(Y, f(x)) est un isomorphisme pour tout n et
sommet xy € X

3.4. GENERALISATIONS ET APPLICATION AUX COLIMITES HOMOTOPIQUES

La théorie homotopique des ensembles simpliciaux des sections précédentes s’adapte
a d’autres catégories algébriques. Elle permet de définir des structures de modele
pour les objets simpliciaux dans un nombre important de catégories.

C’est en particulier le cas si les objets de C sont naturellement des ensembles. Soit
donc U : C — Ens un foncteur (qui en pratique sera souvent un “oubli” de structure
supplémentaire) qui est un adjoint a droite. On note F' son adjoint a gauche.

FExemple 3.4.1. Par exemple on pourra considérer les catégories Ab des groupes abé-
liens, Ch(R), Ch>o(R), Ch<o(R), les catéories de d’algebres associatives, algebres
commutatives, ou algebres de Lie (et méme leurs versiosn différentielles graduées),
ou U est simplement le foncteur oubliant la structure additive/algébrique supplé-
mentaire. Dans le premier cas FI(X) = Z < X > le Z-module libre de base les
éléments de X et pour les versions algébriques, le foncteur F' est le foncteur algebre
(de Lie, associative, commutative) libre associé a un ensemble.

73. défini comme ceux du remplacement fibrant
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Notons que l’adjonction F' : Ens C : U s’étend aux objets simpliciaux
en appliquant les foncteurs U, F' en chaque degré (les bijections entre les Hom en
chaque degré étant automatiquement compatibles avec les opérations simpliciales

par naturalité) pour donner une adjonction F': sEns sC :U.
On définit une structure de modele sur les objets simpliciaux sC comme suit :

les équivalences faibles: sont les f : X, — Y, tels que U(f) est une équivalence
faible dans sEns;

les fibrations: sont les f : X, — Y, tels que U(f) est une fibration dans sEns;

les cofibrations: sont les morphismes avec la propriété de relevement a gauche par
rapport aux fibrations acycliques.

Soit I’hypothese
(*) = les cofibrations définies par la propriété précédente et qui ont la propriété
de relevement par rapport a toutes les fibrations sont des équivalences faibles.

Cette hypothese est évidemment nécessaire pour que la structure précédente soit
bien une structure de modele. Cette hypothese est vérifiée par les exemples

Corollaire 3.4.2. Supposons de plus que C soit complete et cocomplete, que la fleche
naturelle colim,en(U(X,,)) — U(colimy X,,) soit un isomorphisme et que (x) soit
vérifiée. Alors sC munie de la structure précédente est une catégorie de modele
cofibrement engendrée et ’adjonction induite par U et F' est de Quillen.

Démonstration. Comme les (co)limites de sC se calculent terme a terme, sC est
complete et cocomplete. Le résultat est alors un cas particulier du Théoreme
ou on prend la structure de modele de sEns comme structure de base. 0

Exemple 3.4.3 (Equivalence de Dold Kan). On peut identifier la structure projective
sur les complexes de chaines avec la précédente. Soit N : sAb — Chx((Z) le foncteur
défini par N(A,) est le complexe @,,>04,/3(s:(An—1)) (c’est a dire qu’on quotiente
les A, par I'image des dégénérescences) muni de la différentielle d := "  d; :

Np(As) = Ny—1(Al). On vérifie que d passe au quotient et est de carré nul (c’est
comme pour I’homologie singuliere).

Théoréme 3.4.4 (Dold-Kan + Quillen). Le foncteur N : sAb — Ch>((Z) est une
équivalence de catégorie qui est également une équivalence de Quillen entre les struc-
tures de modele du Théoreme |3.4.2| & gauche et la structure projective a droite.

Démonstration. L’inverse du foncteur N est donné, pour un complexe C' = (,-, Ci, b),

par
F(C)e = [n] = F(C), = P ) C,.
PEn o [n] — [p] € sEns
tels que ¢ est surjective.
La structure simpliciale est donnée, pour tout f : [n] — [m] dans A, de la fagon
suivante. Pour tout v : [m] — [g], on considére les uniques factorisations, associées
a toute surjection v : [m] — [q],



INTRODUCTION A L’HOMOTOPIE 115

en une surjection ¢ et une inclusion. Si p = ¢, alors 'application induite de la com-
posante C), = C, associée a v est I'isomorphisme naturel avec la méme composante
associée a ¢. Si ¢ = p+ 1 et que [p+ 1] — [p] est la codégénérescence sP, alors on
envoie la composante Cp, 4, correspondant a v sur la composante C), correspondante

a ¢ par la différentielle Cp4 LN C,. Dans les autres cas, on utilise I’application nulle.
Au total on a défini une application f*: F(C),, — F(C),. On vérifie ensuite que ce
foncteur est bien 'inverse de V. 0

Remarque 3.4.5. Quillen a également montré une que si C est une catégorie com-
plete et cocomplete et qui possede suffisamment d’objets projectifs, alors on peut
construire une structure de modele dont les équivalences faibles (resp. les fibrations)
sont les applications f : X, — Y, telles que, pour tout objet projectif P de C, le
morphisme induit d’ensembles simpliciauxm

Home(P, X.) £ Home(P, Y.)

est une équivalence faible (resp. une fibration). Les cofibrations sont évidemment
définies par la propriété de relevement a gauche.

Proposition 3.4.6 (Quillen). Si C vérifie que tout objet de sC est fibrant, alors la
structure précédente est de modele.

L’hypothese est notamment vérifiée pour les C = Ab (exercice). On peut alors
vérifier que la structure obtenue est Quillen équivalente a la précédente.

On peut utiliser les méthodes simpliciales pour calculer des colimites homotopiques
dans Top (et dans le cas de toute catégorie de modele simpliciale, voir ci-dessous).
Soit F' : @ — Top un diagramme (autrement dit un foncteur issu d’une petite
catégorie ). On définit un espace topologique simplicialﬁ No(F) comme suit :

N (F) = 1T F(iy).
. f1 . fe . fn .
W lp—1$—1n

Les faces d; : M (F) — M1 (F), pour j < n, envoie identiquement F'(i,,) sur lui
méme vu comme étant dans la composante associée a la suite de compositions

10 & 10 (f—Q "'2'3;1 fj&q /[:jJrl — e — iy f%n in
(c’est a dire qu’elles sautent I'objet i,) et la derniere face d,, envoie F'(i,,) vers F'(i,_1)

via l'application F(f) : F(i,) — F(i,—1), ce dernier étant vu dans la composante

. . . . Jn—1 . N,
de la suite de compositions % J N S in—1. Enfin les dégénérescences

s; consistent a intercaler des identités, c’est a dire envoie F'(i,) identiquement sur
lui-méme mais vu dans la composante associée a la suite de compositions

i0<f—1i0£ &Zjﬁljﬁlj+l%ln,1(f—n%1
Identifions tout espace topologique X avec un objet simplicial constant (exemple|3.1.24]).
Par définition, chaque F'(i,) s’envoie dans la colimite colimg F'(7) et ceci produit un

74. Si X, est simplicial dans C, sa structure induit par fonctorialité une structure d’ensemble
simpliciaux sur les ensembles de morphismes Homg (A, X,) pour tout objet A

75. en utilisant le nerf de la catégorie @ pour définir la structure simpliciale, voir la feuille de
TD 5.
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morphisme d’espace topologiques simpliciaux

No(F) — cogm F(i).

La réalisation géométrique s’étend des ensembles simpliciaux aux espaces topolo-
giques simpliciaux par exactement la méme formulelf] (a la différence que cette fois
ci, X, n’est plus discret).

Proposition 3.4.7. La réalisation géométrique |4 (F')| calcule la colimite homoto-
pique de F. C’est a dire qu’il y a un isomorphisme naturel

|Ve(F)| = Leolim F
dans Ho(Top).

On peut en fait montrer la chose suivante. Pour tout objet j € &, on note 9j; la
catégorie des objets au dessus de j, dont les objets sont les fleches f : i — j d'un

objet quelconque de @ vers j, et les morphismes entre EN j et 4 ER j sont les

triangles commutatifs . J dans &. On note alors F}; : 9|; — Top le foncteur

|/

i/

induit par F', qui a un objet i EN j associe l'objet F(i). Notons que toute fleche
J — k dans & induit un foncteur naturel 9; — 9, par post-composition par cette
fleche.

Soit

Li(F) := | M (Fj)]-

L’espace topologique simplicial 44 (F);) differe de AL (F) en ce que I'on a changé la
catégorie indicant les coproduits. On a un morphisme naturel 44 (F);) — F(j) (vu

comme espace simplicial constant) donnée par les fleches i EN 7 dans la définition des
objets de la catégorie ;. On en déduit une application L;(F) — F(j) en pasant
aux réalisations géométriques.

Lemme 3.4.8. L’application naturelle L;(F) — F(j) est une équivalence d’homoto-
pie faible.

Le lemme est essentiellement du au fait qu’on a un objet terminal dans la catégorie
2); qui induit une homotopie entre son nerf et le point.

Comme la construction de 9); est fonctorielle, on obtient un foncteur L,(F) :
2 — Top qui a j associe L;(F).

Lemme 3.4.9. Le foncteur L, (F) est cofibrant dans la structure de modele projective
pour les diagrammes a valeur dans Top.

Comme les fleches L;(F') — F(j) sont naturelles, on obtient une transformation
naturelle (c’est & dire une fleche de Top?)

L.(F)—F
76. dans le cadre des espaces topologiques simpliciaux, la réalisation géométrique n’est évidem-

ment plus forcément un CW-complexe, a moins que les dégénérescences ne soient des applications
cellulaires
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qui par le lemme [3.4.8| est une équivalence faible dans la catégorie des diagrammes.
Ainsi les deux lemmes précédents montrent que L,(F) — F' est un remplacement
cofibrant dans la structure de modéle projective de Top?. La proposition en
résulte car

H(F)] = colim L.(F)

(voir la remarque [2.6.12)).

Les résultats précédents sur les colimites homotopiques s’étendent a toute ca-
tégorie de modele simpliciale, c’est a dire une catégorie de modele dont les mor-
phismes sont enrichis dans sEns et vérifient les résultats du Lemme [3.2.17] La défi-
nition précise de cette notion est donnée dans la partie [4.4]

Ezemple 3.4.10. La catégorie sEns est simpliciale (grace au lemme [3.2.17)). Les
catégories de préfaisceaux Fun(9,sEns) munie de la structure projective sont aussi
simpliciales.
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IV. NOTIONS D’00-CATEGORIES

Nous allons dans ce chapitre introduire la notion d’oo-catégorie[ﬂ Une de nos mo-
tivations sera de voir les co-catégories comme un relevement des catégories homoto-
piques Ho(C) d’une catégorie de modele, c’est a dire comme un objet qui n’inverse
pas seulement les équivalences faibles, mais retient une information “ homotopique”
supérieure. Cette information prendra la forme de “morphismes supérieurs”, c¢’est a
dire de morphismes entre les morphismes, a penser comme une généralisation de la
notion de transformation naturelle entre foncteurs, c’est a dire celle d'une catégorie
supérieure faible@. Alinsi, une autre motivation provient des catégories supérieures
ainsi que celles enrichies dans (un modele des) espaces.

Il y a de nombreuses présentations possibles pour les co-catégories, ou plus pré-
cisément pour la catégorie des oo-catégories. Notons que 'on s’intéresse bien sur
la notion de catégorie a équivalence naturelle pres et qu’une telle catégorie des oo-
catégories est elle méme naturellement une co-catégorie et pas une simple catégorie.
Comme on ne peut pas pousser a l'infini (sans faire de jeu de mot) cette notion, plus
précisément nous fixons la notion suivante.

Terminologie 4.0.1. Par modele pour la théorie des co-catégories nous voulons dire
une catégorie de modele des oo-catégories et deux telles théories seront considérées
comme équivalentes si elles sont Quillen équivalentes.

Nos deux modeles de base seront la catégorie de modele des catégories enrichies
simplicialement et celle des quasicatégories mais il en existe d’autres tres
intéressants ayant leurs propres avantages et inconvénients.

4.1. QUELQUES MOTIVATIONS POUR LA THEORIE DES 00-CATEGORIES

Comme précédemment évoqué, une structure de catégorie de modele nous donne
un moyen d’étudier une catégorie dont on veut rendre inversible une classe de mor-
phismes (les équivalences faibles). Déja, il est tres difficle de vérifier si la catégorie
homotopique est bien une catégorie en général ou simplement de calculer ses mor-
phismes en ’absence d’une structure de modele. Pire, le passage brutal a la catégorie
homotopique Ho(C) = C[# '] perd en fait beaucoup d’information :

e par exemple, les catégories homotopiques ont en général peu de (co)limites@
Une structure de modele permet de définir et calculer des (co)limites homo-
topiques, mais ces dernieres ne sont pas définies en terme d’une propriété
universelle de la catégorie homotopique bien que leur définition ne fasse in-
tervenir que les équivalences faibles.

e Les morphismes de la catégorie homotopique Ho(Top) donne bien les classes
d’homotopies (faibles) de morphismes entre deux espaces X et Y. Mais cette
donnée ne suffit pas a déterminer/encoder le type d’homotopie faible de [’es-
pace Map(X,Y) des applications continues de X dans Y (muni de la topologie
compacte—ouverte@ dont les classes d’homotopie faibles ne sont que le 7 :

77. & comprendre comme (00, 1)-catégorie

78. a contrario d’une catégorie supérieure stricte pour lesquelles toutes les opérations entre fleches
sont strictement associatives etc..

79. voir la feuille de TD 2

80. c’est a dire si Y est métrisable de celle de la convergence uniforme sur tout compact
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Hompo(rop) (X, Y) = mo(Map(X,Y')). Autrement dit, la catégorie homoto-
pique ne voit pas les (classes d’)homotopies supérieures. Le méme probleme
survient avec les ensembles simpliciaux ou les complexes de chaines@ Il faut
se donner des résolutions (co)fibrantes de nos objets pour garder cette infor-
mation.

On peut par ailleurs se donner des structures de modeles différentes ayant les mémes
équivalences faibles et donc déterminant la méme notion homotopique (par exemple
les structures projectives et injectives dans les complexes de chaines).

La notion d’oo-catégorie va nous donner une notion de quotient de la catégorie
C ou l'on inverse les équivalences faibles moins naive et brutale que la catégorie
homotopique résolvant notamment les problemes ci-dessus. En particulier des struc-
tures de modele Quillen équivalentes donneront des oo-catégories équivalentes. Par
exemple, nous verrons aussi qu’il existe une notion naturelle et universelle d’co-
(co)limite encodant les (co)limites homotopiques et que les morphismes d'une oco-
catégorie contiennent des homotopies supérieures ; plus précisément sont des “espaces
a homotopie pres”.

Essayons de préciser un peu cette derniere notion. Un exemple important-et a
la base des motivations pour les catégories supérieures-est donné par le groupoide
fondamental d’un espace topologique.

Ezemple 4.1.1. Rappelons que si X est un espace topologique, w(X) est la catégorie
dont les objets sont les points de X et les morphismes

0
Homx)(z,y) = {f : [0,1] 5 X, f(0) =z, f(1) = y}/ =0

sont les classes d’homotopie relatives (a {0,1}) de chemins continus de x vers y. Les
classes d’isomorphismes de 7(X) sont exactement '’ensemble 7y (X) et Hom(x)(z, z) =
(X, z). Supposons maintenant donné deux chemins continues f, g de = vers y et
soit H, K ; deux homotopies entre eux. Alors on peut recoller ces homotopies pour
former une application de S? dans X qui peut ou pas étre complétée en un mor-
phisme de D? dans X. Mais cette donnée n’est pas visible dans 7(X). Autrement
dit 'information contenue dans le groupoide fondamental ne nous dit pas si ces deux
homotopies sont elles mémes homotopes entre elles ou si elles définissent une classe
non-triviale dans mo (X, z) et encore moins dans m,>3(X, z).

Dans cet exemple, une homotopie est vue comme un morphisme (inversible a
homotopie pres qui plus est) entre deux chemins. Ainsi pour corriger le probleme,
on aurait envie de considérer une catégorie avec les mémes objets, ou les chemins
seraient simplement les chemins continus, munis de morphismes ente eux constitué
par les homotopies relatives entre chemins; et plus généralement, d’une notion de
morphismes ente les homotopies données par des homotopies entre homotopies et
ainsi de suite... Evidemment, ceci ne peut pas étre une catégorie dans un sens strict
du terme : la composition des chemins n’est associative qu’a homotopie pres, tout
comme la loi d’unité et ceci se propage a tous les n-morphismes.

Notons que 'exemple donné par le groupoide fondamental est en fait transposable
au cas de (C, 7") de maniere générale. La catégorie homotopique est obtenu en iden-
tifiant des morphismes a une relation d’équivalence sur des zigzags pres (voir [2.2)).

81. En effet, on peut munir Hom g.pea(Cy, Ds) d’une structure de complexes qui en degré i est
donné par les morphismes de degré homogene égal & i et de la différentielle §(f) = dpo f—(—1)/fl fo
dc. Alors, si A est un complexe borné de projectifs, Homeyp gy (A, D) = Ho(Hom(A, D), 0).



120 GREGORY GINOT

Mais elle n’encode pas si deux fagons d’identifier deux zigzags sont elle-mémes na-
turellement équivalentes ou pas, et ainsi ne tient pas compte de diagrammes plus
compliqués que des “carrés” que ’'on peut réaliser (par exemple des cubes) dans C ot
on inverse 7 formellement. Elle correspond ainsi elle aussi a une notion de catégorie
ou ne regarde les (zigzags) de morphismes qu’a “homotopie” pres.

Philosophie 4.1.2. Ceci amene a considérer qu’'une notion d’oco-catégorie doit consis-
ter en la donnée
e d’objets,
e de 1-morphismes entre les objets,
e pour tout n > 2 d’une notion de morphismes entre les (n — 1)-morphismes
e pour tout n > 1, de notions de compositions de n-morphismes (ayant des
extrémités[?] similaires) associatives a des n + l-morphismes pres
e munis d'unités vérifiant un axiome de compatibilité avec les compositions a
des n + 1-morphismes pres.

Par ailleurs, on doit avoir des notions de foncteurs, transformations naturelles (et
transformations entre morphismes d’ordres supérieurs) entre co-catégorie. En parti-
culier un tel foncteur entre co-catégorie, doit

e envoyer des objets sur des objets, des n-morphismes sur des n-morphismes,

e doit envoyer la composée de n-morphismes sur la composée des images des
n-morphismes a des n + 1-morphismes pres

e une transformation entre foncteurs F,G doit consister en des fleches entre
les objets F(X), G(X) de sorte que tout diagramme induit par des 1-fleches
X — Y soit commutatif & un 2-morphisme pres, etc.

Autrement dit, on souhaite avoir une notion de catégorie et méme d’oo-catégorie des
oo-catégories.

Notons que dans notre point de vue, les n > 2-morphismes sont “inversibles”
(car nos identifications proviennent de relations d’équivalences, donc symétriques).
I1 s’agira donc techniquement d’(oco, 1)-catégorie. Il existe des notions d’(co,n)-
catégories ol on suppose seulement que les m > n + l-morphismes sont “inver-
sibles”. L’exemple hypothétique du groupoide fondamental est donc lui une
(00, 0)-catégorie, notion que 1'on qualifie dans la littérature d’oo-groupoide.

L’idée d’une définition informelle comme ci-dessus est naturelle, mais assez peu
réalisable et ne serait de toutes fagons pas manipulable aisément. En effet, il nous
faut une infinité d’opérations et d’axiomes devant satisfaire des cohérences tres com-
pliquées combinatoirement. L’idée pour réaliser cela et d’utiliser la théorie de I’hom-
topie et des relevements pour encoder ces cohérences.

Plus précisément, on va, pour reprendre I'idée des espaces fonctionnels Map(X,Y')
considérer des catégories dont les morphismes sont munies d’une strudture d’espace
topologique a homotopie pres et encoder les n > 2-morphismes comme des homoto-
pies (entre chemins ou homotopie).

Partant de ce point de vue il est naturel de vouloir transporter les structures de
modele de Quillen sur des catégories dont les morphismes ont une strutcure d’espace
topologique ou ensemble simplicial compatible avec les ensembles simpliciaux ; c’est
ce qui est évoqué dans la partie [4.3]

82. cette notion pouvant se décliner sous plusieurs formes inductivement
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Plus généralement, on utilise des structures de modele pour encoder cette notion
intuitive précédente et dont les objets fibrants cofibrants seront exactement ce que
I'on peut appeler oco-catégorie. L'un des plus rapides de ces modeles a définir est
donné par les quasicatégories et est basé sur les ensembles simpliciaux.

4.2. LE MODELE DONNE PAR LES QUASI-CATEGORIES

Le modele des quasicatégories pour les co-catégories est du a Joyal et a été po-
pularisé et développé par Lurie entre autres. L'un des avantages de ce modele est
qu’il donne une définition d’oo-catégorie qui généralise de maniere tres naturelle une
construction standard et importante : le nerf d'une catégorie.

4.2.1. Le nerf d’une catégorie.

Définition 4.2.1. Soit C une petite catégorie. Son nerf N,(C) est I’ensemble simplicial
donné, en degré simplicial n, par ’ensemble

N,(C)={Xo B X, B x, — ... B3 x,}

des n-uplets de morphismes de C qui sont composables (dans cet ordre). C'est a
dire les (f1,...,fn) tels que le but de f; est égal a la source de f;y; pour tout
t=1...n—1. Pour n =0, on prend bien entendu I’ensemble des objets.

La structure simpliciale est donnée par

WX xBx,». . x) = xxB8x-.. Lx,
(XX Bx, 5. Bx) = B8 x, B3x . . 5 X,

et, pourt=1...n—1, par

dZ(XOfAXl—)f#X»,J:XOgXl — ... X fii;)fiXi_i_l fE)Z XZ‘+2—> f#Xn

Autrement dit la premiere et la derniere face oublient un morphisme et un objet
alors que les autres composent deux morphismes successifs. Les dégénérescences
sont donnés par 'ajout d’identité :

Sj(XoféXlﬁ...f#Xn):XogXl%‘..XjE)Xjfngj_i_l—}...f#Xn.

Ezercice 4.2.2. Vérifier que N,(C) muni de la structure donnée est bien un ensemble
simplicial

Remarque 4.2.3 (La catégorie cosimpliciale [e]). La construction du nerf est en fait
relier a celle de la réalisation géométrique au sens ou elle est fait basée sur le fait
que l'on a un objet cosimplicial naturel dans les catégories. A savoir la donnée des
posets [n] := {0 < 1 < --- < n} vu comme catégorie avec une unique fleche entre
toute paire d’entiers 0 < ¢ < j < n (en particulier il n’y a que le morphisme identité
dans Homy,(7,7)).

Notons qu’un foncteur [n] — [m] est par définition la donnée d’'un diagramme

(0—1)

F) 'S

F(l_—>>2)

F(1) -+ — F(n)

dans [m]. Par définition des fleches de [m], il suit que ¢ — F'(i) est donc une applica-
tion croissante. Et réciproquement, toute application croissante F' : [n] — [m] définit
un foncteur i — F(i), F(i — j) = F(i) — F(j) (qui est bien défini car f(i) < F(j).
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F1GURE 11. Un 2-simplexe du nerf a gauche et un 3 simplexe du nerf
(correspondant aux fleches bleues) a droite avec la détermination de
tous les 1-simplexes induit par le morphisme correspondant A3 —
N.(C)

Comme les morphismes de la catégorie A sont précisément les applications crois-
santes, on obtient ainsi que [n] — {0 < 1--- < n}, (F : [n] — [m]) — (F(i) —
F(j))i<j) est un foncteur de A dans cat. On a ainsi pouvé

Lemme 4.2.4. La collection ([n])nen est canoniquement un objet cosimplicial dans
les catégories.

On peut alors redéfinir le nerf comme l’ensemble des morphismes dans cat de [e]
dans C, c’est a dire des foncteurs de [o] dans C :

~Y

Proposition 4.2.5. On a un isomorphisme canonique d’ensemble simplicial N(C) =
Homeat([@], C) ot la structure simpliciale & droite est induite par la structure cosim-
pliciale de [e].

Exercice 4.2.6. Prouver la proposition 4.2.5|

En particulier, tout foncteur F' : C — D induit un morphisme d’ensemble simpli-
cial par post-composition.

Lemme 4.2.7. La régle (F : C — D) +— F, : Homeat([o], C) o cat ([¢], D) fait du

nerf un foncteur No(—) : cat — sEns.

Démonstration. Cela découle du fait que les opérations simpliciales sont obtenues
par précomposition et commutent donc avec la post-composition. [

En termes explicites, a un foncteur F' : C — D on associe donc le morphisme

d’ensemble simplicial qui envoie (X LN X| — ... I X,,) sur la suite de fleches

composables

F(f1)

F(X,) "% M

_f;L)

F(X)) = .. F(X,).

Terminologie 4.2.8. On appelle cornets internes les cornets Ay, tels que 0 < k < n.
On appelera aussi cornet initial (resp. final) les cornets Ag,, (resp. A} ,).

Ezxemple 4.2.9 (Cornets internes, simplexes du nerf et propriétés d’extensions). Dé-
taillons la structure.
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Par définition, Ny(C) = Obj(C) est constitué des objets de C et les 1-simplexes
de C sont 'ensemble des fleches de C; on note que do(f) est le but de f et di(f)
est la source de f. Un 2-simplexe est constituté de la donnée de deux fleches (f, g)
composables c’est a dire que dy(f) = di(g). Si on renomme ay = g, ag = f, on obtient
précisément que la donnée d'un 2-simplexe de N,(C), c’est a dire d’'un morphisme

A2 — N,(C) (cf lemme [3.1.13)), est exactement la méme chose qu'un morphisme
A, = No(C) (lemme [3.2.3)). Précisément, si ¢ € Ny(C), on a que ag = do(0),
oy = dy(0) et dy(0) = ag © az. On en déduit quun morphisme A7, — N,(C) a un
relevement unique A2 — N,(C), donné par la composition des morphismes.

De méme, un 3-simplexe du nerf est la donnée de 3 fleches composables (f, g, h)
obtenues en recollant deux cornets A7, sur leur fleche commune. Une telle donnée
détermine de maniére unique un morphisme A3 — N,(C) comme montré sur la
figure [I1} Notons que l'on voit que tous les 1-simplexes sont bien déterminés par
des compositions des fleches f, g, h et repose sur l'associativité de la composition.
On peut méme réinterpréter ’associativité de la maniere suivante. Etant donné un
3-simplexe (f, g, h) de N3(C), on obtient les 1-cornets (f, g), (g,h) de A7, — No(C),
on construit les 2-simplexes complétant ces 1-cornets, c¢’est a dire les parties grisées

3

de hog Notons que nous pouvons construire cette figure

0 9ol > 2.
\\ /
1

juste a partir des deux cornets compatibles @ = (f,g), 6 = (g, h) ou compatible
signifie précisément que dy(8) = dy(a). Cette compatibilité permet de construire le
A7 ,-cornet correspondant aux fleches composables 0 — 1 = dy(a) et 1 — 3 = dy(5)
pour obtenir le 3-cornet AY, — N,(C) donné par la partie grisée du diagramme :

3
(hog)of h
heg Le fait que l'on puisse relever ce cornet en un 3-
(R 2

\
A 4 .
7790075 707
2777 7777
200525057
f 24552555 g

simplexe est équivalent a ’associativité de la composition.

Notons que de maniére réciproque, la donnée d'un cornet A}, — N,(C) (ou bien
de A%, — N,(C)) détermine complétement les fleches f, g, h et en particulier permet
d’étendre ce cornet a tout le simplexe comme nous 'avons fait. Ce n’est cependant
pas le cas de la donnée de A37, — No(C). qui ne contient pas la donnée des fleches
f,g. Notons également que dans le cas de Ag,- — N,(C), la donnée donne bien f,




124 GREGORY GINOT

g, h mais n’assure pas que la fleche ¢ : 1 — 3 du cornet est la composition ho g;
seulement que sa composition ¢ o g est égale a (ho g)o f.

Ezemple 4.2.10 (Cornets initiaux et finaux et simplexes du nerf). On a vu que tout
2-cornet interne du nerf avait un unique (et donc canonique) relevement en un 2-
simplexe. Regardons ce que veulent dire les propriétés de relevements par rapports
aux 2-cornets initiaux et finaux. Un 2-cornet initial a : A§, — No(C) est donc la
donnée de deux fleches (h, f) = (o, az) telles que di(f) = di(h)), cf figure [12] Par
notre analyse précédente des 2-simplexes du nerf, un relevement de ce morphisme
en un 2-simplexe o : A2 — N,(C) est la donnée d’une fleche g = dy(0) telle que
go f = h. De méme un relevement d'un cornet final 5 = (g,h) = o, 51) est la
donnée d’un morphisme f tel que f o g = h. Notons que si on prend h = id, alors le
relevement d'un cornet initial (id, f) correspond a l'existence d’un inverse a gauche
de f (une rétraction) et celui d’un cornet initial & un inverse a droite (une section).

FIGURE 12. Un 2-cornet initial (a droite) et final (a gauche) dans
N5(C). Les fleches pointillées désignent la structure que donne un
relevement a un 2-simplexe

Les exemples précédents conduisent a la proposition suivante.

Proposition 4.2.11. (1) Le nerf N,(C) d’'une catégorie C est un complexe de
Kan si et seulement si C est un groupoide. Si c¢’est le cas, les relevements des
cornets sont de plus uniques.

(2) Un ensemble simplicial X, est isomorphe au nerf d’une catégorie si et seule-
ment si, pour tout cornet interne A,T},, (n>2,0 <r < n), tout morphisme
de A7, — X. a un unique relevement.

(3) Le foncteur N,(—) : cat — sEns est pleinement fidele.

Le deuxieme point permet d’identifier 'image du nerf et le dernier point d’ainsi
plonger les (petites) catégories dans les ensembles simpliciaux.

Démonstration. Le point (2) est fait en détail dans le TD 5. Cela a été essentiellement
fait dans les exemples [4.2.10]; le cas des cornets de dimension supérieure se
traitant comme pour ’associativité. Pour le sens direct on définit X, comme objets
de la catégorie et les éléments f de X; comme les morphismes, dont la source est
donnée par la face d;(f) et le but par do(f). Par suite, la condition d’étre un 2-cornet
interne donne exactement deux fleches (f, g) avec une source et un but en commun
et une extension o donne la composition via la formule de go f := d; (o). L’'unicité de
I'extension garantissant que c’est non-équivoque ; 1’associativité se traitant comme
on I’a vu dans les exemples. Pour le point (1), on note que par I'exemple , si
le nerf d’une catégorie a la propriété de relevement par rapport aux cornets initiaux
et finaux, alors tout morphisme a un inverse a droite et a gauche et a donc un
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inverse. La réciproque est facile. En effet, si tous les morphismes d’un catégorie sont
inversibles, 'existence du relevement d’un cornet initial comme dans la figure [12] est
donnée par dy(c) = ho f~1 (et est unique) et celui d’'un cornet initial est donné par
dy(c) = g~' o h. On traite les cas de cornets de dimension supérieure de maniére
identique.

L’unicité des relevements dans le point (1) est encore une conséquence des (ra-
sionnements des) exemples.

Pour le point (3), soit Fy : No(C) — Ne¢(D) est un morphisme d’ensemble simpli-
cial. Alors, comme Ny(C) = Obj(C), Fy associe a tout objet de C un objet de D et

de méme, & toute fleche X 25 X de C, Fy associe une fldche Fi(f1) qui va de Fy(X)y)
a Fo(X1) puisque d;o F} = Fyod; (i = 0,1). Notons que dyo Fy = Fyody et dyo Fy =

F,
Fy o dy implique que Fy(Xo & X1 B X,) = Fo(Xo) ") Ry(xy) ™9 Fy(x) et

ainsi que Fi(fyo f1) = Fi(f2) o Fi(f1) car dy o Fy = F} od;. la compatibilité avec les
identités se voit en appliquant les dégnéréscences. On en déduit que Fy détermine
bien un foncteur F' et que No(F') = F,. Cela termine la preuve. O

I1 est relativement aisé de montrer que le nerf préserve les limites ce qui suggére[g_gl
que c’est un adjoint a droite.

Proposition 4.2.12. Le foncteur nerf No(—) : cat — sEns est un adjoint a droite
dont on notera 7 I'adjoint a gauche.

Notons que ’adjoint du nerf est décrit dans le corrigé de la feuille de TD 5.
Nous verrons dans la section que cette adjonction se décompose en deux
parties.

4.2.2. Quasicatégories. L’idée derriere la notion de quasicatégorie est d’utiliser la
caractérisation du nerf en retirant la condition d’unicité du relevement. Ceci va
donner une notion de composition qui ne sera définie qu’a une 2-cellule (c’est a
dire une homotopie pres) et de méme les compositions et aurtes structures seront
déterminées a des cellules supérieures pres.

Définition 4.2.13 (Quasicatégorie). Une quasicatégorie est un ensemble simplicial
X, qui satisfait que tout morphisme A7, X, (0 < 7 < n) d’un cornet interne a un
relevement en un n-simplexe A? — X,. Autrement dit, il existe, pour tout 0 < r < n,
un relevement A dans le diagramme suivant

Ay — {*}
rendant les triangles commutatifs.

Un morphisme entre quasicatégorie est simplement un morphisme entre les en-
sembles simpliciaux sous-jacents. On appelera oco-foncteur un tel morphisme d’en-
sembles simpliciaux.

Un sommet x € X, d'une quasicatégorie est appelé un objet de X, et 1-simplexe
f € X est appelé un (1-)morphisme (ou une fleche) de 'objet dy(f) vers I'objet
do(f).

83. voir le théoréme [6.2.53]



126 GREGORY GINOT

Enfin on appelera morphisme unité d'un objet x la dégénérescence so(z) € C; de
x@ On le notera id, € C;.

Exemple 4.2.14. D’apres la proposition .2.11 on a un plongement pleinement fi-
dele des catégories dans les quasi-catégories; et on peut caractériser les catégories
ordinaires comme celles ayant la propriété de I'existence d’uniques relevements. Les
objets et morphismes de C correspondent précisément a ceux de No(C) dans la dé-
finition [4.2.13] tout comme les foncteurs de C vers D correspondent précisément a
ceux de N,(C) vers N,(D).

Exemple 4.2.15. Un complexe de Kan, c’est a dire un ensemble simplicial fibrant
(pour la structure de modele de Quillen sur sEns), est une quasi-catégorie. Au vu
de la proposition [£.2.11] une catégorie ordinaire donne un complexe de Kan si et
seulement si c¢’est un groupoide. Cela suggere la terminologie suivante.

Exemple 4.2.16. Nous verrons ci-dessous [£.4] qu'une catégorie C munie d’'une classe
d’équivalence faible donne une quasicatégorie “relevant” la catégorie homotopique
Ho(C) (dans un sens rendu précis ci-dessous Ceci donne une large classe
d’exemples de quasicatégories qui ne sont ni le nerf d'une catégorie ni un complexe
de Kan.

Terminologie 4.2.17. On appelle souventﬁ (petite) oo-catégorie la donnée d’une
quasicatégorie et oco-foncteur (ou juste foncteur) un morphisme de quasicatégorie.

Un complexe de Kan, (vu comme quasicatégorie ayant en plus la propriété d’ex-
tensions pour les cornets initiaux et finaux), est appelé un oo-groupoide. Les propo-
sitions [4.2.38) et [4.2.11] (1) justifient cette terminologie.

Notation 4.2.18. Etant donné que nous pensons a une quasicatégorie comme une
généralisation des catégories ordinaires, pour x,y des objets d’'une quasicatégorie
C., nous noterons souvent Homg, (x,y) le sous-ensemble des morphismes de x vers
y, c’est a dire le sous-ensemble des f € C; tels que di(f) =z et do(f) = v.

Nous avons vu [3.2.12] que les morphismes entre ensembles simpliciaux sont na-
turellement munis d’'une structure d’ensemble simplicial (dont les 0-simplexes sont
précisément les morphismes). Ceci nous ammene a poser :

Définition 4.2.19. Soit C, une quasicatégorie et x,y € Cy des objets. L’espace des
morphismes de z vers y est

MapC.(w7y) = {ZL‘} X, Mapo(Aza CO) XC, {y}

c’est a dire le produit fibré dans sEns donné par le pullback

MapC. (ZE, y) - Mapo(A17 C')

| - |
evp,ev]

{x} ™ ., xC,

84. qui est bien un morphisme de z vers z
85. c’est peut étre le modele le plus populaire, notamment suite aux travaux de Lurie pour les
oo-catégories
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ou z,y : {¥} — C, sont les morphismes qui envoient le point sur les objets z, y
respectivement et ev; = Map, (AL, C,) == Map, (A2, C,) = C, sont les mor-
phismes induits par les deux inclusions inc; : {*} = A% < Al d’un point dans les
deux sommets[] de Al

Proposition 4.2.20. Soit C, une quasi-catégorie. Alors, pour tout objets x,y € Cq
on a que

(1) Mapg, (z,y) est un complexe de Kan (autrement dit un co-groupoide au sens
de [L2T7).

(2) Les O-simplexes de Mapc, (z,y) sont les morphismes de « vers y : autrement
dit on a un isomorphisme canonique Mapc, (z,y)o = Homc, (2, y).

La proposition nous dit donc qu'une quasicatégorie a bien un espace a homotopie
pres de morphismes entre objets comme prescrit par

Démonstration. Les tirés en arriere d’ensembles simpliciaux se calculent degré par
degré. Comme Homg, (x,y) est défini comme le produit fibré {z} xc, C1 X, {y} , le
résultat de[d.2.20} (2) est une conséquence de I'isomorphisme canonique Map, (AL, C.,)
Homggns (AL, C,) = C;.

L’identification (cf d’ensembles simpliciaux Map,(A? C,) = C, nous
donne que le morphisme (evy, evy) s’identifie avec le morphisme

Map, (AL, C,) b vap (A TT A% C.).

Or A2JJA® < Al est une cofibration car injective en chaque degré. Il suit du
lemme que c’est une fibration si C,, est fibrant dans sEns, c’est a dire est
un complexe de Kan. Donc son tiré en arriere est aussi une fibration ce qui donne
par définition que Mapc, (z,y) est de Kan. Si C, la preuve donne que l'ensemble
simpicial est bien une quasi-catégorie. Pour démontrer que c’est bien un complexe
de Kan, il faut montrer qu’il a aussi la propriété de relevement par rapports aux
cornets initiaux et finaux. Les deux cas sont duaux et basé sur les arguments de la
proposition que nous ne démontrerons pas. Nous renvoyons a [16] pour une
preuve complete. O

Lemme 4.2.21. La postcomposition f, — F, o f, est un morphisme d’ensembles
simpliciaux Mapg, (2, y) feoy Mapp, (Fo(x), Fo(y))-

Démonstration. La composition de morphismes d’ensembles simpliciaux est un mor-
phisme d’ensemble simplicial ; le résultat découle donc de la propriété universelle du
tiré-en-arriere. O

La proposition suivante nous dit que les foncteurs entre quasicatégories sont les
objets d’une quasicatégorie.

Proposition 4.2.22. Soit X, un ensemble simplicial et C, une quasicatégorie. Alors
I'ensemble simplicial Map,(X,, C,) est une quasicatégorie.

La proposition nous permet de poser les définitions suivantes.
Définition 4.2.23. Soit C,, D, des quasicatégories.

86. et sur leurs dégénérescences itérées en degré simplicial > 0
87. autrement dit inc; est induit par le morphisme [0] — [1] donné par 0+ i, i =0,1

I
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e On appelle co-catégorie des foncteurs de C, vers D, la quasicatégorie Map, (C,, D,).
Notons que les objets de cette quasicatégorie sont précisément les foncteurs
de C, vers D, au sens de la définition

e Les (oo-)transformations naturelles sont les 1-morphismes de cette catégorie.

e Un oo-foncteur F, : C, — D, est dit pleinement fidele si pour tous les objets
x,y € Cqy, on a que le morphisme d’ensembles simpliciaux induit

Mapg, (2, ) %5 Mapp, (Fo(z), Fo(y))

est une équivalence faible d’ensembles simpliciaux.

FExercice 4.2.24. Vérifier que si C, D sont des catégories ordinaires, la quasicaté-
gorie des foncteurs est le nerf de la catégorie des foncteurs Fun(C, D), c’est a dire

Map,(Ne(C), No(D)) = N(Fun(C, D)).

Démonstration de la proposition [{.2.23. C’est une conséquence du lemme plus gé-
néral suivant, appliqué a Z, = C,, Y, = {*} et L, = K, = X,.

Lemme 4.2.25. Soit L, < K, un morphisme injectif degré par degré (donc une
cofibration) et p : Z, — Y, un morphisme d’ensembles simpliciaux qui a la propriété
de relevement a droite par rapport a toutes les inclusions de cornets internes. Alors
le morphisme canonique

Map,(K., Z.) — Map,(L., Z-) X Map, (Le,Ya) Map,(K., Y.)

a la propriété de relevement a droite par rapport a toutes les inclusions A}, — Ay
(0 < k < n) de cornets internes.

Preuve du lemme [{.2.25. Elle est similaire & celle du lemme Il faut montrer
que pour tout 0 < r < n, il existe un relevement (en pointillé) dans le carré commu-

tatif

A Map, (K., Z,)

T,e

Ay == Map, (L, Z) X Map,(K.,Y.)
Map,(Le,Ys)

qui rende les deux triangles commutatifs. De la loi exponentielle [3.2.16] on déduit
qu’'un tel diagramme commutatif est équivalent a un diagramme

AZ}v' x K, UA?,. xLe A:L X Ly —= Z,

AT x K, Y,

L’argument de la preuve du lemme [3.2.9/(3) nous donne que fleche de gauche a la
propriété de relevement a gauche par rapport a toutes les fleches ayant la propriété
de relevement a droite par rapport aux inclusions de cornets internes. Le relevement
existe donc puisque la fleche de droite a justement cette propriété. O

OJ
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4.2.3. Compositions faibles et catégorie homotopique d’une quasicatégorie. Nous
allons maintenant continuer de voir en quoi une quasicatégorie répond au modele
hypothétique d’oo-catégorie. Nous avons défini une notion de 1-morphismes et
d’objets dans une quasicatégorie, mais nous n’avons pas encore parlé de com-
positions de tels morphismes. Cette notion n’est pas uniquemet définie contrairement
a une catégorie mais nous avons en revanche des compositions faibles :

Soit C, une quasicatégorie et f,g € C; deux morphismes dans C, vérifiant
do(f) = di(g), c’est a dire que la source de g est le but de f. Alors, la paire (f, g) défi-
nit un 2-cornet interne de C,, autrement dit un morphisme Ai. — C, (cf . Par
définition d’une quasicatégorie , il existe des 2-simplexes 0 € Cy (ce qui est la
méme chose qu'un morphisme AZ — C,) relevant (f,g) (i.e. do(o) = g, do(0) = f).

Définition 4.2.26. Soient f,g € C; deux morphismes composables (i.e. do(f) =
di(g)) d'une quasicatégorie. Une composition faible de f, g est dy (o) € C; pour tout
2-simplexe o relevant le 2-cornet interne (f, g). On notera parfois f o, g = dy(0).

Contrairement au cas d'une catégorie ordinaire (ou de son nerf), une telle compo-
sition faible n’est pas unique en général. Montrons cependant que deux compositions
faibles sont uniques a “homotopielﬂ’ pres.

Définition 4.2.27. Soit C, une quasicatégorie. On dit que deux 1-fleches f,g:x — y
dans C sont équivalentes@ si il existe un 2-simplexe o0 € Cy d'une des 4 formes
suivantes :

1 1 1 1
0———2 0———2, 0——F—2 0————2

Remarque 4.2.28. Les deux derniers diagrammes sont les mémes que les deux pre-
miers si ce n’est qu’on a inversé f et ¢; ils garantissent que la relation d’équivalence
de morphismes est symétrique. L’exsistence de ces diagrammes se traduit simplement
en termes de cornets en disant que deux morphismes f, g : x — y sont équivalents
si il existe un relevement d’un des 2-cornets initiaux ou finaux qu’ils forment en un
2-simplexe dont la derniere face est 'identité.

Notons que la définition a du sens pour toute paire de l-simplexe avec
les mémes faces dy, d; dans un ensemble simplicial. En revanche le lemme suivant
lui utilise que 'on a une quasicatégorie et est I'analogue du fait que la relation
d’homotopie [3.3.1] est une relation d’équivalence pour les complexes de Kan. Le
lemme suivant sera démontré a la fin de cette partie.

Lemme 4.2.29. Soit C, une quasicatégorie.

(1) Soient f,g : x — y des l-morphismes de C,. S’il existe un 2-simplexe d’une
des quatre formes données dans la définition [4.2.27] alors il existe des 2-
simplexes de chacune de ces quatre formes.

(2) Tout 1-morphisme est équivalent a lui-méme.

(3) La relation d’équivalence sur les 1-morphismes est transitive.

88. qui va étre une retraduction de la notion d’homotopie appliqué a ’ensemble des mor-
phismes de x vers y et du lemme m
89. on dit parfois homotope
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Notation 4.2.30. On notera pour simplifier f &9 la relation d’équivalence.

Armé de la notion d’équivalence, on peut énoncer le résultat suivant.

Proposition 4.2.31. Soit C, une quasicatégorie et f, g deux 1-morphismes compo-
sables. Deux compositions faibles de f et g sont équivalentes.

Démonstration. Soient f : x — vy, g : y — z des morphismes composables. Et soit
01, 02 deux relevements du 1-cornet interne représenté par la paire (f,g). On note
pour simplifier g o1 f = dy(07) et g oo f = di(09) les compositions faibles associées.
La dégénérescence s1(g) € Cy nous donne le 2-simplexe représenté par le diagramme

1 . On recolle ces trois 2-simplexes pour obtenir le 3-cornet interne
0 2.

Ai, — C, suivant

goif
(17)

goa f

\\/

ou la face intérieure est donnée par oy, la face rouge sur le devant a gauche est
donnée par o, la face jaune par la dégénrescence de g. La face opposée est celle
qui n’est pas remplie par la construction. Comme Cy est une quasicatégorie, on sait
quil existe un 3-simplexe H € C3 = Homggns(A2, C,) qui remplit ce diagramme.
Alors dy(H) est un 2-simplexe qui remplit la face opposée de . Par définition ce
simplexe est une équivalence entre g oy f et g oy f. 0

Montrons maintenant 1’associativité a équivalence pres des compositions faibles.

Notons que si x EN U,y > zetz M w sont trois fldches composables alors pour
toute composition faible g o, f et h sont composables et de méme pour f et ho, g

Proposition 4.2.32. Soient x EN Y,y etz 2w trois floches composables. Alors,
on a une équivalence

how (90 f) 5 (hor f)os f
pour toutes compositions partielles (données par des 2-simplexes o, k, 7, 0).

Démonstration. Fixons o, k, 7. Par unicité de la composition a équivalence pres(4.2.31],
il suffit de montrer qu’il existe un 2-simplexe & : AZ — C, tel que di(§) =
ho (g o, f). On commence par recoller les 2-simplexes o et 7
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h . . N
°rd respectivement obtenus via les fleches composables

goo f

N/

(f,g) (la face verte en dessous) et (g, h) (la face rouge a droite). On recolle mainte-
nant le 2-simplexe x : A2 — C, (dessiné en jaune) correspondant aux ﬂéches compo-

hon goaf)
sables (go, f, h). et on obtient le 3-cornet interne A3, — C, horg

goo f

\\/

ou k est donc représenté sur la face opposée. Puisque C, est une quasicatégorie, on
peut relever ce 3-cornet interne en un 3-simplexe H et ¢’ := dy(H) nous donne alors la

hok(gos f)
face bleue de devant a gauche sur le diagramme suivant : g

9o f

\\/

Par définition de la composition partielle associée a §' = dy(H) on obtient b1en que
(hng) Oé/f:dl((sl):hon (goaf>' O

On peut maintenant définir la catégorie homotopique d'une quasicatégorie de la
maniere suivante.

Définition 4.2.33 (Catégorie homotopique d’'une quasicatégorie). Soit C, une qua-
sicatégorie. On notera 7(C,) la catégorie dont les objets sont ceux de C, et les 1-
morphismes sont les classes d’équivalence de 1-morphismes de C, (cf définition[4.2.27)).
La composition est donnée par la classe d’équivalence des compositions faibles et les
unités par les classes d’équivalence des fleches unités id, de C,.

On utilise la notation 7(C,) et non pas Ho(C,) essentiellement pour spécifier que
c’est une construction spécifique aux quasicatégories (et que nous allons comparer
les deux) et rappeler le groupoide fondamental , mais en pratique on peut
confondre les deux constructions.
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Corollaire 4.2.34. Si C, est une quasicatégorie, alors 7(C,) est bien une catégorie et
C, — m(C,) définit un endofoncteur de la catégorie des quasicatégories donné par
la régle qui & F : C, — D, un oo-foncteur, associe la regle [f] — [F(f)];. De plus,

(1) On a des un oco-foncteur naturel (en C,) 7, : Co — No(7w(C,)) donné par
la regle qui a f : x — y un morphisme de C,, associe la classe d’équivalence

[f] € Homr(c) (7, ) ;
(2) on a des équivalences naturelles de quaiscatégories

m(N.(C)) = C,
Fun(r(C,),n(D,)) & 7( Fun(C,,D.)).

Démonstration. Que 7(C) soit une catégorie découle immédiatement des proposi-
tions [4.2.31] et [4.2.32| qui garantissent que la composition est uniquement définie et
associative. De plus nous avons dans la peuve de la proposition que pour tout
morphisme f, on a un 2-simplexe dégénéré s;(f) € Cy = 1 qui nous

/X

0 ———2.

!
donne que d;(so(f)) = f et donc que id, est bien une unité a droite. Pour I'unité a
gauche on utilise bien str s;(f) a la place de so(f).

Le point (1) découle maintenant du fait qu'un foncteur entre quasicatégories est
un morphisme d’ensembles simpliciaux. En particulier si o est une 2-cellulere levant
le 2-cornet interne associée a une paire composable (f, g), alors F'(o) est une 2-cellule
relevant le 2-cornet associé a (F'(f), F\(g)). Il suit que [F(fo,g)] = [F(f)orwx)F(9)] =
[F'(f)] o [F(g)]. On montre de méme que les unités sont préservées.

Enfin le point (2) découle de la proposition [4.2.11| et des exemples |4.2.14] O

Remarque 4.2.35. La catégorie homotopique d'une quasicatégorie permet de relever
certains concepts standards aux oco-catégories. Par exemple

Définition 4.2.36. Un morphisme f : x — y d’une quasicatégorie C, est appelé un
isomorphisme si [f] est un isomorphisme de 7(C,).

De méme, en combinant cette derniere définition avec on obtient les défi-
nitions suivantes.

Définition 4.2.37. Soit C,, D, des quasicatégories.

e Un oo-foncteur F' : C, — D, est essentiellement surjectif si 7(F) : 7(C,) —
m(D,) lest.

e Deux oco-foncteurs F, G : C, — D, sont naturellement équivalents si ils sont
isomorphes (au sens de en tant que morphismes dans la quasicatégorie
Map,(C.,, D,).

On peut montrer (mais ce n’est pas trivial) le résultat suivant qui est impor-
tant et identifie les co-groupoides avec les oco-catégories dont tous les éléments sont
inversibles.

Proposition 4.2.38. Soit C, une quasicatégorie. On a que C, est un oo—groupoidem si
et seulement si tous les morphismes de C, sont inversibles c¢’est a dire si et seulement
si m(C,) est un groupoide.

90. c’est a dire un complexe de Kan par définition [4.2.17
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Ezemple 4.2.39. Soit X est un espace topologique, alors Sing,(X) est un complexe
de Kan donc est un oo-groupoide. Par construction et le lemme [3.3.9] on a que
7(Sing, (X)) est équivalente au groupoide fondamental de X. On peut donc voir
Sing,(X) comme 1'co-groupoide associé a l’espace topologique X. Nous allons voir
que 'équivalence de Quillen [3.2.18 nous dit que réciproquement, tout co-groupoide
au sens des quasicatégories est équivalent a un espace topologique.

Ezemple 4.2.40. Nous verrons ci-dessous qu'une catégorie C munie d'une
classe d’équivalence faible donne un exemple de quasicatégorie non-triviale Ho.,(C)
dont la catégorie homotopique est équivalente & Ho(C) = C[#" 1.

Les deux exemples précédents donnent une grande source d’exemples de quasica-
tégories.

Donnons une démonstration que nous avions laissé de coté.

Démonstration du lemme [{.2.29. Le point essentiel est que nous avons les 2-cellules
dégénérées s1(f) € Cy = 1 et so(f) = 1 que l'on

7’ \dy i% X
0 ———2 0 2
f
peut recoller a I'une des 4 formes et montrent directement le point (2). Par exemple,
on obtient a partir de la premiere forme 1 , un 3-cornet Ag,, — C,

donné par sur la face du fond une dégénérescence de f, et toujours s1(g) a droite on

obtient un 3-cornet interne A . — C, différent / \\ obtenu

\\/

en collant sur la face du fond la dégénérescence s1(f) de f, et la dégénérescence s1(g)
a droite. L’existence d’un relevement de ce 3- cornet interne nous donne ’existence

de la face du fond qui est précisément la forme symétrique 1
7 N
00— 2

On obtient la forme symétrique de la deuxieme forme de la méme maniere.
Si en revanche on avait collé les dégénérescences de g correspondant aux faces
rouges et jaunes on aurait obtenu un autre type de 3-cornet interne A3, — C,




134 GREGORY GINOT

/ \\ Le relevé nous fournit (en prenant sa facce d;) une

\\/

équivalence de la forme 1 ce qui permet de conclure pour le point

(1) en utilisant les différentes symétries. Finalement, pour le point (3), étant donné
une équivalence entre f et g et entre g et h, que I'on peut choisir de la forme que 'on
souhaite par (1) on construit un 3-cornet interne A%, similaire au précédent donné

/ /\\ La face opposée du relevement donne précisément

\)\/

une équivalence entre f et h. O

Remarque 4.2.41. Cas des catégories non-petites La définition d’une quasica-
tégorie que nous avons donné correspond a celle d’une petite oo-catégorie. Si ce n’est
pas génant en ce qui concerne 'exemple [£.1.T] ¢a I'est beaucoup plus dans I'objectif
d’associer une oo-catégorie a une catégorie de modele puisque ces dernieres étant
(co)completes, elles ne sont essentiellement jamais petites.

La structure de modele des catégories simplicialement enrichies se placera
naturellement dans ce contexte. D'un point de vue quasicatégorie, la solution est de
se placer dans des univers plus large et considérer des objets simpliciaux dans ce
contexte. La définition d’une quasicatégorie est alors la méme dans ce contexte. En
particulier, si C est une catégorie non-nécessairement petite, on peut définir le nerf
de C comme l'objet simplicial

N.(C) = HomCat([.]7 C)

en prenant les morphismes entre catégories non nécessairement petites. L’objet ob-
tenu est un objet simplicial (qu'on peut voir comme un objet simplicial dans Catgis.
la sous-catégorie de Cat des catégories discretes, c’est a dire qui n’ont que des iden-
tités comme morphismes) qui vérifie la proposition . Notons que si C est une
catégorie avec des ensembles de moprhismes, alors on a encore que Map N_(C.)(a:, Y)
est bien un ensemble simplicial, qui est de Kan. De plus, quel que soit 'univers dans
lequel on s’est placé, les diagrames définissant les propriétés des relevements des
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cornets internes ne concernent que des ensembles puisque les cornets et simplexes
sont des ensembles simpliciaux (par ailleurs finis).

En particulier, on peut généraliser la définition 4.2.13| et tous les résultats des
section s’étendent a ce contexte. Précisément :

e on peut définir les quasicatégories comme les objets simpliciaux C, de Catg;s.
qui vérifient la propriété de relevement par rapport aux inclusions de cornets
internes, c’est a dire l'existence de relevements A, — C,

AY

e et tels que pour tout objets (c’est a dire O-simplexes) x,y € Cy, les tirés
en arritre Mapg, (¢,) = {} xc, Mapsgye,., (AL Ca) xc, {y) soient des
ensembles simpliciaux, nécessairement de Kan.

e On a une catégorie QCat; des quasicatégories non-nécessairement petites
dont les objets sont les quasicatégories non-nécessairement petites et les mor-
phismes les morphismes simpliciaux entre tels objets; pour toute paire de
quasicatégorie, on a une quasicatégorie large Map,(C,, D,) des foncteurs de
C, vers D,.

e Le nerf N,(—) := Homca([e], —) est un foncteur Cat — QCat; pleinement
fidele.

e Toutes les définitions, exemples, lemmes et propositions de [4.2.3] sont
vraies dans ce contexte, quitte a changer cat en Cat.

On peut évidemment généraliser encore plus et travailler avec des catégories plus
larges de la méme fagon. Cette approche a d’ailleurs ’avantage de ne pas considérer
la classe des objets comme une classe particuliére (contrairement a 1'usage en théorie
des catégories) mais commme une classe de fleches de source et but “vide”.

4.2.4. Structure de modele de Joyal sur les quasicatégories. Les quasicatégories
forment un modele populaire des co-catégories qui ont cependant quelques incové-
nients : par exemple, la composition n’est pas définie strictement@. Nous avons aussi
construit des quasicatégories de foncteurs entre (petites) quasicatégories mais pas
une quasicatégorie des quasicatégories.

Pour remédier a cela nous allons introduire une structure de modele encodant
les quasicatégories et les co-foncteurs entre elles. Cela nous permettra également de
comparer ce modele avec d’autres modeles. Le point important est que 1’on va définir
une structure de modele sur sEns dont les objets fibrants sont les quasicatégories
et les équivalences faibles vont encoder le fait d’avoir une équivalence des espaces de
morphismes induisant des équivalences de catégories homotopiques.

Terminologie 4.2.42. Soit C, une quasicatégorie. On note my(C,) l'ensemble des
classes d’isomorphismes de la catégorie 7(C,) associée a C,.

Définition 4.2.43 (Structure de modele de Joyal). Soit f : X, — Y, un morphisme
d’ensembles simplicaux. On dit que

91. on peut la strictifier pour résoudre ce probleme, ce qui conduit en fait a regarder la notion
de catégorie simplicialement enrichie en fait ; attention en faisant cela on peut perdre la propriété
d’avoir un complexe de Kan de morphismes...
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e f est une équivalence catégorielle@ si pour toute quasicatégorie C,, le mor-

phisme induit f* : mo(Map,(Ys, C,)) = mo(Map, (X, C,)) est un isomor-
phisme ;

e une cofibration si f est injectif en chaque degré Simpliciallgfl

e une fibration de Joyal si elle a la propriété de relevement a droite par rapport
a toutes les cofibrations qui sont des équivalences catégorielles.

On notera respectivement 77/ la classe des équivalences catégorielles, € celle des
cofibrations et 7 celle des fibrations de Joyal. On appelle cette donnée la structure
de Joyal.

Théoréme 4.2.44. La catégorie des ensembles simpliciaux (sEns, 7'/, %7, €) munie
de la structure de Joyal est une catégorie de modele cofibrement engendrée et propre
a gauche.

Les objets fibrants de cette structure sont précisément les quasicatégories.

On notera Qcat cette structure de modéle[g_zl et on ’appelera la catégorie de modele
des (petites) quasicatégories. Par définition QCat, est la sous-catégorie pleine de
QCat de ses objets fibrants. On notera R’ le remplacement fibrant associé a la
structure de Joyal qui a un ensemble simplicial associe donc sa quasicatégorie associée
par définition 4.2.13]

On notera aussi QCat celle des quasicatégories non-petites (reprenant les idées
de . Précisément, cette derniére et ses autres variantes s’obtiennent en définis-
sant des structures de modele similaire sur sEns? la catégories des objets simpliciaux
dans un univers % donné.

Remarque 4.2.45. Tous les objets de Qcat sont cofibrants, comme pour la structure
de Quillen sur les ensembles Simpliciauxﬁ.

Remarque 4.2.46. Les équivalences faibles de ces structures sont difficiles a identifier
en général. Cependant :

FExercice 4.2.47. Démontrer que si un foncteur F' est une équivalence de catégories
(oridnaires), alors No(F') est une équivalence catégorielle.

Exercice 4.2.48. Démontrer que si f : X, — Y, est une fibration acyclique, alors f
est une équivalence catégorielle.

Proposition 4.2.49. Le nerf et le foncteur catégorie homotopique forment une ad-
moRY
jonction de Quillen Qcat cat ou cat est munie de sa structure de modele
Ne
canonique.
moR’
De méme leur extension QCat Cat aux (quasi)catégories non petites est
Ne
une adjonction de Quillen

92. nous suivons la convention de Lurie; Joyal appelle cela une équivalence catégorielle faible

93. c’est donc la méme notion de cofibration que celle des Quillen dans sEns

94. le contexte devrait toujours permettre de ne pas confondre cette structure de modele avec sa
sous-catégorie des objets fibrants

95. en particulier cette catégorie de modele est donc propre a gauche
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Le foncteur de remplacement fibrant dans sEns nous donne un endofoncteur R :
sEns — sEns qui envoie une quasicatégorie sur un complexe de Kan.

Terminologie 4.2.50. On dit que le foncteur associé C, — R(C,) associe a une
quasicatégorie son co-groupoide sous-jacent. Ceci est justifié par I'exemple 4.2.52|

Notation 4.2.51. Si C, est une quasicatégorie, on notera Cy° = R(C) son oco-
groupoide sous-jacent.

Exemple 4.2.52. On a un isomorphisme naturel R(N,(C)) = N,(C%*?) ou C**° est le
groupoide sous-jacent a C, c’est a dire la plus grande sous-catégorie de C qui est un
groupoide.

Remarque 4.2.53. On a une catégorie de modele des quasicatégories qui généralise
celle des catégories. Les équivalences faibles de la catégorie de modele des catégories
sont les équivalences de catégories. En particulier la catégorie homotopique de cette
derniere encode les catégories et les classes d’équivalence de foncteurs, c’est a dire
les foncteurs a équivalence pres, voir le devoir maison.

La catégorie de modele des quasicatégories donne une construction similaire pour
les oo-catégories.

4.3. LE MODELE DES CATEGORIES ENRICHIES SIMPLICIALEMENT

Nous en venons maintenant a un autre modele tres naturel aussi qui est obtenu
en considérant des catégories munies d’une topologie, ou au vu du théoreme [3.2.18],
d’une structure d’ensemble simplicial (qui est plus maniable car plus petite et se
transpose plus naturellement dans de nombreux exemples et domaines mathéma-
tiques).

Il existe une structure de modele canonique sur les catégories, qui a été developpé
en devoir. L’idée est de combiner cette structure et celle de Quillen sur sEns (ou
Top) pour obtenir un modele des oo-catégories réalisant précisément 1'idée d’une
catégorie munie d’un espace a homotopie pres de morphismes.

Définition 4.3.1. Une catégorie C est dite simplicialement enrichiem si elle est munie
d’ensembles simpliciaux de morphismes Mapg(z, y)e pour toute paire d’objets z,y €
Obj(C) et de morphismes d’ensembles simpliciaux Mapg(y, 2)s X Mapg(z,9)e —
Mapg(x, z)e vérifiant :
e Mapc(z,y)o = Home(x,y) et la restriction de o aux O-simplexes est la com-
position dans C;
e o est associative et les morphismes identités de C sont des unités pour o.

Un foncteur de catégories enrichies simplicialement est un foncteur tel que les appli-
cations induites au niveau des espaces de morphismes soient des morphismes d’en-
sembles simpliciaux, c’est & dire une regle Obj(C) 3 X — F(X) € Obj(D) au
niveau des objets et pour tous objets X,Y € C, des morphismes d’ensembles sim-
pliciaux Mapg(X,Y)s — Mapp(F(X), F(Y))e tels que F(f o g) = F(f) o F(g) et

On notera Cat® la catégorie des catégories enrichies simplicialement.

96. on dit parfois catégorie simpliciale, mais cette derniere terminologie peut aussi désigner un
objet simplicial dans cat ou une catégorie simplicialement enrichie tensorisée et cotensorisée au
dessus de sEns, donc il vaut mieux ’éviter si possible
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Remarque 4.3.2. Notons que les morphismes sous-jacents de la catégorie C sont
uniquement déterminés par la structure simpliciale, puisqu’il s’agit des O-simplexes
munis des compositions et unités restreintes au degré 0.

Remarque 4.3.3. On a une notion de catégorie enrichie dans les espaces topologiques
similaire obtenue en remplagant ensembles simpliciaux par espaces topologiques.

Ezemple 4.3.4. La catégorie sEns est enrichie simplicialement via Map, (X, Ys).

FExemple 4.3.5. Si C est une catégorie, on peut la voir comme une catégorie enrichie
simplicialement en prenant comme espace des morphismes ’ensemble simplicial dis-
cret Home(x,y); autrement dit, on pose Mape(z,y)o = Home(x,y) et on ne met
que les dégénérescences des O-simplexes en degré supérieur. Ceci nous fournit un
foncteur

. : Cat — Cat”.

Lemme 4.3.6. Le foncteur ¢ : Cat < Cat® est pleinement fidele
Exercice 4.3.7. Démontrer le lemme.
Le foncteur ¢ est un analogue du nerf N, : cat — Qcat de la section [4.2.2]

Ezemple 4.3.8. La catégorie Cat® est une catégorie (large) enrichie simplicialement.
En effet, si C, D sont deux telles catégories, et F,G : C — D deux foncteurs, les
transformations naturelles entre ces foncteurs ont une structure simpliciale donnée
comme collection de sous-ensembles simpliciaux des Mapp (F(z), G())s.

Rappelons que nous avons un foncteur 7y : sEns — Ens qui associe a un ensemble
simplicial X,, I'ensemble mo(|Xe|) = mo(R(X,)) ot R(X,) est un remplacement fi-
brant [3.3] Ceci nous permet de passer aux classes d’homotopies dans les espaces de
morphismes pour définir la catégorie homotopique associée.

Définition 4.3.9 (Catégorie homotopique d'une catégorie simplicialement enrichie).
Si C est une catégorie enrichie simplicialement, on note m(C) la catégorie dont les
objets sont les objets de C et qui a un morphisme f : x — y associe sa classe dans
mo(Mapg (@, y)a)-

Un morphisme v : x — y dans C est appelé une équivalence dans Cﬂ si [v] est
un isomorphisme dans 7 (C).

Notons que par définition, 7y(C) a les mémes objets que C et que ces morphismes
sont des quotients des Home(x,y). En particulier, a tout morphisme f € C entre x
et y, on peut associer sa classe d’équivalence [f] € Homgc)(z,y).

Lemme 4.3.10. Soit C une catégorie enrichie simplicialement. Alors my(C) est bien
une catégorie et f — [f] est un foncteur 7 : Cat® — Cat.

Exercice 4.3.11. Démontrer le lemme.

Nous définissons maintenant une structure de modele combinant la structure de
Quillen des ensembles simpliciaux sur les morphismes et la notion d’équivalence de
catégorie.

Définition 4.3.12. (Structure de modele de Dwyer-Kan, Bergner)

97. il est bn de se convaincre que cette notion est analogue a celle d’isomorphisme dans une
quasicatégorie
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Une équivalence de Dwyer-Kan: est un foncteur f : C — D de catégories enrichies
simplicialement tel que

(1) pour toutes paires d’objets x,y € C, Mapa(z,¥). EN Mapp (f(2), f(¥))e
est une equivalence faible d’ensembles simpliciaux ;
(2) mo(f) : mo(C) — mo(D) est une équivalence de catégorie.
On note 7#'PK 1a classe des équivalences de Dwyer-Kan.
Une fibration de Dwyer-Kan: est un foncteur f : C — D de catégories tel que

(1) pour toutes paires d’objets z,y € C, Mapc(z,y)e EN Mapp (f(z), f(y))e
est une fibration d’ensembles simpliciaux ;
(2) pour tout x € Obj(C), y € Obj((D) et toute équivalence v : f(x) — y
dans D, il existe une équivalence 7' : © — 2’ dans C telle que f(7') = .
On notera FPK la classe des fibrations de Dwyer-Kan.
Une cofibration de Dwyer-Kan: est un foncteur qui a la propriété de relevement a
gauche par rapport a toutes les fibrations de Dwyer-Kan qui sont des équi-
valences de Dwyer-Kan. On notera €°X cette classe.

Remarque 4.3.13. On peut remarquer que les fibrations de Dwyer-Kan sont exacte-
ment les foncteurs qui sont des fibrations de Kan au niveau des ensembles simpliciaux
de morphismes et dont la classe dans les catégories homotopiques est une isofibra-

tionPs

Théoréme 4.3.14 (Bergner). La structure (Cat®, #'PK, FPK @PK) est une stuc-
ture de modele cofibrement engendrée.

Remarque 4.3.15. Les objets fibrants sont les catégories dont les ensembles de mor-
phismes sont des complexes de Kan.

Contrairement aux quasicatégories, toutes les catégories simplicialement enrichies
ne sont pas cofibrantes.

Par ailleurs, la catégorie simplicialement enrichie des foncteurs entre deux caté-
gories enrichies simplicialement fibrantes n’est pas nécéssairement fibrante (contrai-

rement au cas des quasicatégories 4.2.22)).

Notons que nous avons le résultat suivant.

0

Lemme 4.3.16. On a une adjonction de Quillen Cat® Cat ou Cat est munie

de sa structure de modele canonique[”’|
Fzercice 4.3.17. Démontrer le lemme.

En particulier, la counité de I’adjonction nous donne le morphisme canonique
(18) 0:C — 1(m(C))
de catégorie enrichie simplicialement.

Nous allons maintenant définir un foncteur reliant les catégories enrichies sim-
plicialement et les quasicatégories; foncteur qui généralise le nerf d'une catégorie
ordinaire : C — Homecat([®], C). L’idée est de définir un objet similaire en rempla-
cant les catégories par les catégories simpliciales. Comme la catégorie [n| n’est pas

98. C’est a dire une fibration de catégorie, voir le devoir maison.
99. dont les équivalences faibles sont les équivalences de catégorie et les fibrations les isofibrations
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cofibrante en tant que catégorie simpliciale, afin d’obtenir un foncteur raisonnable du
point de vue homotopique il nous faut le remplacer par une catégorie plus adaptée.

Définition 4.3.18. Soit [n] la catégorie enrichie simplicialement dont les objets sont
les éléments de I'ensemble {0,...,n} et les ensembles simpliciaux de morphismes
sont ’ o .
.. s11 > ]
Mapy;, (i, j) = { Nu(Py) sii<j
ou P,; est la catégorie associée & l'ensemble partiellement ordonné (par 'inclusion)
des sous-ensembles J de {k € [n], i <k < j} qui contiennent i et j.

La composition Mapy;, (7, k) x Mapy;, (i,7) — Map;, (1, k) est induite par 'applica-
tion du foncteur nerf a la réunion de sous ensembles partiellement ordonnés (disjoints
en dehors de j) : Py x Pij = Py (K, J) — JUK.

En particulier P; a un seul élément et son nerf est donc équivalent & {*} = A2

Remarque 4.3.19. On a un isomorphisme d’ensembles simpliciaux Map[;z](i, j) =
(ALY~ pour i < j. En particulier, ces ensembles simpliciaux sont contractiles
ce qui correspond au fait qu’il y a un unique morphisme de ¢ vers j dans la catégorie
[n]. Ainsi, le foncteur [n] — [n] qui envoie N,(P;;) sur un point est une fibration de
Dwyer-Kan qui est également une équivalence de Dwyer-Kan.

Proposition 4.3.20. La donnée de la définition est une catégorie enrichie sim-
plicialement dont les unités sont les uniques éléments des Ny(P;;).

De plus tout morphisme croissant f : [n| — [m] induit par postcomposition un
foncteur [n] — [m] qui fait de [o] un objet cosimplicial dans les catégories enrichies
simplicialements.

Définition 4.3.21 (Nerf cohérent). On appelle nerf cohérent le foncteur N, :
cat® — sEns donné par C — Hom,ga ([e], C) munie de la structure simpliciale

induite par la structure cosimpliciale de [e].

On notera de méme N, : Cat® — sEns? son extension a des catégories non-
nécessairement petites (associées a un univers %), donné par C — Homga ([e], C).

Remarque 4.3.22. Si C est une catégorie ordinaire, le lemme [4.3.16| implique que le
nerf cohérent coincide avec le nerf No(C).

Théoréme 4.3.23. Le nerf cohérent est un adjoint de Quillen a droite QCat Cat® .
N.
Cette adjonction est de plus une équivalence de Quillen et se restreint en une équi-
7
valence de Quillen Qcat cat® .
N.

Le théoreme permet donc d’identifier la structure de modele des quasicatégories et
celle des catégories enrichies simplicialement. C’est en ce sens que ces deux théories
donnent donc la méme notion d’infinie catégorie; sens que nous allons d’ailleurs
préciser dans la partie . Etant donné que les objets fibrants sont préservés par un
foncteur de Quillen a droite, on peut donc utiliser la terminologie suivante :

100. ce qui découle aussi plus simplement du fait que les posets F; ; ont des éléments minimaux
101. ou parfois nerf simplicial dans la littérature
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Terminologie 4.3.24. Une catégorie enrichie simplicialement fibrante est aussi sim-
plement appelée une oo—catégorielTE]

Remarque 4.3.25. Le foncteur dérivé a droite RN, = N, o RPX . Cat® — QCat
envoie donc toute catégorie simpliciale sur une quasicatégorie.

Remarque 4.3.26. A contrario des quasicatégories, on peut composer strictement les
ensembles simpliciaux de morphismes ou les catégories de foncteurs entre catégories
enrichies simplicialement. En revanche, ces ensembles de morphismes entre objets
fibrants (c’est a dire oo-catégorie) ne sont pas nécessairement fibrants, c’est a dire
doivent étre remplacés pour obtenir la bonne structure.

Remarque 4.3.27. On a une équivalence naturelle canonique m(No(C)) = m(C) entre
les catégories homotopiques d’une catégorie enrichie simplicialement et celle de sa
quasicatégorie associée. Ceci jsutifie la notation m que nous avons utiliser dans le

lemme [4.3.10

De plus cette identification envoie le morphisme canonique ¢ : C — ¢(m(C)) sur
T, (cy du corollaire

4.4. 1. 0o-CATEGORIE ASSOCIEE A UNE CATEGORIE DE MODELE

Nous allons maintenant expliquer comment associer une oco-catégorie a une catégo-
rie de modele, et plus généralement une catégorie munie d’une notion d’équivalences
faibles, qui sera un enrichissement de la catégorie homotopique sous-jacente. Préci-
sément :

Philosophie 4.4.1. A toute catégorie C munie d’'une classe 7#" stable par composition
de morphismes, on souhaite associer une oco-catégorie Ho.(C) et un oo-foncteur
ls : C — Hoy(C) tels que
e Ho,,(C) releve Ho(C), c’est a dire 7(Ho,(C)) = Ho(C) et il existe une
factorisation C — % Ho,,(C) —— Ho(C) (ou la fleche de droite est induit
\/

]
par le morphisme canonique qui envoie une oo-catégorie sur sa catégorie
homotopique [4.3.10|ou |4.2.34]et ¢ : C — Ho(C) est la localisation).

e Ce relevement est universel parmi les co-catégories vérifiant le point précé-
dent : précisément pour toute (oo-)catégorie D et (co-)foncteur F': C — D
tel que To F': C — D — Ho(D) envoie #" dans des isomorphsimes, il existe
une factorisation (unique 4 équivalence pres[™) £, : Hoo(C) — D rendant
le diagramme suivant

102. le Théoreme nous dit précisément qu’il n’y a pas d’ambiguité réelle & utiliser cette
terminologie pour les quasicatégories et les catégories enrichies simplicialement puisque le nerf
d’une catégorie simpliciale fibrante est précisément une quasicatégorie.

103. I’équivalence étant unique a une 2-équivalence pres et ainsi de suite

104. dans les co-catégories
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commutatif (ot F : Ho(C) — Ho(D) est donné par la propriété universelle
de la catégorie homotopique).

Lorsque C est de modele, il est 1égitime d’espérer calculer les morphismes de
Ho..(C) en fonctions de remplacements fibrants et cofibrants dans C. Par ailleurs,
I'existence d’une telle co-catégorie ne se fait en général pas sans s’autoriser a changer
d’univers si I'on ne dispose pas d’'une (bonne) structure de modele.

L’existence d'un tel relevé homotopique remonte aux travaux de Dwyer-Kan construi-
sant une catégorie simpliciale associée a (C, 7).

Notation 4.4.2. Soit M une catégorie et 7" une sous-classe de morphismes stable par
composition. Pour tout entier n > 0 et objets X,Y de M, on note MapL%M(X, Y),
la collection de tous les diagrammes commutatifs

Xo1 e Xo,i Xoit1 <= —— Xom-1

X1 X, Xiip1=——Xima

/ |

X’n,l e Xn,i Xn,i—l—l < e n,m—1

(o m > 1 est un entier non-fixé) vérifiant que

e toutes les fleches horizontales qui vont vers la gauche et toutes les verticales
sont dans %" ;

e toutes les fleches horizontales d’une méme colonne vont dans le méme sens ;

e Les fleches d'une méme colonne interne@ne sont pas toutes l'identité ;

e les fleches horizontales de deux colonnes consécutives vont dans des sens
OPPOSES.

Dans les conditions et notations précédentes, on identifie X avec une suite verticale
en position 0 de fleches qui sont toutes 'identité entre les X; o = X, et de méme Y
avec une suite verticale en position m de fleches qui sont toutes l'identité entre les
Xjm=Y.

On note d; : Mappu (X, Y), — Mappu (X, Y)n-1 la régle envoyant un dia-
gramme sur le diagramme ou on a supprimé la ieme ligne (c’est a dire supprimé tous
les X, . et fleches horizontales associées et composé les fleches verticales arrivant et
repartant en les X;,) et on note s; : Mappu (X, Y)n — Mappu (X, V)01 la regle
envoyant un diagramme sur le diagramme ou on a doublé la jéme ligne (c’est a dire
rajouté une ligne composée des X, et des fleches horizontales entre eux juste apres
la jieme ligne et mis I'identité comme fleche verticale entre les deux copies de X ).

Terminologie 4.4.3. Un élément de MapL%M(X, Y), est appelé un n—“hamac’m
entre X et Y.

105. c’est a dire une bande formé des fleches reliant des objets de la forme X, ,, X, ;11 avec
0<i<m
106. en raison de la forme suggestive de ce diagramme



INTRODUCTION A L’HOMOTOPIE 143

On peut composer deux n-hamacs de X vers Y et de Y vers Z en les concaténant
en Y et en composant toutes les fleches qui iraient éventuellement dans le méme
sens dans deux colonnes adjacentes ainsi obtenues (effagant ainsi une ligne verticale)
quitte a effacer une colonne interne qui n’aurait que des identités. On note o :
Mapyi (Y, Z)5 x Mapps (X, Y)n — Mappu (X, Z),, cette opération.

Lemme 4.4.4. La composition o : MapL%M(Y, Z)anapL;IﬁM(X, Y), — MapL;M(X, AN
est bien définie.

Ezercice 4.4.5. Démontrer le lemme.

Proposition 4.4.6. La donnée des d;, s; (de la notation [4.4.2)) et de la composition
donnent une structure de catégorie enrichie simplicialement aux objets de M munis
des Mapyi (X, Y")s comme ensembles simpliciaux de morphismes.

FExercice 4.4.7. Démontrer la proposition.

Définition 4.4.8 (Localisation hamac). On note LY. M la catégorie enrichie simpli-
cialement dont les objets sont les objets de M et les ensembles simpliciaux de mor-
phismes les Mapyu (X, Y)s munis de la structure de la proposition W

Remarque 4.4.9. 1l existe d’autres catégories simpliciales fonctorielles qui sont Dwyer-
Kan équivalentes a la localisation hamac.

On peut par exemple inclure tous les morphismes de M dans les morphismes
verticaux d’un hamac. Le morphisme de catégorie simplicialement enrichie est une
équivalence de Dwyer-Kan comme cela peut étre démontré en utilisant une démons-
tration similaire a celle des descriptions de la catégorie homotopique dans le TD 2.

Un autre exemple standard est donné par la construction d’une résolution simpli-
ciale basée sur la monade reliant les catégories aux graphes (c’esy a dire oubliant la
composition). Ceci produit un objet simplicial (tres tres gros) qui en degré simplicial
n — 1 est la localisation usuelle de F,, M[F, % "' ou F,, = Fo---oF ou F est le
foncteur catégorie libre sur le graphe sous-jacent a une catégorie donnée.

Proposition 4.4.10. La localisation hammac a le spropriétés suivantes :

e on a une équivalence de catégorie canonique mo(LY M) = Ho(M).
e Pour tout z,y € Obj(M), on a une équivalence faible naturelle d’ensembles
simpliciaux

Mapyg, 11 2y (%, y) ¢— Mappu y(, y).
De plus, le nerf cohérent N,(L%M ) de la localisation hamac est une quasicatégorie
et m(No(LYM)) = Ho(M).
On en déduit la définition suivante de l'infinie catégorie associée a (M, %#").

Définition 4.4.11. Soit M une catégorie munie d’une sous-classe %" stable par com-
position. On appelle Hou, (M) := N4 (L M) la quasicatégorie associée a (M, ). Si
C est munie d’une structure de modele, on notera Ho,,(C) la catégorie associée a
la paire (C,%7") ou % sont les équivalences faibles de C.

Remargue 4.4.12. On peut bien entendu, si on travaille dans le modele Cat® des infi-
nies catégories, utiliser directement la localisation hamac L. M comme oo-catégorie

associée au vu de la proposition 4.4.10| (et de la terminologie {4.3.24)).
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Construisons le “relevement” du foncteur quotient. Rappelons que ¢ : Cat — Cat®
est le plongement canonique qui identifie les catégories avec les catégories enrichies
simplicialement dont les espaces de morphismes sont discrets. On a un foncteur

canonique «(M) — LI, M qui envoie tout morphisme X 5y de Hom, (X,Y)

dans le morphisme 0-hamac trivial X Lye Mapyi 5, (X, Y)o (et I'étend en degré

supérieur par dégénérescence). En composant ce foncteur avec le nerf cohérent on
obtient un morphisme de quasicatégories

(19) loo : No(M) = Ny((M)) — Hou (M).

Lemme 4.4.13. On a un diagramme commutatif de morphismes de quasicatégories

No(M) e Ho., (M) ou la fleche diagonale est le foncteur quotient et la fleche

b

Ho(M)
verticale le morphisme construit dans le corollaire [4.2.34]

Exercice 4.4.14. Démontrer le lemme.

Le corollaire 4.4.10| (ou la proposition 4.4.10)) et le lemme [4.4.13| garantissent que

le premier point de la philosophie [4.4.1] est satisfait par Hoy (M) tel que défini
par

Notons que par définition, I'infinie catégorie associée a une catégorie de modele ne
dépend que de la classe des équivalences faibles. La donnée des structures de modele
permet de construire des foncteurs entre oo-catégories associées et de simplifier la
structure construite : un premier exemple est le lemme ci-dessous qui est un
relevé du lemme 2.2.74

Notons tout d’abord que si M’ C M est une sous-catégorie de M, alors tout
n-hamac de M’ est un n-hamac de M et on en déduit que LY., M’ est une
sous-catégorie enrichie simplicialement de LM et par suite on a un (oo-)foncteur

Ho.. (M) — Ho.(M).
S \
\ /

induisent des équivalences[™ How(C.r) & How(C.) = Ho(Cy) HOOO(C).

Lemme 4.4.15. Soit C une catégorie de modele. Les inclusions

Une question naturelle qui se pose est la fonctorialité de la construction de Ho (M).
Soient (M, %), (M',%") deux catégories munies de classes d’équivalences faibles.
Pour qu'un foncteur F': M — M’ induise un foncteur LY. M — LY., M il suffit qu’il
envoie un n-hamac sur un n-hamac c’est a dire qu’il envoie les équivalences faibles de
M sur des équivalences faibles dans M’. En général c’est évidemment une propriété

107. on a bien que la surce et le but sont des quasicatégories par les propositions 4.4.10] et [4.2.11
108. c’est & dire des équivalences catégorielles des quasicatégories ou de maniére équivalentes des
équivalences de Dwyer-Kan des localisations hamacs
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tres forte (nous avons vu de nombreux exemples de foncteurs ne le vérifiant pas) mais
en revanche on peut dans de nombreux cas dériver un foncteur pour obtenir cette
propriété. C'est en particulier le cas des foncteurs dérivés de la section qui ont

une extension naturelle aux oo-catégories associées comme nous allons le montrer.
c
. —=\ . . . 7 . N
Soit F'__ — G une adjonction de Quillen entre deux catégories de modeles; on
D
note #c et Wp leurs classes d’équivalences faibles respectives. On note comme d’ha-

bitude L : C — C et R: D — D les remplacements cofibrants et fibrants.

Lemme 4.4.16. Le foncteur LFF = FoL: C =2 D et RG=GoR:D — C envoie
un n-hamac sur un n-hamac.

Démonstration. Par la propriété , L envoie des équivalences faibles sur des
équivalences faibles entre objets cofibrants et de plus, par définition[2.5.4]et lemme[2.5.8]
F envoie des équivalences faibles entre objets cofibrants sur des équivalences faibles.
Il suit que la composée F'o L envoie bien un hamac sur un hamac puisque elle envoie
W dans #p. La méme preuve s’applique pour G o R. 0
Puisque ILF préserve les n-hamacs, il envoie I'espace MapLgﬁ c(x,y), dans l'espace
Mapy i p (LF (), LF(y)), pour tout entier. Le méme résultat a lieu pour RG. On
note LE(F) et LH(G) les transformations ainsi induites sur les localisations hamacs.
Lemme 4.4.17. L"(F) : Ly, C — L5 D et L"(G) : Ly, D — LI _C sont des
foncteurs de catégories simplicialement enrichies.

Exercice 4.4.18. Démontrer le lemme.

En les composant avec le nerf cohérent on obtient donc des foncteurs entre quasi-
catégories.

Notation 4.4.19. On note F := N, o L'(F) : Hoo(C) — Hou(D) et Go =
N, o LH(G) : Houo (D) — Hoy (C) les (oo-)foncteurs ainsi obtenus.

Nous pouvons résumer ce que nous avons construit dans la proposition suivante :

Proposition 4.4.20. Tout foncteur de Quillen ¢ : C — D (& droite ou & gauche)
entre deux catégories de modele induit un oco-foncteur ¢, : Ho, (C) — Hoy (D)
tel que le diagramme suivant

Ho..(C) —=— Ho. (D)

N, (Ho(C)) — N, (Ho(D))

(ot les fleches verticales sont les morphismes canoniques et la fleche horizontale du
bas est le foncteur dérivé 2.5.15de ¢) soit commutatif dans QCat.

Le méme résultat a lieu dans Cat®.

Ainsi on vient de montrer que les foncteurs dérivés entre catégories de modeles
de la partie [2.5] se relevent en des co-foncteurs entre leurs co-catégories associées[")
Comme on peut s’y attendre, ces derniers sont des équivalences lorsque 1’adjonction
est une équivalence de Quillen :

109. prouvant au passage la moitié du deuxieéme point de
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C
Théoreme 4.4.21. Soit F \:j G une équivalence de Quillen. Alors les foncteurs in-
D

duits Fiy : Hooo(C) = Hox (D) et G : Hox (D) — Hooo(C) sont des équivalences
inverses I'une de l'autre d’oco-catégories.

Remarque 4.4.22. Par équivalence on sous-entend bien-stir ici équivalences catégo-
rielles. Qu’elles soient inverses 1'une de l'autre signifie que leurs composées sont
homotopes dans la structure de modele de Joyal a I'identité.

On dispose maintenant d’une notion d’infinie catégorie associée a une catégorie de
modele, qui est invariante par équivalence de Quillen. Ceci nous permet de définir
I'infinie catégorie des infinie catégories.

Définition 4.4.23 (L’infinie catégorie des quasi-catégories). On appelle oco-catégorie
des oo-catégorie la localisation co—Cat := Ho, (QCat) de la catégorie de modele
de Joyal des quasicatégories.

On note de méme co—cat = Ho,,(Qcat) 'infinie catégorie des petites oco-catégories.

Remarque 4.4.24. Le théoreme nous dit que Ho.,(QCat) = Ho,(Cat®) et
plus généralement que toute catégorie de modele Quillen équivalente & Cat® est un
modele pour les co-catégories au sens ou son oo-catégorie associée est (équivalente
a) oco—Cat. Il existe de fait de nombreux autres modeles équivalents : catégories de
Segal, espaces de Segal, ensembles dendriformes, etc.

Exercice 4.4.25. Soient R, S des algebres commutatives différentielles graduées au

sens du chapitre [5.1]

(1) Soit M un complexe de chaines de (R, S)-bimodules. Démontrer que le pro-
duit tensoriel M ®g — induit un oo-foncteur Hoo (Ch(S)) — Hox(Ch(R)).
(2) Soit f : R — S un morphisme de cdgas. On note f. : Ch(S) — Ch(R) le
foncteur qui a un S-module associe le méme complexe de chaines muni de
l'action de R donnée par r- M = f(r) - M.
(a) Démontrer que f, induit un co-foncteur Ho (Ch(S)) — Hox(Ch(R)).
(b) Démontrer que le foncteur induit par f, est une équivalence si f est un
quasi-isomorphisme.

Nous avons vu que I'un des intéréts d'une structure de modele était de démontrer
facilement que la catégorie homotopique était une vraie catégorie (et non pas une
catégorie dans un univers plus large) et de donner un moyen de comprendre les
morphismes de la catégorie homotopique en termes de morphismes de la catégorie
de modele de départ.

On a un résultat analogue pour les co-catégories associées a une catégorie de mo-
dele, tout du moins a condition de pouvoir les munir d’un enrichissement simplicial
compatible avec la structure de modele au sens de la définition suivante.

Définition 4.4.26 (Catégorie de modele simpliciale). Une catégorie de modele simpli-
ciale est la donnée d’une catégorie enrichie simplicialement C, munie d’une structure
de modele (7', F,€) et de foncteurs

Se
C x sEns -5 C, C x sEns” (Y’SJ—HQ/

satisfaisant les conditions supplémentaires suivantes
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(1) pour tout objet X € C, le foncteur X X — : sEns — C est adjoint a gauche
de Mapg (X, —)s;

(2) pour tout objet Y € C, le foncteur Y(7) : sEns — C est adjoint & gauche
de Mapg(—,Y)s

(3) on a un isomomorphisme naturel X X (K x L) = (X X K)X L;

(4) pour toute cofibration i : K — L et fibration ¢ : X — Y, le morphisme
canonique

Mapc(L, X) — Mapg(K, X) X Mapg(L,Y)
Mapc(K,Y)

est une fibration d’ensembles simpliciaux qui est acyclique si 7 ou g l'est.

La propriété (1) et (3) est, par définition, la propriété que C est tensorisée par
sEns; la propriété (2) étant celle que C est cotensorisée par sEns. Ils nous donnent
des isomorphismes naturels

(20) Homg(X K S,,Y) = Homggns(Se, Mape(X,Y)s)
(21) Homggns(Se, Mapa(X,Y).) = Homg(X,Y"*).

Remarque 4.4.27. La donnée des foncteurs X et (Y, S,) +— Y5 et de leurs propriétés
est en fait équivalente a dire qu’on a les propriétés (1) et (2) et que C x sEns N
est un bifoncteur de Quillen a gauche, c¢’est a dire un foncteur de Quillen qui vérifie
en plus que 'image d’une paire de cofibrations est une cofibration acylique dés que
I'une d’entre elle est acyclique.

En particulier, les propriétés d’adjonction font que X détermine (Y, S,) +— Y5
(lorqu’il existe bien sur).

Remarque 4.4.28. La propriété (4) de la définition 4.4.26| généralise ’axiome
des catégories de modele. En effet, un carré commutatif correspondant a|(MC4)|est
exactement un O-simplexe de Maps(A,X) X  Mapg(B,Y) et le relevement est

apC(A7 )
un O-simplexe de Map (B, X). Or une fibration acyclique d’ensembles simpliciaux

est surjective, cf [3.2.10} 11 suit donc que le relevement existe. La propriété (4) est
donc un axiome bien plus fort qui établit que I'espace des relevements est équivalent

a celui des carrés commutatifs du type [(MC4),

Exemple 4.4.29. L’exemple prototype d’une catégorie de modele simpliciale est la
catégorie des ensembles simpliciaux sEns ou X = x. Le lemme [3.2.17] nous donne
le dernier axiome.

Les catégories de modele des groupes abéliens simpliciaux, groupes simpliciaux
sont d’autres exemples standards. Plus généralement le corollaire et la propo-
sition fournissent de nombreux exemples.

La catégorie de modele de Quillen Top des espaces topologiques n’est pas simpli-
ciale, mais est Quillen équivalente a sEns qui l'est. Par ailleurs, sa sous-catégorie
(Quillen équivalente) des espaces Hausdorff compactement engendrés 'est.

La structure projective sur les complexes de chailnes n’est pas une catégorie de
modele simplicale, mais elle est naturellement équivalente a une en vertu du théo-
reme [4.4.30] ci-dessous. En fait de nombreuses structures de modele que nous avons
vu le sont en vertu des résultats suivants remarquables de Dugger.



148 GREGORY GINOT

Théoréme 4.4.30 (Dugger [4]). Soit C une catégorie de modele combinatoire. Alors
C est Quillen équivalente a une catégorie de modele simpliciale, combinatoire et
propre a gauche.

Remarque 4.4.31. Dugger [5] a également démontré que si C est une catégorie de
modele combinatoire et propre a gauche, alors on peut modifier cette structure (par
une localisation de Bousfield) de maniére a la rendre simpliciale (et toujours combi-
natoire et propre a gauche) de sorte que I'identité soit une équivalence de Quillen.

Avoir une structure de modele simpliciale a les conséquences suivantes.

Proposition 4.4.32. Soit C une catégorie de modele simpliciale. Soit A cofibrant et
X fibrant. Alors

(1) Mapg(A, X) est de Kan, c’est a dire un ensemble simplicial fibrant ;

(2) On a une bijection naturellem mo(Mapg (4, X)) = Hompeco) (A, X).

(3) Pour tout S, € sEns et objets Y, Z € C, on a des équivalences faibles
naturelles d’ensembles simpliciaux :

Mapa(Z X S,,Y)e = Mapggns(Se, Mapa(Z,Y )e)e
MapsEns(Sh MapC(Z, Y)o)o = MapC(Z, YS')..

Le point (3) généralise les équivalences et données par les adjonctions
de la définition d’une catégorie de modele simpliciale.

Démonstration. Le premier point est une conséquence de la propriété (4) de la défi-
nition [4.4.26| appliqué & K = () et Y = {x}.

Pour le deuxieme, sachant que on utilise d'une part que (1) et le fait que tout
ensemble simplicial soit cofibrant (et en particulier A X S, est donc cofibrant par la
remarque [4.4.27)) nous donne pour tout S, € sEns une bijection naturelle
(22) HomHo(sEns) (Soa MapC(Aa X)o) = HomsEns(Sn MapC (A; X)o)/: =

HOHl(j(A X S., X) ~ = HOHlHO(C) (A X S., X)
d’apres le corollaire [2.2.22, D’autre part, pour S, = {*} = A on a par le théo-
reme |3.2.18| que
(23) HomHO(sEnS)(Aga Mapg(4, X)) = HomHO(TOP)({*}> [Map(4, X))

= mo(|Mapg (4, X))|) = mo(Mapg (4, X))
par le lemme m Dot le résultat en prenant S, = AJ dans (22).
Pour le troisieme point, on utilise que
homg(Z K (S x Ty),Y) = homc((Z K S,) K T,,Y)
d’apres la propriété (3) de 4.4.26| et on note que l'on a des bijections naturelles

home((Z X S,)KT,,Y) = homggns(Te, Mape(Z X S,,Y),) et
homg(Z X (Se x Ts,),Y) = homggns(Se X To, Mapa(Z,Y),)

I

homggns(Te, Mapggns(Se, Mapa(Z, Y )e)s)

d’apres la formule exponentielle [3.2.16, En appliquant Yoneda [3.1.13] (c’est a dire
en prenant les simplexes standards pour 7,) on obtient la premiere formule. La

deuxieme se démontre de mnaiere analogue. 0

110. en les variables A et X
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Remarque 4.4.33. la preuve démontre plus généralement que 'on a des bijections
naturelles

Homggo(sens) (Se, Mapc (A, X))e = Hompoc)(A X S,, X),
Homygo(sEns) (Se, Mapc (A, X)o) = Hompoc)(A4, XS').

Une catégorie de modele simpliciale est par définition enrichie simplicialement
et donc un objet de QCat. La proposition nous donne un lien fort entre
les espaces simpliciaux de morphismes dans C et les morphismes dans la catégorie
homotopique lorsque la source est cofibrante et la cible fibrante (comme d’habitude
dans les catégories de modele). De plus nous avons que les ensembles simpliciaux de
morphismes sont des foncteurs de Quillen a droite en chaque variable, on peut donc
les dériver ce qui conduit a la définition suivante.

Définition 4.4.34. Soit C une catégorie de modele simpliciale et X, Y deux objets.
L’espace dérivés des morphismes de X vers Y est par définition I’ensemble simplicial
RMapC(Xa Y)‘ = MapC(L<X>7 R(Y>>°

ou L et R sont les remplacements (co)fibrants dans C.

Comme Y »— R(Y) et L(X) — X sont des (co)fibrations acycliques, il suit de la
propriété (4) des catégories de modeles simpliciales [4.4.26| que

Lemme 4.4.35. Si A est cofibrant et X est fibrant, le morphisme canoniquem
Mapa(A, X)e — RMapa(A4, X))o est une équivalence faible.

Exercice 4.4.36. Démontrer le lemme.

En particulier, la restriction du bifoncteur RMaps(—, —) a la sous-catégorie C.¢
des objets a la fois cofibrants et fibrants coincide avec Maps(—, —) a équivalence
faible naturelle pres.

Notation 4.4.37. On notera C.; la sous-catégorie simplicialement enrichie de C des
objets a la fois cofibrants et fibrants.

Notons LY.C la localisation hammac de la catégorie sous-jacente & C (c’est a
dire que l'on considere Homg(X,Y) = Mapg(X,Y)o pour construire la catégorie
simpliciale LY.C).

Théoreme 4.4.38. Soit C une catégorie de modele simpliciale.
(1) Pour tous objets X,Y € C, on a des équivalences faibles naturelles (en X,Y)

MapHooo(C) (Xv Y)' = MapL;C(Xv Y)O = RMapC (Xv Y)' = Ma’pC(L(X>7 R<Y))°
(2) On a une équivalence d’oco-catégories C.r = Ho(C).

Le dernier point signifie précisément que le foncteur canonique N,(C.r) — Hoso(C)
est une équivalence catégorielle qui est en fait induite par une équivalence de Dwyer-
Kan C.; — L%,C de catégories simplicialement enrichie.

Ce théoreme nous permet donc d’identifier I'oo-catégorie Hou,(C) d'une
catégorie de modele simpliciale avec (le nerf d’)une catégorie simplicialement enrichie
déduite de C; en particulier cela nous garantit que cette co-catégorie reste dans les
meémes univers que C.

111. induit par L(A) - A et X — R(X)



150 GREGORY GINOT

Les Théoremes [4.4.21] et [4.4.30], ce résultat reste vrai pour toute catégorie de mo-
dele combinatoire. En particulier, il s’applique aux complexes de chaines, espaces
topologiques et aux catégories de diagramme sur les catégories de modeles combina-
toires.

Nous avons vu qu’il y a un foncteur QCat — sEns qui a une quasicatégorie
associe un co-groupoide que nous notons C — C*°, cf4.2.51}

Lemme 4.4.39. Le foncteur C +— C*° induit un foncteur co—Cat — Ho, (sEns)
qui vérifie que pour toutes quasicatégorie C et tout co-groupoide G, on a une équi-
valence catégorielle

MapHooo(QCat)(L(G), C). ~ MapHOOQ(sEns)(G, Ciso)(% MapsEns(G, Ciso)).

Une fagon d’interpréter ce lemme est de dire que (—)"° est I'adjoint oo-catégoriel
a droite de ¢.

Exercice 4.4.40. Imaginer ce que doit étre la définition d’une adjonction entre oo-
foncteurs.

Remarque 4.4.41 (Universalité de 1'oo-catégorie associée a une catégorie de modele).
Nous avons déja vu le point (1) et une partie du point (2) de la définition philoso-
phique m Précisons maintenant ce point et I'unicité de Hoy, (M).

La donnée d’un co-foncteur de M dans une infinie catégorie X qui envoie 7" dans
les isomorphismes de X s’identifie avec un point de I'infinie catégorie

Pun (M, X) = Mapgea(Ne(M), X)a > Mapqoa(Ne(W), X'),

W —iso MapQCat(N‘(W)’X)'

Cette construction est fonctorielle en X de sorte que nous avons un oo-foncteur
Fun (M, —) : Ho,(QCat) — Ho..(sEns).

W —iso

Nous avons défini le foncteur £, : No(M) — Hoo (M) de M dans son infinie-
catégore quotient ; on a aussi par composition un foncteur No(%") — Ho,(M). Par
pré-composition nous obtenons alors un morphisme canonique fonctoriel en toute
quasicatégorie X
(24)

£ 150
MapQCat(HOOO(M)’ X)e = MapQCat(NO(M)7 X)e X MapQCat(NO(W)7 X",
MaPQCat(N-(W)»X)-

d’ensembles simpliciaux. Autrement dit, on obtient une (oo-)transformation natu-
relle

£, Mapqoa(Hon (M), —) = Fun (M, -)

W —iso

entre les deux oo-foncteurs Mapgca (Hoo (M), —), O/_];un (M,—) : Ho(QCat) —
—1S0

Ho (sEns). L’existence de la factorisation de tout foncteur au travers de Hou, (M)
se traduit par 'esentielle surjectivité de cette transformation. Son unicité a homo-
topie pres par le fait que cette transformation est un isomorphismem. C’est préci-
sément ce que nous dit la proposition suivante.

112. Comme No(%') < No(M) est une cofibration de Joyal, on a que Mapgcat(Ne(M), X)o —
Mapqcat(Ne(7'), X)e est une fibration de Joyal et donc ce tiré en arriere est une quasi-
catégorie. On peut montrer, en utilisant les résultats duaux de l’exemple ou le TD 4, qu’il
est équivalent au produit cartésien dérivé dans QCat

113. au sens de la définition dans la quasicatégorie des foncteurs de QCat vers sEns
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Proposition 4.4.42. Le morphisme est une équivalence faible entre objets fi-

brants pour tout X et induit une équivalence naturelle de foncteurs (c’est a dire

d’apres [4.2.37| un isomorphisme entre Mapggay(Hos (M), —) et 7fun (M, —) dans
—1S0

la quasicatégorie Map,(Ho.(QCat), Ho..(SEns))).

La proposition établit donc précisément la propriété universellelﬂ_ql satisfaite par la
localisation Ho, (M) dans les co-catégories et traduit le fait que celle-ci représente le

foncteur de quasicatégories 75 un (M, —) : co-Cat — Ho. (sEns). Cette proposition
—1S0

donne en particulier 'unicité de Hoy, (M) a isomorphismem pres dans oo-Cat.

4.5. NOTION D’0o-(CO)LIMITES

Nous allons maintenant définir une notion d’co-(co)limites (voir la définition[1.5.21)
relevant les notions de (co)limites homotopiques de la partie entre catégories
homotopiques a leurs oo-catégories associées. Dans le cas de catégorie de modele
combinatoire, ces relevés seront précisément calculés par les (relevés des) (co)limites

homotopiques [2.6]

Un point important que l'on veut, évidemment, est que ces notions soient inva-
riantes par équivalence d’infinies catégories (c’est a dire équivalence catégorielle si
on regarde le modele donné par des quasicatégories). En particulier les (co)limites
standards ne le seront paslTEI. Le modele des quasicatégories permet de décrire cette
notion d’oo-(co)limites d’'une maniere assez aisée.

Un premier cas simple (mais crucial) est celui des (co)limites vides, c’est a dire
les objets initiaux et finaux.

Définition 4.5.1 (Objets initiaux et finaux d’une oco-catégorie). Soit C une oo-
catégoriem Un objet X est dit final si pour tout objet Y, Mapg, (Y, X) est fai-
blement équivalent a un pointlT_rB].

Un objet X est dit initial si pour tout objet Z, Mapg, (X, Z) est faiblement
équivalent a un point.

Lemme 4.5.2. Soit C une oco-catégorie. Les sous-catégories C;,;; et Cy;y, des objets
initiaux et finaux sont soit vides soit des oco-groupoides Contractiles@/.

En particulier, deux objets initiaux de C sont isomorphes et deux objets finaux
sont eux aussi isomorphes.

Le mot isomorphe est au sens des oo-catégorie, c’est a dire de la définition 4.2.36]
Ezercice 4.5.3. Démontrer le lemme.

Remarque 4.5.4. Si F': C 5 D est une équivalence d’oco-catégorie, alors F' induit
des équivalences faibles entre les espaces de morphismes ; en particulier elle préserve
les objets finaux et initiaux.

114. qui est le point (2) de la définition philosophique
i4.2.36

115. au sens de

116. ne serait-ce que par les colimites ne sont pas invariantes par équivalences faibles d’espaces
topologiques comme nous ’avons vu

117. c’est a dire une quasicatégorie ou une catégorie simplicialement enrichie fibrante selon le
modele que 'on choisit

118. autrement dit contractile; rappelons que l'ensemble Mapg, (Y, X) est fibrant par définition
d’une oo-catégorie

119. c’est a dire des complexes de Kan faiblement homotopes a un point
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A toute quasicatégorie C et objet X de C, nous pouvons associer le tiré en arriere
C)x (dans QCat) défini par

C/X I Map,(Ai, C)
l _I jevl
(s} ———C

ou ev; est I’évaluation en son but d'un foncteur (cf|4.2.19). On construit de méme,
en remplacant evy par evy, C~/.

Lemme 4.5.5. C/x et CY/ sont des quasicatégories. Les morphismes ev,, respecti-
vement evy, induisent des morphismes de quasicatégories C,x — C et cY = C.

Démonstration. Les premiers points sont des conséquences du lemme [4.2.25] Le
deuxieme est donné par la compositions C,x — Map, (AL, C) &% C et sa version
duale. O

Lemme 4.5.6. Soit C une oco-catégorie. Un objet X est final si et seulement si C,x —
C est une fibration acylique d’ensembles simpliciaux.

Un objet X est initial si et seulement si C*/ — C est une fibration acylique
d’ensembles simpliciaux.

On peut réinterpréter les (co)limites standards en termes d’objets finaux et ini-
tiaux. En effet soit I une petite catégorie, € une catégorie et F' : [ — € un
diagramme de forme I dans €. On note €/ la catégorie des objets au dessus du
diagramme F'. C’est a dire la catégorie dont les objets sont donnés par un objet Z

et, pour tout i € I, des fleches F(i) 2% Z telles que pour toute fleche i EN j on ait

F(i) 3 Z = F(i) P F(j) 2 Z. Autrement dit les objets sont les diagrammes
commutatifs obtenus a partir du diagramme en rajoutant un objet Z et des fleches
pointant de chaque objet du diagramme vers le nouvel objet Z. Un morphisme de
(Z, (a;)ier) vers (Z',(al)ier) est un morphisme Z — Z’ dans € qui commute avec
les a;, a, c’est a dire tel que o, = F(i) & Z — Z' pour tout i € I.

On construit dualement la catégorie €/ des objets au dessus du diagramme. Ses
objets sont la donnée d'un objet Z € € et de fleches ; : Z — F(j) pour tout j € [

. Bj . . . .
qui fassent commuter Z —> F(i)  pour toute fleche ¢ : j — k. Ses morphismes
Bk

sont les morphismes Z" — Z qui commutent avec les 3;, /3.

Lemme 4.5.7. Une colimite de F' est un objet initial de €*/.
Une limite de F' est un objet final de €/p.

Exercice 4.5.8. Démontrer le lemme.

Etant donné que l'on a une définition des objets finaux et initiaux dans une quasi-
catégorie, il suffit maintenant de définir un analogue de €*/ et €, r pour définir des
oo-(co)limites d’oo-catégories. Nous disposons déja, pour toute petite catégorie I et
quasicatégorie C, de la quasicatégorie Map,(Ne(1), C) = Mapy,_(qcat) (Ne(1), C)
des oo-foncteurs de I dans C.
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Terminologie 4.5.9. On appellera diagramme de forme I dans C un oo-foncteur
F:N,(I)— C.

Construisons maintenant les co-catégories au dessus et en dessous d’un diagramme.
La construction est plus compliquée car la notion de commutativité de diagramme
n’est plus stricte mais a des choix d’homotopie pres.

Pour ce faire nous introduisons le joint de deux ensembles simpliciaux.

Définition 4.5.10. Soient S,, T, deux ensembles simpliciaux. Leur joint est I’ensemble
simplicial (S xT'), défini en degré simplicial n par

(S*T), := H Sp X Thp1
p=—1-n
ou par convention S_; = T_; = {*}.
Les faces d; sont données par, pour tout (o, ) € S, x T,,—,_1 par

(di(), B) sii<p,p#0
di(a, B) = (a,dip1(B)) sii>p,p#n—1

o) sip=0
o sip=n—1
et les valeurs de d; sur S, et T, pour p = —1,n. Les dégénérescences sont définies de

meme.
Lemme 4.5.11. Le joint de deux ensembles simpliciaux est un ensemble simplicial.
FEzxercice 4.5.12. Démontrer le lemme.

Remarque 4.5.13. La formule du joint n’est PAS symétrique : (S = T')s n’est pas
isomorphe & (7' x S), comme ensemble simplicial.

Exemple 4.5.14. Si T, = AY est un point, alors (S xT), est le cone de S,. Clest a
dire I’ensemble simplicial obtenu en rajoutant un sommet “final” *; a ceux de Sy,
un l-simplexe allant de de v a *; pour tout v € Sy et, plus généralement, pour
tout n-simplexe de S,, un n + 1-simplexe obtenu en rajoutant *; (et toutes les faces
nécessaires contenant *g).

En revanche (T x S), est le cocone de S,. Il est obtenu en rajoutant encore un
sommet *; et un l-simplexe allant de x; vers tout v € Sy et de méme pour les
n-simplexes.

Proposition 4.5.15. Soit F' : No(I) — C un oco-foncteur d'une petite catégorie I vers
une quasicatégorie C.

(1) Il existe un unique ensemble simplicial C,r solution de la propriété universelle

suivante : pour toute oco-catégorie D, il existe une bijection naturelle
(25) Homggas(D, C/r) = Homggas (D x No(1))., C) X {F}.
Homggns(Ne(I),C)

ou I'ensemble de droite est ’ensemble des foncteurs dont la restriction a No(I)
est le foncteur F.

(2) Il existe un unique ensemble simplicial C*/ solution de la propriété universelle
suivante : pour toute oco-catégorie D, il existe une bijection naturelle

HomsEns<Da CF/) = HomsEns((No([> * D)., C) X {F}
Homggns(Ne(1),C)
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(3) On a que C/ et C /r sont des quasicatégories et pour toute équivalence
catégorielle f : C — C' les foncteur induits C*/ — (C')/ et Cpr— C//F
sont des équivalences faibles.

Terminologie 4.5.16. On appelle respectivement C*/ et C /F les quasicatégories des
objets en dessous du diagramme F', resp. au dessus de F'.

En prenant D = C/r et idg,,,, on déduit de et de linclusion C,r — (C,p %
No(I))e un morphisme canonique C,r — C qui essentiellement oublie les F'(7) et les
fleches qui leur sont associées. On a de méme un morphisme canonique C*/ — C.

Terminologie 4.5.17. On appelle les morphismes C,p — C et CF/ — C les foncteurs
d’oubli canoniques.

Remarque 4.5.18. Plus généralement, le joint de deux quasicatégories est encore une
quasicatégorie. Ceci permet de définir des quasicatégories au dessus/en dessous d’'un
diagramme défini sur une quasicatégorie. On a par ailleurs, le résultat suivant pour
les catégories ordinaires.

Lemme 4.5.19. Soient C, D deux petites catégories. Alors on a un isomorphisme
(Ne(C) * No(D))e = No(C * D) ou C x D est la catégorie dont les objets sont la
réunion des objets de C' et D, les morphismes donnés par

Home (X, Y) siX,YeC

Homp(X,Y siX,YeD

Home,p(X,Y) = D@( ) siXeDYedl
{x} siXelYeD.

Ezemple 4.5.20. Si I = {*} et F(x¥) = X est un objet de C, alors C/p = C/x et
CFl = CX/ et les foncteurs d’oublis canoniques sont ceux du lemme [4.5.5

On peut enfin définir la notion d’oco-(co)limite.
Définition 4.5.21 (oo-(co)limites). Soit F' : No(I) — C un diagramme de forme /

dans une quasicatégorie C.

(1) Une oo-colimite de F est un objet initial de C*/. Elle sera notée colime, (F).
(2) Une oo-limite de F est un objet final de C,p. Elle sera notée limy (F).

On fait en général I’abus de notation consistant a écire aussi colimq, (F') et limq, (F')
leurs images dans C donné par les co-foncteurs canoniques [4.5.17]

Exemple 4.5.22. Si C' est une catégorie usuelle, alors le lemme nous donne que
les 0o-(co)limites de No(C') sont les (co)limites usuelles de C' (vues comme objets de

N.(C)).

Ezemple 4.5.23. L’oo-catégorie Ho,, (C) associée a une catégorie de modele combi-
natoire C a toutes les (co)limites homotopiques (cf[4.5.29)).

Lemme 4.5.24 (Unicité des oo-(co)limites). Soit F' : N¢(/) — C un diagramme de
forme I dans une quasicatégorie C. Le sous-ensemble des oo-(co)limites de F' est
soit vide soit un ensemble simplicial fibrant contractile.

Démonstration. C’est une conséquence de la définition et du lemme [4.5.6| O
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Relions maintenant, dans le cas d’une catégorie de modele, les foncteurs dérivés
et les (co)limites homotopiques.

Supposons donc que C est une catégorie de modele combinatoire. Rappelons
d’apres le Théoreme [2.6.16] que, pour toute petite catégorie &, on dispose des fonc-
teurs (co)limites colimg, limg : C? — C qui sont des adjoints de Quillen du fonc-
teur constant cst : C — C? dans les structures de modele projective et injective
sur les diagrammes C?. En particulier on obtient les foncteurs dérivés hocolimg,
et holimg (Proposition [2.5.13)). D’apres la proposition on a donc des co-
foncteurs hocolimg ., holimg ., : Hox(C?) — Ho (C) entre les oo-catégories as-
sociées. La proposition suivante nous dit que ces relevés des foncteurs dérivés sont
les oo-(co)limites des foncteurs.

Proposition 4.5.25. Soit C une catégorie de modele combinatoire et F' : & — C un
diagramme de forme & dans C. Alors on a des isomorphismes naturels (en F)

hocolimgu, (F) ~ colimy, (F'), holimge, (F') ~ limy, (F).

Dans cette proposition on a noté (co)lim__(F) I'image dans C par le foncteur oubli

canonique [4.5.17] des oco-(co)limites de F' (4.5.21)).

Démonstration. C’est une conséquence immédiate du théoreme [4.5.28| suivant auquel
on applique le foncteur oubli canonique. O

Ce résultat est une conséquence d’un résultat plus précis que nous allons énoncer.
Commencons par relever hocolimg (resp. holimg) en des objets de C*/ (resp.
Cr).

/Rappelons du lemme la définition de la catégorie {*} * D qui est une caté-
gorie qui a un objet * et les objets de &, les morphismes de & entre, l'identité de
* et un unique morphisme x — ¢ pour tout objet i € &. Par définition, & est une
sous-catégorie du joint catégoriel {*} x 2.

Lemme 4.5.26. La (sous-)catégorie des foncteurs {x} *2 — C dont la restriction a
D est I est la catégorie dont les objets sont les Z € C munis d’une transformation

naturelle n; : F' — ¢st(Z) et les morphismes sont les morphismes f : Z — Z' qui

commutent avec les 7y, c’est & dire tels que 1z = F —% cst(Z) ) cst(Z').

Dualement, la (sous-)catégorie des foncteurs @  {*} — C dont la restriction a
D est I est la catégorie dont les objets sont les Z € C munis d’une transformation

naturelle Sz : est(Z) — F et les morphismes sont les morphismes f : Z — Z' qui

commutent avec les 5y, c’est a dire tels que 5z = cst(Z) S, cst(Z) bz, p.

Ezxercice 4.5.27. Démontrer le lemme.

Le lemme s’applique en particulier a colimg(F') (resp. limg(F')) et les proposi-
tions |4.5.15| et |4.4.20 nous donne donc un objet de C*/ (resp. C,r) dont I'image par
le foncteur oubli canonique est hocolimg ., F' (resp. holimg . F'). On notera par abus
de notation hocolimg F' et holimg F les dits objets de C¥/ et C/r.

Théoréeme 4.5.28. Soit C une catégorie de modele combinatoire et & une petite
catégorie. Pour tout foncteur F' : @ — C, l'objet hocolimgF' (resp. holimg F')
est un objet initial de C*/ (resp. final de C/p).

120. en suivant l'idée de la construction de
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En particulier, il existe des équivalences naturelles hocolimg . F' ~ colim.,(F') et
holimg o F' =~ lim, (F).

Esquisse de preuve du Théoréme [[.5.28. D’apres le théoreme[d.4.30] il suffit de mon-
trer ce résultat pour les catégories de modeles simpliciales combinatoires puisque tous
les objets sont préservés par équivalence de Quillen.

Le point important maintenant que nous avons déja vu, découlant du

théoreme [2.6.16] propositions

et [4.4.20] est que nous avons des co-foncteurs hocolimg, : Hoy (C?) — Hoo (C)
et holimg,, : Ho,(C?) — Ho,(C) relevant les foncteurs dérivés hocolimg et
hOliIng.

Pour conclure que ces foncteurs (munis de leur structure d’objets dans C'/ et
C/r) sont équivalents aux oo-colimites, il suffit de voir que 'on a une équivalence
catégorielle de quasicatégories

(26) Ho..(C?) = Map,(N.(2),C).

En effet, on peut alors utiliser une preuve similaire a celle de la propriété universelle
de LF dans la proposition et les techniques de la proposition pour
vérifier que hocolimp,(F') est bien un objet initial de C*/. L’équivalence est
non-trivial et est démontrée dans [16] par exemple. O

Corollaire 4.5.29. Si C est une catégorie de modele combinatoire, 1’oco-catégorie
Ho..(C) admet toutes les (co)limites indicées par une petite catégorie D.

Démonstration. 11 s’agit juste d’utiliser les théoremes [£.5.28) et [2.6.16] 0J

Remarque 4.5.30. Le corollaire précédent est un exemple des propriétés remarquables
associées aux oo-catégories associées a une catégorie de modele combinatoire. Ces
oo-catégories sont appelées présentables dans la littérature.

Les propriétés générales des (co)limites se généralisent aux oco-colimites. Par exemple
pour tout adjoint de Quillen a gauche F' : C — D entre catégories de modeles combi-
natoires, alors F,, commute avec les co-colimites et de méme un oo-foncteur relevant
un adjoint a droite de Quillen commute avec les co-limites. Un autre exemple est
donné par la proposition suivante.

Proposition 4.5.31. Soit C une quasicatégorie et F, G : No(D) — C des diagrammes
qui admettent respectivement une oo-colimite et une oco-limite. Alors, pour tout
Z € C,on aun isomorphisme@ :

(27) Mapg(colimy, (F), Z) ~ lim, Mapg(F(—), Z)
(28) Mapg(Z, limy (G)) ~ lim,Mapggns(Z, G(—))
dans Ho..(sEns).

121. au sens des oco-catégories
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V. HOMOTOPIE RATIONNELLE

L’homotopie rationnelle est née avec les travaux de Quillen, puis Sullivan (et bien
d’autres apres et avec eux). Elle a pour objet le calcul de tous les invariants algébro-
topologiques rationnels d'un espace topologique a partir de ses cochaines (munie de
leur structure multiplicative). Le résultat principal établit que cette derniere contient
effectivement tous les invariants possibles en un sens, mais au dela de ce résultat, la
force de la théorie réside dans sa calculabilité.

5.1. ALGEBRES GRADUEES DIFFERENTIELLES COMMUTATIVES, ALGEBRES
LIBRES ET SEMI-LIBRES

Dans cette partie et les suivantes, sauf mention explicite du contraire, on travaillera
sur le corps Q des rationnels lorsque on ne précise rien; tous les résultats ont du
sens sur un autre corps de caractéristique nulle cela dit.

Rappelons le théoreme de De Rham

Théoreme 5.1.1. Soit M une variété C'*°. Il existe un isomorphisme naturel d’algebres
graduées

H*(M,R) = H * (Q5(M))
ou (M) désigne l'algebre des formes différentielles munie de la différentielle de

De Rham.

L’algebre des formes différentielles est une algebre commutative au sens gradué.
En revanche, 'algebre des cochaines singulieres (C*(M,R),U), elle, n’est qu’asso-
ciative[?] La commutativité de la structure induite en cohomologie s’explique par
le fait que le produit a U b — +£b U a est homotope a 0. On peut en fait montrer
que ’homotopie est-elle méme symétrique a homotopie pres (et ainsi de suite). Cela
amene a deux questions

e Y-a-t'il une algebre de cochaines commutatives au sens gradué calculant la
cohomologie singuliere d’un espace ?
e (Thom) Toute algebre commutative graduée est-elle la cohomologie d'un es-
pace topologique ?
La réponse a la premiere question, posée dans cette généralité, est négative. En
effet, il existe des opérations de Steenrod, construites naturellement a partir des
homotopies du cup-produit, qui donnent des classes de cohomologie non-triviale en
cohomologie a coefficient dans Z/pZ. L’existence d’une réponse positive a la premiere
question impliquerait que toutes ces classes doivent étre nulles. En revanche, cette
obstruction disparait en caractéristique nulle et on va voir qu'on peut effectivement
construire un tel modele. La réponse a la deuxieme question devient également posi-
tive en caractéristique nulle, comme nous le verrons comme conséquence du théoreme
principal.
Précisons maintenant quelques définitions et terminologies.

Notation 5.1.2. On note Ch="(R) la catégorie des complexes de cochaines de R-
modules, concentrés en degré positif ou nul.

122. et trés fortement non-commutatives au sens strict. Son centre est réduit & C°(M,R) et deux
cochaines génériques ne commutent pas
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Cette catégorie s’identifie sans peine avec C'H<o(R) en identifiant un complexe de
chaines avec un complexe de cochaines avec la graduation opposée.

La catégorie Ch=°(R) des complexes de cochaines a une structure symmétrique
monoidale. Le produit tensoriel de deux complexes (C*,d¢), (D*,dp) étant donné
par (C @ D)" = @B, ,_, C' ® D’ et la différentielle étant donnée par d(z ® y) =
dz)@y+(—1)'z®d(y) si x € C". L’isomorphisme 7 : C ® D = D ® C est lui donné
par T(r Q@ y) = (-1)9y@zsiz e C' | ye DI.

Définition 5.1.3. La catégorie CDGA des algebres graduées différentielles commu-
tatives (on écrira juste CDGA) sur Q est la catégorie des monoides commutatifs
unitaires dans (Ch=°(Q), ®). Autrement dit, une CDGA est un morphisme de com-
plexes de cochaines A ® A — A (noté -) qui est associatif, commutatif au sens
gradué :
y-x=(—1)Y2-ypour x € A", y € A,
vérifie la relation de Leibniz[2F :
d(x-y) =d(z) y+ (=1)'z-d(y) pour x € A",

ou d désigne la différentielle de A, et est munie d’'un morphisme QQ — A de complexes
de Cochaineslzzl et d’algebre tel que 1-a=a-1=a.

Sur R, plutot que sur @, on a un exemple donné par 25, (M). Dans toute la suite,
sauf mention du contraire, on verra Q (ou toute autre anneau de base R) comme
une cdga concentrée en degré 0.

Remarque 5.1.4. Si x est de degré impair, alors, 22 = —2? implique que 22 = 0. A
contrario, les éléments de degré pair commutent avec tout le monde.

Remarque 5.1.5. Etant donné que la différentielle est une dérivation pour le produit
(formule de Leibniz), on a que la cohomologie d’une cdga est une algebre commutative
au sens gradué (que l'on peut donc aussi identifier & une cdga avec différentielle
nulle), sa multiplication étant induite par celle de la cdga.

Ezxemple 5.1.6 (Algebres symétriques). On a un exemple canonique construit comme
suit. Soit V' un espace vectoriel, on note

Sym(V) = QR)(VE")x, = R(VE)™r
n>0 n>0
I’algebre symétrique sur V' obtenue en quotientant les tenseurs par la relation v; ®
QU ~ 0.(V®- - - ®u,) ol o agit via I'isomorphisme 7 (par exemple (12)-v®@w =
(-1)Ywusiw e VI, ve V). SiV = @ Qu; &P Qy; est engendré par des vecteurs
de degrés pairs x; et de degré impairs y;, on obtient que I'espace gradué
Sym(V) = Qz;] ® Ay;)
soit le produit tensoriel entre les polynomes en les variables paires et le produit
extérieur en les variables impairs. La concaténation des tenseurs induit une struc-
ture d’algebre graduée commutative sur Sym(V') qui coincide avec I'isomorphisme

précédent.
De maniere générale, on a un isomorphisme canonique

Sym(V & W) = Sym(V) @ Sym(W)

123. qui exprime que d est une dérivation
124. @ est vu comme un complexe concentré en degré 0
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d’algebre commutative différentielle graduée.
Si (V, d) est un complexe de cochaines, alors la différentielle d : Vi — V! g’étend
en une structure de CDGA sur Sym/(V') par la formule de Leibniz :

d(Ul .. 'Un) — Z(_1)|U1|+-~|Uz‘71|v1 ce Vi1 - d(vl) . /Ui+1 ce U

Définition 5.1.7. On notera Sym((V,d)) (ou simplement Sym(V) quand il n’y a
pas d’ambiguité) la CDGA ainsi construite, appelée algebre différentielle graduée
commutative libre associée au complexe (V,d). On notera aussi, pour des éléments
gradués x; (i € 1),
Qlz;, i € I] = Sym(@@xi)
iel

la CDGA libre engendrée par 'espace vectoriel gradué engendré par les z; (ou bien
sur Qx; est vu comme étant concentré en degré égal au degré de x;). On prendra
bien garde que ceci est une CDGA (autrement dit les éléments de degré impairs sont
de carrés nuls et anticommutent entre eux).

Notons qu'un morphisme de complexes de cochaines f : V — W induit un mor-
phisme de cdgas Sym(V') — Sym(W) :

flor--v,) = f(v1) - fon).

L’algebre symétrique est bien libre au sens ou elle vérifie de fait la propriété univer-
selle donnée par

Lemme 5.1.8. Le foncteur algebre symétrique (V,d) — Sym((V,d)) est 'adjoint a
Sym(-)
gauche Ch=°(R) CDGA du foncteur oubli U qui a une algebre associe son
U
complexe de cochaines sous-jacent.

En particulier on a des bijections naturelles
Homepaa (Sym(V), A) = Homey,>oz)(V, A)

pour tout complexe V et CDGA A. Les deux conséquences a retenir sont les sui-
vantes : soit (V,d) un complexe de cochaines et Sym((V,d)) la cdga obtenue ci-
dessus.

e Un morphisme de cdga ¢ : Sym(V) — A est uniquement déterminé par sa
restriction @ V' 5 A

e Une dérivationE] de § : Sym(V) — A est uniquement déterminé par sa
restriction oy : V oA

Ezemple 5.1.9 (Algebres libres fonctoriellement acycliques). Soit (V, dy) un complexe
de cochaines. On note C'(V') le cocone de id : V' — V. Précisément, on a que C (V)" =
V=l @ V™ avec pour différentielle donnée, pour z € V"' y € V™ par d(x,y) =
(—dp(z) + y,dp(y)). On a une suite exacte courte de complexes de cochaines :
V(1] = C(V) - V ou V[1]" = V"1 avec la différentielle x — —dp(x) et H*(C(V))
est acyclique.

125. c’est a dire une application linéaire § : A — B entre cdgas qui vérifie la relation de Leibniz :
0(z-y) = d(z) -y+=Lx-5(y). On ne suppose pas que cette dérivation préserve le degré. En particulier,
elle peut étre de degré 1, c’est le cas d’une différentielle ou bien —1, ce sera le cas d’'une homotopie.
On notera que §(1) =0
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En caractéristique nulle, le foncteur Sym(—) est exact@; en particulier I'unité
n: Q= Sym((C(V),d)) =Q & P,5, Sym™(C(V),d) est un quasi-isomorphisme

Q % Sym((C(V).d))

qui est un quasi-inverse du morphisme de cdga canonique p : Sym((C(V),d)) — Q
(qui envoie V sur 0). On peut en fait expliciter une homotopie entre nop et I'identité :
Soit h : C(V,d)* — C(V,d)*"! Popérateur défini, pour z € V*7' y € V* par
h(z,y) = (0,z) € V*2@® V*~1. On étend h comme une dérivation a Sym(C(V),d)
(en utilisant les conséquences du Lemme , que l'on note h. On vérifie alors que
dil—i—iLd:Id—nop.

FExercice 5.1.10. Montrer la formule précédente.
Notation 5.1.11. On notera[”| E(V) := Sym(C(V),d).

Tout morphisme de complexes f : V' — W induit un morphisme de complexes
C(V) — C(W) et donc un quasi-isomorphisme de cdga E(V) — E(WW).

Soit maintenant A une cdga. On peut lui appliquer I'exemple précédent pour
construire I'algebre libre acyclique E(A) := Sym(C(A, d)). On définit un morphisme
d’algebre graduée commutative 7 : E(A) — A par sa restriction mca) : A* TP A* —
A* donnée par la projection sur la deuxieme variable : (x,y) — y. On obtient alors :

Lemme 5.1.12. Le morphisme d’algebre graduée commutative w : E(A) — A est un
morphisme surjectif de cdgas.

Une autre notion treés utile sera la suivante.

Définition 5.1.13. Une cdga semi-libre est une cdga dont la structure d’algebre gra-
duée commutative sous-jacente est libre.

Autrement dit c’est une algebre de la forme (Sym(V),0) ou V est un espace
gradué et ot 9 : Sym(V)* — Sym(V)**! est une dérivation de carré nul (mais qui
n’est pas forcément induite par un morphisme de complexe de cochaines sous-jacent
a V). Il convient de bien faire la distinction entre les semi-libres et les algebres libres.

Remarque 5.1.14. En particulier, 0 est donc uniquement déterminé par sa restriction
dv V. — Sym(V). Toute application de ce genre détermine une dérivation, mais
que 62 = 0 est une condition supplémentaire. Cette application & est donc donnée
par la somme directe

0: Z@i ot 9; : V — Sym'(V) c V&'

La composante 0; : V' — V définit une différentielle sur V', qu’on appelle la partie
linéaire[d de 0.

De méme un morphisme de cdga de (Sym(V'), ) dans A est uniquement déterminé
par sa restriction a V' ; mais tout morphisme de ce genre ne sera pas forcément un
morphisme de complexes de cochaines.

126. cela se ramene & montrer que Sym(C(Q[—n])) est acyclique pour tout n > 0

127. la notation est inspirée par I’espace contractile fonctoriel associé a un groupe topologique
128. Les puissances symétriques Sym((V,d)) d’un complexe de cochaines sont exactement le cas
oll toutes les autres composantes d;>2 = 0
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Remarque 5.1.15 (Augmentation). Une algebre semi-libre est canoniquement aug-
mentée : 'application V' + 0 définit un morphisme de cdgas (Sym(V'),d) — Q qui
est une rétraction de l'unité.

Remarque 5.1.16. La cohomologie d'une algebre semi-libre n’est pas une algebre
symétrique en général.

Ezercice 5.1.17. Soit V = Qx & Qy ou |z| = 2 et |y| = 3. On muni Sym(V) de
la dérivation donnée par d(z) = 0 et d(y) = x> Démontrer que (Sym(V),d) est
semi-libre et que sa cohomologie n’est pas libre.

On va voir que toute cdga est faiblement équivalente a une algebre semi-libre.

5.2. STRUCTURE DE MODELE DES ALGEBRES GRADUEES DIFFERENTIELLES
COMMUTATIVES ET ALGEBRES DE SULLIVAN

L’existence d'une structure de modeles sur les cdgas dont les équivalences faibles
sont les morphismes de cdgas qui sont des quasi-isomorphismes découle de résultats
généraux sur les catégories de modele que nous allons énoncer.

Soit R un anneau commutatif unitaire quelconque. Par la section on dispose
de (la restriction de) la structure projective sur Ch=°(R) (identifié avec C'h<o(R)).
Précisément, une équivalence faible de Ch=%(R) pour cette structure est un quasi-
isomorphisme, une fibration est un morphisme de complexes surjectif en tout degré
et les cofibrations sont les morphismes de Ch=°(R) qui ont la propriété de relévement
a gauche par rapport a toutes les fibrations acycliques. Cette structure définit bien
une structure de modele similaire a celle de Ch>o(R) mais légérement différente (du
au fait que ’homologie en degré 0 dans ce dernier cas correspond a un quotient de
toutes les O-chaines par les bords, c¢’est a dire une colimite, alors que dans le cas
Ch<o(R) I’ahomologie en degré 0 est donné par le noyau de la différentielle, c’est a
dire une limite).

On note D"(R)*=0—0— ... R “4R-50... le complexe de cochaines concen-
tré en degré n — 1 et n, et S"(R)* = R[—n| le complexe de cochaines égal & R
concentré en degré n; de sorte que ces complexes correspondent a D" (R), S™,(R)
via I'isomorphisme Ch=°(R) = C'h<y(R). On a donc un morphisme de cochaines ca-
nonique : S*(R)* < D"(R)* donné par I'identité en degré n. On a la caractérisation
suivante des fibrations :

Lemme 5.2.1. Un morphisme f : C* — D* dans Ch=°(R) est

e une fibration si et seulement si, pour tout n > 1, il a la propriété de releve-
ment a droite par rapport aux morphismes 0 — D"(R)*;

e une fibration acyclique si et seulement si, il a la propriété de relevement a
droite, par rapport aux morphismes S"(R)* — D"(R)*, pour tout n > 1,
ainsi que par rapport au morphisme 0 — S°(R)*.

Démonstration. La preuve est similaire a celle de la proposition [2.3.16] 0

Armé du Lemme [5.2.1] nous pouvons appliqué I'argument du petit objet et le
raisonnement du théoreme (et de toute la partie pour démontrer :

Proposition 5.2.2. La structure projective sur les complexes de cochaines Ch="(R)
est une structure de modele cofibrement engendrée dont les cofirations génératrices
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sont les (S™(R)* < D™(R)*)n>1 [1(0 — S°(R)*) et les cofibrations acycliques géné-
ratices sont les (0 — D"(R)*),>1.
Par ailleurs,

(1) les cofibrations sont exactement les morphismes de complexes de cochaines
injectifs en tout degré > 1 et de conoyau projectif@ en tout degré;

(2) les cofibrations (resp. acycliques) sont aussi tous les morphismes de complexes
qui sont des rétractes d’une colimite séquentielle@ de poussés en avant de
cofibrations de la forme S™(R)* — D™(R)* (n > 1) ou 0 — S™(R)* (resp.
(0= D"(R)*,n>1);

(3) tout complexe de cochaine dans CH=(R) est fibrant["]

Nous avons vu que le foncteur oubli de la structure d’algebre d’une cdga vers
son complexe sous-adjacent définit une adjonction. Un résultat de Quillen permet
de relever une structure de modele cofibrement engendrée le long d'une adjonction
vérifiant certaines propriétés. Cela permet, souvent, en pratique de construire une
structure de modele.

Le résultat suivant donne un moyen d’induire une structure de modele a partir
d’une adjonction partant d’une catégorie cofibrement engendrée (qui est la source
de l’adjoint a gauche).

Précisément, soit D une catégorie de modele cofibrement engendrée. On note J
(resp. JFac) les cofibrations (resp. cofibrations acycliques) génératrices. On suppose
que les domaines des cofibrations et cofibrations acycliques sont k-petits ou k est un
ordinal.

Soit F : D____C : U une adjonction (ot U est donc I'adjoint & droite). On
définit sur D une structure induite["] en définissant f : X — Y dans C comme
étant une équivalence faible (respectivement une fibration) si et seulement si U(f)
est une équivalence faible (resp. fibration) dans D. On définit (comme d’habitude)
les cofibrations comme étant les fleches ayant les propriétés de relevement a gauche
par rapport aux fibrations acycliques.

Théoréme 5.2.3 (Quillen). Supposons que C soit complete et cocomplete et que
I’adjonction vérifie que

(1): 'adjoint & droite U préserve les colimites k-séquentielles,
et 'une des deux hypotheses suivantes :

(2): tout morphisme de C qui a la propriété de relevement par rapport a toutes les
fibrations est une équivalence faible,
(2’): tout morphisme F'(%,)-cellulaire est une équivalence faible.

alors la structure induite fait de C une catégorie de modele cofibrement engendrée
et de plus I'adjonction F': D :_j C : U est de Quillen. Les cofibrations et cofibra-
tions acycliques génératrices de C sont respectivement données par F(J), F/( %) et
leurs domaines sont encore k-petits.

129. sur un corps, par exemple sur QQ comme nous le serons dans la suite de ce chapitre, cette
condition est toujours vérifiée

130. c’est a dire une colimite de la forme Xo — ... X; = X;41 — ...

131. et cofibrant sur un corps comme Q

132. qu’on pourrait appeler projective par analogie avec celle sur les complexes de chaines ou les
catégories de diagramme
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Comme nous allons le voir ci-dessous, 'idée de la preuve est d’utiliser I'argument
du petit objet a partir des familles F'(J) et F'(£.). L’hypothese (1) permet justement
de faire cela en garantissant la petitesse des domaines des fleches. Les hypotheses

(2) ou (2')[™ permettent de garantir que tout cofibration acyclique est un rétracte
d'une F(Z,)-cellulaire.

Dans le cas qui nous intéresse ou D est la catégorie des complexes de (co)chaines
on a le corollaire suivant.

Corollaire 5.2.4 (Hinich). Si D = Ch(R), D = Ch=(R) ou D = Chso(R) munie

de la structure de modele projective, que C est complete et cocomplete et que

I’adjonction vérifie les hypotheses

(1): Padjoint & droite U préserve les colimites (N)-séquentielles,

(2%): pour tout objet A € C, on a que la fleche canonique U(A — A[] F(D™(R)*))
est un quasi-isomorphisme,

alors la structure induite fait de C une catégorie de modele cofibrement engendrée,
I’adjonction est de Quillen et les cofibrations et cofibrations acycliques génératrices
de C sont respectivement données par F(J), F(%.) (dont les domaines sont N-
petits).

Démonstration. Les domaines des cofibrations acycliques (resp. cofibrations ) des
complexes de (co)chaines sont 0 (resp. S™(R) ou 0) qui sont compacts, en particulier
N-petits. Il suit que la condition (2’) du théoreme est équivalente a celle de
I’énoncé du corollaire et donc le résultat découle du théoreme [5.2.3l 0

Remarque 5.2.5. En particulier, dans le cas de D = CH="(R), les cofibrations (resp.
acycliques) sont exactement les morphismes qui sont des rétractes d’une colimite de
poussés en avant de cofibrations de la forme F(S™(R)*) — F(D"(R)*) ou F(0) —
F(S°(R)") (resp. (F(0) = F(D"(R)")).

Démonstration du théoréme[5.2.3. Remarquons que le fait que I’adjonction soit de
Quillen découle immédiatement du fait que U préserve les fibrations et les fibra-
tions acycliques (puisqu’il préserve aussi les équivalences faibles) et donc qu'il est de
Quillen & droite. Le lemme [2.5.5] assurera donc que I'adjonction est de Quillen une
fois prouvé que la structure est de modele.

L’axiome est contenu dans 1'énoncé. Comme U est un foncteur et que
(MC2)

I'axiome |(MC2)| est vrai dans D, il est vrai pour C. Le méme argument assure la
stabilité par rétracte des équivalences faibles et fibrations de C. Comme les mor-
phismes ayant la propriété de relevement a gauche par rapport a une classe de
morphisme sont stables par rétracte (cf la preuve de la proposition , il en est
de méme des cofibrations de C. Enfin, la moitié de|(MC4)|est prouvée par définition.

Le reste de la preuve va consister a regarder les propriétés de 'image par F' des
cofibrations et cofibrations acycliques génératrices. On commence par remarquer la
propriété suivante.

Sous-Lemme 5.2.6. Un morphisme f : X — Y dans C est une fibration (resp.
fibration acyclique) si et seulement si il a la propriété de relevement a droite par
rapport a la classe F/( %) (resp. F'(J)).

133. elles sont évidemment équivalentes une fois prouvé le théoreme puisque les F'( Z,.) sont gé-
nératrices. Selon les cas I'un est plus facile que 'autre a prouver



164 GREGORY GINOT

Preuve du sous-lemme. De I’adjonction découle qu'un carré commutatif (resp. et un
relevement h dans ce carré)

F(A

___9_)(
N 7
) f

I Ve

)
F(B)
est équivalent a un carré commutatif (resp. et un relevement ¢(h) dans ce carré)

A——=U(X)

k4
l ¢() lU(f)

B——=U(Y)

Comme les fibrations (resp. acycliques) de 9 sont exactement celles telles que U( f)
soit une fibration (resp. acycliques) de D, le résultat découle du fait que D est
cofibrement engendré. O

Le sous-lemme implique immédiatement que F(J), F(%,.) seront les cofibrations
et cofibrations acycliques génératrices une fois qu’on aura prouvé que la structure
est de modele.

Par ailleurs il suffira de prouver la petitesse des domaines des morphismes de F(J)
et F(f.) pour vérifier que la structure est cofibrement engendrée. Vérifions cela :
Soit A — B une cofibration génératrice de D. Alors pour tout colimite séquentielle
C(zleiin X} dans C, on a un diagramme commutatif

colim(Homg(F(A), Xy) Homcg(F(A), cglim X)
€ER

e g

colim(Homp (A, U(X}))) — Homc¢/(A, U(C(Iglim X)) = Homg(A, C(’glim U(Xk))
€R

kek €K

ol les bijections verticales sont données par ’adjonction et les fleches horizontales
sont les fleches canoniques et 1’équivalence donnée par ’hypothese (1). Comme D est
cofibrement engendrée la premiere fleche horizontale du bas est aussi une bijection
puisque A est k-petit et que le sous-lemme et le fait que D est cofibrement engendrée
et donc les U(X}) sont des rétractes de J-cellualires. Ainsi 'application horizontale
du haut est une bijection.

Finalement on a plus qu’a montrer les propriétés de factorisation et la derniere
partie de . On montre d’abord les propriétés de factorisation et on va les
utiliser pour (comme il est souvent pratique de faire pour les catégories
cofibrement engendrées). On commence par remarquer :

Sous-Lemme 5.2.7. Les rétractes de morphismes F'(J)-cellulaires (resp. F'( % )-cellulaires)
ont la propriété de relevement par rapport aux fibrations acycliques (resp. fibrations)

de C. De plus tout rétracte d'un morphisme F'(%,)-cellulaire est une équivalence
faible de C.

Démonstration du sous-lemme. La premiere assertion découle du sous-lemme |5.2.6
par stabilité par composition, rétractes et poussés-en-avant des morphismes ayant
des propriétés de relevement a gauche par rapport a une classe de morphismes. Pour
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la deuxieme, on a que les hypotheses (2) ou (2) montre que si §; : U; = V; € F.
est une cofibration acyclique génératrice, alors pour tout objet A € C, on a qu’'un
poussé en avant A — A [[ F(V;) est une équivalence faible de C. Ce qui assure

F(U;)
que c’est le cas pour tout rétracte d'une 7, .-cellulaire par le raisonnement précédent
(ou en appliquant (2) directement si cette hypothese était déja vérifiée). O

Puisque les domaines de F'(%,) sont k-petits comme on vient de le voir, on peut
leur appliquer I'argument du petit objet (Section et Proposition . Ceci
assure que tout morphisme f : X — Y a une factorisation fonctorielle f : X —
Cr— Y ou Oy — Y ala propriété de relevement par rapport a 'ensemble F'(7,)
donc est une fibration et X — Cy est F(%,) cellulaire donc est une cofibration et
est acyclique en vertu du sous-lemme [5.2.7} Cela termine de montrer la premiere
factorisation. La deuxieme est similaire en utilisant I’argument du petit objet pour
la famille F'(7J).

Il reste a démontrer que tout cofibration i : A — B qui est une équivalence faible
dans C a la propriété de relevement a gauche par rapport a toutes les fibrations. Pour
cela il suffit de montrer que c¢’est un rétract d’'un morphisme qui a cette propriété. On
utilise la premiere factorisation : pour obtenir 7 : A — C; — B ou comme on 'a vu
A — C; est F(f,.)-cellulaire. En particulier a la propriété de relevement demandé.
On a de plus vu qu’elle est une équivalence faible et comme ¢ aussi, on en déduit que
la fibration C; — B est en fait une fibration acycliquelTEI. Ainsi, comme i : A — B
est une cofibration, on a un relevement dans le carré commutatif

7
b
qui donne que A — B est un rétracte de A — C;. O
Sym(-)
On dispose de I'adjonction Ch=%(Q) CDGA du Lemme [5.1.8 ou U est
U

I’oubli de la multiplication.

Corollaire 5.2.8. La structure induite par Ch=%(Q) sur CDGA est une structure de
modele cofibrement engendrée et ’adjonction est de Quillen.

Puisque c’est le cas dans Ch=°(Q), les fibrations sont les morphismes de cdgas qui
sont surjectifs en tout degré. En particulier, toutes les cdgas sont fibrantes.

Remarque 5.2.9. La méme preuve assure que les cdgas Z-graduée ou concentrées en
degrés négatifs ou nul ont une structure de modeles cofibrement engendrée.

Notons par ailleurs que ce corollaire s’applique a toute catégorie de 0@-algebre
différentielle graduée ou O est une opérade algébrique. En particulier cela s’applique
par exemple aux algebres différentielles graduées associatives, aux algebres de Lie
différentielles graduées etc...

Le résultat reste par ailleurs valide sur tout corps de caractéristique nulle. En
revanche, le résultat n’est pas vrai en caractéristique non-nulle pour les cdgas (c’est
essentiellement lié au défaut de Sym(—) a étre exact).

134. T’hypothese (2) ou (2’) a pour seul but de garantir ce résultat
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Remarque 5.2.10. Du Corollaire [5.2.4] et de la preuve ci-dessous découle aussi que
les cofibrations génératrices sont les (Sym(S™(Q)*) — Sym(D"(Q)*))n>1 [[(Q —
Sym(S°(Q)*) = QIt]) et les cofibrations acycliques génératrices sont les (Q —
Sym(D"(Q)*)),>1. Toute cofibration (resp. acyclique) est un rétract d'une com-
position de poussés-en-avant de cofibration génératrice (resp. acyclique génératrice).

Démonstration du Corollaire [2.2.8. 11 suffit de vérifier les hypotheses (1'), (2) du
corollaire . La premiere découle du fait qu'une colimite séquentielle (ou toute
colimite filtrante en fait) calculé dans les complexes de (co)chaines (comme une
réunion donc) de morphismes de cdgas a canoniquement une structure de cdga qui
factorise toute famille compatibles de morphismes de cdgas issus des composantes
de la colimite (en revanche U ne commute pas du tout avec des colimites arbitraires,
par exemple pas avec les coproduits).

Pour la deuxiéme, on doit démontrer que A R A Sym/(D"(Q)*) est un quasi-
isomorphisme. Comme D"(Q)* = C(Q[—n]) le résultat découle de la formule de
Kiinneth et de l'exemple [5.1.9] O

Remarque 5.2.11. Notons que l'on peut aussi directement montrer (2) (du théo-
reme , ce qui peut étre instructif car 'idée peut s’appliquer méme dans des cas
non-linéaires. En effet, si f : A* — B* ala propriété de relevement par rapport a tous
les morphismes de cdga qui sont surjectif en tout degré, on utilise le lemme [5.1.12]
qui nous donne un relevement dans le diagramme commutatif

A* idA®n A4* & B(B)
ft h7, if.ﬂ
B* id I

On en déduit alors que f est un rétracte A* A* A* deid®n qui

| e |

B~ A eEB) "B
est un quasi-isomorphisme puisque 7 : Q — E(B*) l'est (Exemple . L’idée (qui
s’applique de maniere assez générale et peut s’obtenir parfois en utilisant I’argument
du petit objet) ici a donc été de factoriser f sous la forme f : A = P — B pour
montrer se ramener & un rétracte de A = P.

Pour obtenir et étudier de bons remplacements cofibrants, on introduit la ter-
minologie suivante qui sera cruciale pour faire des calculs efficaces en homotopie
rationnelle.

Définition 5.2.12 (Algebre de Sullivan, relatives et minimales).

e Une algebre de Sullivan est une algebre semi-libre (Sym(V*),d) ou V* se
décompose@ en somme directe de sous espaces gradués

vV =V

n>0

135. autrement dit on rajoute une graduation supplémentaire a chaque V" de sorte que V* de-
vienne bigradué
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telle que, en notant V*(n) = P, Vi", on a
dV(0))=0, et d(V*(n)) CSym(V(n—1)")(n>1).

e Une algebre de Sullivan est minimale, si dans la décomposition on a de plus
que les éléments de V" sont en degré inférieur a celui des ¢léments non-nuls
*
de Vi ;.

e Une algebre de Sullivan relative est I'inclusion canonique A e (ASym(V*),d)
d’une cdga A telle que V* est munie d’une décomposition comme dans le cas
d’une algebre de Sullivan telle que

dV(0)) C A, et dVi(n)CA®Sym(V(n—1)") (n>1).

e Une algebre de Sullivan relative est minimale si on a la méme condition sur
les degrés que pour une algebre de Sullivan minimale.

On notera que les algeébres de Sullivan (éventuellement minimales) sont des al-
gebres relatives (évent. minimale) ou A = Q@. Comme on travaille sur un corps,
toute filtration de Q-espace se décompose et on peut donc aussi définir les algebres
de Sullivan par la donnée d’'une filtration.

Une condition pratique pour vérifier qu'une algebre de Sullivan est minimale est
la suivante :

Lemme 5.2.13. Soit une algebre de Sullivan (Sym(V*),d) vérifiant V° = 0. Alors
(Sym(V*),d) est minimale si et seulement si d(V*(k)) C Sym=(V*(k — 1))[P]

Remarque 5.2.14. Si V* est concentré en degré > 2, alors on peut montrer qu’une
algebre semi-libre est de Sullivan minimale si et seulement si d(V*) C Sym=%(V*) et
qu'une inclusion A — A® Sym(V*) est de Sullivan relative minimale si et seulement
sid(V*) € A2°@Sym>0(V*)+ A® Sym=2(V*). Ceci découle du lemme et du fait que
I’on peut voir aussi que si V* est concentré en degré > 2, alors toute algebre semi-libre
(Sym(V*),d) est de Sullivan; il suffit de prendre comme graduation supplémentaire
celle qui est en fait déja donnée par le degré de V* en tant que module gradué.

Ezxemple 5.2.15. Sym(D™(Q)*) et Sym(S™(Q)*) sont des algebres de Sullivan. La
deuxieme est évidemment minimale mais pas la premicre. Par ailleurs l'inclusion
Sym(S™(Q)*) < Sym(D™(Q)*) est une algebre de Sullivan relative minimale.

De méme, les algebres E(A*) (Exemple sont de Sullivan (et pas minimales
en général).

Ezemple 5.2.16. Soit Sym(Q < z,y,z >) la dg-algebre avec z, y, z en degrés 1
et la différentielle donnée par d(z) = yz, d(y) = zz, d(z) = zy. Cette algebre est
semi-libre mais n’est pas de Sullivan.

Le lien entre les algebres de Sullivan et la structure de modele est le suivant.

Lemme 5.2.17. Les algebres cofibrantes sont les rétractes d’algebres de Sullivan, les
cofibrations sont des rétractes d’algebres de Sullivan relatives.

136. comme Q est concentré en degré 0, on pourra remarquer qu’aucun élément de QQ n’est un
bord
137. c’est a dire que la différentielle est décomposable
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Démonstration. C’est un corollaire de 'argument du petit objet. Plus précisément,
les cofibrations génératrices sont de Sullivan relatives d’ott on déduit que les 7-
cellulaires sont aussi de Sullivan relatives en utilisant comme degré externe celui
induit par le nombre de composition dans ’argument du petit objet. A partir d’une
algebre de Sullivan relative, on construit la décomposition en exprimant déja A ®
Sym(V(0)*) comme un poussé en avant a partir des cofibrations génératrices en
utilisant que Sym(V) = @),z Sym(Qz;) (ot B est une base de veceturs homogenes
de V) puis en faisant des compositions degré par degré pour reconstruire tous les
Sym/(V (n)*). En étudiant ’argument du petit objet de maniere précise dans le cadre
des cdgas, on peut montrer que les algebres cofibrantes sont précisément celles de
Sullivan et que les cofibrations sont les rétractes d’algebres de Sullivan relatives. [J

Remarque 5.2.18. On peut montrer que si une algebre cofibrante est connexe, alors
c’est une algebre de Sullivan (autrement dit, dans ce cas la, tout rétracte d’une
algebre de Sullivan est de Sullivan).

Définition 5.2.19 (Modele de Sullivan). Un modele de Sullivan (resp. minimal) d'une
cdga est une équivalence faible de cdga (Sym(V),d) = A ou (Sym(V),d) est de
Sullivan (resp. minimale).

Remarque 5.2.20. La différence avec un remplacement cofibrant est qu’on ne sup-
pose pas nécessairement que le morphisme est une fibration. Evidemment, on peut
toujours se ramener a une fibration par remplacement cofibrant. Mais on peut aussi
plus simplement utiliser I'astuce suivante : si f : (Sym(V),d) = A est un modele
de Sullivan, alors

(Sym(V),d) @ E(A) L5 A
est un modele de Sullivan surjectif en tout degré d’apres 'exemple [5.2.15, En re-
vanche, on ne peut pas imposer qu'un modele de Sullivan minimal soit une fibration
en général.
Nous verrons en revanche que les algebres minimales ont des propriétés particu-
lieres qui rendent 1’étude du type d’homotopie d’une cdga tres agréable (cf Proposi-

tion [5.2.26| ou le Lemme [5.3.9)).

Etant donné que notre principale motivation pour étudier les cdgas provient des
cochaines associées a un espace topologique (non-vide) ou ensemble simplicial, nous
allons maintenant nous focaliser sur les cdgas connexes :

Définition 5.2.21. Une cdga est dite conneze si H°(A) = Q (I'isomorphisme étant
alors nécessairement induit par 1'unité).

Une cdga est dite augmentée si elle est munie d’un morphisme de cdgae: A — Q
qui est une section de 'unité : € on = id. On notera A* := ker(e) I'idéal d’augmen-
tation de A; il est en particulier stable par la différentielle.

)

En effet, pour tout espace topologique ou ensemble simplicial, on a que C*(X) =
[1C*(X,) (et de méme pour les formes polyhédrales[™ de la section ou la co-
homologie) ou le produit se fait sur toutes les composantes connexes par arcs de
X. En particulier, on est ramené a étudier des cdgas connexes. Par ailleurs les co-
chaines d’un espace topologique (& I’exception du vide) sont augmentée par le choix

e S e

138. la démonstration est la méme que pour la cohomologie singuliere

de n’importe quelle point base C*(X)
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Remarque 5.2.22. Pour les algebres connexes, le lemme [5.2.13] sera crucial pour rec-
connaitre les algebres minimales. Et par ailleurs, en vertu du lemme et de la
proposition , on peut toujours supposer qu'un modele de Sullivan Sym(V*)
d’une algebre connexe vérifie VY = 0.

Enfin toute algebre semi-libre est augmentée (via I’application canonique V > 0
car Q = Sym(V)) et son idéal d’augmentation est Sym=°(V*).

Remarque 5.2.23 (Morphismes entre algébres de Sullivan). Un morphisme de cdgas
f o (Sym(V),d) — (Sym(W),d) entre algebres semi-libres est uniquement déter-
miné par les restrictions f; : V. — Sym‘(W) (cf le Lemme [5.1.8). Si V* = 0, on a
nécessairement fo = 0. On appelle f; : V' — W la partie linéaire de f. De méme, les
différentielles (dans le cas connexe ou pas) sont données par les d; : V' — Sym*(V)
(avec ¢ > 0). Il est clair que d; est une différentielle, qui est nulle si de plus les
algebres sont minimales.
Comme f est un morphisme de cdgas, on le morphisme induit :

fio(Vidi) — (W, dy)
est un morphisme de complexes de cochaines.

Définition 5.2.24 (Complexe des indécomposables). Si A est une cdga augmentée,
on note Q(A) := AT /AT - AT les indécomposables (c’est a dire le quotient de 1'idéal
d’augmentation par les produits non triviaux). La différentielle d de A passe au
quotient (par propriété de Leibniz) et on note

(A, d) == H"(Q(A),d).

En particulier, si A est semi-libre on a que (Q(A),d) = (V*,d;) puisque seule la
partie linéaire d; de la différentielle survit dans le quotient. Le lemme [5.2.13| nous
donne alors que

Lemme 5.2.25. Si A = (Sym(V*),d est une algebre de Sullivan minimale connexe,
alors pour tout n on a m,(Sym(V),d) = V™.

Proposition 5.2.26. Soit f : (Sym(V),d) — (Sym(W),d) un morphisme entre al-
gebres de Sullivan avec V0 = W = 0.
e On a que f est un quasi-isomorphisme si et seulement si f; : (V,d;) —
(W, d;) est un quasi-isomorphisme.
e Si les algebres sont de plus minimales, alors f est un quasi-isomorphisme si et
seulement si f; est un isomorphisme si et seulement si f est un isomorphisme.

La proposition énonce une propriété clé et fortement utile des algeres minimales :
un morphisme entre cdgas minimales connexes est un quasi-isomorphisme si et seule-
ment si ¢’est un isomorphisme.

Démonstration. Si f est un quasi-isomorphisme entre algebres de Sullivan alors ¢’est
une équivalence d’homotopie par le corollaire [5.3.5] 1l suit alors du lemme que
Q(f) = f1 est un quasi-isomorphisme. La réciproque se fait en filtrant Sym™* (V)
et Sym™ (W) par le degré des puissances symétriques. La suite spectrale associée
(cf [20]) converge vers Sym(V) et la différentielle sur sa premiere page est exactement
di. On obtient alors que I'on a un isomorphisme au niveau de cette page et donc sur
la cohomologie globale.

Dans le cas minimal, on a que d; = 0, donc f; est un quasi-isomorphisme, si
et seulement si c’est un isomorphisme et le premier point donne déja la premiere



170 GREGORY GINOT

équivalence. Par ailleurs si f; est un isomorphisme, alors f est un isomorphisme
comme il découle du lemme des 5 et de la longue suite exacte en homologie associée
a la suite exacte courte AT - AT — AT — Q(A) quand A est de Sullivan. Enfin si
f est un isomorphisme, c¢’est un quasi-isomorphisme ce qui permet de conclure pour
la derniere implication. O

La remarque 5.2.20| et le lemme suivant permette de passer librement d’un modele
de Sullivan surjectif (donc une fibration) a un modele de Sullivan minimal (qui ne
donne en général pas lieu a une fibration, mais est unique a isomorphisme non-naturel
pres).

Lemme 5.2.27. Une algebre de Sullivan connexe est isomorphe en tant que cdga au
produit tensoriel[]

(Sym(V),d) = (Sym(W), D) © E(U)

d’une algebre de Sullivan minimale (Sym(W), D) avec W° = 0 et d’une algebre de
Sullivan acyclique E(U). De méme une algebre de Sullivan relative (entre algebres
connexes) s’écrit sous la forme :

A® (Sym(V

A® (Sym(W),D)® E(U)

M%

La partie minimale est unique a isomorphisme pres.

Démonstration. L’unicité découle de 1'unicité du modele minimal, voir la proposi-
tion [5.2.26] or [5.2.29 ci-dessous pour le cas relatif. Nous ne traitons que le cas absolu ;
Iautre est similaire en travaillant dans la catégorie des algebes dans les A-modules.

La différentielle d : V' — Sym(V') de V' s’écrit (cf remarque sous la forme
dy +dy oudy : V — V est a partie linéaire et d, (V') C est la partie décomposable ;
dy est une différentielle sur V*. Le lemme [5.2.13| identifie les minimales avec celles
telles que d; = 0. Donc si d; = 0, I'algebre est déja minimale. Sinon soit une
décomposition de V* = H* @ B* @ A* telle que B* = d;(V*) sont les bords de
dy et H* @ B* = ker(d;). En particulier H* = H*(V*,d;) est la cohomologie de
V* par rapport a d; et d; envoie bijectivement A* sur B*. Cette décomposition
existe car QQ est un corps et que I'on peut donc décomposer les cocyles sous la forme

d
donnée. L’algebre semi-libre Sym(A Bl) est contractile (et isomorphe a un E(U) par
construction). Par construction on a un morphisme de complexes : A < V qui induit
un morphisme de cdgas Sym(A 4 B) — (Sym(V),d) (simplement en envoyant
A sur A et B sur I'image par d (dans Sym(V)) de A. On note E(U) I'image de
Sym(A 4B ) que l'on identifie avec son image dans Sym(V'). Autrement dit on s’est
ramené au cas ou la différentielle de V' sur E(U) est simplement linéaire induite par
dy : A — B et on travaille (en abusant les notations) dans ce cadre. Le quotient de
'algebre sous-jacente Sym/(V') par I'idéal engendré par Sym(A a B) est une algebre
commutative libre (isomorphe a Sym(H*) et minimale. Le morphisme quotientp :
Sym(V*) — Sym(H*) est un quasi-isomorphisme par le Théoreme de Kiinneth

appliqué & Q(Sym(V)) — Q(Sym(H*) et la propositon [5.2.26] Le Corollaire [5.3.5]

139. qui est le coproduit dans la catégorie CDGA
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nous donne un quasi-isomorphisme inverse g : Sym(H*) — Sym(V*). En particulier,
p o g est un quasi-isomorphisme donc un isomomorphisme par la proposition [5.2.26|
Il suit que

g®id: Sym(H*) @ E(U) — Sym(V) ® Sym(V) — Sym/(V)

est un isomorphisme d’algebres puisque c¢’est un morphisme entre algerbes semi-libre
qui est un isomorphisme au niveau des générateurs. O

Les notions de modele de Sullivan s’étendent sans difficulté aux morphismes.

Définition 5.2.28 (Modéles de Sullivan d’un morphisme). Soit f : A — B d’algebres
graduées différentielles commutatives.

e Un modele de Sullivan relatif de f est une factorisation de f sous la forme

!

ol ¢ est une algebre de Sullivan relative.
e Un modele de Sullivan relatif minimal de f est une factorisation comme la
précédent ou ¢ est de Sullivan relative minimale.

Proposition 5.2.29. Tout morphisme de cdgas f : A — B admet un modele de
Sullivan relatif.
De plus :

e si A et B sont connexes, alors f admet un modele de Sullivan relatif minimal :
A— A® Sym(V*) = B vérifiant V9 = 0.

e Un modele de Sullivan relatif minimal de f est unique & isomorphisme (non-
canonique) pres.

e En particulier, toute cdga connexe A admet un modele de Sullivan minimal
vérifiant VY = 0 qui est unique & isomorphisme (non-naturel) pres.

Démonstration. La structure de modele cofibrement engendrée des cdgas assure (via
’axiome et 'argument du petit objet) que tout morphisme admet un modele
de Sullivan relatif.

Le lemme assure que dans le cas connexe, on peut décomposer sous la forme
A= A Sym(V*) 2 A — A® Sym(W*) @ E(U) avec W° = 0. Le morphisme
d’espaces vectoriels graduée U + 0 induit un morphisme de cdgas F(U) — Q qui
est une section de I'unité n : Q — E(U), en particulier un quasi-isomorphisme car n
I'est. Le morphisme A — Sym(W*) @ E(U) — Sym(W*) induit est une algebre de
Sullivan relative minimale.

L’unicité découle immédiatement du lemme [5.3.10| ci-dessous appliqué au mor-
phisme : f =id: A — A. O

Remarque 5.2.30. La structure de modele (et I'argument du petit objet) garantit
aussi que I'on peut factoriser tout morphisme de cdgas f : A — B sous la forme
A< A® Sym(V) — B ot la premiere fleche est une algebre de Sullivan relative et
un quasi-isomorphisme.
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5.3. HomoToPIE DES CDGAS

Nous allons préciser ici quelques propriétés de la relation d’homotopie dans les
cdgas (et démontrer certains lemmes utilisés dans la section précédente).

Tout comme dans les espaces topologiques on peut utiliser ’objet en cylindre X x I
pour définir toutes les relations d’homotopie, dans les cdgas, nous avons un objet en
chemin universel pour définir les relations d’homotopie entre morphismes de cdgas.

Notation 5.3.1. On note I* := Q% (Al) Palgebre polyhédrale de I'intervalle définie
dans la section [5.41

Explicitement on a donc
I" = Qlto, t1, dto, dt1]/(to + t1 = 1,dto + dt; = 0) = Q|t, dt]

ou la derniere équivalence est donnée en identifiant ¢y = ¢, t; = 1 — ¢ (et dty =
—dt — 1 = dt). On a que les t; sont de degré nuls, de différentielles respectives les
d(t;) (qui sont donc de degré 1).

Notation 5.3.2. On note ¢ : Q5 (A') — Q les deux morphismes de cdgas définis
par €y(t) =0 et €(t) = 1 (et nécessairement ¢;(dt) = 0).

On a, pour ¢ = 0, 1, une factorisation

id

B—— B®I'"—= B
1d®e€;
qui établit que B @ I* et les morphismes (id ® ¢y, id®¢€;) : BQI* - Bx B=B®B
forment un objet en chemin pour B au sens de la définition [2.2.15]

Définition 5.3.3 (Homotopie de Sullivan). Deux morphismes de cdgas fo, f1 : A — B
sont dit homotopes au sens de Sullivan si il existe un morphisme de cdga H : A —
B ®1I* tel que f; = (id®¢;) o H pour i =0, 1.

Une homotopie de Sullivan est donc une homotopie a droite au sens des catégories
de modeles. Si on suppose que la source est cofibrante, on a la propriété remarquable
suivante[™]

Proposition 5.3.4. Soit (Sym(V'),d) une algebre de Sullivan. La relation d’homo-
topie de Sullivan est une relation d’équivalence sur Homecpga ((Sym(V), d), B) qui

est équivalente aux relations d’homotopie rlv, ~ et ~ de la structure de modele.
En particulier, le quotient Hom,gg, ((Sym(V'), d), B) par la relation d’homotopie de
Sullivan est en bijection avec le quotient Homepega ((Sym(V),d), B)/ ~.

Démonstration. Puisque une homotopie de Sullivan est une homotopie a droite, étant
doné que toute cdga est fibrante et qu’une algebre de Sullivan est cofibrante, il suffit
d’apres le Corollaire de montrer que pour tout objet en chemin B = P —»
B x B de B et toute homotopie a droite H : (Sym(V),d) — P entre f, g, alors il
existe une homotopie de Sullivan K : (Sym(V),d) — B ® I*. Soit B — P’ = P
une factorisation de l'équivalence faible B — P donnée par [(MC5)| et [(MC2)| La

factorisation implique que P’ 5 P —» BxBet B P estun objet en chemin.

Comme (Sym(V),d) est cofibrante et que P’ — P est une fibration acyclique, le

140. la premiere affirmation peut aussi se démontrer & partir de la propriété d’extension m
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morphisme H se releve en K’ : (Sym(V),d) — P' (vérifiant H = (Sym/(V'),d) Ul
P P), qui releve donc ’homotopie a droite associée a P a P’. Le carré commutatif
B—— B®I* donne le relevement ¢ par [(MC4)l La composée K := ¢ o K’ :

1) 7
i if()Xﬁl

P~ BxB

projo Xproji

(Sym(V),d) — B ® I* est alors une homotopie de Sullivan. O

Corollaire 5.3.5. Si f : A — B est une équivalence faible entre algebres de Sullivan,
alors il existe g : B — A tel que fog ~idg et go f ~1id4.

Démonstration. Sachant que toute cdga est fibrante, la proposition [5.3.4] précé-
dente et la proposition [2.2.20[b) et e) (et le théoreme [2.2.26)) assure que les com-

.. I I
positions HOIHHO(CDGA)(A,A) — HOIHHO(CDGA)(A, B) et HOIIIHO(CDGA)(B, B) —

HomHo(CDGA) (A, B) et HomHo(CDGA)<B; A) ﬁ) HOIHHO(CDGA)(B, B)sont des bijec—
tions et que les ensembles en question sont les quotients des morphismes de cdgas
par la relation d’homotopie. Un représentant de la préimage par f, de idg donne g
et le résultat suit. 0

Remarque 5.3.6. Les classes d’homotopie de Sullivan sont en fait le 7y d’'un ensemble
simplicial de morphismes. En effet, on peut définir

Mapcpga (4, B)s := Homepga (A, B ® Qp(A°))

munie de la structure simpliciale induite par [n] — Q5 (A™) ou Q% (A™) est défini
dans la section 0.4

Lemme 5.3.7. Soit f,g: A — B un morphisme entre algebres connexes augmentées.
Alors si f et g sont homotopes, m.(f) = m.(g) : m(A) — m(B). Si de plus les
algebres sont de Sullivan minimales, alors Q(f) = Q(g) : Q(A) — Q(B).

Démonstration. Le théoreme de Kunneth implique que les applications induites €; :
Q(B) @ I* — Q(B) sont identiques en cohomologie. On en déduit que c’est aussi le
cas pour Q(B®1I*) — Q(B) pour les algebres minimales et le lemme en découle. [

Les relevements donnés par 'axiome [((MC4)| de la structure de modele (Corol-
laire [5.2.8)) vérifient par ailleurs une propriété d’unicité.

Proposition 5.3.8. Soit A < A®(Sym(V),d) une algébre de Sullivan relative. Etant
donné un diagramme commutatif de cdgas

A

B
7
1d®1 4

A® (Sym(V),d) —C

un relevé h existe des que I'une des fleches verticale est un quasi-isomorphisme. De
plus le relevé h est unique a homotopie de Sullivan pres (relativement@ aA).

141. c’est a dire que I’homotopie est un morphisme de A-modules
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On peut remarquer que le diagramme est un diagramme de A-algebres graduées
différentielles commutatives[] ot les structures de A-algebres sont induites par les
morphismes d’algebres.

Démonstration. L’existence des relevés découle immédiatement de la structure de
modele. Si la fleche verticale de gauche est une cofibration acyclique, alors comme
toute cdga est fibrante, on a que

id®1)*

Homepaa (A ® (Sym(V),d), B)/ ~ 22

est une bijection par la proposition [2.2.20}e).

Soit maintenant p : B — C est une fibration acyclique. La commutativité du
diagramme assure que nos morphismes de cdgas sont aussi des morphismes de A-
modules ou les structures de A-modules sont induites par les morphismes de cdgas.
Autrement dit, le diagramme est un diagrame de monoides commutatifs et unitaires
dans la catégorie des A-modules. Mais les morphismes de A-algebres graduées dif-
férentielles commutatives A ® Sym(V') — B sont en bijection avec les morphismes
d’algebres graduées différentielles commutatives Sym(V') — B. On peut alors appli-

quer la proposition [2.2.20lb) pour conclure.

HOIIICDGA (A, B)/ f:J

0J

Les algebres de Sullivan minimales vérifient la propriété suivante similaire a leur
propriété d’isomorphisme.

Lemme 5.3.9. Si fy, f1 : A — B sont deux morphismes homotopes entre deux
algebres de Sullivan minimales connexes, alors fy = f.

Démonstration. Soit H : Sym(V) — Sym(W) ® I* une homotopie pour f,g :
Sym(V) — Sym(W) deux algebres de Sullivan minimales. Par le corollaire [5.3.5] il
existe g : Sym(W) — Sym(W) ® I* tel On peut la factoriser sous la forme Par le
lemme deux tels morphismes sont homotopes au sens des catégories de modele
et définissent donc le méme élément O

Nous démontrons enfin un lemme utilisé ci-dessus.

Lemme 5.3.10. Soit un diagramme commutatif de cdgas

Al A® Sym(V)
. N
C—L @ Sym(W) —= B

ou 4, j sont des algebres de Sullivan relatives minimales. Alors il existe un quasi-
isomorphisme relevé f rendant le diagramme commutatif.

Si de plus f : A — B est un isomorphisme alors f est un isomorphisme aussi.

142. autrement dit de monoide unitaire commutatif dans la catégorie monoidale des A-modules
différentiels gradués
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Démonstration. Par la remarque [5.2.20, on peut factoriser C' @ Sym(W) = B
sous la forme C' ® Sym(W) o ® Sym(W) @ E(U) = B. Le carré commu-

id jo
tatif A eIt ®@ Sym(W) ® E(U) et le fait que i soit une cofibration

A® Sym(V) = B

asure l'existence d'un relevé et on obtient f comme la composée A ® Sym(V) EN

C® Sym(W) ® E(U) - C ® Sym(W). C’est un quasi-isomorphisme par la pro-
priété [[MC2)|

Supposons maintenant que f soit un isomorphisme. En appliquant le résultat
au diagramme évident avec f~!, on ~obtient un quasi-isomorphisme 1. Cw®
Sym(W) — A® Sym(V) On a que f~lof : A® Sym(V) - A® Sym(V) est
un quasi-isomorphisme qui fixe A. Par la proposition [5.3.8] ce quasi-isomorphisme
est homotope & I'identité par une homotopie qui fixe A et de méme pour fo f~1. Un
démonstration analogue a celle du Lemme [5.3.7 nous donne alors que l'application
induite AQQ(Sym(V)) = A®Q(Sym(V)) est un isomorphisme fixant A et une dé-
monstration analogue a celle de la proposition [5.2.26) montre que ce morphisme est un
isomorphisme. On en déduit donc que f a un inverse & droite. Un raisonnement inver-
sant le role de f et f~! nous donne un inverse & gauche et donc f est un isomorphisme.
A® Q(Sym(V)) 'on a un morphisme induit A ® Q(Sym(V) — C ® Q(Sym(W))
qui est un quasi-isomorphisme. et on veut montrer que f~'o f = id (la composition
dans l'autre sens sera alors aussi I'identité par symétrie de 'argument). Il suit alors

du Lemme que la composée est I'identité. O

5.4. FORMES POLYHEDRALES

On introduit maintenant l’analogue, du a Sullivan, des formes de de Rham pour
tout espace topologique. L’idée consiste a d’abord définir une version polyhédrale
des formes différentielles sur le n-disque muni de sa triangulation standard ; c’est a
dire sur le n-simplexe standard A".

Définition 5.4.1. L’algebre des formes polyhédrales sur A™ est définie comme la cdga
quotient

Qpr(A") i= Qlto, - tusdto,ooydtn] |y

dto+---+dt, =0
ou les t; sont en degrés 0 et les dt; sont en degrés 1. La différentielle d : Q}, (A") —
Q5 (A™) est donnée, pour tout i = 0...n, par

Remarque 5.4.2. Comme les di; sont en degrés 1 et 'agebre est graduée commutative,
on a que QM (A") = 0.
Remarque 5.4.3 (Lien avec les formes de De Rham). On a une inclusion évidente de
0%, (A™) dans les fonctions C*°(A") en tant que polynomes & coefficients rationnels.
On en déduit un isomorphisme naturel

ar(A") = CF(A") @ Qpr(A").

Q% (an)



176 GREGORY GINOT

La structure cosimpliciale des A™ induit une structure simpliciale sur les formes
polyhédrales définie comme suit : pour i =0...net k=0...n, on pose

T, sik<i T sik <1
(29) dl(tk) = 0 sik=1 Sl(tk) = Ty + Tht1 sik=1
Tp_1 Sik>1 Th41 sik>1

et on applique la méme formule pour les dt;.

Lemme 5.4.4. La structure donne une structure d’objet simplicial [n] — Q% (A™)
dans CDGAE;I aux formes polyhédrales sur les simplexes standards.

Cette structure simpliciale vérifie deux propriétés utiles. Tout d’abord, les formes
polyhédrales, pour chaque simplexe A" fixée sont contractibles (tout comme les
formes de de Rham sur un disque). Par ailleurs, la cdga simpliciale est-elle méme
“contractible” par rapport a la structure simpliciale. Ces deux propriétés s’énoncent
plus précisément comme suit :

Proposition 5.4.5.
(1) (Lemme de Poincaré PL) 'unité n : Q — Q7% (A™) est un quasi-isomorphisme
(de cdgas).
(2) Pour tout i > 0, on a que le Q-module simplicial Q% ; (A®) est simplicialement
contractile : c’est a dire qu’il existe un morphisme de Q-espace vectoriel
s: QL (A®) — QL (A*T) tel que

(30) dos = id, dis = Osie = Oetdj1s = sdjsie > 0, ;415 = ss;.

En particulier I'homologie simpliciale H, (%, (A®), > (—1)’d;) est nulle et
la réalisation géométrique de Q% ; (A®) est contractile.

Remarque 5.4.6. Les conditions montrent précisément que l'opérateur s est
un opérateur d’homotopie entre id et 0 dans le complexe (Q%5, (A®), > (—1)d;). On
peut montrer facilement que si une application vérifiant ces conditions est définie sur
un ensemble simplicial de Kan, comme c’est le cas pour 25, (A®), alors les groupes
d’homotopie de ce dernier sont tous nuls.

Remarque 5.4.7 (Propriété d’extension). L’homotopie simpliciale s garantit que les
g-formes polyhédrales Q%, (A®) forment un @Q-module simplicial étendable@ : c'est
a dire que

Lemme 5.4.8. Pour tout n > 1, tout sous ensemble J C [n], et toute famille (w; €
QL (A" 1))je telle que

diw]‘ = dj_lwi sit < j,
il existe une g-forme w € Q% ; (A") sur A" telle que d;w = w; pour tout j € J.

En particulier les i-formes PL forment un ensemble simplicial de Kan pour tout
1, ce qui est de toutes facons une propriété de tous les groupes simpliciaux.

On peut maintenant définir les formes PL associées a tout ensemble simplicial ou
espace topologique.

143. on dira simplement de cdga simpliciale.

144. on peut penser & cette propriété comme une propriété de faisceaux : si on a une famille d’objets
dont les restrictions a leurs intersections communes sont les mémes, alors ils sont la restriction d’un
objet global
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Définition 5.4.9.
(1) On note Q% : sEns — CDGA le foncteur défini par

X. — Q*PL (X.) = HomsEns (Xoa Q*PL(A.))

muni de la structure de cdga définie degré par degré.
(2) On note également 2}, : Top — CDGA le foncteur composé défini par

X — O} (Sing, (X))
On appelle ces cochaines les formes polyhédrales (ou juste PL) associées a X, ou X.

La structure degré par degré signifie que les i-formes PL de X, sont 1’ensemble
Homggns (X., Q‘(A')) munie de la structure de QQ-espace vectoriel induite par celle
de QY(A®) en tout degré simplicial e (c’est & dire par la somme des fonctions). Le
produit est induit par le produit des formes ((f.) - (9n) = (fu A gn) o0t A désigne la
multiplication dans Q%,(A")) et la différentielle est définie de méme (d((fp)n>0) =

(d(fN))nZO)-

Remarque 5.4.10. Une fagon plus commode et équivalente d’énoncer le résultat du
lemme 5.4.8| est de tout simplement de remarquer que les restrictions Q% (A") —
QL (OA™) sont surjectives.

Le fait que 5, (A®) soit une CDGA simpliciale garantit que la structure de cdga
précédente est bien définie.

Remarque 5.4.11. Le lemme de Yoneda [3.1.13| nous assure qu’il y a un isomorphisme
canonique

Qpr (A7) = QpL(A")
ce qui assure que notre terminologie de formes polyhédrale pour le simplexe standard
est consistante.

De maniére générale, si K est un complexe simplicial (au sens de la déﬁnition,
on obtient alors qu’une i-forme polyhédrale est exactement une collection de i-formes
sur chaque simplexe de K dont les restrictions a leurs faces communes sont iden-
tiques.

Remarque 5.4.12. On a un analogue du Lemme [3.2.17]

Lemme 5.4.13. Pour toute inclusion K, — L, d’ensembles simpliciaux, le morphisme
de cdga induit Q% (L) — Q% (K,) est surjectif en tout degré; en particulier c’est
une fibration de cdga.

Démonstration. Cela se démontrer en utilisant que le fait que les formes PL sur les
simplexes soient étendables (remarque qui donne le cas de I'inclusion 0A} —
A”. En utilisant que L, se reconstruit en recollant des smplexes sur leur bord (cf. la
preuve du Lemme , le résultat en découle. O

Du lemme [3.2.17] découle qu’on peut définir les cochaines d’une paire Lo, K,)
comme le noyau de ce morphisme et obtenir une suite exacte longue naturelle en
cohomologie reliant les formes PL relatives et absolues.

Remarque 5.4.14. On peut remplacer la cdga simpliciale Q}; (A®) par n’importe
quelle cdga simpliciale &/} dans la définition pour définir des cdga fonctorielles
A*(X,) (resp. &*(X)) pour tout ensemble simplicial X, (resp. espace topologique

X). Si de plus la cdga obtenue est étendable, alors le lemme [5.4.13| est valide pour
cette derniere.
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Les formes polyhédrales réalisent 1'objectif annoncé de donner un modele naturel
et commutatif au sens gradué des cochaines singulieres. Pour relier les formes PL a
la cohomologie singuliere, on peut utiliser un analogue PL du théoreme de De Rham.

Rappelons qu'une n-forme w € Q% (X,) est une famille (w; := )", fiadta, - - - dta,)
ou les f;, sont fonctions de X, a valeur dans les polynomes a coefficients ration-
nels en les variables ¢;. Notons que pour ¢ = n, on obtient simplement un élément
fndto - - - dt,. En particulier, on peut intégrer, pour tout z,, € X, de telles formes sur
le n-simplexe standard et obtenir un rationnel. On définit ainsi 'application linéaire
d’'intégration [w: Cp(X,) = Q < X,, >— Q par, pour tout simplexe z,, € X,,,

(31) /w(a:n) = N folzp)dto - - - dty,.

En prenant X, = Sing,(X), on obtient@ ainsi [w € C*(X,) (ot C*(X) est le
complexe des cochaines singulieres de X). En faisant varier w on obtient ainsi une
application linéaire

/ cQp (X)) — CF(X)

(et plus généralement, pour tout ensemble simplicial X,, une application linéaire
[ Q5 (Xe) — C*(X,)), donnée par w — [w. Cette application est évidemment
naturelle en X (resp. X).

Théoréme 5.4.15 (Sullivan). L’application [ : Q5 (X) — C*(X) est un quasi-
isomorphisme de complexes de cochaines qui induit un isomorphisme d’algebres en
cohomologie.

De plus, elle est induite, en cohomologie, par un zigzag de quasi-isomorphismes
naturels d’algebres associatives différentielles graduées unitaires entre Q% (X) et
C*(X) (munie du cup produit).

Les mémes résultats ont lieu pour tout ensemble simplicial et les cochaines sim-
pliciales.

Le premier point suit essentiellement de la formule de Stokes et du lemme de
Poincaré PL.

Remarque 5.4.16. Le dernier point précise le premier, en affirmant que la structure
multiplicative@ des cochaines singulieres est bien équivalente a celle des formes
polynomiales (et pas juste les algebres induites en cohomologie).

Ceci se démontre essentiellement de la maniere suivante. On dispose de l'al-
gebre différentielle graduée associative simpliciale C*(A™) dont la structure sim-
pliciale est induite par la structure cosimpliciale des simplexes standards et
la fonctorialité de ’algebre des cochaines singulieres ; elle est par ailleurs étendable
. On peut alors construire pour tout espace topologique X, les cochaines
Homggns(Sing, (X ), C*(A®)) qui est une dg-algebre associative qui est isomorphe

145. de maniere générale, on obtient un élément dans le complexe des cochaines simpliciales de
X, qui est défini comme étant, en degré 4, le dual linéaire de C;(X,), muni de la différentielle
(—=1)" 325 —(=1)d;

146. il admet méme un relevement a des structures mulitplicatives associatives et homotopique-
ment commutatives, qui se précise formellement en utilisant le language des opérades
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aux cochaines singulieres de X en tant qu’algebre différentielle graduéem. On consi-
dere alors le zigzag de morphismes d’algebres associatives différentielles graduées :

(32)
Homgpns(Sing, (X), C*(A*)) — Homsgns(Sing,(X), C*(A*) @0, (A%)) «— Qp(X)

dont les fleches sont induites par les morphismes
C*(A%) 2 C7(A%) © Qpy (A7),

* L[] ®Zd * ° * L]

pr(A%) == C*(A*) © Q5. (A%)
induites par les morphismes d’'unité respectifs de Q5 (A®) et C*(A®). Les fleches
de sont des quasi-isomorphismes pour tout X, car C*(A®) vérifie également les

résultats de la proposition [5.4.5/(1) et (2) (ce qui permet de démontrer ce résultat
par récurrence en passant aux cochaines relatives a partir du cas des simplexes).

La construction des formes PL. d'un polyedre a un adjoint.

Proposition 5.4.17. Le foncteur 2}, : sEns — CDGA® est un adjoint a gauche.
Qb
Précisément, on a une adjonction sEns CDGA? ot I'adjoint & droite S2 est
se
donné par
S.A(A*) = HomCDGA (A*, Q*PL(A.»
La structure simpliciale est donnée niveau par niveau a partir de celle de Q5 (A®).

Démonstration. Cela découle des isomorphismes naturels

Homepga (A*, Homggns (X, Q*PL(A.))> = Hom,cpea (A* x X, Q*PL(A.)>
~ Homegns (X., homcpea (A*, Q*PL(A.))>

ou A* x X, est la cdga simpliciale obtenue en prenant, en degré simplicial, ’algebre

A" X Xy = Lo, A" 0

On peut penser a cette adjonction comme une variante de I’adjonction donnée
par la réalisation géométrique et I’ensemble singulier. En effet, Q% (A®)) est un ob-
jet cosimplicial naturel dans CDGA ce qui permet d’interpréter S2 exactement
comme le foncteur Sing,(—). Par ailleurs la définition de Q% (X,) devient une va-
riante imédiate de la réalisation géométrique si on interprete la formule comme étant

a valeur dans CDGA® et pas CDGA.

5.5. ESPACES ET ALGEBRES FORMELLES

La cohomologie d’une cdga est une algebre graduée (Remarque [5.1.5). Une ques-
tion naturelle est de voir si cette structure est équivalente a celle sur les cochaines.

147. Tisomorphisme est donné par 'application qui a f : Sing,(X) — C™(A®), notée o — f, :
QSing, (A®*) — Q, associe la cochaine singuliere Sing,,(X) 3 o — f, (A" R A™)
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Définition 5.5.1 (formalité). Une cdga (A, d) est dite formelle si elle est faiblement
équivalente (autrement dit isomorphe dans la catégorie Ho(CDGA)) a son algebre
de cohomologie (H*(A),0) en tant que cdga.

Un espace topologique X (ou un ensemble simplicial) est formel si ses formes
polyhédrales Q% (X) sont formelles en tant que cdga.

Remarque 5.5.2. Rappelons que deux cdgas A, B sont faiblement équivalentes si,
par définition, elles sont reliées par un zigzag

AEA S EA, BB

ou les fleches sont des morphismes de cdgas qui sont des quasi-isomorphismes (au-
trement dit des équivalences faibles dans CDGA). Ce dernier point est équivalent
a dire que A est isomorphe a B dans Ho(CDGA).

Par ailleurs, quitte a prendre des tirés-en-arriere de cdgas, tout zigzag est équi-
valent & un zigzag avec n = 1 (c’est a dire avec un seul intermédiaire).

Remarque 5.5.3. Un complexe de cochaines sur un corps est toujours quasi-isomorphe
a sa cohomologie (en tant que complexe de cochaines). Si ce complexe est en plus
une cdga, ce quasi-isomorphisme induit la structure d’algebre sur la cohomologie,
mais, n’est pas un morphisme de cdgas en général. La propriété d’étre formel est
une vraie condition non-triviale pour une cdga, voir la feuille de TD 5 pour voir un
exemple de cdgas non-formelle.

Cette notion de formalité et ses problématiques s’étend évidemment a toute struc-
ture algébrique (Lie, associative, etc...) sur un complexe de cochaines ou par exemple
aux complexes de faisceaux.

Nous allons étudier un exemple crucial d’espace formel :

Ezxemple 5.5.4 (Modéle minimal et formalité des spheres). Soit n > 1. L’anneau de
cohomologie de S™ est
H*(S",Q) = Qlz]/(2* = 0)

oll z est un générateur de degré n. Remarquons que si n est impair, la relation 22 = 0
est redondante puisque elle est vérifiée automatiquement pour tout générateur de
degré impair (Remarque [5.1.4).

On commence donc par le cas impair n = 2k — 1 (k > 1). Notons & un 2k — 1-
cocycle de %, (S*71) (dont la cohomologie est H*(S?*~1, Q) par le théoréme
engendrant H2¢~1(S?*~1). Comme 7 est de degré impair, on a 72 = 0 et 'application

(Sym(Qx),0) — (Qp,(S*)n, d)

définie comme 'unique morphisme de cdgas qui envoie x sur Z sur lui méme est un
quasi-isomorphisme de cdgas. Comme I’algebre symétrique a gauche est la cohomo-
logie de S**~! on a démontré la formalité de la sphere S~

Dans le cas pair n = 2k (k > 0), notons encore Z un cocycle de Q%; (S?*) engen-
drant H?*(S?*). On a encore un morphisme de cdgas Sym/(Qz),0) — (2%, (S*)n, d)
qui envoie le générateur de la source sur Z. Ce morphisme n’est plus un quasi-
isomorphisme car x est de degré pari et donc son carré est une classe de cohomologie
de Sym(Qz),0), qu’il convient donc de tuer. La classe 72 est un bord dans Q7 (S*)
(car c’est un cycle). Soit § € Q1 1(S?*) une 4k — 1-cochaines telle que d(j) = i>.
Soit y un élément de degré 4k — 1 et munissons Sym(Qz @ Qy) de la différentielle
définie, sur les générateurs, par d(y) = x* et d(x) = 0 (ce qui implique en particulier



INTRODUCTION A L’HOMOTOPIE 181

que d* = 0). Soit ¢ : (Sym(Qz & Qy),d) — H*(S*, Q) = Q[z]/(2* = 0) I'unique
morphisme d’algebres graduées commutatives envoyant y sur 0 et x sur sa classe dans
le quotient. C’est un morphisme de cdgas x est un cocycle et un quasi-isomorphisme
car, par des considérations immédiates de degré, un élément de Sym(Qxz @ Qy) est
de la forme P(x) 4+ Q(z)y (ou P, @ sont des polynomes) et a pour différentielle
Q(x)z%. Soit alors ¢ I'unique morphisme d’algeébres graduées commutatives

(Sym(Qz ® Qy), d) — Qp,(S™)

donné par ¢(x) = 7, ¢(y) = g. Par construction, c’est un morphisme de cdgas et un
quasi-isomorphisme vu le calcul précédent. Ceci établit la formalité de S.
Par ailleurs, les modeles semi-libres donnés sont des modeles de Sullivan minimaux

de de S" (cf. lemme [5.2.13). Ainsi :

Proposition 5.5.5. Soit n > 1. Les spheres S™ sont formelles et ont pour modele de
Sullivan minimal

Sym(Qzx),0) avec = de degré 2k — 1 si n = 2k — 1,
(Sym(Qz & Qy),d) avec = de degré 2k, y de degré 4k — 1 si n = 2k.
La sphere SO est aussi formelle.

Remarque 5.5.6. L’exemple précédent des spheres impaires se généralise facilement
a toute cdga (et donc tout espace) dont la cohomologie est une algebre symétrique
Sym(W*). Ainsi CP* est formel.

Exemple 5.5.7. Une démonstration similaire au cas des spheres de dimension paire
prouve que les espaces projectifs rééls et complexes RP™ et CP" sont formels.

Il existe beaucoup d’espaces intéressants formels; la proposition suivante en énu-
mere un certain nombre.

Proposition 5.5.8.

(1) Si X est un groupe topologique (ou méme simplement un H-espace) alors X
est formel (c’est en particulier le cas de €, X et de tout groupe de Lie donc).

(2) Si X est une suspension X = 3Y alors X est formel.

(3) (Deligne-Griffiths-Morgan-Sullivan) Si X est une variété de Kahler compacte,
alors X est formel.

FEzercice 5.5.9. Montrer qu’un produit (resp. un bouquet) d’espaces formels (resp.
pointés) est formel.

5.6. RATIONNALISATION ET EQUIVALENCE HOMOTOPIQUE ENTRE ESPACES ET
CDGAS

Nous allons maintenant comparer les théories homotopiques des cdgas et des es-
Qpp

paces topologiques. Nous disposons de deux adjonctions sEns CDGA® et
s

| —|: sEns Top : Sing,(—) (données par les propositions [3.1.19| et |5.4.17)).

Définition 5.6.1. La réalisation spatiale des cdgas est le foncteur composé CDGA? —
Top défini par A — |S2(A)|. On appelera S2(A) la réalisation simpliciale de A.
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On sait (Corollaire [3.2.18) que la réalisation géométrique est de Quillen, et qui
plus est, une équivalence de Quillen.

Remarque 5.6.2. L’adjonction entre ensembles simpliciaux et espaces topologiques
passe aux catégories pointées. La structure de modele sur les espaces pointés étant
donnée en déclarant que les équivalences faibles, fibrations et cofibrations sont les
applications qui le sont si on oublie qu’elles sont pointées (cf Exercice . Pour
les cdgas, la notion équivalente a celle d’étre pointée est celle donnée par les algebres
augmentées (Remarque . L’adjonction entre sEns et CDGA passe a ce
Qpp
cadre la formellement aussi pour donner une adjonction sEns, : CDGA
s
Notons que les limites dans les les catégories pointées sont les mémes que dans les
catégories non-pointées. En revanche les colimites (en particulier les coproduits) sont
différentes.

op
aug *

Les adjonctions entre ensembles simpliciaux et cdgas (resp. pointés et augmentées)
sont de Quillen :

Upp,
Proposition 5.6.3. L’adjonction sEns CDGA est une adjonction de Quillen.
58
b,

L’adjonction induite sEmns, CDGA7}, est également une adjonction de Quillen.
s¢

Démonstration. Rappelons que les cofibrations pour la structure de modele de CDGA?
sont les fibrations de CDGA. 1l suffit, par le lemme [2.5.5] de montrer que Q},
préserve les cofibrations et les cofibrations acycliques. Il préserve les équivalences
faibles car une équivalence d’homotopie faible entre espaces topologiques (ou en-
sembles simpliciaux) induit un quasi-isomorphisme de leurs cochaines singulieres et
donc par le théoreme de de Rham-Sullivan [5.4.15] on obtient un diagramme com-

: Qpr(f) o . .
mutatif Qb (X) ——> Q% (Y) impliquant que Q% (f) est un quasi-isomorphisme

| |
C*(X) == C*(Y)
si f:Y — X est une équivalence faible. Si K, < L, est une cofibration (c’est a
dire une inclusion), alors Q% (Le) — Q% (K,) est surjective en chaque degré par
le Lemme [5.4.13] ¢’est donc une fibration dans CDGA donc une cofibration dans

CDGA* et le résultat est démontré. O

Cette adjonction ne peut évidemment pas étre une équivalence (déja car
il existe des cdgas qui ne sont pas des sommes directes de cdgas connexes méme a
quasi-isomorphisme pres), notamment car une cdga ne donne lieu qu’a des invariants
Q-linéaires, ce qui n’est évidemment pas le cas d’un espace quelconque. Nous allons
voir que cette derniere obstruction est essentiellement la seule lorsque 1’on se restreint
a des espaces simplement connexes.

Pour cela on introduit la notion suivante
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Définition 5.6.4 (espace rationnel). Un espace (resp. ensemble simplicial) simplement
connexe X est dit rationnel si ses groupes d’homotopie[™ 7, (X) (n > 2) sont des
Q-espaces vectoriels.

Notons que un groupe abélien est naturellement muni d'une structure de Q-espace
vectoriel si il est uniquement divisible, c’est a dire divisible (tout élément x s’écrit
sous la forme ny pour tout n > 0) et sans torsion. De maniére équivalente on a

Lemme 5.6.5. Un espace simplement connexe est rationnel si et seulement si
e ses groupes d’homologie H;(X,Z) sont des Q-espaces vectoriels (pour i > 2)
e si et seulement si les groupes H;(2X,7Z) sont des QQ espaces vectoriels pour
tout + > 1.

A priori cette condition est contraignante. On va cependant voir que tout espac
simplement connexe a une rationnalisation universelle.

On définit maintenant une notion d’équivalence faible appropriée pour travailler
avec des invariants rationnels et des espaces rationnels.

Lemme et Définition 5.6.6 (équivalence rationnelle). Une application f : X —

Y entre espaces topologiques (resp. ensembles simpliciaux) simplement connexes

est une équivalence rationnelle si elle vérifie I'une (et donc toutes) les conditions
équivalentes suivantes :

e I'application induite f, ® Q : m;(X) ® Q — m(Y) ® Q est un isomorphisme
pour tout ¢ > 2

e 'application induite H,.(f, Q) : H.(X,Q) — H.(Y,Q)est un isomorphisme
pour tout ¢ > 2

e 'application induite H*(f,Q) : H*(Y,Q) — H*(X,Q)est un isomorphisme
pour tout 7 > 2.

L’équivalence entre les différente définitions provient essentiellement des théoremes
de Whitehead, des coefficients universels et d’Hurewicz.

Remarque 5.6.7. Si f: X — Y est une application entre espaces rationnels, alors f
est une équivalence rationnelle si et seulement si ¢’est une équivalence d’homotopie

faible.

Etant donné que l'on s’intéresse aux espaces simplement connexes, on a envie de
restreindre Top et sEns a ce cadre. Pour rester dans ce contexte, on doit évidemment
regarder des (co)limites pointées homotopiquement. Le plus facile pour définir une
structure de modele dans ce contexte est de passer aux

Définition 5.6.8. Un ensemble simplicial est 1-réduit si son 1-squelette est réduit
a un seul point (c’est a dire qu’il a un seul sommet et un seul 1-simplexe donné
par la dégénérescence du sommet). On note sEns' "¢ la sous-catégorie pleine des
ensembles simpliciaux 1-réduits.

Notation 5.6.9. On note Top', sEns', Top!, sEns! les sous-catégories pleines des
espaces topologiques et ensembles simpliciaux simplement connexes, respectivement
simplement connexes et pointées. On considere aussi les sous-catégories Ho(Top')
etc.. correspondant aux sous-objets et morphismes (quotients) correspondants & ces
catégories dans les catégories homotopiques.

148. on ne précise pas les points bases puisque les espaces sont simplements connexes
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La catégorie de modele des ensembles simpliciaux passe & la sous-catégorie sEns' ~"¢

(ce qui se voit dans la preuve de la proposition/définition [5.6.10) Un ensemble sim-
plicial 1-réduit est évidemment simplement connexe (puisque on peut utiliser les
groupes d’homotopie simpliciale). On a un diagramme commutatif

Ho(Top') —> Ho(sEns') <—Ho(sEns' ")

) s

Ho(Top!) — Ho(sEns;)

dont on déduit que toutes les catégories homotopiques du diagramme sont équi-
valentes. L’équivalence diagonale a gauche suit du fait qu'un ensemble simplicial
1-réduit n’a pas d’homotopie en degré 0 et 1 (comme il est évident sur les groupes
d’homotopie simpliciaux). On modifie maintenant la catégorie de modele de maniére
a s’intéresser aux équivalences rationnelles (en particulier on rajoute des équivalences

faibles).

Proposition 5.6.10. On munit la sous-catégorie pleine sEns'~"? des classes de mor-
phismes suivantes :

e les équivalences faibles sont les équivalences rationnelles,
e les cofibrations sont les cofibrations de sEns,
e les fibrations sont les morphismes ayant la propriété de relevement a droite

par rapport aux cofibrations acycliques.

1—red

Cette classe de morphisme fait de sEns une catégorie de modele.

On notera sEnséjmd la structure de modele induite. On notera que toute fibration
dans cette catégorie est en particulier une fibration de Kan.

Démonstration. La propriété s’obtient en passant aux groupes d’homologie,
tout comme la stabilité par rétracte des équivalences rationnelles. Celles pour les
cofibrations suit de celle des ensembles simpliciaux et celle des fibrations est auto-
matique puisque elles sont définies par propriété de relevement a droite. Pour

on remarque que si X <y Z 5 Y est une factorisation dans sEns ot X , Y sont
1-réduits, alors, en notant que 'image i(X) est également 1-réduite, on obtient une
cofibration X »— Z,., ou Z,.q est le complexe simplicial obtenu en ne gardant que
les 0 et 1-simplexes dans I'image de i(X) (c’est a dire qu'on a retiré les autres et
toutes leurs dégénérescences). Comme Z — Y est fibration et Y 1-réduit, il suit que
le morphisme d’ensemble simplicial induit Z,.; — Z — Y est encore une fibration
de Kan (il n’y aucune condition non-triviale a vérifier dans la codnition de Kan par
rapports aux simplexes que nous avons enlevé). Par ailleurs, c¢’est une équivalence
faible pour les mémes raisons : les groupes d’homotopie snnphmaux d’un remplace-
ment fibrant Z de Z sont les mémes que ceux du remplacement fibrant Zred obtenu
en réduisant Z (ceci ne change aps son caractére fibrant en vertu du méme argu-
ment que précédemment puisque {x} est réduit). En effet, on a rien changé dans les
groupes d’homotopie en degré > 2 et les autres sont nuls puisque ceux de Y le sont.

Ainsi X — Z,.q — Y est bien une cofibration suivie d’une fibration de Kan
acyclique qui par définition de la structure de modele est la méme chose qu’'un
morphisme ayant la propriété de relevement des cofibrations (puisque c’est le cas
dans sEns). Montrons maintenant la propriété de relevement des fibrations qui sont
des équivalences rationnelles.
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Soit X — Y une fibration et une équivalence rationnelle. D’apres ce qu’on vient

de voir, on peut la factoriser sous la forme X «— Z 5 Y sous la forme d’une cofi-
bration et d'une fibration acyclique (pour la nouvelle structure de modele). D’apres
la propriété 2 pour 3, X < Z est aussi une équivalence rationnelle. Ainsi elle a la
propriété de relevement a gauche par rapport a toute fibration acyclige de la nou-
velle structure et en particulier X — Y. Le relevement induit dans le diagramme

X X asure que X — Y est un rétracte de Z 5 Y et donc a bien la pro-

Z ——=Y
priété de relevement a gauche par rapport a toute cofibration. L’existence de 'autre
factorisation est plus délicate et technique et nous renvoyons a [15]. O

Proposition 5.6.11. Les objets fibrants de la catégorie de modele sEns}@_red sont

exactement les ensembles simpliciaux fibrants et rationnels.

Démonstration. Ils sont nécessairement fibrants puisque des fibrations dans cette
catégorie de modele sont en partculier des fibrations de Kan. Pour montrer qu’ils
sont de plus rationnels, on utilise le fait que 'ont peut représenter toute applica-
tion de degré k de S™ — S™ (c’est a dire induisant la multiplication par k sur les
groupes d’homotopie) par une cofibration qui est une équivalence rationnelle. En
effet si f est une telle application, on construit S™ x [0,1] ][, S™ = cyl(f) ol le
recollement identifie S™ x {1} avec son image par f. L’inclusion S™ < cyl(f) est
donc la mutliplication par k& en homotopie et induit donc un isomorphisme au niveau
des groupes d’homologie a coefficients dans Q. Il suit de I'existence du relevement

dans  Sing,(S™)e, .y ——= X queles groupes d’homotopie de X sont uniquement

2
o

SIng, (cyl(f))eyeg — {*}
divisibles par tout entier. O

Corollaire 5.6.12. Tout espace simplement connexe a un remplacement rationnel
X — Xg ot Xg est un espace rationnel. De plus Xg est un CW-complexe relatif.

La derniere assertion se démontre comme le fait que la réalisation géométrique
est un CW-complexe. Par ailleurs, quitte a passer d’abord au revétement universel,
on peut donc associer a tout espace un espace rationnel canonique, cela dit cette
opération perd évidemment toute information sur le groupe fondamental.

On définit de méme une structure de modele sur les cdgas 1-réduites (qui sont
canoniquement augmentées) CDGA' " dont la catégorie homotopique est équi-
valente & la sous-catégorie pleine de Ho(CDGA) dont les objets sont les cdgas
simplement connexes[*} Ceci découle de la preuve de la Proposition [5.2.29 qui
montre que si A est simplement connexe, on peut trouver un modele de Sullivan
(minimal) (Sym(V*),d) — A avec V= V1 = (.

On énonce maintenant le résultat fondamental expliquant la relation entre la théo-
rie homotopique des espaces rationnels et les cdgas, du a Quillen, Sullivan :

149. celles qui sont connexes et dont la cohomologie en degré 1 est nulle
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Théoréme 5.6.13. L’adjonction de Quillen de la proposition [5.6.3] induit une adjonc-

%,
l—red —

tion de Quillen sEnsg (CDGA'™ ") et une équivalence de catégorie

S8
Ho(Topg,) ~ Ho(CDGA))

entre les catégories homotopiques des espaces simplement connexes de type fini (c’est
a dire dont les groupes d’homologie sont de dimension finie en chaque degré) et les
cdgas simplement connexes de type fini (1a encore degré par degré).

Remarque 5.6.14. Le théoreme reste vrai pour des espaces dits nilpotents, c’est a dire
ceux qui sont connexes et dont le groupe fondamental est nilpotent et agit de maniere
nilpotente sur les groupes d’homotopie supérieurs (une fois étendu la définition de
la rationnalisation pour ces espaces).

Comme toute cdga connexe a un modele de Sullivan minimal connexe (et en

utilisant les lemmes et [5.3.9), on obtient
Corollaire 5.6.15.

e Les classes d’isomorphismes dans Ho(Top}@ f) sont les mémes que les classes
d’isomorphismes d’algebres de Sullivan minimale (Sym(V),d) avec V°? =
Vi=0.

e On a des bijections naturelles entre HomHo(Topé)(X ,Y) et les classes d’ho-
motopie de Sullivan (resp. isomorphismes) entre modeles de Sullivan (resp.
minimaux) de X et Y.

Le point fondamental de la preuve du Théoreme [5.6.13| est le suivant :

Proposition 5.6.16. Soit (Sym(V*),d) une algebre de Sullivan minimale avec V° =
V1 = 0. On a un accouplement naturel bilinéaire non-dégénéré m, (| S (Sym(V*), d)|) x
V" — Q qui induit un isomorphisme V" — Homg (7, (|S2(Sym(V*), d)|), Q) si V"
est de type fini.

Puisque tout espace connexe admet un modele minimal (que 1’on peut choisir de
telle sorte que V9 = V! = () et par invariance homotopique de la réalisation spatiale
(théoreme [5.6.13]) on en déduit le critere tres pratique suivant :

Corollaire 5.6.17. Soit X un espace topologique simplement connexe de type fini et
(Sym(V'), d) un modele de Sullivan minimal de X. Alors on a des isomorphismes

V™ 2 Homg (ma(X), Q).

Le corollaire donne un moyen efficace tres pratique pour calculer les groupes d’ho-
motopie rationnels d’un espace simplement connexe. Il suffit de dualiser les V¢ d’un
modele minimal.

Apercu de la preuve de la Proposition [5.6.16, Par I’équivalence de Quillen entre sEns
et Top, il suffit de démontrer le résultat au niveau des groupes d’homotopie simpli-
ciaux de S2(Sym(V*),d))).

Notons Sym(S;) le modeéle minimal de la sphere de dimension n (Proposition[5.5.5)) ;
ainsi S” a un générateur et les autres composantes sont nulles si n est impair et S2"~!
a un autre générateur si n est pair (et la différentielle de ce dernier est le carré du
générateur de S).
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On a des bijections induites par nos diverses adjonctions de Quillen :

(33) HomHO(sEnS)(ﬁA:LHa S.A((Sym(v*), d))

= Hompo(cpeaor) (Qpr (OATH), (Sym(V™), d))

= HOHlHo(CDGA)((Sym(V*)a d)v Q}KDL( An+1))

= Hompo(cpea) ((Sym(V7), d), Sym(S;))
le dernier isomorphisme étant induit par les proprietes de relevement des algebres
de Sullivan et le quasi-isomorphisme naturel Sym(S}) — Q% (OAZT!).
Par ailleurs, par formalité de Sym(S}) (Proposition [5.5.5)), lemme et pro-

priétés des algebres semi-libres, on a qu’une classe d’homotopie de morphisme de

cdga (Sym(V*),d) dans Sym(S}) est uniquement déterminée par sa composante
¢: V" — H™(S™) = Q. On obtient ainsi une application

T (SE((Sym(V*), d))) = Homp, SEnS)(E)A"+1 S ((Sym(V*),d)) — Homg(V", Q)

induisant notre accouplement. Pour vérifier qu’il est bilinéaire, on utilise un modele
minimal du wedge S™ V S™ de deux spheres et vérifier que c’est précisément un
isomorphisme nécessite d’étudeir en détail la construction par induction sur 7 et sur
la dimension de V.

La preuve montre que ce pairing est non-dégénéré si les groupes d’homotopie
T (S2((Sym(V*), d)))®Q sont de types finis ce que 'on peut montrer étre équivalent
a demander que V"™ est de dimension finie. . O

Points essentiels de la preuve du théoréme|5.6.15 Que ’adjonction passe aux caté-

gories 1-réduites se voit directement a partir de la définition des foncteurs 2%, et

S Par les équivalences de catégories homotopiques que nous avons vu, la deuxieme

affirmation se réduit a montrer que l'unite et la counité de 1’adjonction induite
LOby,

Ho(sEns}@_’”ed) (Ho(CDGA' ")) entre les catégories homotopiques sont
RS

des équivalences faibles lorsque V' est de type fini en chaque degré. C’est a dire que

pour tout modele de Sullivan, que 'on peut supposer minimal, (Sym(V'),d) — A et

tout ensemble simplicial fibrant 1-réduit X,, les morphismes canoniques

(34) (Sym(V),d) — Qpr(ST((Sym(V),d))

(35) Xo — S2(Qp (X))

sont des équivalences faibles (respectivement dans CDGA et dans sEns1 Ted) On
remarque que le fait que soit une équivalence faible découle en fait de . En
effet, cette propriété est équivalente par définition au fait que | Xo| — |S.A(Q}‘) L(X.))
est une équivalence rationnelle ce qui est équivalent par le lemme et définition [5.6.0]
a demander que le morphisme d’algebres différentielles associatives graduées

C*(|S3(Qp(X.))], Q) — C*(X., Q)

est un quasi-isomorphisme, ce qui par le théoreme de Sullivan-De Rham [5.4.15] est
équivalent a demander que le morphisme de cdgas

Do (1983 (Qp (X)), Q) — D (Xe, Q)
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~

est un quasi-isomorphisme. En prenant un modele de Sullivan (Sym(V),d) — A
avec VY = V! = 0 de X,, on obtient un diagramme commutatif

Qpr (152 (L (X)), Q) Qp(Xe, Q).

\/

(Sym(V),d)

d’ou 'on déduit que le fait que est un quasi-isomorphisme implique que
I’est aussi.

Maintenant le fait que soit une équivalence faible découle en fait de la Pro-
position [5.6.16] En effet, si V' est concetnré en un seul degré, alors, nécessairement
la différentielle est nulle et cela devient une conséquence de cette proposition et du
théoreme d’HureWicz@ qui donne un isomorphisme en cohomologie en degré n. On
travaille ensuite par récurrence sur n pour se ramener a montrer qu’il suffit de dé-
montrer le résultat pour tout V' tel que Vi > n = 0 (en utilisant esentiellement que
’homologie en degré < n n’interagit pas V©=m).

Le cas V™ = ( se traite 1a aussi par récurrence en considérant un diagramme
commutatif de la forme

Sym(V<")¢ Sym(V<"a Vn) Sym(V™)

. l |-

Qpp(SS(Sym(V<))) —= Qp (S (Sym (V<" @ V7)) ——= Q3 (S3(Sym(V™)))

ol les quasi-isomorphismes verticaux a droite et a gauche sont obtenus par I'hypo-
these de récurrence et implique que celui du milieu en est un. O

Ezxemple 5.6.18 (Théoréme de Serre). Dans la proposition nous avons déter-
miné le modele minimal (Sym(V.*),d) des spheres S"”. D’un autre c6té, la proposi-
tion [5.6.16) nous assure que les groupes d’homotopie des sphéres vérifient

™ (5" @) = Homg(V,", Q)

puisque les V! sont de dimension finie. La forme explicite des V* déterminée dans
la proposition [5.5.5| nous redonne alors immédiatement le Théoreme de Serre [1.7.9]

Soit F' — E % B une fibration de Serre avec B simplement connexe et E connexe
par arcs. On suppose de plus que E et F sont de type finis. Soit (Sym(V),d) —
Q% (B) un modele de Sullivan (que I’on peut choisir minimal) de B. Soit maintenant
un modele de Sullivan relatif (que 'on peut encore prendre minimal)

*

Q5 (B) - o (E)

id®1 /

(Sym(V) ® Sym(W), D)

~

(Sym(V),d

150. précisément on 'applique dans le cas d’un espace qui a un unique groupe d’homotopie non-
trivial, ce qui s’appelle un espace d’Eilenberg-MacLane pour lesquels on sait exhiber leur anneau
de cohomologie
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du morphisme de cdga induit par p : E — B ( dont lexistence découle de la
proposition 5.3.8)). La fleche canonique i* : Q%, (E) — Q% (F) induit un morphisme
canonique

(36) Q D (sym(vy.a) (Sym(V) @ Sym(W), D) 5 Q% (F)

puisque ¢* o p* = 0. Le produit tensoriel a la source est le produit tensoriel dans la
catégorie des (Sym(V),d)-modules gradués et hérite d'une structure de cdga cano-
nique@ définie par le produit tensoriel des multiplications. Pour cette structure, la
fleche est un morphisme de cdgas.

Proposition 5.6.19. Sous les hypotheses précédentes, le morphisme de cdgas

Q ® (Sym(V)®Sym(W),D) L 05, (F)
(Sym(V),d)

est un quasi-isomorphisme.

La preuve de cette proposition est essentiellement le fait qu'une équivalence de
Quillen préserve les limites homotopiques et que la fibre d’une fibration est faible-
ment équivalente a la limite homotopique (c’est a dire le noyau homotopique) du
morphisme.

Notons que I'on peut réécrire @  ®  (Sym(V)®@Sym(W), D) = (Sym(W), D)
(Sym(V),d)

ot la différentielle D est induite par la restriction W — (Sym(V) @ Sym (W) dans
le passage au quotient.

Ezemple 5.6.20 (Cohomologie de 2X). Considérons la fibration Q, X — P, X — X
d’un espace connexe par arcs X ou P, X désigne les chemins commencant en z et 2, X
les lacets pointés en x. Soit (Sym(V),d) — Q5 (X) un modele de Sullivan minimal
de X avec V! = V0 = 0. L’espace P, X est contractible. Un modele de Sullivan relatif
de (Sym(V),d) — Q5 (X) — Q% (P, X) est alors donné par l'inclusion Sym(V) —
(Sym(V @ V[—1]), D) qui envoie V sur lui méme identiquement. Ici la différentielle
D est celle donnée par le cone de l'identité. Plus exactement, pour v € V™, on choisit
D(v) = d(v) € Sym(V) C Sym(V & V|[-1]) et pour w € V[—1]" = V" on choisit
d(w) =w — s(d(w)) € V' @ Sym(V) @ V[—1] ot s : Sym(V) — Sym(V & V[-1]
est 'unique dérivation de degré —1 définie par la restriction sy qui envoie v sur le
méme élément mais vu dans V[—1] (et donc vu comme étant en degré n — 1). Ainsi
s(vr--vp) = Y Evr - vj_18(vj) -+ v, ot £ est —1 a la puissance la somme des
degrés de vy,... vj_.

FEzercice 5.6.21. Montrer que (Sym(V & V|[—1]), D) est bien une cdga, de Sullivan et
est quasi-isomorphe a Q (indication, il suffit de voir que cette cdga a une filtration
dont le gradué associé est E(V) ou V' est muni de la différentielle nulle et de savoir
que si un morphisme entre deux complexes filtrés est un quasi-isomorphisme sur le
gradué associé, alors il I'est sur les complexes eux-mémes).

On en déduit que l'inclusion (Sym(V'),d) < Sym(V)®@Sym(V[-1]) = (Sym((V®
V[—1], D) est bien un modele de Sullivan de (Sym/(V'),d) — Q5 (X) = Qp (P X).

151. le produit tensoriel au dessus de A est le coproduit dans la catégorie des A-cdgas pour toute
cdga A.
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La Proposition [5.6.19 nous donne alors qu’un modele de Sullivan de 'espace des
lacets pointés 2,.X est

Q @ (Sym(VeV[-1)),D) = (Sym(V[-1]),D).
Sym(V)

Par construction, comme (Sym(V),d) est un modele minimal et V! = V° = 0,
la différentielle d est & valeur dans Sym=?(V) et ainsi D a toujours au moins une
composante dans Sym='(V). Il suit que D = 0. Par conséquent, on obtient que le
modéle minimal de 2, X est (Sym(V[—1]),0) ot V est l'espace gradué sous-jacent
au modele minimal de X.

En particulier, on obtient immédiatement la cohomologie de £2,.X, que c’est une
algebre symmétrique et que cet espace est formel !
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VI. APPENDICE : (R)APPELS DE TOPOLOGIE ET THEORIE DES CATEGORIE

Le but de cet appendice est de fixer certaines notations, conventions et de préciser
ou rappeler selon les cas quelques résultats ou notions de topologie et catégories
utilisés. Il est écrit dans un style plus sec et essentiellement sans preuves (que 1'on
peut trouver dans des textes classiques de topologie ou catégories, par exemple ceux
de la bilbiographie ou vos notes de cours préférées).

6.1. QUELQUES NOTIONS DE TOPOLOGIE GENERALE

Nous précisons dans cette partie quelques notations et résultats généraux de to-
pologie générale que nous allons utiliser. Nous utilisons la terminologie standard
suivante

Définition 6.1.1. Un espace topologique X est un ensemble muni d’une famille de
sous-ensembles U C X appelés ouverts, satisfaisant les propriétés suivantes :

(1) X et 'ensemble vide () sont ouverts,
(2) une réunion quelconque | J; U; d’ouverts est un ouvert,
(3) l'intersection d'une famille finie d’ouverts est un ouvert.

Un sous-espace topologique de X est un sous-ensemble A C X muni de la topologie
induite, c’est a dire dont les ouverts sont ceux les sous-ensemble U N A ou U est un
ouvert de X.

Un homéomorphisme est une bijection continue dont la réciproque est aussi conti-
nue.

e Une fonction f : X — Y entre espaces topologiques est continue si la pré-
image par f de tout ouvert est un ouvert.

e Un espace topologique est discret si tous sous-ensemble est ouvert.

e Un espace topologique est grossier si ses seuls ouverts sont lui-méme et ().

Notation 6.1.2. On notera X =Y lorsque X et Y seront homéomorphes.

6.1.1. Espaces séparés, compacts et variantes. Une propriété tres utile en topologie
est celle d’étre un espace séparé, qui est automatique pour les espaces métrisables,
mais n’est pas néessairement préservé par les passages aux quotients (voir .
Cette propriété qui signifie que les points sont séparés (au sens du francgais) par
des ouverts fait partie d’un hiérarchie d’axiomes dits de séparation classique qui est
récapitulée dans la définition suivante :

Définition 6.1.3 (Axiomes de Séparation). Soit X un espace topologique.

(To): X est Ty (ou de Kolmogoroff) si pour tout point z # vy, il existe un ouvert
contenant 1'un des points et pas 'autre.

(Th): X est ditE] T} si pour tout points x # y, il existe un ouvert U, contenant x
et pas y et un ouvert U, contenant y et pas .

Séparé =(T5): X est séparé si pour tout = # y, il existe des ouverts disjoints U,
contenant x et U, contenant y.

152. parfois appelé de Fréchet, mais c’est une terminologie ambigue et non-univoque qu’il vaut
mieux proscrire
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(T3): X est Ty ou régulier s'il est Ty et vérifie en plus la propriété (T3) : pour tout
fermé F et point x ¢ F, il existe des ouverts O,, O disjoints contenant
respectivement = et F'. B

(Ty): X est Ty ou normal s'il est T} et vérifie en plus la propriété (7y) : si A, B sont
des fermés disjoints dans X, il existe des ouverts O 4, Op disjoints contenant
respectivement A et B.

Remarque 6.1.4. En anglais, un espace séparé est appelé espace de Hausdorff.

Au plus un espace est élevé dans cette hiérachie, au plus il est facile de construire
des fonctions continues sur ces espaces.

Ces notions de séparation sont strictement différentes et s’impliquent les unes les
autres. En particulier les espaces normaux et régulier sont séparéslT_gsl. On pourra
consulter les exercices pour voir plus d’exemples.

FExemple 6.1.5. Tout espace métrisable est séparé et méme normal. C’est également
le cas de toute variété (au sens frangais du terme, ce qui inclut qu’elle est séparée
notamment).

Un sous-ensemble de R[zy,...,z,] muni de la topologie de Zariski (c’est a dire
dont les fermés sont les les ensembles de racines d'un polynome) n’est pas séparé.

Ezemple 6.1.6. Soit (X, <) un ensemble (partiellement) ordonné. Pour z € X, on
introduit les parties :

D,={yeX /xz2yletGo,={ye X /y=za}

Les ensembles D, (respectivement les ensembles (G,) forment la base d’une topologie
appellée topologie droite (resp. gauche). Ces espaces topologiques sont Ty mais pas
T, en général. Par ailleurs tout espace Ty qui vérifie que 'intersection quelconque
d’ouvert est ouverte est homéomorphe a un ensemble partiellement ordonné muni
de la topologie droite.

Une des principales propriétés des espaces normaux est résumée dans le Théoreme
suivant.

Théoréme 6.1.7 (Tietze). Soit X un espace normal et F' un fermé de X. Toute
fonction continue ¢ : F' — R s’étend en une fonction continue ¢ : X — R (i.e.
vérifiant que pour tout x € F, ®(z) = ¢(x)).

En prenant FF = AU B la réunion de deux fermés disjoints, on obtient comme
corollaire

Lemme 6.1.8 (Urysohn). Soient A, B deux fermés disjoints d’un espace normal.
Alors il existe une fonction continue sur X qui vaut 0 sur A et 1 sur B.

Une autre notion vraiment fondamentale est celle de compacité et ses variantes. Il
existe une petite subtilité a son sujet pour les espaces topologiques généraux et des
différences de terminologie entre certaines traditions auxquelles il convient de faire
attention, cf remarque [6.1.12]

153. au sens du francais. Les anglophones font la distinction entre la propriété de séparation des
fermés et celles d’étre T7 ou Ty en plus
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Définition 6.1.9 (Espace compact). Un espace topologique X est dit compact s'il
est séparé et que de tout recouvrement de X par des ouverts, on peut extraire un
recouvrement fini.

Un espace est dit localement compact, si pour tout point x € X, il existe un
voisinage compact de x.

Lemme 6.1.10. Un fermé dans un compact est compact.
FEzxercice 6.1.11. Démontrer le lemme.

Remarque 6.1.12. Bien entendu, la premiere propriété est inutile dans les espaces
métrisables car ces derniers sont toujours séparés.

Par ailleurs, on notera qu’en littérature anglo-saxone, I’hypothese X séparé est
souvent omise[TiZ], ce qui n’est pas le cas dans la tradition francaise. Par exemple
un espace muni de la topologie grossiere est toujours compact au sens anglo-saxon
usuel. De méme, si Y n’est pas séparé, alors un précompact (c¢’set a dire un espace
vérifiant la propriété de recouvrement) de Y n’est pas forcément fermé dans Y (il
suffit de considérer un singleton dans un espace grossier pour trouver un exemple).

L’hypothese séparé est fondamentale pour obtenir la proposition bien connue et
utile :

Proposition 6.1.13. Soit X un espace compact et Y un espace séparé.

(1) Tout compact de Y est fermé;

(2) pour toute application continue f : X — Y, on a que f(X) est compact.

(3) Si f: X — Y est une application continue, injective d'un compact dans un
espace séparé alors c¢’est un homéomorphisme de X sur f(X) C Y (ou f(X)
est muni de sa topologie de sous-espace de Y.

Proposition 6.1.14. Tout espace compact est normal.

Définition 6.1.15 (Espace paracompact). Un espace paracompact est un espace topo-
logique séparé vérifiant que tout recouvrement ouvert (U;);e; admet un raffinement
localement fini, c’est a dire un recouvrement par des ouverts (V;);ecs tel que chaque
V; est inclus dans un Uj;, et de sorte que tout point est inclus dans un nombre fini

de V.

Ezemple 6.1.16. Toute variété topologique (au sens du francais) est paracompacte.
Tout espace métrisable est également paracompact.

Une des principales utilisation des espaces paracompact est le résultat suivant.

Proposition 6.1.17 (partition de I'unité). Soit X un espace paracompact et (U;);ey un
recouvrement ouvert de X. Alors il existe un ensemble ( f;);e; de fonctions continues
de X dans [0,1] vérifiant que f; est a support dans U;, tout point x admet un
voisinage sur lequel seul un nombre fini de f; sont non-nulles et de plus >, fi = 1
sur ce voisinage.

6.1.2. Topologie compacte-ouverte pour les espaces de fonctions. Soit X,Y deux
espaces topologiques. On note YX I'espace des fonctions continues YX := {f : X —
Y, f continue }. Ces objets apparaissent régulierement en topologie algébrique, par
exemple pour définir les espaces de chemins La topologie de ces espaces est
donnée par

154. c’est ce qu’on appelle un espace pré-compact en francais
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Définition 6.1.18. La topologie compacte-ouverte est la topologie sur Y dont les

ouverts sont engendrés par les ensembles UK = {f: X =Y, f(K)CU} pour tous
sous-ensembles U C Y ouvert et K C X compact.

Il n’est pas complétement évident de se rendre compte tout de suite que cette
topologie est naturelle. C’est un peu plus évident si I'espace d’arrivée est métrique
en vertu de la proposition suivante :

Proposition 6.1.19. Si Y est un espace métrisable, la topologie compacte-ouverte est
la topologie de la convergence uniforme sur tout compact.

La topologie-compacte ouverte est aussi la bonne topologie pour assurer que la
composition ou I'évaluation X x Y* — Y, (z, f) — f(x) sont continues, du moins
sous des hypotheses de séparation et compacité suffisante.

Lemme 6.1.20. On suppose que X est localement compact, alors :

(1) Tapplication d’évaluation ev : X x Y* — Y définie par ev(z, f) = f(z) est
continue.

(2) Si de plus Y est localement compact et Z est séparé, l'application f
(y — f(—,y)) induit un homéomorphisme Z**¥ = (ZX)¥ et la composition
(f,g) = go f induit une application continue c¢: YX x Z¥ — Z¥X.

(3) Si Y, Z sont séparés, Pappplication qui a (f,g) € YX x Z¥ associe applica-
tion z — (f(z), g(z)) est un homéomorphisme YX x ZX = (Y x Z)X.

Exercice 6.1.21. Démontrer le lemme [6.1.201

6.1.3. Espaces topologiques définis par des propriétés universelles. Dans cette par-
tie nous détaillons la topologie produit et la topologie de la réunion et plus généra-
lement les espaces limites et colimites.

Définition 6.1.22. Soit (X;);c; une famille d’espaces topologiques. La topologie pro-
duit sur J[,.; X; est la topologie la moins fine rendant continue les projections ca-
noniques 7; : [[.c; Xi = Xj, (z:) — ;.

Lemme 6.1.23. Une base d’ouverts pour la topologie produit est donnée par les
ouverts de la forme Hi6 ; Ui ou U; est ouvert de X; et seul un nombre fini de U; sont
différents de X; entier.

Démonstration. L’application p; étant continue, il suit que pour tout U; ouvert dans
X, Uj x [Ligjer Xi = p; ' (U;) doit étre ouvert dans [],.; X;. Une intersection finie
d’ouvert étant ouverte il suit que les ensembles de la forme énoncée dans le lemme
sont bien des ouverts pour la topologie produit. Considérons maintenant la topologie
engendrée par ces ouverts (en penant donc des réunions quelconques). Par définition,
toute topologie rendant continue les p; continue doit contenir ces ouverts et il suit
que cette topologie est bien la moins fine. O

En particulier, pour un produit fini, un ouvert est une réunion de produits d’ou-
verts quelconque des X;.

Lemme 6.1.24. Les applications continues de Z dans [],.; X; sont en bijection avec
les familles d’application continues (Z i Xi)ier-

Plus précisément, la topologie produit est, a homéomorphisme pres, I'unique es-
pace P, muni d’applications continues p; : P — Xj, tel que pour toute famille
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d’applications ¢; : Z — X, il existe une unique application ¢ : Z — P rendant le
diagramme

commutatif.
Ezxercice 6.1.25. Démontrer le lemme [6.1.241

Démonstration. Une application (ensembliste) f : Z — [ X; est la donnée pour tout
z € Z d'un élément (fi(2))icr € [ Xi ou chaque f;(z) € X;. Par ailleurs, on a que
fi(2) est la composée p; o f par définition de la projection. Ceci montre que toute
application continue Z — [[X; est uniquement déterminée par ses composantes
fi :=pio f. Il reste a voir que f est continue si et seulement si les f; le sont. Puisque
la composée d’applications continues l'est et que les p; sont continues, il reste a
vérifier que f est continue si chaque f; 'est. M Par le lemme [6.1.23] on est ramené
au cas ot U est de la forme (] ;4,5 Uj) X (I [;cp s Xi) ot les U; sont des ouverts de X;.
Mais £;1(U) = £~ (7 (U3) et done f1(U) = Mo, £ 07 (U3)) = Nyey £7(0)
est ouvert.

Ceci prouve la premiere assertion et le fait que la topologie vérifie la propriété
équivalente énoncée dans le diagramme. L’unicité a homéomorphisme pres résulte
de I'unicité de I'application ¢. Soit P’ une autre solution, alors les projetcions p; :
[IX: — X, détermine une unique application continue f : [[X; — P'. et de
méme on obtient une unique application g : P’ — []X; rendant les daigammes
commutatifs. En composant ces fleches on obtient une application f o g rendant le
diagramme commutatif avec Z = P’ = P. Comme l'identité est aussi solution, par
unicite fog =1id. De méme go f = id et on a que f et g sont des homéomorphismes
inverses I'un de 'autre. 0J

On dispose aussi d'une topologie canonique “duale” de la topologie produit, celle
sur les réunions disjointes, appelée plus simplement coproduit.

Si (Xi)ier est une famille d’ensemble, on note ], , X; leur réunion disjointe (par-
fois appelée externe), c’est a dire Uensemble {(x;,7),i € I,x; € X;} formé des élé-
ments de chaque ensemble (a ne pas confondre avec la réunion “interne” de sous-
ensembles d'un méme ensemble).

On a les inclusions canoniques i; : X; < [[.; X; qui envoie un élément de X; sur
I’élément correspondant dans la réunion. On identifiera souvent X; avec la compo-
sante de la réunion qui lui correspond (soit I'image i;(X;)), et parfois on dira plus
précisément la composante indicée par .

Définition 6.1.26. Soit (X;);c; une famille d’espaces topologiques. La topologie co-
produit sur [[,.; X; est la topologie la plus fine rendant continue les inclusions
canoniques i; : X; <= [[..; X;.

155. on a représenté que deux objets X; dans le diagramme mais ils y sont bien str tous
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Les ouverts de la topologie coproduit sont tres faciles a décrire; ce sont juste les
réunions d’ouverts :

Lemme 6.1.27. Un ouvert de la topologie coproduit est une réunion disjointe [ [,.; U;
d’ouverts U; C X;.

En particulier, si chaque X; est connexe (resp. connexe par arcs) alors les compo-
santes connexes (resp. connexes par arcs) sont exactement les X;.

Lemme 6.1.28. Les applications continues de [ [,.; X; dans un espace topologique W
sont en bijection avec les familles d’application continues (X; % W)ier, la bijection

étant donnée par les compositions avec les inclusions canoniques : (][ X; LN W) —
(g 0 d5)jer

Plus précisément, la topologie coproduit est, a homéomorphisme pres, 1'unique
espace C, muni d’applications continues i; : X; — C, tel que pour toute famille
d’applications v; : X; — W, il existe une unique application ¢ : C' — W rendant le
diagramme

commutatif.

Les deux exemples précédents de topologie (co)produit sont typiques des exemples
de topologie (co)limite. La présentation de leur propriété universelle en terme de
diagramme est facile et relativement anecdotique dans leur cas, mais elle est en
revanche le bon moyen de comprendre des exemples plus compliqués et le bon moyen

de comprendre les généralisations dans des catégories quelconques de ces notions.
Deux exemples du méme type sont donnés par les produtis fibrés (définition [6.1.44)
et coproduit fibré/recollement (définition (6.1.40)) :

Définition 6.1.29.

Lemme 6.1.30 (Propriété universelle de la topologie quotient). L’espace quotient
X/R vérifie que toute application continue f : X — Y qui est constante sur les
classes d’équivalence de &, se factorise de maniere unique sous la forme

X ! Y
N A
X/ R .

Autrement dit, il existe une unique application continue f : X /R — Y quireleve f,
cest & dire telle que f = fom.

Tout autre espace topologique X muni d’une application p : X — X vérifiant
la méme propriété de factorisation que la topologie quotient est canoniquement ho-
méomorphe & X/R.

156. on a représenté que deux objets X; dans le diagramme mais ils y sont bien str tous
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Ezercice 6.1.31. Démontrer cette propriété.

Un cas particulier qui revient souvent est lorsque la relation d’équivalence est
induite par une structure de groupes. De maniere générale, les groupes topologiques
ont des propriétés assez remarquables. Rappelons qu'un groupe topologique est un
groupe muni d’'une structure d’espace topologique tel que la multiplication G x G —
G et linverse G — G,  — 2! sont continues. Une action continue d’'un groupe
topologique sur un espace X est une application continue G x X — X qui est une
action de groupe sur les ensembles sous-jacent.

Définition 6.1.32. Soit X un espace topologique et G un groupe agissant continue-
ment sur X. On note X/G 'espace quotient associé a la relation d’équivalence x ~ y
si il existe g € G tel que x =g - y.

Notation 6.1.33. Si F' est un sous-espace de X, on notera X/F 1'espace topologique
quotient de X par la relation d’équivalence engendrée par f ~ f’ pour tout f, f' € F.

Exemple 6.1.34. L’espace topologique S* est le quotient R/Z du groupe topologique
(R, +) par son sous-groupe Z.

De maniere générale, la topologie quotient est la topologie qui réalise I'idée intui-
tive de recollement de sous-espaces comme on peut s’en convaincre via les exemples
précédents.

On prendra garde, cependant, qu’en général, un espace quotient n’a pas de raison
d’étre encore séparé... et donc pas compact non plus (au sens francophone du mot
compacité, cf paragraphe [6.1.1]).

FEzercice 6.1.35. Montrer que le quotient R/Q est un espace topologique de cardinal
non-dénombrable dont la topologie est la topologie grossiere.

Voici maintenant quelques propriétés spécifiques a la topologie quotient

Proposition 6.1.36. Soit 7 : X — X/Z la projection canonique sur un espace
quotient.

(1) Si X est connexe (resp. par arcs) alors X/ est connexe (resp. par arcs).

(2) Si G est un groupe, 'application quotient p : X — X/G est ouverte.

(3) Si H C G est un sous-groupe d'un groupe topologique G, alors G/ H est séparé
si et seulement si H est fermé.

(4) Si X/R est séparé, alors le graphe {(z,y),z ~ y} C X x X est fermé.
Réciproquement, si ce graphe est fermé et que 7 : X — X/R est ouverte,
alors X /% est séparé.

(5) SiX est compact, alors X/ est séparé si et seulement si le graphe de & est
fermé dans X?2.

FEzercice 6.1.37. Démontrer cette proposition (on pourra utiliser qu'un espace com-
pact est normal).

On le voit, la propriété d’étre séparé n’est pas complétement aisé a garantir dans
un quotient. Il existe cependant une condition assez agréable pour garantir cela dans
de nombreux exemples intéressants.

Corollaire 6.1.38. Si X est compact et F' est un fermé alors l'espace quotient X/F
est compact, en particulier séparé.
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Ezxercice 6.1.39. Démontrer ce corollaire.

Définition 6.1.40 (Recollements). Soit X, Y deux espaces topologiques, A une partie
non-vide de X et f : A — Y, une application continue. On munit X [[Y de la
topologie coproduit. Le recollement de X sur'Y par f est 'espace topologique
quotient

XUpY = (XHY)/($ ~ f(z), z € A).

Plus généralement, si A L X et A Y sont deux applications continues, on
appelle encore recollement de X et'Y le long de f, g (ou par abus de terminologie
le long de A) I'espace quotient

XUaY = (X][V)/(9(x) ~ f(z), z € A).

Cet espace topologique est aussi appelé coproduit fibré de X, Y par f, g ou encore
pushout (pour garder la terminologie anglaise) de X et Y par A.

Remarque 6.1.41. On prendra garde que le recollement X U4 Y dépend de f, et g et
pas seulement de A! On fait donc un abus de notation.

Par construction, les inclusions canoniques de X,Y dans le coproduit suivi par
I’application quotient donne des applications canoniques jx : X — X Ux Y, jy :
Y — X U4 Y qui vérifient par définition de la relation d’équivalence sur le quotient
que jxof = jyog. Par composition, si h : XU,Y — W est une application continue,
on obtient alors deux applications hojy : X — W et hojy : Y — W. Nous énoncgons
maintenant la propriété fondamentale du recollement/coproduit fibré, tout d’abord
par une phrase simple puis diagrammatiquement.

Lemme 6.1.42 (Propriété universelle du recollement). Le pushout X Uy Y est le
pushout dans la catégorie des espaces topologiques. Autrement dit, ’ensemble des
applications continues de X U, Y — W est en bijection avec ’ensemble des couples
(X 2 W)Y A W) d’applications continues vérifiant ¢ o f = 1) o g. La bijection est
précisément donnée par h — (ho jx,ho jy).

Beaucoup de constructions en topologie algébrique sont des coproduits fibrés/recollements,
c’est par exemple le cas des cones et cylindres d’une application [I.8.6]

Ezxemple 6.1.43 (Bouquets de spheres). Soit I un ensemble. On se donne un point
base x; C S™ dans la sphere de dimension n pour tout ¢ € I. On appelle bouquet de
spheres (indicé par I'ensemble 1), noté \/; S™, le recollement X = ], S™ Uy (2,) {0t}
donné par l'unique application f : [[,{z;} — {pt}.

Une notion “duale” ou plutot en langage catégorique la co-notion associée a celle
de coproduit fibré est celle de produit fibré.

Définition 6.1.44. Soit X % Z .Y % Z deux applications continues. Le produit fibré
de X et Y au dessus de Z, appelé aussi tiré-en-arriere de Y par f (ou pullback en
anglais) est I’espace topologique

X xzY i ={(r,y) € X xY, f(z) =g(y)}

vu comme un sous-espace du produit X x Y.

Le produit fibré vérifie également une propriété universelle.
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Lemme 6.1.45. L’espace topologique X xz Y de la définition muni des deux
applications p, : (z,y) — x, py : (x,y) — vy, est un produit fibré dans la catégorie
Top des espaces topologiques. C’est a dire que I’ensemble des applications continues

d’un espace topologique 7" dans X X7 Y est en bijection avec les couples (T x

X, T X Y) d’applications continues vérifiant f o ¢x = g o ¢y ; la bijection étant
explicitement donnée par h — (px o h,py o h).

Exercice 6.1.46. Démontrer le lemme [6.1.45]

Ce lemme garantit donc que le tiré-en-arriere est I'unique (& homéomorphisme
pres) espace topologique vérifiant la propriété de factorisation donnée par le dia-
gramme ([38). Les constructions de tiré-en-arriere sont trés importantes en géométrie
(quelle soit différentielle ou algébrique).

6.1.4. Complexes cellulaires. Les complexes cellulaires, aussi appelés CW-complexes,
sont une bonne (et large) sous-catégorie des espaces topologiques, obtenus a partir
de recollements (définition de boules de dimension n, qui a été cruciale dans
le développement des notions d’homotopie faible.

Définition 6.1.47. On appelle i-cellule (ou cellule de dimension i > 0) fermée un
espace homéomorphe & D’ la boule unitée compacte de dimension i, alors quun
espace homéomorphe a D?\ S*~! sera appelé i-cellule ouverte. Une 0-cellule est juste
un espace homéomorphe a un point.

Si e est une n-cellule fermée, on note de son bord (qui est homéomorphe & S 1)

et e=e \ de est une cellule ouverte. Soit maintenant f : de — X une application
continue définie sur le bord d’une cellule. On dispose du recollement de e sur X
suivant f, c’est a dire ’espace topologique quotient

X Upe:= (XH@)/(f(x) ~ z pour z € Je).

On dispose en particulier de 'application évidente (dite caractéristique) e — X Uye

. . N o /7 . .
dont la restriction a e est un homéomorphisme sur son image.

Définition 6.1.48 (CW-complexe). Un espace topologique X est appelé un CW-
complexe si il existe une suite (X™),>¢ telle que

(1) X© est une réunion disjointe de O-cellules (c’est & dire un espace discret) ;
(2) X™ est obtenu & partir de XY & partir de recollement de cellules de
dimension n sur X1 ;

(3) X = U.so X™ est muni de la topologie de la réunion|*

, c’est a dire que
la topologie de X est déterminée par celle des X de la maniére suivante :
F C X est fermé si et seulement si F N X est fermé pour tout n.

Un CW-complexe est fini si il est obtenu a partir d’'un nombre ﬁnilzg] de cellules.
On appelle X™ le n-squelette de X. On appelle une suite X ™ vérifiant les pro-
priétés ci-dessus une décomposition cellulaire de X.
La dimension d'un CW-complexe est le maximum (dans NU{+o0}) des dimensions
des cellules ouvertes de X.

157. c’est & dire la colimite dans Top du diagramme X©) — X1 —
158. on peut vérifier que si une décompositon cellulaire de X est finie, alors toute décomposition
de X va étre finie par compacité des boules
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On notera qu'un CW-complexe X admet (sauf pour ceux de dimension 0) une
infinité de décompositions cellulaires.

Soit Y un sous-espace d'un complexe cellulaire X = (J X ™. On dit que Y est un
sous-complexe cellulaire de X si, la suite (Y™ := YNX ™), cy est une décomposition
cellulaire de Y (en particulier Y est donc un CW-complexe). Autrement dit un sous
complexe cellulaire de X est un espace qui est la réunion d’un certain nombre de
cellules de X.

FExemple 6.1.49. e Un complexe simplicial, ¢f[3.1.3] K a une structure naturelle
de CW-complexe donné par sa filtration K par les i-simplexes. La princi-
pale différence entre les comlexes simpliciaux et les CW complexes tient au
fait que les applications de recollement d’un complexe simplicial sont en fait
des injections cellulaires.

e Les graphes sont exactement les CW-complexes de dimension 1.

e La sphere S™ a une décomposition cellulaire donnée par une unique cellule
de dimension 0 et une cellule de dimension n. On peut aussi ’obtenir en
recollant deux disques sur S"! (en ayant au préalable construit S" ! de
maniére cellulaire). En particulier n’importe quel équateur d’une sphere S™
est un sous CW-complexe.

e Les espaces projectifs P"(R), P*(C) sont des complexes cellulaires de di-
mension respective n et 2n. Les Pi < n(R) sont des sous CW complexes de
P™(R).

e Le tore, RP?, la bande de Mobius ou la bouteille de Klein et de nombreux
complexes simpliciaux ont des décompositions cellulaires avec moins de cel-
lules que de simplexes a I'instar de la sphere.

e Toute variété différentiable est un CW-complexe, tout comme toute variété
topologique de dimension plus petite que 3. Ce n’est pas le cas de toutes les
variétés topologiques, mais en revanche toute variété topologique est homo-
tope a un CW-complexe.

Par construction, X ™\ X1 est une réunion disjointe de n-cellules ouvertes (en
tant qu’espace topologique). On notera aussi que X est la réunion X = Un20 (X (”)\

X (”_1)) disjointe de ses cellules ouvertes (attention, la topologie n’est cependant pas
celle de la réunion disjointe). Par ailleurs, les images (par les applications caracté-
ristiques) des cellules fermées sont fermées dans X (cette propriété n’est en général
pas vraie pour les cellules ouvertes).

D’autres propriétés topologiques utiles sont résumées dans la Proposition sui-
vante :

Proposition 6.1.50. Soit X un CW-complexe et X = |JX™ une décomposition
cellulaire.

e X est séparé et tout point de X admet une base de voisinages contractibles.

e X est paracompact.

e Pour tout n, X est fermé dans X.

e Si K C X est compact, alors il rencontre un nombre fini de cellules ouvertes
de X. En particulier X est compact si et seulement si il est fini.

e Pour tout n, le quotient X ™ /X ("=1 est homéomorphe & un bouquet Ve Lo

de spheres (cf exemple|6.1.43) (ot Iy est 'ensemble des cellules de dimen-
sion n de la décomposition cellulaire de X).

Sn
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e SiY est un sous complexe fermé de X, alors Y est un rétracte par déformation
d’un voisinage ouvert de X.

Définition 6.1.51 (Morphismes cellulaires). Soient X = JX™ et Y = JY ™ deux
décompositions cellulaires de CW-complexes. Une application continue f : X — Y
est dite cellulaire si, pour tout n, f(X™) c Y™,

En particulier, I'inclusion d'un sous-complexe est cellulaire.

Remarque 6.1.52. Un des grands intéréts de la définition d'un C'W-complexe et que
I’on peut construire facilement des applications continues issues d’'un CW-complexe :
en effet, par définition de la topologie de la réunion, on peut les construire inductive-
ment, sur chaque X et pour les construire sur X ™ en les connaissant sur X ™~
il suffit de donner des applications définies sur les n-cellules qui coincident sur leur
bord & celle sur X1,

6.2. (R)APPELS ET NOTATIONS SUR LES CATEGORIES

Nous précisons ici quelques notations et exemples de la théorie des catégories que
nous utilisons.

Définition 6.2.1 (Catégorie). Une catégorie C est la donnée d’une collection d’objets,
notée Obj(C) et pour tout couple (A, B) d’objets, la donnée d’'un ensemble de mor-
phismes, noté Homg (A, B) et dont on désignera souvent un élément f sous la forme
f A — B, pour tout objet A d’'un morphisme appelé identité de A dans A, noté
ida € Homg(A, A) et d'un opérateur de composition, pour tout triplet (A, B, ()
d’objets,
Homcg(A, B) x Home(B, C) — Homeg (A4, C)

(noté pour f: A— Bet g: B— C par go f) satisfaisant les propriétés suivantes :

(1) La composition est associative : (hog)o f = ho(go f) pour tout f: A — B,
g:B—>C,h:C— D;

(2) la composition est unitaire : idg o f = f = f oids pour tout f: A — B.
Un morphisme f € Homg(A, B) sera appelé un isomorphisme si il existe un mor-
phisme g € Homg(B, A) tel que fog =idg et go f =ida.

Une sous-catégorie de C est simplement une sous-classe d’objets et des sous-
ensembles des morphismes entre ces objets qui contiennent les identités et est stable
par composition. Elle est dite pleine si les morphismes entre objets de la sous-
catégorie sont exactement ceux entre ces objets dans C.

Soit C, D deux catégories. Un foncteur ' : C — D associe a tout objet X
de C un objet F(X) de D et a tout couple (A, B) d’objets de C, une application
F(—): Homg(A, B) — Homp (F(A), F(B)) vérifiant

° F(idA) = idF(A),
o F(fog)=F(f)oF(g).
On peut composer deux foncteurs : G o F(X) = G(F(X)), Go F(f) = G(F(f)) et

cette opération est associtive et unitaire (I'unité étant le foncteur identité f +— f.

Puisque un foncteur préserve les compositions et I'identité, il suit aisément qu’un
foncteur F' : C — D envoie tout isomorphisme de C sur un isomomorphisme de D.

Remarque 6.2.2. 11 existe une notion plus générale de catégorie, ot on remplace les
ensembles par un univers plus grand. Nous n’en aurons en fait pas vraiment ['usage.
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Terminologie 6.2.3. Un objet A d'une catégorie C est dit

e initial si pour tout objet X de C, il existe un unique morphisme A — X
dans C,
e terminal si pour tout objet X de C, il existe un unique morphisme X — A

dans C,
e nul si il est terminal et initial dans C.

il est facile de voir que, s’il existe, un objet initial ou terminal est unique a iso-
morphisme pres.
Voici quelques exemples de catégories qui reviendrons souvent :

FExemple 6.2.4. e La catégorie Top des espaces topologiques dont les objets
sont bien entendu les espaces topologiques et les morphismes les applications
continues. La composition et 'identité sont simplement celles des fonctions
usuelles. En particulier les isomorphismes de Top sont précisément les ho-
méomorphismes. Cette catégorie admet un objet initial donné par I'espace
vide () et un objet terminal donné par un singleton {x}.

e Une variante utile de la catégorie des espaces topologiques sera la catégorie
Top, des espaces pointés. Ses objets sont les espaces (X, *) topologiques
munis[™] d'un point distingué x € X. Les morphismes f : (X, xo) — (Y, yo)
entre espaces pointés sont donc les applications continues qui préservent les
points bases, i. e., telles que f(xg) = yo.

On notera que Top, n’est cependant pas une sous-catégorie de Top. Par
ailleurs, le singleton est un objet nul de Top,.

e La catégorie Ens sera celle dont les objets sont les ensembles et les mor-
phismes sont toutes les applications.

On peut bien entendu regarder plusieurs sous-catégories intéressantes de
Ens : par exemple celle des ensembles finis (o1 on ne garde que les ensembles
finis et conserve tous les morphismes), celle des surjections (ot on se restreint
seulement aux applications qui sont surjectives), celle des injections etc. Un
isomorphisme dans n’importe laquelle de ces catégories est simplement une
bijection.

e Si M est un monoide, alors on peut lui associer une catégorie BM qui a
un unique objet noté x et telle que Hompys(*,%) = M de telle sorte que la
composition et 'identité soient données respectivement par la multiplication
et 'unité de M. Réciproquement, si on fixe un objet X dans une catégorie
D, alors (Homp (X, X), o) est un monoide.

e A l'opposé d’un monoide, tout ensemble F donne lieu a une catégorie dont
les objets sont les éléments de la catégorie et les fleches sont 1'identité seule-
ment. Un exemple avec plus de structure (et utile) est le cas d'un ensemble
partiellement ordonné X, < : Les objets de la catégorie associée sont encore
les éléments de X et on se donne en sus exactement un morphisme z — y
pour toute paire d’objets x < y. Une telle catégorie n’a un objet initial ou
terminal que si elle admet un minimum ou maximum.

e La catégorie Cat des catégories est la catégorie dont les objets sont les ca-
tégories et les morphismes entre deux catégories C, D les foncteurs de C

159. en particulier, ils ne sont pas vides
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vers D. Elle a pour sous-catégorie pleine (d'une taille ensembliste plus rai-
sonnable) la catégorie Cat*™ des petites catégories, c’est a dire celles dont
les objets forment un ensemble.

Une autre source de catégorie qui reviendra beaucoup, seront celles qui sont asso-
ciées a des données linéaires et sont en fait additives.

Définition 6.2.5. Une catégorie additive est une catégorie dont les ensembles de
morphismes sont munis d’une structure de groupe abélien de sorte que la composition
de morphismes soit bilinéaire et qui est de plus munie d’un objet nul, c’est a dire
d’un objet a la fois initial et terminal.

Ezemple 6.2.6 (Catégorie des groupes abéliens, modules). Soit k& un anneau commu-
tatif unitaire. On notera k—Mod la catégorie, dite des k-modules, dont les objets
sont les k-modules et les morphismes sont les applications k-linéaires. En particulier,
on a la catégorie Ab := Z—Mod la catégorie des groupes abéliens. La somme de
deux morphismes de groupes abéliens est encore un morphisme de groupes abélien
et donne la structure additive dont 'objet nul est évidemment le module nul 0}.
Cette catégorie est une sous-catégorie de la catégorie Gp de tous les groupes qui elle
n’est pas additive.

Parmi les sous-catégories de k—Mod, on notera k—Mod/ celle des k-modules de
type fini (c’est a dire admettant un nobre fini de générateurs).

Plus généralement la catégorie Ch(k) des complexes de chaines est une catégorie
additive.

Définition 6.2.7 (Transformations et équivalences naturelles). Soient F,G : C — D
deux foncteurs. Une transformation naturelle de F' vers G est la donnée, pour tout
objet X € C, d’un morphisme 7y : F(X) — G(X) dans D vérifiant que pour tout
morphisme f: X — Y dans C le diagramme suivant

F(x) 2L poyy

txl lTy
est commutatif.
Une équivalence[™| naturelle entre F et G est une transformation naturelle pour
laquelle les 7x sont des isomorphismes.

Ezemple 6.2.8. Sion fixe C et D deux catégories, on dispose de la catégorie Fun(C, D)

des foncteurs de C vers D dont un objet est un foncteur et les morphismes Hom pypn(c,py (F, G)
sont les transformations naturelles de F' vers GG. la composition des transformations
naturelles 7, 7" étant donnée par la composition des fleches : 7/ o 7(X) = 7% o 7x et
I'identité étant la transformation naturelle telle que 7x = idy pour tout objet.

Intuitivement on doit penser qu’étre naturellement équivalent est la “bonne” no-
tion identifiant les mémes foncteurs. Ceci conduit naturellement a la bonne notion
d’équivalence de catégories

Définition 6.2.9 (Equivalence de catégories). Un foncteur F : C — D est une équi-
valence de catégorie si il existe un foncteur G : D — C tel que les foncteurs F' o GG

160. ou isomorphisme naturel
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et G o I’ sont naturellement isomorphes a idp, idc aux foncteurs identités de D et
C.

On a un critere pratique pour déterminer si deux catégories sont équivalentes.

Définition 6.2.10. Un foncteur F': C —= D est

e plein si pour tous objets X, Y € C, 'application Hom¢ (X, Y) — Homp (f(X), f(Y))
est surjective ;

e fidéle si pour tous objets X, Y € C, I'application Homg(X,Y) — Homp (f(X), f(Y))
est injective;

e essentiellement surjectif si pour tout objet Z de D, il existe un objet X € C
et un isomorphisme F(X) = Z. Autrement dit tout objet de la catégorie
d’arrivée est isomorphe a I'image d’un objet de la catégorie source.

Un foncteur plein et fidele est souvent appelé pleinement fidele, et par définition
cela veut dire qu’il induit des bijections entre les ensembles de morphismes..

Proposition 6.2.11. Un foncteur F' : C — D est une équivalence de catégorie si et
seulement si il est pleinement fidele et essentiellement surjectif.

Ezercice 6.2.12. Démontrer la proposition [6.2.11}

Ezercice 6.2.13. Démontrer que la catégorie R-Mod’ des espaces vectoriels de di-
mension finie est équivalente a la catégorie dont les objets sont les entiers naturels
et les ensembles de morphismes de n vers m sont les sont les matrices de taille
m X n munie de la multiplication matricielle comme composition. En revanche ces
catégories ne sont pas isomorphes.

6.2.1. Limites et (co)limites dans des catégories. Précisons pour commencer deux

types de (co)limites fondamentaux.

Définition 6.2.14. Sot C une catégorie et A ENS , A % Y deux morphismes. On
appelle coproduit ﬁbré de f et g, un objet W, muni de morphismes X 2% W,

Y 25 W vérifiant jyof = jyog, tel que pour tout couple de morphismes ¢y : X — Z,
¢y Y — Z rendant commutatif le diagramme (sans la fleche en pointillée) suivant

(37) ALy

il existe un unique morphisme h : W — Z rendant le diagramme complet commu-

tatif[®]

Un coproduit fibré n’existe pas forcément pour des morphismes quelconques dans
une catégorie quelconque. En revanche, si il existe, il est unique a isomorphisme
pres :

161. ou coproduit cofibré ou poussé-en-avant ou pushforward en anglais...
162. c’est a dire rendant les deux triangles, ainsi crées par la fleche pointillée, commutatifs
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Lemme 6.2.15. Si W et W’ sont deux objets qui sont des coproduits fibrés (en
particulier on peut donc les munir respectivement des morphismes jx, jy, j%,Jjy)
alors W et W’ sont isomorphes. Il existe par ailleurs un unique tel isomorphisme
compatible avec les choix des jx, jy, jx, Jy -

Exercice 6.2.16. Démontrer le lemme [6.2.15]

Définition 6.2.17. Sot C une catégorie et X Ny .Y % Z deux morphismes. On
appelle produit fibré ou pullback (en anglais) de f et g, un objet P, muni de mor-
phismes P 2% X, P 25 Y vérifiant f o px = g o py, tel que pour tout couple de
morphismes ¢x : Z — X, ¢y : Z — Y rendant commutatif le diagramme (sans la
fleche en pointillée) suivant

(38)

BN
P x

o

y 2.7

il existe un unique morphisme h : T" — P rendant le diagramme complet commuta-
tif@. On appelera px, py les morphismes structurauz (ou plus parfois canoniques).

La encore le produit fibré n’existe pas forcément pour des morphismes quelconques
dans une catégorie quelconque. En revanche, si il existe, il est unique a isomorphisme
pres :

Lemme 6.2.18. Si P et P’ sont deux objets qui sont des produits fibrés, alors P et P’
sont isomorphes. Il existe par ailleurs un unique tel isomorphisme compatible avec
les choix de morphismes structuraux reliant W, W’ a X, Y.

FExemple 6.2.19. Le recollement X U, Y d’espaces topologiques est un coproduit fibré
dans la catégorie Top des espaces topologiques (cf.[6.1.42). De méme le produit fibré
d’espace topologiques est bien le produit fibré dans Top.

De maniere plus générale on a une notion de limites et colimites associées a des
diagrammes, c’est a dire un ensemble d’objets et de morphismes entre eux.

Définition 6.2.20. Un diagramme dans une catégorie C est un foncteur I — C ou [
est une petite catégorie, c’est a dire une catégorie avec un ensemble d’objets. Pour
une petite catégorie I fixée, un tel foncteur est appelé diagramme de forme 1.

Ezemple 6.2.21. Soit I un ensemble, vu comme une catégorie discrete (cf .
Alors un diagramme est simplement une famille indicée par I d’objets de C.

Ainsi pour / = N vu comme un ensemble ordonné via la relation d’ordre, un
diagramme dans C est alors juste la donnée d’une suite d’objets et de morphismes
reliant ceux d’indice consécutifs :

Xof#Xngg—)....

163. c’est a dire rendant les deux triangles, ainsi crées par la fleche pointillée, commutatifs
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FExemple 6.2.22. Soit P la catégorie avec 3 objets a, b, ¢ et deux fleches non triviales
a — b et ¢ — b, alors un diagramme de type P est simplement la donnée de

xhwdy

alors que pour la catégorie C' avec 3 objets a, b, c et deux fleches non triviales b — a
et b — ¢, alors un diagramme de type C est simplement la donnée de

xdasy
Définition 6.2.23 (Limites et colimites). Soit / une petite catégorie et D : [ — C
un diagramme de type I dans une catégorie C.
e Une limite de D est un objet Lp € C, muni de morphismes «; : Lp — D(7)

pour tout objet ¢ € [ vérifiant que pour toute fleche i EN j dans I, on a
a; = D(f) o oy, et satisfaisant la propriété universelle suivante : pour tout

objet Z muni de morphismes Z y D(1) pour tout objet i vérifiant que pour
toute fleche i EN g dans I on a hj = D(f)oh;, il existe un unique morphisme
h: Z — Lp vérifiant que pour tout objet v € I, on a h; = «; o h.

e Une colimite de D est un objet Cp € C, muni de morphismes 3; : D(i) —

Cp pour tout objet i € I vérifiant que pour toute fleche ¢ EN j dans I, on
a B; = B; 0 D(f), et satisfaisant la propriété universelle suivante : pour tout

objet W muni de morphismes D(i) i pour tout objet 1 vérifiant que pour

toute fleche 1 i)j dans I on a f; = fjoD(f), il existe un unique morphisme
f:Cp — W wvérifiant que pour tout objet i € I, on a f; = f o ;.

Lemme 6.2.24. Si une limite de D existe, elle est unique a isomorphisme pres. De
meéme si une colimite existe elle est unique a isomorphisme pres.

En particulier on parlera de la limite ou colimite d’un diagramme.

Démonstration. Cela découle de 'unicité des morphismes h, f dans la définition
comme dans la preuve du lemme [6.1.24] 0

Notation 6.2.25. On note en général hIIIl D(i) lalimite d'un diagramme D et CQhIIn D(i)
S S

la colimite d'un diagramme.
Définition 6.2.26 (Produits et coproduits). Soit I un ensemble vu comme une caté-
gorie discrete (cf exemple [6.2.4). Alors un diagramme de forme I est équivalent a
la donnée d’une famille (X;);c; d’objets et la limite de ce diagramme est appelée le
produit indicé par I de la famille. Il est noté [[,., X;.

La colimite de ce diagramme est appelé le coproduit et est notée [, X;.

FExemple 6.2.27. 11 suit des lemmes [6.1.30] et [6.1.24] que les topologies produit et
coproduit sont bien les produits et coproduits de la catégorie Top.

En revanche dans la catégorie des espaces pointés, le coproduit est différent. En
effet dans Top,, on a [[,.,(Xs, ;) = V(Xi, 2) = [, Xo/ (i ~ x5, Vi,j € I) le
bouquet des espaces X;, muni du point base donné par la classe [z;] dans le quotient.

FEzercice 6.2.28. Démontrer que les produits et coprodutis finis (c’est a dire que [
est fini) sont isomorphes dans Ab ou k—Mod. Identifier les produits et coproduits
infinis et vérifier qu’ils sont différents dans ces mémes catégories.
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FExemple 6.2.29. Dans toute catégorie C, le produit fibré est la limite des diagrammes
de forme P alors que les coproduits fibrés sont les colimites des diagrames de forme C'
comme dans 'exemple[6.2.22] par ailleurs, si C a un objet initial O alors le coproduit
de deux objets s’identifie avec le coproduit fibré X Up Y. La remarque duale est en
vigueur pour le produit de deux objets dans une catégorie avec un objet final * :
X xY=Xx,Y.

Définition 6.2.30. Soit X, ELY X3 LS Xy — ... une tour d’espace topologique, c’est a
dire un foncteur de (la catégorie associée a) N muni de sa relation d’ordre dans Top.
On appelle réunion topologique de cette tour la colimite colim;cy X; de ce diagramme
dans Top.

FEzxemple 6.2.31. La topologie d’'un complexe cellulaire est la réunion topologique de
la tour donnée par les inclusions X (@ «— XM s

Lemme 6.2.32. La réunion topologique existe pour toute tour X LY X EEN Xy — ...
et est donné par [, Xi/(fi(z:) ~ z;).

Si les f; sont des inclusions de sous-espaces topologiques, alors, les applications
canoniques o; X; — colim;en X; sont injectives, que colim;eny X; = [y i (X;) s’iden-
tifie a la réunion des X; et que «; est un homéomorphisme sur son image. De plus
F' est fermé dans colim;ey X; si et seulement si F'Na;(X;) = F N X, est fermé dans
X; (on identifie X; avec son image vu la phrase précédente).

Exercice 6.2.33. Démontrer ce lemme.

Ezercice 6.2.34. Démontrer que, si ils existent, la colimite (resp. limite) d'un dia-
gramme sur [ = () est un objet initial (resp. final).

FEzercice 6.2.35 (Limite d’'une tour). Soit N muni de sa relation d’ordre comme dans

I'exemple |6.2.21) Un diagramme de type N°? est une tour --- — X, LN X LI Xo.
Dans la catégorie des espaces topologique la limite de toute tour existe et est

donnée par le sous-espace {(z,) € [[,cyXn, Vi € N, fi(zit1) = 2;} de l'espace

produit [ [y Xy, c’est a dire par le sous-espace des suites compatibles aux f;.

Ezercice 6.2.36 (Polynomes et séries formelles). Soit A un anneau commutatif uni-
taire et considérons le diagramme dans Ring, la catégorie des anneaux unitaires,
donné par la tour Aglzr] — Aj[x] — ... donné par les inclusions des polynomes
A;[x] de degré inférieur ou égal a i dans ceux de degré inférieur ou égal a i+ 1. Alors
colimy A;[z] = A[z] lanneau des polynomes.

En revanche si on regarde le diagramme ... Ay[x] - Aj[z] - Ap[z] donné par
les projections canoniques A;[z] — A;[z]/(2%) = A;_1(z), on obtient que la limite
limy A;[x] & A[[z]] est isomorphe a 'anneau des séries formelles & coefficient dans
A.

Le méme calcul marche dans A — Mod (mais donne seulement une structure de
module) a la place de la catégorie des anneaux.

Définition 6.2.37. Une catégorie I est dite filtrée si elle est non-vide et vérifie que

e pour tout objets 7,5 € I, il existe un objet k “au dessus d’eux”, c’est a dire
qu’il existe des morphismes ¢ — k et 7 — k;

e pour toute paire de morpismes f, g : ¢ — 7, il existe une fleche h : j — k telle
que ho f =hog.
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Une catégorie est dite cofiltrée si I est filtrée["]

Une colimite filtrée est une colimite sur une catégorie I qui est filtrée (c’est a
dire que I'on regarde des diagrammes de type I ou [ est filtrée.

Une limite cofiltrée est une colimite sur une catégorie I qui est cofiltrée.

Une généralisation est la notion de (co)limite x-(co)filtrée pour un cardinal k.

Proposition 6.2.38. Soit I, .J des petites catégories et F une catégorie filtrante. On
a alors des isomorphismes naturels de foncteurs :
- colim (colimye (D(i, —)) P colimzy s D = colim; (colim;e s (D(—, j)),
- limy (colim;e (D (i, —)) — limyyy D +— lim;(colim;e s (D(—, j)) pour tout
I x J-diagramme,
- colimp (lim;ey D(—, j) — lim (colimyer(D(k, —)) pour tout diagrame de
type F x J.
Ezercice 6.2.39. Démontrer que dans Top toutes les limites et colimites existent.

Ezercice 6.2.40. Démontrer que dans k—Mod toutes les limites et colimites existent.

6.2.2. Adjonction. La notion de foncteurs adjoints est une des plus importante de
la théorie des catégories.

Définition 6.2.41. Deux foncteurs G : C — D et D : D — C sont adjoints si et
seulement si on a un isomorphisme naturel de bifoncteur[[®7
Ag

Homp (G(-), ) ~ Home(:, D()) -

Ici on a noté Ag et Ad les équivalences inverses I'une de 'autre.
On dit que G est adjoint a gauche de D et que D est adjoint a droite de G.

Concretement, la définition est équivalente a dire que pour tout f € Homg (X, X')
et ¢ € Homp (Y, Y’) on a un diagramme commutatif dont les fleches horizontales sont
des isomorphismes :

Ag(X,Y)

Homp (G(X),Y) T~ Homg(X, D(Y))
Ad(X,Y)

g*l lD(g)*

Ag(X,Y")

Homp (G(X),Y") =~ Home(X, D(Y")) (Adj)
Ad(X,Y)

G(f)*T Tf*

Ag(X",Y")

Homp (G(X'),Y") = ~  Homg (X', D(Y"))
Ad(X",Y)

Nous avons utilisé la notation standard suivante : pour g : ¥ — Z, h: X — Y,
I'application ¢, : Homp(X,Y) — Homp(X, Z) est simplement la composition par
g; c’est a dire 'application f — go f alors que h*: f — f o h.

164. c’est a dire qu’elle est non vide et vérifie que our tout objets 7,5 € I, il existe un objet k “en
dessous d’eux”, c’est a dire qu’il existe des morphismes k — i et k — j et que de plus, pour toute
paire de morpismes f, g : j — i, il existe une fleche h : k — j telle que foh=goh

165. c’est a dire une équivalence naturelle entre foncteurs de C°? x D — Ens
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La partie supérieure du diagramme traduit donc le fait que Ag(X, -) et Ad(X,-) est
un morphisme de foncteur (pour la deuxieme variable) alors que la partie basse tra-
duit le fait que Ag(-,Y") et Ad(-,Y") est un morphisme de foncteur (pour la premiere
variable). Puisque Ag et Ad sont inverse I'un de 'autre, on a Ag(X,Y) = Ad(X,Y) !
pour tous objets X, Y.

Proposition 6.2.42. Soit F' : C — D un foncteur. Il existe, a équivalence naturelle
pres, au plus un foncteur G' qui soit adjoint a gauche de F' et au plus un foncteur D
qui soit adjoint a droite de F'.

On peut donc parler, s’ils existent, de I’adjoint a gauche ou I'adjoint a droite d'un
foncteur et définir une adjonction en ne spécifiant qu'un seul des foncteurs.

Ezercice 6.2.43. Démontrer la proposition.

FExemple 6.2.44. Soit f : A — B un morphisme d’anneaux commutatifs unitaires.
On munit B de la structure de A-module induite : (a,b) — f(a)b ce qui donne un
foncteur canonique Rf : B-Mod — A-Mod. Le produit tensoriel par B au dessus de
A, N — B ®4 N, définit un foncteur qui est adjoint a gauche de Ry.

FExemple 6.2.45. Le foncteur de la catégorie des groupes dans Ens qui envoie un
groupe sur son ensemble sous-jacent et ne change pas les morphismes a un adjoint
a gauche qui a un ensemble associe le groupe libre engendré par cet ensemble.

En prenant X = D(Y') et Y = G(X) respectivement dans le diagrame (Adj), on
obtient pour tous objets X € C et Y € D, des isomorphismes
(39) Homp(G(D(Y),Y) = Homg(D(Y),D(Y)),
(40) Homp (G(X),G(X)) = Homc(X, D(G(X))).

Définition 6.2.46 ((co)unité d’une adjonction). Soit G un adjoint & gauche de D.

e L’unité de I'adjonction est la transformation naturelle (¢ : X — D(G(X)))
induite par idg(x) dans I'isomorphisme ([40)).

e La counité de I'adjonction est la transformation naturelle (ny : G(D(Y)) —
Y) induite par idp(y) dans I'isomorphisme ([39)).

Proposition 6.2.47. Soit G : C — Det D : D — C deux foncteurs et € : Idc — DG
et n: GD — Idp deux transformations naturelles.

(1) Les transformations € et 7 sont respectivement l'unité et la counité d’une
adjonction[® entre G et D si et seulement si les composées

V)" Y pap) P! vy et G(x) Y apa(x)"CE) Gx)

sont des identités.
(2) Le foncteur GG est pleinement fidele si et seulement si € est un isomorphisme,
et D est pleinement fidele si et seulement si 7 est un isomorphisme.

FEzxercice 6.2.48. Démontrer cette proposition.

Corollaire 6.2.49. Une adjonction entre deux foncteurs G et D est une équivalence de
catégories si et seulement si son unité et sa counité sont des isomorphismes naturels.

166. par construction, G est alors forcément ’adjoint & gauche
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Remarque 6.2.50. Si F' est une équivalence de catégorie et que GG est une équivalence
inverse, alors F' et G sont nécessairement adjoints; chacun étant a la fois inverse a
droite et a gauche de 'autre.

Une des propriétés fondamentales des foncteurs adjoints est la suivante.

Proposition 6.2.51. Si G : C,— D est un adjoint a gauche de D : D — C, alors GG
commute avec les colimites et D commute avec les limites :

Collim G(X;) — G(colljm Xi), D(lilgl Y;) —» liIr*n D(Y;).

Plus précisément, la proposition dit que les morphismes canoniques colim; G(X;) —
G(colimp X;), D(limp Y;) — limp- D(Y;) respectivement induits par les propriétés
universelles des (co)limitesm sont des isomorphismes. Ce sont donc des isomor-
phismes naturels entre les foncteurs respectifs.

Remarque 6.2.52. Notons que si C' est une catégorie abélienne, le noyau d’'un mor-
phisme est une limite alors que le conoyau est une colimite. On peut alors notere que
si on a une adjonction entre catégorie abélienne, alors I’adjoint a gauche est exact a
droite et et 'adjoint a droite est exact a gauche au sens de la définition [1.5.1}

Lorsque 'on travaille dans des catégories suffisament “petites”, le fait de commuter
avec des (co)limites est en fait équivalent & étre un adjoint.

Théoréme 6.2.53 (Un des théoremes de 'adjoint). Soit F' : C — D un foncteur entre
catégories localement présentables. Alors F' est un adjoint a gauche si et seulement
si il commute aux colimites. C’est un adjoint a droite si et seulement si il commute
aux limites et est accessible.

Une catégorie localement présentable est une catégorie qui est

e admet un ensemble de générateurs k-compact pour un certain cardinal
k (en particulier tout objet est une colimite x-filtrée de ces objets).
e clle admet toutes les colimites.

Un foncteur dans une telle catégorie est accessible si il commute aux colimites k-
filtrées.

FExemple 6.2.54. Toute catégorie de préfaisceau d’ensembles est une catégorie loca-
lement présentable. De plus toute catégorie de modele combinatoire [2.6.14] est une
catégorie localement présentable.

167. via les morphismes obtenus en appliquant G aux morphismes canoniques X; — colimy X; et
D aux morphismes canoniques lim; Y; — Y
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