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Abstract. We study p-adic properties of the coherent cohomology of some automorphic sheaves on the

Hilbert modular variety X for a totally real field F in the case where the prime p is totally split in F . More
precisely, we develop higher Hida theory à la Pilloni, constructing, for 0 ≤ q ≤ [F : Q], some modules Mq

which p-adically interpolate the ordinary part of the cohomology groups Hq(X,ωκ), varying the weight
κ of the automorphic sheaf.
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1. Introduction

The theory of p-adic families of ordinary modular forms was introduced by Hida in the ’80s and has been
proved to be fruitful in many aspects of number theory, such as the construction of p-adic L-functions or,
together with the corresponding theory of Galois deformations, modularity-type results. This theory, later
generalised to more general automorphic forms, provides a p-adic variation of the degree zero coherent
cohomology groups of suitable Shimura varieties: the idea is indeed to use the additional structure on the
p-divisible group on the ordinary locus of the Shimura variety to p-adically interpolate the automorphic
sheaves (whose global sections are automorphic forms). By applying a projector with respect to certain
Hecke operators at p, one is then able to determine when sections over the ordinary locus come from a
classical automorphic form (see [Hid04, Hid02, Pil12] and more recently [Zha21]). The same circle of ideas
was extended in the ’90s by Coleman [Col96, Col97], who developed, working on neighbourhoods of the
ordinary locus, the finite slope theory.

The recent pioneering works [Pil20, BCGP18, BP20b, BP20a] have developed analogous theories for
higher degree coherent cohomology. In [Pil20], Pilloni introduced higher Hida and Coleman theory for
automorphic forms for GSp4 /Q and these ideas were later generalised in [BCGP18] for ResF/Q GSp4,
where F is a totally real field in which the prime p totally splits, and used to prove potential modularity
of abelian surfaces over F . Boxer and Pilloni conjectured the existence of Hida and Coleman theories in
all cohomological degrees for all Shimura varieties, confirming this prediction in the simplest case of GL2

in the recent work [BP20b] and started developing Coleman theory more generally in [BP20a]. In [Pil20]
and [BCGP18], the integral control theorem for ordinary families is obtained assuming the weights are big
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enough. The control theorem for more general weights is obtained at the cost of inverting p and losing
control of torsion, using Coleman theory: the authors of op. cit. construct over Qp an overconvergent
version of the considered complex and develop a theory of finite slope cohomological families, which they
can prove to be classical cohomology classes in the small slope situation.

In this paper, we study the theory of p-adic ordinary families of Hilbert modular forms, which are
automorphic forms for the group ResF/Q GL2, where F is a totally real field and we assume the prime p
to be totally split in F . We develop higher Hida theory in this context and, using the ideas of [BP20b],
we are able to prove integral control theorems without appealing to an overconvergent theory.

Higher Hida (and Coleman) theory, as developed in [Pil20], has been applied in [LPSZ19] for the
construction of p-adic L-functions and has led to the proof in [LZ20] of new cases of the Bloch–Kato
conjecture in rank 0 and one divisibility in the Iwasawa main conjecture for the spin motive of automorphic
forms for GSp4. We expect the work carried out in this paper to have similar applications. In a forthcoming
paper, the author will use the results on higher Hida theory to construct p-adic L-functions for the Asai
motive of Hilbert modular forms (and the twisted triple product associated to a Hilbert modular form
and an elliptic modular form), following the strategy of [LPSZ19]. We hope the integral classicality result
will simplify the techniques of op. cit., where the authors had to rely on the overconvergent results. In
order to obtain the application for the Bloch–Kato conjecture (for F a real quadratic field), we plan to
prove an explicit reciprocity law, linking such p-adic L-functions with the Euler system classes studied in
[LLZ18, Gro20].

1.1. Main results. We now state our main result more precisely. Let F be a totally real field of degree
n and X be a smooth toroidal compactification of the Hilbert modular variety for F of level coprime to p.
Let L denote the Galois closure of F containing the square roots of the totally positive units of F and let
OL be its ring of integers. Fix ℘ | p a prime of L and denote by R the ring of integers of the completion
of L at ℘. Assume that p is odd and splits completely in F . The set Σ∞ of embeddings of F in R is then
identified with the set of p-adic embeddings F ↪→ Q̄p and therefore with {p ⊂ OF : p | p}. Let

Λ = R[[(1 + pZp)n+1]]

Any k ∈ Zn, w ∈ Z gives an algebra homomorphism (k,w) : Λ → R, induced by the character on

(1 + pZp)n+1 given by ((xi)i=1,...,n, y) 7→ yw ·
∏
xkii . The main result of the paper is the following.

Theorem (Classicality, Theorem 4.2.13). For any J ⊂ Σ∞, there exists a finite projective Λ-module MJ

satisfying the following property: for any k ∈ Zn, w ∈ Z such that kp,
w−kp

2 ≡ 0 mod p− 1 for every p | p,
kp ≡ w mod 2 for every p | p and kp ≤ −1 for p ∈ J , kp ≥ 3 for p 6∈ J , we have an isomorphism

MJ ⊗Λ,(k,n) R ' e(Tp)H#J(X,ω(k,w)),

where ω(k,w) is the automorphic sheaf on X of weight (k,w) and e(Tp) is the ordinary projector with respect
to the Hecke operator Tp. Moreover, for any J ⊂ Σ∞, there exists a finite projective Λ-module NJ , which,
for the same range of weights as above, satisfies

NJ ⊗Λ,(k,n) R ' e(Tp)H#J(X,ω(k,w)(−D)),

where D is the cuspidal divisor of X.

Remark. In Theorem 4.2.13 we actually construct modules M∗J , N
∗
J such that M∗J = 0 for ∗ � #J and

N∗J = 0 for ∗ 
 #J and prove that they specialise to e(Tp)H
∗(X,ω(k,w)) and e(Tp)H

∗(X,ω(k,w)(−D))
respectively, for the same range of classical weights (k,w) described above.

In other words, the modules MJ (and NJ) of the theorem p-adically interpolate the ordinary part of
coherent (cuspidal) cohomology of X in degree #J in a range of weights depending on J . In particular,
if J = ∅, N∅ interpolates ordinary classical holomorphic Hilbert cuspforms of weight (k,w) for kp ≥ 3
and ≡ 0 mod (p − 1) for every p, i.e. it recovers classical Hida theory for Hilbert modular forms. Such
theory was developed by Hida in [Hid88] and [Hid89] with a very different method: the construction in his
work is not geometric but it relies on the duality between cuspforms and Hecke algebras and the Jacquet–
Langlands correspondence between Hilbert modular forms and quaternionic modular forms. In [Hid88],
Hida constructs a Hecke algebra over R[[W ]], where W is the torsion-free part of the Galois group of the
maximal abelian extension of F unramified outside p and∞, fixing n ∈ Zn, which interpolates the ordinary
Hecke algebra of cuspforms of weight (k,w) for k = w + 2n. Later in [Hid89], he unifies these infinitely
many Hecke algebras to obtain a universal one (without the restriction on the weight being parallel to 2n).
Assuming Leopoldt’s conjecture holds true for F , the number of variables in Hida’s work in the same as
in our theorem and both classicality results are for characters of the torus of ResF/Q GL2(Zp) factoring
through the quotient by the (p-adic closure of the) units of OF . However, Hida considers the diagonal
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embedding of the units, whereas we need to consider, because of the geometric nature of our construction
and its moduli space interpretation, the embedding given by ε 7→ (ε, ε2), which results in a slightly different
formulation of the classicality result (see Remark 4.2.5 for more details).

It is also important to mention that the geometric theory of p-adic Hilbert modular forms was developed,
in the overconvergent setting, in various works (see for example [AIS14, AIP16, TX16, KL05]), where the
rational classicality results are obtained for finite slope families of degree zero coherent cohomology classes.
We also remark that in the past works where big sheaves interpolating the automorphic sheaves of classical
Hilbert modular forms ([AIS14, AIP16]) were constructed, this was done for automorphic forms for the
group G∗ = G ×det Gm. Hilbert modular forms for the group G are then obtained as the image of the
global sections of the sheaves for G∗ under a projector for a suitably defined action of the units of OF . In
this work we instead descend the interpolating sheaves to sheaves over the toroidal compactification of the
Shimura variety for G, exploiting the action of the units encoded in the definitions and, since the novelty

of our construction is that it also interpolates the determinant factors ∧2H1(A)
(w−kτ )/2
τ , we do not need to

add the twist in the unit action as done for example in [AIP16] (see the discussion right before Definition
4.1), where the twist by the power (w − kτ )/2 is added artificially.

Finally, we also prove that there is a perfect pairing interpolating in the classical weights Serre’s duality
pairing. More precisely, we show in §4.3 that we can define a pairing

〈−,−〉 : MJ ×NJc → Λ

of Λ-modules (where, in order to be precise, the structure of Λ-module of NJc is actually twisted by a
certain automorphism of Λ) which satisfies the following.

Theorem (Theorem 4.3.2). The pairing 〈−,−〉 is a perfect pairing compatible with Serre duality, i.e. for
a classical weight (k,w) as above, the following diagram is commutative

MJ ⊗Λ,(k,w) R × NJc ⊗Λ,(2−k,−w) R R

e(Tp)H
#J(X,ω(k,w)) × e(Tp)H

n−#J(X,ω(2−k,−w)(−D))

' '

where the bottom pairing is induced by Serre duality and the vertical maps are the one obtained by the
classicality theorem.

1.2. Strategy. We briefly sketch how the modules MJ (and NJ) are constructed. As explained above,
the idea is to construct a sheaf of Λ-modules over (the formal completion) of the ordinary locus of a fixed
smooth toroidal compactification of the Hilbert modular variety. This sheaf is constructed using Igusa
towers, which are torsor over the ordinary locus, and recover the classical automorphic sheaves ω(k,w)

when specialised at weights (k,w). The modules M∅ and N∅ are obtained simply as the image of the
ordinary projector e(Up) of the global sections over the ordinary locus of this sheaf. In order to define
MJ and NJ in general we use the divisors Dp which are the vanishing locus of (various lifts of powers of)
the partial Hasse invariants. Then, very roughly, we consider extensions of the sheaf above to the formal
completion of the Hilbert modular variety and take cohomology over the complement of ∪p6∈JDp with
compact support towards the divisors Dp for p ∈ J . Then MJ and NJ are obtained by taking the image
of this cohomology under the projector with respect to a certain operator TJ given by the composition
of the operators Up for p 6∈ J and the partial Frobenii Fp for p ∈ J . The way we obtain the classicality
result is by first working on the special fibre of the variety and prove the classicality result modulo ℘
(§4.1, Theorem 4.1.7). Since the sheaf of Λ-modules modulo the maximal ideal of Λ is simply ω(k,w) (for
certain choices of (k,w)), this result can be formulated as follows: for certain choices of (k,w) depending
on J , the image under e(Tp) of the cohomology of ω(k,w) over the complement of ∪p6∈JDp with compact

support towards the divisors Dp for p ∈ J is isomorphic to e(Tp)RΓ(X1, ω
(k,w)), where X1 is the special

fibre of the Hilbert modular variety X/R. The proof of this results relies on the study of the partial Tp
operators on the special fibre, once they have been carefully normalised in order to be optimally integral.
The last ingredient we need is then to show that the operator TJ specialised at the desired weight (k,w)
is congruent to the operator Tp modulo ℘.

The vanishing result of Theorem 4.2.13 mentioned in the above Remark is proved again by reducing it
to a vanishing result of the cohomology modulo ℘ and using a filtration by #J-strata of the complement
of ∪p6∈JDp, such that the complement of each stratum in the previous one is affine (in the minimal
compactification).

The whole construction has various technical difficulties coming from the Hilbert modular variety not
being a Shimura variety of PEL type. It is however a union of moduli spaces of Hilbert-Blumental abelian
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varieties (with prescribed polarisations) quotiented out by the action of the totally positive units of OF .
Hence we often give definitions and constructions for the moduli space and then need to check how they
behave with respect to this action in order to show that they descend to the Shimura variety (see for
example Definition 2.3.3 and § 4.2.2).

1.3. Outline of the paper. We recall in §2 the preliminaries on Hibert modular varieties, their compact-
ifications and the automorphic vector bundles over them.

In §3 we define the partial Hecke operators Tp acting on cohomology of the automorphic vector bundles
and normalise them so that they are optimally integral; we also recall the definition of the partial Hasse
invariants on the special fibre of the Hilbert modular variety and how (certain powers of) these sections
lift modulo powers of ℘.

The main constructions are carried out in §4, where we first work on the special fibre (§4.1) and then
move on (in §4.2) to the Igusa tower constructions on the formal completion of the Hilbert modular variety
and the proof of the classicality result.

We finally construct the duality pairing in §4.3 and prove its compatibility with Serre duality.

Acknowledgements. I would like to thank Vincent Pilloni for his seminal work on higher Hida theory,
from which this article originates from. I thank both him and George Boxer for helpful discussions
and explanations on their work. I am also grateful to Jacques Tilouine for many useful remarks and
conversations. Last but not least, I thank David Loeffler and Sarah Zerbes for their encouragement and
valuable comments and discussions. The author was supported by the postdoctoral fellowship of the
Fondation Sciences Mathématiques de Paris.

2. Preliminaries

2.1. Hilbert modular varieties and moduli interpretation. Let F be a totally real field of degree
n. We consider G := ResF/Q GL2.

Consider K a neat open compact subgroup of G(Af ) and let

YG,K(C) = G(Q)\G(A)/ZG(R)+K+
∞K,

where K+
∞ = O(2)n ∩ G(R)+ is the connected component of the maximal compact subgroup of G(R).

We have G(R)/ZG(R)+K+
∞ = (H ∪ H−)n where H ∪ H− = C \ R and H is the upper half plane. The

n-dimensional Shimura variety YG,K(C) carries a natural structure of complex quasi-projective variety.
The determinant map det : G→ ResF/Q (Gm) induces a bijection between the set of geometric connected

components of YG,K(C) and the finite double coset space

(2.1) Cl+F (K) := F×+ \(AF,f )×/ det(K)

where F×+ denotes the subgroup of F× of totally positive elements. There is a natural surjective map

Cl+F (K) → Cl+F , where Cl+F is the strict ideal class group of F . The preimage of each ideal class [c] is a

torsor under the group I := Ô×F / det(K)O×F,+, where O×F,+ denotes the group of totally positive units in

OF . By strong approximation we can write G(Af ) as a finite disjoint union over elements c ∈ G(Af ) such
that det(c)’s form a set of representatives of Cl+F (K)

G(Af ) =
∐
c

G(Q)+cK

and we therefore have

YG,K(C) =
∐
c

Γ(c,K)\Hn,

where Γ(c,K) = G(Q)+ ∩ cKc−1.
This Shimura variety is not of PEL type. However, as explained for example in [TX16] (whose exposition

we follow closely) it acquires a moduli space interpretation as follows. Firstly, from now on, we assume
that K = KpKp, where Kp ⊂ G(Apf ) and Kp = GL2(OF ⊗ Zp) and p is an odd prime greater or equal
than 5. We rewrite the above disjoint union as

YG,K(C) =
∐

[c]∈Cl+F

Mc
K(C), where Mc

K(C) =
∐

ci∈[c]K

Γ(ci,K)\Hn,

where for every ideal c we write [c] for its class in Cl+F , we select such representatives to be coprime to p
and we choose a subset [c]K = {ci, i ∈ I} ⊂ G(Af ) such that the fractional ideal associated to det(ci) is c
and the set {det(ci)}i∈I is a set of representatives of the preimage of [c] in Cl+F (K).
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Note that Mc
K does not depend on the choice of [c]K and descends to an algebraic variety defined over

Q. Following [TX16], we will realise Mc
K as quotient of some moduli spaceMc

K by the action of the finite
group

∆(K) := O×F,+/(K ∩ O
×
F )2.

If Kp is sufficiently small, we denote byMc
K the smooth quasi-projective Z(p)-scheme (see [Rap78, Cha90])

representing the moduli problem which associates to a locally noetherian Z(p)-scheme S the quadruple
(A, ι, λ, αKp) given as follows

• A is an n-dimensional abelian variety over S with a homomorphism

ι : OF → EndS(A)

such that Lie(A) is a locally free OS ⊗Z OF -module of rank one;
• λ is a c-polarisation on A, i.e. it is a OF -linear isomorphism

λ : A⊗OF c
'−→ A∨,

where A∨ denotes the dual abelian variety of A, which has a natural OF -action;
• αKp is a Kp-level structure on (A, ι, λ), namely, assuming firstly that

K = Γ(N) := {γ ∈ G(Ẑ) : γ ≡ 1 mod N},
for an integer N coprime to p, αKp is an OF -linear isomorphism of étale group schemes over S

αKp : (OF /N)2 '−→ A[N ].

The Weil pairing together with the polarisation λ gives an OF -linear pairing A[N ] × A[N ] →
µN ⊗Z c−1d−1

F , where dF is the different ideal of F/Q. Hence αKp determines an isomorphism

OF /N → µN ⊗ c−1d−1
F . One similarly defines a Kp-level structure by choosing N such that

K(N) ⊂ K, working on fibres As over points s of S and using the action of GL2(OF /N) on the
K(N)-level structures on As as above (see [TX16, §2.3] for more details).

We now recall that there is a natural action of ∆(K) on Mc
K given as follows. Firstly if ε ∈ O×F,+, we

can define
ε · (A, ι, λ, αKp) = (A, ι, ι(ε) ◦ λ, αKp).

Moreover, if ε = η2 for some η ∈ K ∩O×F , then ε · (A, ι, λ, αKp) = (A, ι, λ, αKp). This follows from the fact
that any totally positive unit ε defines an isomorphism ε : A ' A such that ε∗λ = ε2λ. Therefore we have
defined an action of ∆(K) on Mc

K and the set of equivalent classes of geometric components under such

action is in bijection with Ô×F /det(K)O×F,+ and the stabiliser of each component is det(K) ∩ O×F,+/(K ∩
O×F )2. Following [TX16], we write (A, ι, λ̄, ¯αKp) for the O×F,+-orbit of (A, ι, λ, αKp). The following is

[TX16, Proposition 2.4, Lemma 2.5].

Proposition 2.1.1. The quotient of Mc
K(C) by ∆(K) is isomorphic to Mc

K(C), which can be identified
with the coarse moduli space over C of the orbits (A, ι, λ̄, ¯αKp). Moreover, up to replacing Kp by an open
compact normal subgroup of finite index, we can assume det(K) ∩ O×F,+ = (K ∩ O×F )2 and therefore the
quotient map

Mc
K(C)→Mc

K(C)

induces an isomorphism between every connected component of Mc
K(C) with its image.

We assume from now on that K is sufficiently small and det(K) ∩ O×F,+ = (K ∩ O×F )2. Let

MK :=
∐

[c]∈Cl+F

Mc
K , Mc

K :=Mc
K/∆(K) and YG,K =

∐
[c]∈Cl+F

Mc
K .

The proposition implies that every geometric connected component of YG,K is identified with a geometric
connected component of Mc

K for some c. Hence YG,K is quasi-projective smooth over Z(p) and it is the
integral model of YG,K(C). It also has a universal family of abelian varieties over it, denoted by

A → YG,K

built using the universal abelian schemes Ac →Mc
K .

We will also need the auxiliary variety of Iwahori level at a prime p above p. Let Kp as above and
consider

K0(p) = {g ∈ G(Zp) : g ≡
(
∗ ∗
0 ∗

)
mod p}.

We denote by Mc
K(p) the smooth quasi-projective Z(p)-scheme (see [Rap78]) representing the moduli

problem which associates to a locally noetherian Z(p)-scheme S an isogeny φ : A1 → A2 of degree Norm(p),
where A1, A2 corresponds to quadruples (Ai, ιi, λi, αi,Kp) as above where
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• the kernel of φ is annihilated by p;
• λ1 is a c-polarisation on A1 and λ2 is a cp-polarisation of A2 and for every x ∈ cp ⊂ c we have

φ∗ ◦ λ2(x) ◦ φ = λ1(x);

• the Kp-level structures αi,Kp are compatible, i.e. if Kp is the congruence subgroup of level N

α2,Kp = φ|A1[N ] ◦ α1,Kp .

The fibre ofMc
K(p) over p is smooth outside a closed subset of codimension 1. We can define an action of

the units on this moduli space and we let as above

MK(p) :=
∐

[c]∈Cl+F

Mc
K(p), Mc

K(p) :=Mc
K(p)/∆(K ′) and YG,K(p) =

∐
[c]∈Cl+F

Mc
K(p).

As above, YG,K(p) is quasi-projective smooth over Z(p) and it is the integral model of YG,K′(C), where
K ′ = KpK0(p). Moreover, there is a natural forgetful morphism Mc

K(p)→Mc
K which is equivariant for

the actions of ∆(K) and hence induces a finite étale morphism

(2.2) p1 : YG,K(p)→ YG,K .

Fix a fractional ideal c and an isomorphism θc : c′ → cp for some [c′] ∈ Cl+F ; such isomorphism is unique up

to an element of O×F,+. Then one can also consider the forgetful morphism p2,θc :Mc′

K(p) →Mc
K , which

now sends the isogenous pair to the second quadruple with polarisation A2 ⊗ c′
θc−→ A2 ⊗ cp

λ2−→ A∨. This
map is equivariant under the action of ∆(K) and p2,ε·θc is equal to p2,θc composed with the map induced
by the action of ε. Therefore we obtain a well defined étale morphism

(2.3) p2 : YG,K(p)→ YG,K

independent on the choice of θc.

2.2. Compactifications. We recall a few facts about toroidal compactifications. LetK = KpKp ⊂ G(Af )
an open compact as above with Kp =

∏
p|pKp and Kp ∈ {GL2(OFp

),K0(p)}.
Choosing an admissible rational polyhedral cone decomposition, one constructs a smooth toroidal com-

pactifications of Mc
K , see for example [DT04, § 5], [Rap78, Cha90] and more recently [Lan13, Lan17]. In

particular the case Kp = GL2(OFp
) for every p | p is covered in [Lan13] and the case with some level at

p is covered in [Lan17]. More precisely, there exists a scheme Mc,tor
K flat, local complete intersection and

normal over Z(p) containingMc
K as a fiberwise dense open subscheme. This depends a priori on the choice

of the cone decomposition, but we will see later that the cohomology groups we work with are independent
on this choice. Moreover, there exists a semi-abelian scheme Ac,tor → Mc,tor

K extending the universal
abelian scheme over Mc,tor, with c-polarisation, OF -action and level structure extending the data on Ac.
The boundary divisor D = tcMc,tor

K − tcMc
K is a relative simple normal crossing divisor, endowed with

a free action of ∆(K). Let

Mtor
K :=

∐
[c]∈Cl+F

Mc,tor
K , Mc,tor

K :=Mc,tor
K /∆(K) and XG,K =

∐
[c]∈Cl+F

Mc,tor
K

and denote by D the boundary divisor of XG,K .

2.3. Automorphic vector bundles. Let L denote the Galois closure of F (
√
ε : ε ∈ O×F,+) and let OL

be its ring of integers. Fix a noetherian OL,(p)-algebra R. Let us rename for simplicity M = (MK)R
and let Ator = tAc,tor →M be the semi-abelian scheme extending the universal abelian variety with real
multiplication by OF . Let e :M→Ator be the unit section and

ω := e?Ω1
Ator/M;

this is (OM ⊗Z OF )-module locally free of rank 1. Its restriction to MK coincides with the sheaf defined
analogously using the unit section of the abelian scheme tAc. We can write

ω = ⊕τ∈Σ∞ωτ

where ωτ is the direct summand on which the OF -action is given by the composition of the embedding τ
with the structure morphismOL,(p) → R. LetH1 be the canonical extension ofH1

dR(A/M) = e?Ω•(A/M).
It is a (OX ⊗Z OF )-module locally free of rank 2. We have the Hodge filtration

(H) 0→ ω → H1
dR(A/M)→ (ωA∨)∨ ⊗ d−1 → 0,

where ωA∨ := (e′)?Ω1
A∨/M, where e′ is the unit section of A∨.
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For (k,w) ∈ Z#Σ∞ × Z such that kτ ≡ w mod 2 and kτ ≤ w for every τ ∈ Σ∞ let

ω(k,w) :=
⊗
τ∈Σ∞

((
∧2H1

τ

)w−kτ
2 ⊗ ωkττ

)
Remark 2.3.1. One has (see for example [Kat78, 1.0.13-1.0.15]) that

⊗
τ∈Σ∞

(
∧2H1

τ

)
admits a triviali-

sation on each of the components Mc
K . Such trivialisation however depends on the c-polarisation and is

not canonical on XG,K .

Global sections of this sheaf can be interpreted as Hilbert modular forms à la Katz. See for example
[Kat78, 1.2] (where however the definition corresponds to sections of the sheaf

⊗
τ∈Σ∞

ωkττ , in view of the

above remark).

Definition 2.3.2. A c-Hilbert modular form of weight (k,w) of level K defined over an OF -algebra R is a
rule f which assigns to every quadruple (A, ι, λ, αK) as above defined over R, where λ is a c-polarisation,
given with a pair (ω, η), where ω is an OF basis of Ω1

A/R and η is an OF -basis of ∧2H1
dR(A) an element

f(A, ι, λ, αK , ω, η) ∈ R, satisfying the following conditions:

(i) f(A, ι, λ, αK , ω, η) depends only on the R-isomorphism class of (A, ι, λ, αK , ω, η);
(ii) f commutes with extension of scalars R1 → R2 of R-algebras;
(iii) for any a, b ∈ (R×)Σ∞ ' (OF ⊗R)×, we have

f(A, ι, λ, αK , a · ω, b · η) =
∏
τ∈Σ∞

a−kττ b
−w−kτ2
τ f(A, ι, λ, αK , ω, η).

Clearly, in order to get sections of the sheaf ω(k,w), one needs to admit different polarisation types.
One could more generally define, for (k, n) ∈ Z#Σ∞ × Z#Σ∞ , a sheaf

ω(k,n) :=
⊗
τ∈Σ∞

((
∧2H1

τ

)nτ ⊗ ωkττ ) .
For kτ ≡ w mod 2 for every τ , we recover ω(k,

w−k
2 ) = ω(k,w).

Let us denote by X the compactified Shimura variety XG,K . In order to define a sheaf over X, we need
to give a descent datum for the map M → X. We will see that this will force kτ + 2nτ = w for some
w ∈ Z.

Definition 2.3.3. The action of ε ∈ O×F,+ is given on stalks by the isomorphism (see for example [DT04,

§4])

ω(A,ι,ε−1λ,αKp ) = ω(A,ι,λ,αKp ) → ω(A,ι,λ,αKp ),

where the first equality is given by the fact that the sheaf ω does not depend on the polarisation and the
second map is the multiplication by

∏
τ τ(ε)−1/2. Similarly the action on ∧2H1 is given by multiplication

by
∏
τ τ(ε)−1.

If ε2 ∈ (K ∩ O×F )2, one easily verifies that the action defined above is trivial. More precisely, we have

ε∗(A, ι, λ, αKp , ω) = (A, ι, ε2λ, εω, ε2η)

and any section f of ω(k,n) satisfies

f(ε2 · (A, ι, λ, αKp , ω, η)) =
∏
τ

τ(ε)−(kτ+2nτ )f(A, ι, ε−2λ, αKp , ω, η)

=
∏
τ

τ(ε)−(kτ+2nτ )f((ε−1)∗(A, ι, λ, αKp , ε−1ω, ε−2η)) = f(A, ι, λ, αKp , ω, η).

By abuse of notation we will still denote by ω(k,n) the descent of the sheaf ω(k,n) over X. Note that
section of this sheaf are rules as in Definition 2.3.2 satisfying the additional condition

f(A, ι, ε · λ, αKp , ω, η) = f(A, ι, λ, αKp , ω, η) ∀ε ∈ O×F,+.

This implies, if R has characteristic zero, that ω
(k,n)
R has non-zero global sections over X if and only if

kτ + 2nτ = w for some w ∈ Z.
Finally, we recall that the cohomology of this sheaf does not depend on the cone decomposition chosen

to define the toroidal compactification X.

Lemma 2.3.4 ([Lan13]). The cohomologies RΓ(X,ω(k,w)), RΓ(M, ω(k,w)), RΓ(X,ω(k,w)(−D)) and RΓ(M, ω(k,w)(−D))
are independent on the cone decompositions chosen to define M and X.
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Moreover, we define the Hodge line bundle

det(ω) := ∧nOX ω .

One can construct minimal compactifications of YG,K , following [Cha90] or [Lan13, § 7.2], as follows

X∗G,K = Proj
(
⊕m≥0Γ(XG,K ,det(ω)⊗m)

)
.

It is a normal projective scheme over Z(p) and det(ω) descends to an ample line bundle on X∗ = X∗G,K .
The inclusion YG,K ↪→ X induces an inclusion YG,K ↪→ X∗ and X∗ is canonically determined by YG,K .
The boundary X∗ − YG,K is finite flat over Z(p). The following is [Lan18, Theorem 8.2.1.3].

Lemma 2.3.5 ([Lan18]). Let π : X → X∗ be the canonical projection. Then we have

Ri π∗(ω
(k,w)(−D)) = 0 for every i > 0.

We finally recall (see for example [TX16, 2.11.2-2.11.3]) that the Kodaira–Spencer isomorphism gives
an isomorphism

(KS) KS : ω(2,0)(−D)→ ΩnX/Zp , where ω(2,0) =
⊗
τ∈Σ∞

((
∧2H1

τ

)−1 ⊗ ω2
τ

)
.

2.3.1. A more general definition. The automorphic vector bundle ω(k,w) can also be defined using the
theory of torsors. Compare for example with [DT04, Définition 4.4], where however the twist by ∧2H1 is
not consider. Let

T = IsomOM⊗OF (OM ⊗OF , ω).

It is a T = ResOF /ZGm-torsor over M, representing the functor sending a Z(p)-algebra R to the set
of isomorphisms of tuples (A, ι, λ, αK , ω), where (A, ι, λ, αK) is an abelian variety over R with extra
structure as above and ω : R⊗OF ' e∗Ω1

A/R is a trivialisation of the conormal sheaf of A/R with respect

to the unit section e. We can decompose ω with respect to the OF -action and write ω = (ωτ )τ , where
ωτ : R ' (e∗Ω1

A/R)τ . The action of T is then given as follows: if t = (tτ ) ∈ T (R), then

t · (A, ι, λ, αK , ω) = (A, ι, λ, αK , t · ω),

where t · ω = (tτ · ωτ )τ . One can similarly define the T -torsor

L = IsomOM⊗OF (OM ⊗OF ,∧2H1
dR(A)).

It represents the functor sending a Z(p)-algebra R to the set of isomorphisms of tuples (A, ι, λ, αK , η),

where η : R⊗OF ' e∗H1
dR(A/R). The action of T is given similarly as above.

Let us write πT : T →M, πL : L →M for the natural maps (corresponding to the forgetful functors).
Let (κ, n) ∈ Z[Σ∞]×Z[Σ∞]. We can consider the sheaves (πT )∗(OT ), (πL)∗(OL). They both have an action
of the torus T and we can consider the component on which T acts via the character t→ t−κ, respectively
via the character t→ t−n and denote the corresponding invertible sheaves overM by (πT )∗(OT )[−κ] and
(πL)∗(OL)[−n] respectively. We define

ω̃(κ,n) := (πT )∗(OT )[−κ]⊗ (πL)∗(OL)[−n].

Sections of this sheaf are rules as in Definition 2.3.2, where clearly (iii) is replaced by the analogous

condition, with the discrepancy factor being
∏
a−κττ b−nττ . We obtain ω(k,n) ' ω̃(k,n) and, in particular,

(2.4) ω(k,w) ' ω̃(k,
w−k

2 ),

for n = w−k
2 in the case where kτ ≡ w mod 2 for every τ .

Moreover, we can observe that, using the exact sequence (H), there is a natural map

s : T ×MT ′ := IsomOM⊗OF (OM⊗OF , ω)×IsomOM⊗OF (OM⊗OF , ω∨A∨)→ IsomOM⊗OF (OM⊗OF ,∧2H1
dR(A)).

This map is defined over R after fixing a generator of the principal ideal d−1, which is coprime to p under
our assumptions.

The sheaf (πT ×T ′)∗(s
∗OL) has an action of the torus T . It is the sheaf (πT ×T ′)∗OT ×T ′ which would

naturally have an action of T × T 3 (t, ε) =
(
tε 0

0 t−1

)
, but the pullback via s makes the action of the first

component trivial. Let

ω̂(κ,n) := (πT )∗(OT )[−κ]⊗ (πT ×T ′)∗(s
∗OL)[−n].

Lemma 2.3.6. There is an isomorphism ω̃(κ,n) ' ω̂(κ,n).
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Proof. We prove that there is an isomorphism of OM-modules (πT ×T ′)∗(s
∗OL)[−n] ' (πL)∗(OL)[−n]. To

construct such an isomorphism we essentially use the fact that ∧2H1
dR(A) is an OF ⊗OM-module of rank

one. Local sections of the second sheaf are rules associating to (x, η), where x = (A, ι, λ, αK) ∈M(R) and
η = (ητ )τ , where ητ : R ' ∧2H1

dR(Ax/R)τ , such that such that

(2.5) f(x, tη) = t−nf(x, η), for every t ∈ (R⊗OF )×.

Local sections of the first sheaf are rules associating to (x, α ⊗ β), where x = (A, ι, λ, αK) ∈ X(R) and
α = (ατ )τ , β = (βτ )τ and ατ : R ' Ω1(Ax/R)τ , βτ : R ' ((Ω1

A∨x /R
)τ )∨, ατ ⊗ βτ : R ' ∧2H1

dR(Ax/R)τ ,

satisfying

(2.6) f(x, t(α⊗ β)) = t−nf(x, α⊗ β), for every t ∈ (R⊗OF )×.

Given f as above, we define a local section f̃ of (πL)∗(OL)[−n] as follows. Since ∧2H1
dR(Ax/R)τ is of rank

one over R, given ητ : R ' ∧2H1
dR(Ax/R)τ , we choose arbitrarily α, β and we find that there must exists

λτ ∈ R× such that the following diagrams commute

R ∧2H1
dR(Ax/R)τ

R ∧2H1
dR(Ax/R)τ .

ητ

·λτ
ατ⊗βτ

We then let f̃(x, η) := λ−nf(x, α ⊗ β). We need to check this definition does not depend on the choice
of α, β. Since Ω1(Ax/R)τ has rank one over R, any other trivialisation α′τ is of the form α′τ = λ1,τατ
for some λ1,τ ∈ R× and similarly any other β′ is of the form λ2,τβτ for some λ2,τ ∈ R×. Therefore

α′ ⊗ β′ = λ1λ2(α⊗ β) and η = λλ−1
1 λ−1

2 (α′ ⊗ β′). Thanks to (2.6) we have

λ−nf(x, α⊗ β) = (λλ−1
1 λ−1

2 )−nf(x, α′ ⊗ β′)

and hence f̃ is well defined and it satisfies (2.5) since f satisfies (2.6). The natural restriction map from
(πT ×T ′)∗(s

∗OL)[−n] to (πL)∗(OL)[−n] is the inverse on the map we have just defined. �

Moreover, similarly as above, we can define a natural action of the units on T , T ′,L and descend these
sheaves to the Shimura variety X compatibly with the previous definitions.

2.3.2. Comparison with other works. We clarify the choices we made with respect to other works on the
subject to help the reader who may want to compare this definition with the ones of [AIP16, TX16, ERX17,
KL05, DT04, Kat78]. The definition of ω(k,w) corresponds to the one of ω̇κ, ωκ for κ = (k,w) in [ERX17, §
2.2] for the sheaf overM and X respectively and to ω(k,w+2) in [TX16, § 2.12]. Similarly as in op. cit., our
definition of the action of the units (O×F )+ is both on the polarisation and on the sheaves of differentials.

In [KL05, DT04, Kat78] the sheaf considered is ⊗τωkττ . In fact, in [KL05, § 1.11] and [Kat78, § 1.2],
the authors only work with the moduli space M and do not consider the Shimura variety for G. This
however brings some complications when defining Hecke operators for the ideals p | p. For example
in [KL05, (1.11.6)] the Hecke operator is defined by carefully considering a trivialisation of the sheaf⊗

τ∈Σ∞

(
∧2H1

τ

)
.

In [AIP16], the authors also consider the sheaf ωk = ⊗τωkττ , but they work both with the moduli space
and the Shimura variety for G, however their descent is different from the one considered here. The action
of the units on sections f in H0(X,ωk) is given by

ε · f(A, ι, λ, αKp , ω) :=
∏
τ

ε−(w−kτ )/2
τ f(A, ι, ε−1λ, αKp , ω).

If we fix a polarisation class c, this definition can be thought as follows: the sheaf
⊗

τ∈Σ∞

(
∧2H1

τ

)(w−kτ )/2

is trivial but it carries a non-trivial action of the units. The action of the units of [AIP16] is therefore
given both on the polarisation and on the ∧2H1 factor, but not on the sheaf ωk itself. This choice results,
when defining Hecke operators, in a normalisation differing from the classical one (the one we define in
3.1) by a power −(w − kτ )/2 factor, as explained in [AIP16, Remark 4.7].

In some sense, here and in [TX16, ERX17], w is encoded in the definition of the sheaf, whereas in the
other mentioned works it comes in only when defining the action of the units.
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2.3.3. BGG decomposition (and higher coherent cohomology). For a weight (k,w) as above let

F (k,w)
τ := Symkτ−2H1

τ ⊗ (∧2H1
τ )
w−kτ

2 , F (k,w) := ⊗τF (k,w)
τ .

The extended Gauss-Manin connection on H1 induces an integrable connection

∇ : F (k,w) → F (k,w) ⊗ Ω1
XG,K (logD).

One can show (see [TX16, § 2.12]) that (F (k,w),∇) gives an integral model of the automorphic bundle on
XG,K(C) given by the representation of GC

ρ(k,w) :=
⊗
τ

(
Symkτ−2(Štτ )⊗ det

−w−kτ2
τ

)
,

where Štτ is the τ -projection of the dual of the standard representation of GC = (GL2,C)Σ∞ and detτ is
the τ -projection of the determinant map.

In the next chapters, we will study the cohomology of the sheaves ω(k,w) in degree zero (hence classical
holomorphic Hilbert modular forms) and in positive degrees. One reason for which the cohomology of
higher degree is also interesting is the fact that it contributes to the middle degree de Rham cohomology
of the Hilbert modular variety. More precisely, the de Rham complex of F (k,w) is quasi-isomorphic to a
simpler complex, called the dual BGG-complex (see [Fal83, §3,7], [FC90, § 5] and for an overview with
examples [Lan19, § 2.3]). In this context, the Weyl group WG is isomorphic to {±}Σ∞ . For J ⊂ Σ∞ we
denote by sJ the Weyl element whose τ -component is −1 if τ 6∈ J and is equal to 1 is τ ∈ J . If we work
over C, we find the following decomposition

Hn
dR(YG,K(C),F (k,w+2)

C ) '
⊕
J⊂Σ∞

H#J(XG,K(C), ω
(sJ ·k,w)
C ),

where the action of the Weyl group on k is given by (sJ · k)τ = 2− kτ if τ 6∈ J and (sJ · k)τ = kτ if τ ∈ J .
A more detailed discussion can be found in [TX16, § 2.15].

3. Hecke operators and Hasse invariants

From now on we assume that p ≥ 5 splits completely in F and we write

(p) = p1 · · · pn.
Recall that L is a Galois extension of Q containing the totally real field F . We fix once for all an embedding
ι : L ↪→ Q̄p. This fixes a prime ℘ of L above p and we consider the ring of integers R of the completion
of L at ℘ and the residue field F. The set Σ∞ of embeddings of F in R is then identified with the set of
p-adic embeddings F ↪→ Q̄p and therefore with

(3.1) Σ∞ = HomZ(OF ,F) = {p ⊂ OF : p | p}.
From now on we will denote by τp the element in Σ∞ such that ι◦ τp induces the place p. Notice that from
the above identification there is a natural action of the Frobenius automorphism σ of F on Σ∞ (given by
the composition τ ◦ σ); in this particular setting, where p splits completely in F , this action is trivial.

We also fix the choice of a sufficiently small neat open compact subgroup K = KpKp of G(Af ) such
that Kp =

∏
p|p GL2(Zp). We let M = Mtor

K ×Z(p)
R and X = XG,K ×Z(p)

R. We still denote by D the

boundary divisor in X.

3.1. Hecke operators. Consider p one of the primes above p. LetM0(p) =M(p)tor
K ×Z(p)

R and X0(p) =

XG,K(p) ×Z(p)
R. We want to study the cohomolgical correspondence obtained by the maps in (2.2) and

(2.3)

X0(p)

X X.

p2p1

For general background and notation on correspondences and coherent cohomology, we refer for example to
[Pil20, § 4]. We denote by A the universal semi-abelian variety Ator →M. The maps p1, p2 parametrise an
isogeny p?1A → p?2A of degree p and with kernel annihilated by p. From this isogeny we get a rational map
p?2ω

(k,w) 99K p?1ω
(k,w) of sheaves over M0(p). Since this map is equivariant under the action of ∆(K), we

get an analogous map of sheaves over X0(p). Tensoring with the natural trace map Trp1
: OX0(p) → p!

1OX
we get the naive cohomological correspondence

T̃p,(k,w) : p?2ω
(k,w) 99K p!

1ω
(k,w).
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We finally normalise it letting

Tp,(k,w) := p− inf{
w−kp

2 +1,
w+kp

2 }T̃p,(k,w) =

p−
w−kp

2 −1T̃p,(k,w) if kp ≥ 1

p−
w+kp

2 T̃p,(k,w) if kp < 1,

where, if p = p1 · · · pn and p = pi, we write kp = ki. To simplify the notation we will often denote simply

by Tp the operator Tp,(k,w) for the automorphic sheaf ω(k,w).

Proposition 3.1.1. Tp is a cohomological correspondence p?2ω
(k,w) → p!

1ω
(k,w) (i.e. well defined and

optimally integral). Moreover it is supported on the étale locus (respectively multiplicative locus) if kp > 1
(resp. kp < 1).

Proof. We only need to check that Tp is well defined on the complement of a codimension 2 locus. Since
it is well defined over Qp, we only need to verify the statement locally at generic points of the special fibre
of the open variety Y0(p).

Since the isogeny p?1A → p?2A is a p-isogeny, for every generic point of the special fibre the map
p?2(∧2H1

τ )→ p?1(∧2H1
τ ) is an isomorphism for τ not corresponding to p and factors through an isomorphism

p?2(∧2H1
p)→ p(p?1(∧2H1

p)) otherwise.
We say that the generic point ξ is multiplicative (respectively étale) if the kernel of the isogeny p?1A →

p?2A is the multiplicative (respectively constant) p-group scheme. We have the following characterisation
of the maps p1, p2 on the open varieties

étale multiplicative
p1 totally ramified of degree p isomorphism
p2 isomorphism totally ramified of degree p

In particular (Trp1
)ξ : (OX0(p))ξ → (p!

1OX)ξ is an isomorphism at points in the multiplicative locus and

factors through an isomorphism (Trp1
)ξ : (OX0(p))ξ → p(p!

1OX)ξ at points of the étale locus.
Moreover, the isogeny p?1A → p?2A is separable if and only if the kernel is étale. Hence we have that for

ξ in the étale locus, the differential map (p?2ω)ξ → (p?1ω)ξ is an isomorphism. And overall we find that for
such ξ, the correspondence factors as in isomorphism

(ξ étale) T̃p : (p?2ω
(k,w))ξ

'−→ p · p
w−kp

2 (p!
1ω

(k,w))ξ.

On the other hand, if ξ is in the multiplicative locus, the differential map is an isomorphism of the
components of the differential sheaves different from the one corresponding to p and factors through an
isomorphism (p?2ωp)ξ → p(p?1ωp)ξ at the component corresponding to p. Hence we get an isomorphism

(p?2ω)ξ
'−→ pkp+

w−kp
2 (p?1ω)ξ.

Overall we find that for ξ in the multiplicative locus, the correspondence factors as in isomorphism

(ξ multiplicative) T̃p : (p?2ω
(k,w))ξ

'−→ p
w+kp

2 (p!
1ω

(k,w))ξ.

Hence we have shown that multiplying Tnaivep by p− inf{
w−kp

2 +1,
w+kp

2 } gives a well defined correspondence,

optimally integral and that this vanishes on the multiplicative locus if
w−kp

2 <
w+kp

2 − 1 and on the étale
locus otherwise. �

We obtain that the operator Tp induces a map on cohomology obtained by the following composition

RΓ(X,ω(k,w))
p?2−→ RΓ(X0(p), p?2 ω

(k,w))
Tp−−→ RΓ(X0(p), p!

1 ω
(k,w))

Trp1−−−→ RΓ(X,ω(k,w)).

Hence we view Tp ∈ End(RΓ(X,ω(k,w))). We can similarly obtain a map on cuspidal cohomology and see

the operator as Tp ∈ End(RΓ(X,ω(k,w)(−D))).
We now want to understand the behaviour of this correspondence with respect to duality. We follow

[BP20b, § 3.2], to which we refer for notation and a recap on duality. First, we need to fix some notation
regarding dual isogenies. We consider the p-isogeny π : p?1A → p?2A. To be more precise, we have isogenies

π : p?1Ac → p?2Ac′ for our fixed choice of representatives c ∈ Cl+F . We can consider the dual isogeny

π∨ : (p?2Ac′)∨ → (p?1Ac)∨. Since we are working over R and we have taken every c, c′ to be coprime to
p, using the universal polarisations and quotienting out by the units, we obtain a well-defined isogeny
πD : p?2A → p?1A and for any (k,w), the pullback map on differentials

πD(k,w) : p?1ω
(k,w) 99K p?2ω

(k,w).
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We also recall that the composition π ◦ πD, seen as an isogeny p?1A → p?1A again using the universal
polarisations and the fact that their types are coprime to p, is the canonical isogeny with kernel p?1A[p].
Hence we find that

(3.2) π(k,w) ◦ πD(k,w) = pkp+2
w−kp

2 Id = pw Id .

Proposition 3.1.2. Tp is self dual. More precisely, the dual of the Hecke operator Tp,(k,w) acting on the

cohomology of ω(k,w) is equal to the Hecke operator Tp,(2−k,−w) acting on the cohomology of ω(2−k,−w)(−D),
where (2− k)τ = 2− kτ .

Proof. We proceed similarly as in the proof of [BP20b, Lemma 3.8]. Since the correspondence X0(p) is
isomorphic to its transpose, by sending the isogeny π to the isogeny πD, with notation as above, we can
think of the operator T̃p in weight (2− k,−w) as a map

T̃p : p?1ω
(2−k,−w) → p!

2ω
(2−k,−w),

obtained as before but replacing π by the dual isogeny πD. We need to compare this operator with D(T̃p)

where T̃p is the operator in weight (k,w) acting on cohomology via

RΓ(X,ω(k,w))
p?2−→ RΓ(X0(p), p?2 ω

(k,w))
T̃p−−→ RΓ(X0(p), p!

1 ω
(k,w))

Trp1−−−→ RΓ(X,ω(k,w)).

It dualises to an operator

D(RΓ(X,ω(k,w)))
p?1−→ RΓ(X0(p), p?1D(ω(k,w)))

D(T̃p)−−−−→ RΓ(X0(p), p!
2D(ω(k,w)))

Trp2−−−→ D(RΓ(X,ω(k,w))),

where D(T̃p) can be written as the composition

D(T̃p) : p?1(ω(−k,−w) ⊗ ΩnX/Zp)
id⊗Trp1−−−−−−→ p!

1(ω(−k,−w) ⊗ ΩnX/Zp)→ p!
2(ω(−k,−w) ⊗ ΩnX/Zp).

In order to describe the second map, recall that we have the Kodaira–Spencer isomorphism (KS)

KS : ω(2,0)(−D)→ ΩnX/Zp , where ω(2,0) =
⊗
τ∈Σ∞

((
∧2H1

τ

)−1 ⊗ ω2
τ

)
.

So that we can identify the sheaf ω(−k,−w)⊗ΩnX/Zp with ω(2−k,−w)(−D) = ω(−k,−w)⊗ω(2,0)(−D). The map

p!
1(ω(−k,−w)⊗ΩnX/Zp)→ p!

2(ω(−k,−w)⊗ΩnX/Zp) can be written as p?1(ω(−k,−w)⊗ΩnX/Zp)→ p?2(ω(−k,−w))⊗
ΩnX0(p)/Zp) and is equal to π−1

(−k,−w) ⊗ id. Applying the Kodaira–Spencer isomorphism, the identity

ΩnX0(p)/Zp = p!
1OX ⊗ p?1 ω(2,0)(−D)→ ΩnX0(p)/Zp ⊗ p

?
2 ω

(2,0)(−D)

can be decomposed as Trp2
(Tr−1

p1
)⊗ πD(2,0) (see for example [BP20b, Lemma 3.7]). All in all, we find

D(T̃p) = Trp2
⊗(πD(2,0) ⊗ π

−1
(−k,−w)).

As explained in (3.2) above, we have

π(k,w) ◦ πD(k,w) = pkp+2(
w−kp

2 ), π(−k,−w) ◦ πD(−k,−w) = p−w, π(2,0) ◦ πD(2,0) = 1

Hence we obtain that D(T̃p) = pwT̃p and from the equalities{
−w+k

2 + w

−w−k2 − 1 + w
=

{
−k−w2 = −−w−(2−k)

2 − 1

−−k−w2 + 1 = −−w+(2−k)
2

and the definitions of the normalisation factors in the different weights, we obtain D(Tp) = pwTp. �

3.2. Partial Hasse invariants and the Goren–Oort stratification. We recall the definition of partial
Hasse invariants of [Gor01, GO00, AG05]. We follow the exposition of [ERX17, § 3.1].

Let F be the residue field considered above and let subscript F denote the base change to SpecF.
Consider the Verschiebung isogeny

V : A(p)
F → AF.

It induces a morphism of OF ⊗ OMF-modules ωF → ω
(p)
F . For every τ ∈ Σ∞ this gives a map ωF,τ →

ω⊗pF,τ . Note that in general the identification ωA(p)
F
' (ωAF)

⊗p is not OF -linear, but induces ωA(p)
F ,τ

'
(ωAF,σ−1◦τ )⊗p, where σ is the Frobenius automorphism of F. However, as recalled above, in this particular
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setting where p splits completely, we have σ−1 ◦ τ = τ . Therefore we get a section in H0(MF, ω
⊗(p−1)
F,τ )

which is invariant under the action of ∆(K) and hence descends to a section

hτ ∈ H0(XF, ω
⊗(p−1)
F,τ ),

which is called partial Hasse invariant at τ (or at p when identifying Σ∞ with HomZ(OF ,F)). The product
of all the partial Hasse invariants (which is induced by the differential of the Vershiebung) is the usual

total Hasse invariant h ∈ H0(XF, ω
(p−1,...,p−1)
F ).

Remark 3.2.1. Note that, when looking at the special fibre points of the isogeny defining the cohomo-
logical correspondence T̃p (as in the proof of Proposition 3.1.1), in the étale locus the p-component of the
pullback of the isogeny p?1A → p?2A identifies with the partial Hasse invariant hp.

Finally let us recall the following results about the vanishing loci of the partial Hasse invariants.

Proposition 3.2.2 ([GO00, AG05]). Let Dτ = V a(hτ ) be the vanishing locus of hτ . It is a proper,
reduced, non-singular divisor on XF with simple normal crossing. For any S ⊂ Σ∞, ∩τ∈SDτ is a regular
subvariety of codimension #S. Moreover, V a(h) = ∪τ∈Σ∞Dτ does not intersect the toroidal boundary D.

The analogous results holds for the vanishing loci over the moduli space MF. Moreover, MF − V a(h)
is the open subscheme of MF where the universal abelian variety AF is ordinary and Zp is the closed
subscheme where AF is supersingular at p, or, in the language of [Gor01], the type of AF contains the
vector (xp′)p′|p, where xp′ = ∅ if p′ 6= p and xp′ = {1} if p′ = p. This amounts to saying that it is the locus
where the rank 2 group scheme given by the p torsion is of multiplicative rank equal to zero. In particular,
the multiplicative rank of AF is ≤ (n − 1) over Dp for every p and is maximal, i.e. equal to n over the
ordinary locus. We will write

Mord
F =MF − V a(h); Xord

F = XF − V a(h).

3.2.1. Lifts of the Hasse invariants. We now recall that suitable powers of the partial Hasse invariants lift
to the reduction of X modulo ℘n. More precisely, we denote by Xn the base change X×SpecRSpec(R/℘n).
In particular for n = 1 we have XF = X1.

Let U ⊂ Xn be an open affine subscheme. As explained in [ERX17, § 3.3.1], the restriction of the

partial Hasse invariant hτ to U ×Spec(R/℘n) SpecF can be lifted to an element h̃τ,U in H0(U , ω⊗(p−1)
τ ),

where by abuse of notation we are still denoting by ωτ its base change over R/℘n. We find that (h̃τ,U )p
n−1

is independent on the choice of the lift h̃τ,U . One then deduces that the sections {(h̃τ,U )p
n−1}U , for U

varying over an open affine covering of Xn, glue into a global section

h̃τ,n ∈ H0(Xn, ω
⊗pn−1(p−1)
τ )

which is the only lift of the pn−1-th power of hτ ∈ H0(X1, ω
⊗(p−1)
F,τ ). We let

Dτ,n := V a(h̃τ,n)

be the divisor on Xn given by the vanishing locus of h̃τ,n. Under the natural map X1 → Xn, the divisor

pn−1 ·Dτ on X1 is mapped to Dτ,n. Moreover, since (h̃τ,n)p is the unique lift of (hτ )p
n

over Xn, we have

that for every n, h̃τ,n+1 ∈ H0(Xn+1, ω
⊗pn(p−1)
τ ) is a lift of (h̃τ,n)p. In particular, the divisor p · Dτ,n is

mapped to Dτ,n+1 under the map Xn → Xn+1. We let as above Xord
n = Xn − V a(

∏
τ h̃τ,n).

4. Higher Hida theory

In this section, we finally move to the construction of the higher Hida theory Λ-modules. Under the
identification (3.1), we will denote by kp the p-component of a vector k ∈ ZΣ∞ .

4.1. Mod p theory. Consider X1 the special fibre of the compact Hilbert modular surface X. In this
section we want to prove a mod ℘ control theorem (Theorem 4.1.7), which will be used crucially to prove
the classicality results of the next section.

Let us denote by X0(p)ét
1 and X0(p)m1 the étale and multiplicative locus of X0(p)1 and with iét, im the

inclusions into X0(p)1. We denote by pét
i , p

m
i the restriction of the projections pi to X0(p)ét

1 and X0(p)m1
respectively.
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Lemma 4.1.1. If kp > 1 we have the following factorisation

p?2ω
(k,w) p!

1ω
(k,w)

iét
? (pét

2 )?ω(k,w) iét
? (pét

1 )!ω(k,w).

Tp

If kp < 1 we have the following factorisation

p?2ω
(k,w) p!

1ω
(k,w)

im? (pm2 )?ω(k,w) im? (pm1 )!ω(k,w).

Tp

Proof. The result follows from the study of the correspondence Tp on the special fibre carried out in the
proof of Proposition 3.1.1. �

Proposition 4.1.2. If kp > 1, Tp induces a map

p?2ω
(k,w)((np+ kp − 2)Dp)→ p!

1ω
(k,w)(nDp).

If kp < 1, Tp induces a map

p?2ω
(k,w)(−nDp)→ p!

1ω
(k,w)((−np+ kp)Dp).

Proof. Assume that kp > 1. The correspondence Tp is supported on X0(p)ét
1 and, restricting to the

intersection of this locus with the open Shimura variety, we know that pét
2 is an isomorphism and pét

1 is
totally ramified of degree p. The divisor Dp does not intersect the toroidal boundary and we therefore
obtain that (pét

1 )?(Dp) = p(pét
2 )?(Dp). By a slight abuse of notation we still denote by Dp the divisor

(pét
2 )?(Dp). Twisting by OX0(p)ét

1
(npDp), if kp = 2 the cohomological correspondence p?2ω

(k,w) → p!
1ω

(k,w)

induces a morphism p?2ω
(k,w)((np)Dp) → p!

1ω
(k,w)(nDp). If kp 
 2 and w is even, the cohomological

correspondence can be written as the tensor product of

(pét
2 )?ω(k′,w) → (pét

1 )!ω(k′,w) and (pét
2 )?

(
ω
kp−2
p ⊗ (∧2H1

p)
2−kp

2

)
→ (pét

1 )?
(
ω
kp−2
p ⊗ (∧2H1

p)
2−kp

2

)
,

where k′p = 2, k′q = kq if q 6= p. The p-component of the differential of the isogeny (pét
1 )?A → (pét

2 )?A
identifies with the partial Hasse invariant hp and induces a map (pét

2 )?ωp(Dp)→ (pét
1 )?ωp. Combining this

with the result for kp = 2, we obtain a map p?2ω
(k,w)((np + kp − 2)Dp) → p!

1ω
(k,w)(nDp). It remains to

discuss the case of w odd, which can be treated similarly, writing the correspondence as tensor product of

(pét
2 )?ω(k′′,w−1) → (pét

1 )!ω(k′′,w−1) and (pét
2 )?(ω

kp
p ⊗(∧2H1

p)3−kp/2⊗
⊗
q 6=p

ωq)→ (pét
1 )?(ω

kp
p ⊗(∧2H1

p)3−kp/2⊗
⊗
q6=p

ωq),

where k′′p = 2, k′′q = kq − 1 if q 6= p.
Now assume kp < 1. In this case the correspondence is supported on X0(p)m1 and, since the role of

pm1 and pm2 is interchanged, we find (pm2 )?(Dp) = p(pm1 )?(Dp). Denoting by Dp the divisor (pm1 )?(Dp), we
obtain that Tp induces a map (pm2 )?(OX1

)p(−nDp)→ (pm1 )!(OX1
)p(−npDp), which yields the case kp = 0.

For the case kp � 0, we proceed as above and decompose the correspondence, reducing to study the map

(pm2 )?ω(k,w) → (pm1 )?ω(k,w)

in the case where kp ≤ −1. The p-component of the differential of the isogeny dual to π : (pm1 )?A → (pm2 )?A
can be identified with the partial Hasse invariant hp. More precisely recall that the composition

(pm2 )?ω−1
p

π?−→ (pm1 )?ω−1
p

(πD)?−−−−→ (pm2 )?ω−1
p

is given by multiplication by p−1 (and multiplication by pkp when taking the kp-th power). Hence the

correspondence (pm2 )?ω
kp
p → (pm1 )?ω

kp
p (which by our normalisation carries a multiplication by p−kp), is

given by (hp)⊗kp and therefore induces a map (pm2 )?ω
kp
p → (pm1 )?ω

kp
p (−kpDp). �

From the previous proposition we deduce the following two corollaries.
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Corollary 4.1.3. For all kp > 1 and n ≥ 0, Tp acts on RΓ(X1, ω
(k,w)(nDp)) and for n′ ≥ n the natural

maps RΓ(X1, ω
(k,w)(nDp))→ RΓ(X1, ω

(k,w)(n′Dp)) are equivariant for this action. Moreover, we have a
commutative diagram

RΓ(X1, ω
(k,w)(nDp)) RΓ(X1, ω

(k,w)((np+ kp − 2)Dp))

RΓ(X1, ω
(k,w)(nDp)) RΓ(X1, ω

(k,w)((np+ kp − 2)Dp)).

Tp Tp
Tp

For all kp < 1 and n ≥ 0, Tp acts on RΓ(X1, ω
(k,w)(−nDp)) and for n′ ≥ n the maps RΓ(X1, ω

(k,w)(−n′Dp))→
RΓ(X1, ω

(k,w)(−nDp)) are equivariant for this action. Moreover, we have a commutative diagram

RΓ(X1, ω
(k,w)((−np+ kp)Dp)) RΓ(X1, ω

(k,w)(−nDp))

RΓ(X1, ω
(k,w)((−np+ kp)Dp)) RΓ(X1, ω

(k,w)(−nDp)).

Tp Tp
Tp

Recall that, since Tp acts on finite vector spaces, the sequence (Tn!
p )n converges to an idempotent e(Tp).

The above corollary hence implies the following crucial result.

Corollary 4.1.4. After applying the idempotent e(Tp) the horizontal maps considered above become iso-
morphisms, namely if n ≥ 0 then we have isomorphisms

e(Tp)Hi(X1, ω
(k,w)(nDp))

'−→ e(Tp)Hi(X1, ω
(k,w)((np+ kp − 2)Dp)) if kp > 1;

e(Tp)Hi(X1, ω
(k,w)((−np+ kp)Dp))

'−→ e(Tp)Hi(X1, ω
(k,w)(−nDp)) if kp < 1.

We now prove a vanishing result for certain cohomology groups of the special fibre.

Proposition 4.1.5. Fix (kp)p such that kp ≤ 0 when kp ∈ J and kp ≥ 2 when kp 6∈ J . Then the complex

RΓ(k,w)(−D) :=

(
lim
←−−
np

)
p∈J

(
colim
−−−−−→
np

)
p6∈J

RΓ(X1, ω
(k,w)(−D +

∑
p6∈J

npDp −
∑
p∈J

npDp))

is concentrated in degrees [0, iJ ] where iJ = #J and the complex

RΓ(k,w) :=

(
lim
←−−
np

)
p∈J

(
colim
−−−−−→
np

)
p6∈J

RΓ(X1, ω
(k,w)(

∑
p6∈J

npDp −
∑
p∈J

npDp))

is concentrated in degrees [iJ , n]. Moreover Tp =
∏

p|p Tp acts locally finitely on RΓ(k,w)(−D) and

RΓ(k,w).

Proof. The second statement follows from Corollary 4.1.3, since Tp acts on each term of the limits-colomits.
We prove RΓ(k,w) is concentrated in degrees [0, iJ ]. So by duality(

lim
←−−
np

)
p∈J

(
colim
−−−−−→
np

)
p6∈J

H∗(X1, ω
(2−k,−w)(

∑
p∈J

npDp −
∑
p6∈J

npDp))

is zero outside degrees [n− iJ , n]. Since such complex is RΓ(2− k,−w) we obtain the claim.
First we notice that RΓ(k,w) ' (lim

←−−np
)p∈JRΓ(X1 \ (∪p6∈JDp), ω(k,w)(−

∑
p∈J npDp)). We now use the

stratification

Z0 = X1 \ (∪p6∈JDp) ⊃ Z1 = Z ′n−1 \ (∪p6∈JDp) ⊃ · · · ⊃ Zn = Z ′0 \ (∪p6∈JDp) ⊃ Zn+1 = ∅,

where Z ′i is the closure of the Ekedahl-Oort stratum of Xi of dimension i, which in our case is given
by the locally closed subspace of X1 where the multiplicative rank of the universal p-divisible group is
≤ i, which in other words is ∪p1 6=p2···6=pn−i(Dp1 ∩ Dp2 · · · ∩ Dpn−i). By the theory of generalised Hasse
invariants of [Box15], one has that Z ′i \ Z ′i−1 is affine and we hence have that Zi \ Zi+1 is affine (where
for i = 0 the statement holds only inside the minimal compactification). Now we fix (np)p∈J and we

prove that Hi(X1 \ (∪p6∈JDp), ω(k,w)(−
∑

p∈J npDp)) = 0 for i > iJ . Let ω := ω(k,w)(−
∑

p∈J npDp)

and X1,J := X1 \ (∪p6∈JDp). It follows from [BCGP18, Theorem 3.9.6] that ω → CousZ(ω) is a quasi-
isomorphism, where CousZ(ω) is the Cousin complex associated with the stratification Z = (Zi) given
above. We claim that the cohomology of RΓ(X1,J , ω) is computed by Γ(X1,J , CousZ(ω)). To see this,
we write explicitly the complex CousZ(ω) and show that it is a complex of acyclic sheaves. Since it is
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a complex of length iJ , this concludes the proof. Let L :=
⊗

p∈J ω
(p−1)
p . By [BCGP18, Remark 4.2.32],

CousZ(ω) is given by

0→ colim
−−−−−→
k

ω⊗Lk → colim
−−−−−→
k

⊕
p∈J

(
ω⊗(Lk/hkp)

)
→ colim
−−−−−→
k

⊕
pi 6=pj∈J

(
ω⊗(Lk/(hkpi , h

k
pj )
)
→ · · · → colim

−−−−−→
k

ω⊗(Lk/(
∑
p∈J

hkp)→ 0

Note that ω⊗Lk = (
⊗

p6∈J(ω
kp
p ⊗∧2(H1

p)(w−kp)/2)⊗(
⊗

p∈J(ω
kp+k(p−1)
p ⊗∧2(H1

p)(w−kp)/2)(−
∑

p∈J npDp).

We can replace all the colimits over k ≥ 0 by the same colimits over k ≥ maxp∈J np. Moreover, [BCGP18,
Lemma 4.2.31] tells us that

colim
−−−−−→
k

Lk/(hkp1
, . . . , hkpi) ' colim

−−−−−→
k

Lk/(hkp1
, . . . , hkpi)|X1,J\Dp1,...,pi

,

where Dp1,...,pi =Va((
∏

p∈J hp) · h−1
p1
· · ·h−1

pi ).

Combining these observations, we obtain that every summand appearing in the (i+ 1)−th term of the
above sequence is supported on Va((hkp1

, . . . , hkpi)) ∩ (X1,J \Dp1,...,pi) for p1, . . . , pi ∈ J and some k ≥ 1.
This support is equal to (Dp1

∩ · · · ∩Dpi) \ (∪q-p1···piDq), which is affine in the minimal compactification
again by the theory of generalised Hasse invariants of [Box15] (we can restrict to (Dp1

∩ · · · ∩ Dpi) the
Hasse invariant defined on Z ′n−i and vanishing on the ≤ n−i−1 locus, then our support is the complement
of the vanishing locus of this restriction). Since the sheaves appearing in the exact sequence are acyclic
with respect to the minimal compactification by Lemma 2.3.5 and their support is affine in the minimal
compactification, we have shown CousZ(ω) is a complex of acyclic sheaves. Then RΓ(X1,J , ω) is computed
by Γ(X1,J , CousZ(ω)) and the latter is precisely of length iJ . �

We are finally ready to define the objects for which we can prove classicality results.

Definition 4.1.6. Consider (k,w) a cohomological weight as above such that kp 6= 1 for every p | p. Let
Tp =

∏
p|p Tp, J := {p : kp < 1} and iJ := #J . We then let

M∗(k,w) :=

(
lim
←−−
np

)
p∈J

(
colim
−−−−−→
np

)
p6∈J

e(Tp)H
∗(X1, ω

(k,w)(
∑
p6∈J

npDp −
∑
p∈J

npDp));

M∗(k,w)(−D) :=

(
lim
←−−
np

)
p∈J

(
colim
−−−−−→
np

)
p6∈J

e(Tp)H
∗(X1, ω

(k,w)(−D +
∑
p6∈J

npDp −
∑
p∈J

npDp)).

Notice that this is well defined thanks to Corollary 4.1.4, which tells you that there is no ambiguity
when “deciding in which order taking the limits and colimits”.

Theorem 4.1.7. If for all kp, we have kp ≤ −1 when kp ∈ J and kp ≥ 3 when kp 6∈ J , then there are
isomorphisms

M∗(k,w) ' e(Tp)H∗(X1, ω
(k,w)) and M∗(k,w)(−D) ' e(Tp)H∗(X1, ω

(k,w)(−D)).

Moreover M∗(k,w)(−D) = 0 for ∗ 
 iJ and M∗(k,w) = 0 for ∗ � iJ

Proof. The result follows from Proposition 4.1.5 and Corollary 4.1.4, which tells us that, under the above
conditions on the weights, the transition maps in the limits are isomorphisms. �

Remark 4.1.8. The isomorphisms in the statement of the above theorem can be obtained by the
fact that the modules M∗(k,w),M∗(k,w)(−D) are constant limits-colimits of e(Tp)H

∗(X1, ω
(k,w)) and

e(Tp)H
∗(X1, ω

(k,w)(−D)) respectively. However we notice that we have natural maps

M∗(k,w)→ (colim
−−−−−→
np

)p6∈Je(Tp)H
∗(X1, ω

(k,w)(
∑
p6∈J

npDp))← e(Tp)H
∗(X1, ω

(k,w)),(4.1)

M∗(k,w)← (lim
←−−
np

)p∈Je(Tp)H
∗(X1, ω

(k,w)(−
∑
p∈J

npDp))→ e(Tp)H
∗(X1, ω

(k,w)),(4.2)

where the first ones are given by the properties of limits and colimits respectively and the second ones by
the ones of colimits and limits respectively. Hence, again by applying Corollary 4.1.4, the statement of the
theorem can be made more precise saying that all these four natural maps are isomorphisms if kp ≤ −1
when kp ∈ J and kp ≥ 3 when kp 6∈ J (and the analogous statement for the cuspidal version).
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4.2. Characteristic zero theory. Let X be the formal completion of X along its special fibre. It is
the limit of the schemes Xn = X ×SpecR Spec(R/℘n). We denote by Xord the ordinary locus of X. It is
defined by choosing a lift of the total Hasse invariant of § 3.2 in characteristic zero and taking the formal
completion of the subscheme Xord of X where such lift does not vanish. Even if Xord does depend on the
chosen lift, Xord

n (and hence Xord) does not. We use analogous notation for the formal completion M of
M along M1 and its ordinary locus Mord.

In order to define the p-adic module we will introduce Igusa towers.

4.2.1. Igusa tower sheaves. We can consider the Z×p -torsor over Mord (actually defined over the larger
locus corresponding to the universal abelian variety being p-ordinary)

πp : IGp = Isom(Zp, Tp(A)ét)→Mord.

More precisely one defines the scheme

IGm,np = IsomMm
(Z/pn,A[pn]ét),

with the obvious action of (Z/pn)× on the right. The natural morphism IGm,np →Mm makes IGm,np an

étale cover ofMm with group (Z/pn)×. Letting IGp = colim
−−−−−→m lim

←−−n IG
m,n
p we obtain a Z×p -torsor over the

ordinary locus of the formal completion of M along M1.
Let Λp = R[[Z×p ]] and denote by κp : Z×p → Λ×p the universal character. We consider the invertible

sheaf of Λp⊗̂OMord -modules

Ωκp := (πp,?OIGp
⊗ Λp)Z

×
p .

We can now consider the full Igusa tower, i.e. the (Z×p )Σ∞ -torsor given as follows

π : IG = IsomMord⊗OF (Zp ⊗OF , Tp(A)ét) =
∏
p|p

IsomMord(Zp, Tp(A)ét)
∏
πp−−−→Mord.

We then define the sheaf

Ωκ := (π?OIG ⊗R[[T1, . . . , Tn]])Z
×
p ×···×Z

×
p

where (Z×p )Σ∞ acts on R[[T1, . . . , Tn]] via the universal character κ : (Z×p )Σ∞ → R[[T1, . . . , Tn]] and on
π?OIG via the action on IG.

For k = (ki)i ∈ Zn we write k for the R-valued homomorphism of R[[T1, . . . , Tn]] induced by the

characters Ti 7→ T kii . We hence can consider the sheaf

Ωk := Ωκ ⊗k R.

We now recall the construction of the Hodge-Tate map, which provides an isomorphism between Ωk and
the restriction over the ordinary locus of the automorphic bundle ω̃(k,0), constructed in § 2.3.1 using the
torsor T .

Let B be a R/℘m-algebra and A an ordinary semi-abelian scheme over SpecB of dimension n with
OF -multiplication and with polarization coprime to p. Let e be the unit section and assume we are given
a OF -linear trivialisation φn : Z/pnZ ⊗ OF → A[pn]ét. The dual of this map (using the prime to p
polarisation) gives a trivialisation φDn : A[pn]◦ → µpn ⊗OF . For n ≥ m, we obtain a (Z/pn)×-equivariant
isomorphism

(4.3) HTm,n(φn) : B ⊗OF → e∗Ω1
µpn⊗OF

(φDn )∗−−−−→ e∗Ω1
A/B ,

where the first map is given by sending an element ti of the basis of Bn ' B⊗OF to dti/t. We then have
a map HTm,n : IGm,n → T|Mord

m
for m ≤ n. Passing to the limits, we obtain a commutative diagram

IG T

Mord.

HT

Exploiting the commutativity of the Hodge-Tate map with respect to the (Z×p )n-action we obtain

Lemma 4.2.1. Let k = (ki)i ∈ Zn. The Hodge-Tate map above gives a canonical isomorphism of OMord-

modules Ωk ' ω̃(k,0).
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Proof. Sections of the sheaf Ωk are rules associating to (x, φ : Zp ⊗OF ' Tp(Ax)ét) ∈ IG(R) an element
f(x, φ) ∈ R such that for every λ = (λp)p ∈ (Z×p )n,

f(x, φ ◦ λ−1) =
∏
p|p

λ
kp
p f(x, φ).

On the other hand, sections of the sheaf ω̃(k,0) = (πT )∗OT [−k] are rules associating to (x, ω : R ⊗OF '
e∗Ω1

Ax/R
) ∈ T (R) an element g(x, ω) ∈ R such that for every λ ∈ (R⊗OF )×

g(x, ω ◦ λ−1) =
∏
p|p

λ
kp
p g(x, ω).

The claimed isomorphism is then explicitly given by sending g to the rule defined by (x, φ) 7→ g(x,HT(φ)).
The fact that this is an isomorphism follows as, for example, in [Pil12, §4.2.1-4.2.2]. �

We now want to twist the sheaf Ωκ by a factor that will allow to recover after specialisation the sheaves
ω̃(k,n) and, in particular, the sheaves ω(k,w) in light of (2.4). We perform a p-adic construction analogous

to the one employed for constructing ω̂(k,n) and use Lemma 2.3.6.
Let IG∨ the torsor defined by IsomMord⊗OF (Tp(A∨)◦, µp∞ ⊗OF ). Via the Hodge-Tate map, we obtain

a map IG∨ → T ′. More precisely, we define a map (IG∨)m,n → T ′|Mord
m

for m ≤ n. We start with

a trivialisation φn : A∨[pn]◦ → µpn ⊗ OF where A is an ordinary semi-abelian scheme over SpecB of
dimension n with OF -multiplication and with polarization coprime to p and B is a Z/pm-algebra. By
fixing a canonical basis of B ⊗OF as above we find the isomorphism

H̃Tm,n(φn) : B ⊗OF → e∗Ω1
µpn⊗OF

(φn)∗−−−→ e∗Ω1
A∨/B .

Identifying B ⊗OF = HomB⊗OF (B ⊗OF , B ⊗OF ), we obtain an isomorphism

(4.4) HTm,n(φn) : B ⊗OF → HomB⊗OF (e∗Ω1
A∨/B , B ⊗OF )

defined by g 7→ g ◦ (H̃Tm,n(φn))−1. Passing to the limits, we obtain a map HT : IG∨ → T ′ commuting
with the projections of the torsors over Mord.

We can now define a sheaf of R[[T1, . . . , Tn, T
′
1, . . . , T

′
n]]-modules.

Definition 4.2.2. Consider T the maximal torus of ResF/Q GL2(Zp) and write T = (Z×p )n × (Z×p )n 3
(z, t) =

(
zt 0

0 z−1

)
. We write (κ, κ′) : (Z×p )n × T → R[[T1, . . . , Tn, T

′
1, . . . , T

′
n]] for the character given

by the universal character κ : (Z×p )n → R[[T1, . . . , Tn]] and the character κ′ : T (Zp) → R[[T ′1, . . . , T
′
n]]

obtained by the composition of the projection map T → (Z×p )n, (z, t) → t with the universal character

(Z×p )n → R[[T ′1, . . . , T
′
n]]. We then let

(4.5) Ω(κ,κ′) :=
((
π?OIG ⊗O

Mord
(πIG×IG∨)?OIG×IG∨

)
⊗̂R[[T1, . . . , Tn, T

′
1, . . . , T

′
n]]
)(Z×p )n×T

,

where (Z×p )n × T acts on the Iwasawa algebra by (κ, κ′) and on the factors on the left as follows: the

natural action of the first n-copies of Z×p on IG defines an action of (Z×p )n on π?OIG and T acts on

(πIG×IG∨)?OIG×IG∨ via the decomposition T = (Z×p )n× (Z×p )n and the natural actions of (Z×p )n on each
of the two terms.

This is, roughly speaking, the p-adic analogue of what we obtained via the pullback by s of the sheaf
OL in § 2.3.1. Similarly as above, for (k, n) ∈ Zn × Zn, we denote again by (k, n) the homomorphism of

Zp[[T1, . . . , Tn, T
′
1, . . . , T

′
n]] given by the characters Ti 7→ T kii , T

′
i 7→ (T ′i )

ni . Let

Ω(k,n) := Ω(κ,κ′) ⊗(k,n) R.

We obtain the following result.

Lemma 4.2.3. Let (k, n) ∈ Zn×Zn. There is a canonical isomorphism of OMord-modules Ω(k,n) ' ω̃(k,n).

Proof. We prove Ω(k,n) ' ω̂(k,n) and the result will follow from Lemma 2.3.6. The proof is similar to the
one of Lemma 4.2.1. Sections of the sheaf Ω(k,n) are rules associating to (x, φ : Zp ⊗OF ' Tp(Ax)ét, ψ1 :
Zp ⊗ OF ' Tp(Ax)ét, ψ2 : Tp(A

∨
x )◦ ' µp∞ ⊗ OF ) an element f(x, φ, ψ1, ψ2) ∈ R such that for every

λ = (λp)p, t = (tp)p, z = (zp)p ∈ (Z×p )n,

f(x, φ ◦ λ−1, (ψ1, ψ2) ◦
(
zt 0

0 z−1

)−1

) =
∏
p|p

λ
kp
p t

np
p f(x, φ, ψ1, ψ2).
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On the other hand, sections of the sheaf ω̂(k,n) are rules associating to (x, ω : R⊗OF ' e∗Ω1
Ax/R

, α⊗ β),

where α : R⊗OF ' e∗Ω1
Ax/R

, β : R⊗OF ' (e∗Ω1
A∨x /R

)∨ an element g(x, ω, α⊗β) ∈ R such that for every

λ, µ ∈ (R⊗OF )×

g(x, ω ◦ λ−1, (α⊗ β)µ−1) =
∏
p|p

λ
kp
p µ

np
p g(x, ω, α⊗ β).

We can send g to the rule (x, φ, ψ1, ψ2) 7→ g(x,HT(φ),HT(ψ1)⊗HT(ψ2)). �

In particular, if there exists w ∈ Z such that kp ≡ w mod 2 for every p | p, we have an isomorphism

Ω(k,
w−k

2 ) ' ω(k,w) .

4.2.2. Descent to the Shimura variety. Let T =
∏

p|p(Zp)×. Recall that the sheaf Ω(κ,κ′) defined above

is a sheaf of R[[T 2]] ⊗ OMord -modules. We now let T0 =
∏

p|p(1 + pZp), which can be identified with a

quotient of T . We denote by x0 the projection to T0 of an element x ∈ T . Let

Λ := R[[T0 × (1 + pZp)]] = (⊗̂p|pR[[1 + pZp]])⊗̂R[[1 + pZp]].

We have a canonical character (κ1, κ2) : T0 × (1 + pZp) → Λ×, where κ1 : T0 → R[[T0]], κ2 : 1 + pZp →
R[[1 + pZp]]. Moreover, composing the canonical projection T 2 → T 2

0 with the map

T0 × T0 → T0 × (1 + pZp)

((xp)p, (yp)p) 7→ ((xpy
−1/2
p )p,

∏
p

y
1/2
p ).

we obtain a map R[[T 2]]→ Λ. We can therefore define Ω(κ1,κ2) = Ω(κ,κ′) ⊗R[[T 2]] Λ. If k ∈ Zn, w ∈ Z and
we assume

(4.6) kp,
w−kp

2 ≡ 0 mod p− 1 for all p | p and kp ≡ w mod 2 for all p | p

the algebra homomorphism (k, n) : R[[T 2]] → R induced by the character xp 7→ x
kp
p , xp 7→ x

np
p with

np =
w−kp

2 factors through a morphism (k,w) : Λ→ R, since the character factors through the character

of T0 × (1 + pZp) given by ((xp)p, y) 7→ yw ·
∏
x
kp
p .

By defining an action of the units, we now descend the sheaf Ω(κ1,κ2) to a sheaf of Λ⊗OXord-modules.
We have a diagonal embedding of O×F,+ ⊂ (OF,(p))×+ in T × T , given by sending x to ((xp)p, (xp)p), where

xp ∈ Z×p is the image of x in the completion of F at p. Now notice that on T0, the map x 7→ x2 is bijective.

We denote by x1/2 the preimage of x ∈ T0 under this map. Finally we let d be the following character

d :O×F,+ → (R[[T 2
0 ]])×

x→ (((xp)p)0
1/2
, ((xp)p)0).

We define an action of x ∈ O×F,+ on Ω(κ,κ′) by

x∗Ω(κ,κ′) = Ω(κ,κ′) → Ω(κ,κ′),

where first map is the tautological isomorphism (being the construction of Ω(κ,κ′) independent on the
polarisation) and the second one is multiplication by d(x). This action is compatible with the action given
in Definition 2.3.3.

For an algebraic character (k, n) satisfying (4.6) as above, we obtain

(4.7) Ω(κ1,κ2) ⊗Λ,(k,n) R ' (ω(k,n))|Xord
R
.

Remark 4.2.4. For clarity, we write explicitly the action of the units on sections of the sheaf Ω(κ1,κ2). They
are functions f on ((A, ι, λ, α), φ : Zp⊗OF ' Tp(A)ét, ψ1 : Zp⊗OF ' Tp(A)ét, ψ2 : Tp(A

∨
x )◦ ' µp∞ ⊗OF ),

such that for any λ = (λp)p, t = (tp)p, z = (zp)p ∈ (Z×p )n, they satisfy

f(A, ι, λ, α, φ ◦ λ−1, (ψ1, ψ2) ◦
(
zt 0

0 z−1

)−1

) = κ1((λ0,pt
−1/2
0,p )p)κ2(

∏
t
1/2
0,p )f(A, ι, λ, α, φ, ψ1, ψ2).

Additionally they are invariant by the action of the unit ε, i.e. ε·f(A, ι, λ, α, φ, ψ1, ψ2) = f(A, ι, λ, α, φ, ψ1, ψ2),
where the action of the units is defined by

ε · f(A, ι, λ, α, φ, ψ1, ψ2) = f(A, ι, ε · λ, α, φ, (ψ1, ψ2)).

The fact that there exist non-trivial global sections of this sheaf follows from the fact that ε∗((A, ι, λ, α, φ, ψ1, ψ2))

is equal to (A, ι, ε2 · λ, α, φ ◦ ε, (ψ1, ψ2) ◦
(
ε 0
0 ε

)
) and κ1((ε0,p(ε20,p)−1/2)p) · κ2(

∏
(ε20,p)1/2) = 1.
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Remark 4.2.5. This is a good point where we can briefly draw a comparison with [Hid88, Hid89]. The
construction in op. cit. is of course very different, since the author works with Hecke algebras and on
quaternionic Shimura varieties (via the Jacquet–Langlands correspondence). The reader may however be
confused by the discrepancy on the definition of weights and universal characters of Λ. Hida considers the

map T 2 → T × Z×p given by ((xp)p, (yp)p) 7→ ((ypx
−1
p )p,

∏
xp). The character T 2 → Z×p , xp 7→ x

kp
p , yp 7→

x
vp
p with vp =

w−kp
2 factors through the character (v, w) of T × Z×p given by ((ap)p, z) 7→ zw

∏
p a

vp
p . In

particular these characters are trivial on the units of OF embedded diagonally in T × T , whereas the ones
we considered above are trivial on the units of OF embedded in T × T via ε → (ε, ε2). This turns out to
be the correct thing to do with our construction in light of the previous remark.

4.2.3. Up and Frobenius operators. Being the cohomology of the sheaves we have just defined too big, we
define some operators, whose associated idempotents will cut out a smaller part of the cohomology for
which we can prove the classicality result.

We define the partial Frobenius Fp : (Mc)ord → (Mc′)ord to be the morphism sending (A, ι, λ, αKp) 7→
(A/Hp, ι

′, λ′, α′Kp), where Hp ⊂ A[p] is the multiplicative subgroup of the p-torsion of A, ι′, α′Kp are defined

by the composition of ι, αKp with the isogeny πp : A→ A/Hp and λ′ = θc ◦ λ̃, where λ̃ is a cp-polarisation
of A/Hp determined by the commutative diagram

A/Hp ⊗OF cp A⊗OF c

(A/Hp)∨ A∨

λ̃

π̃p

λ

π∨p

where π̃p is the unique map such that the composition A⊗cp πp−→ A/Hp⊗OF cp
π̃p−→ A⊗OF c is the canonical

map with kernel A[p]⊗ p and θc : c′ → cp is an isomorphism as in the definition of p2 in (2.3), unique up
to an element of O×F,+. We therefore have an isogeny πDp defined by the commutative diagram

(4.8)

A/Hp ⊗OF c′ A⊗OF c

(A/Hp)∨ A∨

λ′

πDp

λ

π∨p

Hence Fp is well defined up to O×F,+ and it is equivariant by the action of ∆(K). We therefore obtain a
well defined morphism

Fp : Xord → Xord.

The following result follows from [TX16, Lemma 3.14].

Lemma 4.2.6. The trace map TrFp
: (Fp)?OXord → OXord satisfies TrFp

((Fp)?OXord) ⊂ pOXord .

The morphism Fp : (Mc)ord → (Mc′)ord extends to a morphism between the partial Igusa towers

IGc, IGc′ over (Mc)ord and (Mc′)ord given by (A, ι, λ, αKp , ϕ : Zp ' Tp(A)ét) 7→ (A/Hp, ι
′, λ′, α′Kp , ϕ′ :

Zp ' Tp(A/Hp)ét), where ϕ′ : Zp
ϕ−→ Tp(A)ét ' Tp(A/Hp)ét and the last isomorphism is induced by the

isogeny πp. We also have a morphism between the partial igusa towers IG∨c , IG
∨
c′ obtained as follows: the

dual isogeny π∨p : (A/Hp)∨ → A∨ induces an isomorphism Tp((A/Hp)∨)◦ → Tp(A∨)◦. Composing this
with the rigidification ϕ : Tp(A∨)◦ ' µp∞ , we obtain an isomorphism ϕ ◦ π∨p : Tp((A/Hp)∨)◦ → µp∞ .

So the morphism induced by Fp on the dual Igusa towers is given by (A, ι, λ, αKp , ϕ : Zp ' Tp(A∨)ét) 7→
(A/Hp, ι

′, λ′, α′Kp , ϕ◦π∨p : Zp ' Tp((A/Hp)∨)ét). With these constructions in mind, we prove the following.

Lemma 4.2.7. Fp induces two well defined maps

Fp : (Fp)?Ω(κ1,κ2) → Ω(κ1,κ2) and Up : (Fp)?Ω
(κ1,κ2) → Ω(κ1,κ2).

Proof. We temporarily denote by IG the partial Igusa tower (parametrising rigidifications for the étale
p-adic Tate module) and we denote with a subscript the tower above the component Mc,ord. First we
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notice that the canonical map Fp × πIGc
: IGc → IGc′ ×Mc′,ord Mc,ord obtained by the following diagram

IGc

IGc′ ×Mc′,ord Mc,ord Mc,ord

IGc′ Mc′,ord

πIGc

Fp

Fp×πIGc

Fp

πIG
c′

is an isomorphism. The inverse morphism is given by sending

[(A/Hp, ι
′, λ′, α′Kp , ϕ : Zp ' Tp(A/Hp)ét), (A, ι, λ, αKp)] 7→ (A, ι, λ, αKp , π̃−1

p ◦ ϕ),

where π̃p : Tp(A)ét ' Tp(A/Hp)ét is the isomorphism induced by the isogeny πp. We apply Lemma 4.2.6
and the fact that the map Fp × πIGc

is an isomorphism to obtain TrFp
((Fp)?OIGc

) ⊂ pOIGc′ and

TrFp
((Fp)?(πIGc

)?OIGc
) = (πIGc′ )?(TrFp

((Fp)?OIGc
)) ⊂ p(πIGc′ )?OIGc′ .

Patching together the corresponding maps, we have the natural pullback map Fp : (Fp)?π?OIG → π?OIG

and 1
p TrFp

: (Fp)?π?OIG → π?OIG, which are well defined up to units, equivariant by the action of ∆(K)

and (Zp)×-invariant.
Similarly, if we still denote by Fp the map induced by the partial Frobenius on the dual Igusa towers

Fp : IG∨c → IG∨c′ , we have again that the canonical map Fp × πIG∨c : IG∨c → IG∨c′ ×Mc′,ord Mc,ord is
an isomorphism. Proceeding as above, we obtain the pullback map Fp : (Fp)?(πIG×IG∨)?OIG×IG∨ →
(πIG×IG∨)?OIG×IG∨ and 1

p TrFp
: (Fp)?(πIG×IG∨)?OIG×IG∨ → (πIG×IG∨)?OIG×IG∨ , which are well

defined up to units, equivariant by the action of ∆(K) and (Zp)×-invariant.
We can then consider the full Igusa towers, where the partial Frobenius on Mord lifts to Fp on IG, IG∨

and to isomorphisms on all the factors of the Igusa towers for p′ 6= p. Tensoring with R[[T 2]] and taking
T 2-invariants we obtain maps of sheaves over Mord

Fp : (Fp)?Ω(κ,κ′) → Ω(κ,κ′) and Up := 1
p TrFp

: (Fp)?Ω
(κ,κ′) → Ω(κ,κ′)

again well defined up to units and equivariant by the action of ∆(K). We therefore obtain maps Fp, Up

for the shaves over Xord as claimed. �

We now look more closely to the specialisation of these maps at classical weight k, n ∈ Zn.
Consider the universal isogeny πp : Ac → Ac′/Hp. The pullback gives an OF -equivariant map π?p :

(Fp)? ω → ω of sheaves over Mord. Similarly we obtain a map π?p : (Fp)?(∧2H1)→ ∧2H1 and we therefore
obtain, for any k, n ∈ Zn

(4.9) π?p : (Fp)? ω(k,n) → ω(k,n) .

The dual isogeny induces an isogeny πDp : Ac′/Hp ⊗ c′ → Ac ⊗ c using the prime to p polaristaions. We

therefore find, being c, c′ all coprime to p, an OF -equivariant map (πDp )? : ω(k,n) → (Fp)? ω(k,n). We can
then construct a map

(4.10) UπDp : (Fp)? ω
(k,n)

(πDp )?

−−−−→ (Fp)?(Fp)? ω(k,n)

1
p TrFp

−−−−→ ω(k,n) .

Lemma 4.2.8. The map Fp specialised to weight (k, n) coincides with p−kp−np(π?p)(k,n). The map Up

specialised to weight (k, n) coincides with p−npUπDp .

Proof. Let m ≤ n and recall IGm,np = IsomMord
m

(Z/pn,A[pn]ét), Tp = IsomMm(OMm , (e
∗Ω1
A)p). where Tp

is the p-component of the torsor T . We have the following commutative diagram

IGm,np IGm,np

Tp|Mord
m

Tp|Mord
m

Fp

HTm,n HTm,n

(πDp )?

(A, ι, λ, αKp , ϕn) (A/Hp, ι
′, λ′, α′Kp , πp ◦ ϕn)

(A, ι, λ, αKp , (ϕDn )∗) (A/Hp, ι
′, λ′, α′Kp , (πDp )? ◦ (ϕDn )?))

Fp

HTm,n HTm,n

(πDp )?

where (πDp )? is the map induced by the (p-component) of the pullbacks Ω1
A → Ω1

A/Hp
of the dual maps

defined by the diagram (4.8); note that we use the fact that c, c′ are coprime to p. Moreover, to sim-
plify the notation, we denoted by (ϕDn )∗ the image of ϕn : Z/pn ' A[pn]ét under the map defined
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in (4.3) (obtained by fixing a basis of Ω1
µpn

). Similarly, recall (IG∨p )m,n = IsomMord
m

(A∨[pn]◦, µpn),

T ′p = IsomMm(OMm , ((e
∗Ω1
A∨)p)∨). We have the commutative diagram

(IG∨p )m,n (IG∨p )m,n

T ′p|Mord
m

T ′p|Mord
m

Fp

HTm,n HTm,n

((π∨p )?)−1

(A, ι, λ, αKp , ϕn) (A/Hp, ι
′, λ′, α′Kp , ϕn ◦ π∨p )

(A, ι, λ, αKp , (ϕ∗n)−1) (A/Hp, ι
′, λ′, α′Kp , ((ϕn ◦ π∨p )∗)−1)

Fp

HTm,n HTm,n

((π∨p )?)−1

where ϕ∗n denotes the isomorphism OMord
m
→ (e∗Ω1

A∨)p and (ϕ∗n)−1 denotes the isomorphism OMord
m
→

((e∗Ω1
A∨)p)∨ obtained as in (4.4). Moreover the bottom map is given by pre-composing with ((π∨p )?)−1 :

((e∗Ω1
A∨)p)∨ → ((e∗Ω1

(A/Hp)∨)p)∨. Passing to the limits, we obtain commutative diagrams

(4.11)

IG IG

T|Mord T|Mord

Fp

HT HT

(πDp )?

IG∨ IG∨p

T ′|Mord T ′|Mord ,

Fp

HT HT

((π∨p )?)−1

where we replaced the partial Igusa towers and partial Gm-torsors with the full Igusa towers IG, IG∨

and the Gm ⊗ OF -torsors T , T ′, letting Fp act as the identity on the components IGq, IG
∨
q for q 6= p

and exploiting the fact that being πp a p-isogeny, the bottom pullback maps are isomorphisms on the
components Tq, T ′q for q 6= p. We find the corresponding commutative diagrams on the structural shaves

and taking the (k, n)-components we obtain that the pullback map Fp : (Fp)? ω(k,n) → ω(k,n) is therefore
given on the p-component by ((πDp )?)−1⊗[((πDp )?)−1⊗(π∨p )?], where we are identifying, by (H) and the fact

that the polarizations are prime to p, ∧2H1
dR(A/Hp)p ' (e∗Ω1

A)p ⊗ (e∗Ω1
A∨)∨p . Under this identification

the natural pullback map π?p decomposes as

∧2H1
dR(A/Hp)p ∧2H1

dR(A)p

(e∗Ω1
A/Hp

)p ⊗ Lie((A/Hp)∨)p (e∗Ω1
A)p ⊗ Lie(A∨)p

π?p

' '
π?p⊗Lie(π∨p )

and, under the isomorphism [Kat78, (1.0.13)], we can write the second component of the map as Lie(π∨p ) =

(π∨p )? : (e∗Ω1
(A/Hp)∨)∨ ' Lie((A/Hp)∨) → (e∗Ω1

A∨)∨ ' Lie(A∨), where here (π∨p )? denotes the map

obtained composing with (π∨p )? : e∗Ω1
A∨ → e∗Ω1

(A/Hp)∨ . So, since the composition π?p ◦ (πDp )? is given by

multiplication by p on (e∗Ω1
A)p and is an isomorphism on the q 6= p-components, we obtain

Fp = ((πDp )?)−1 ⊗ [((πDp )?)−1 ⊗ (π∨p )?] = p−kp−npπ?p.

On the other hand, again by the commutativity of the diagrams (4.11), the specialisation of the trace

map is given by the composition (Fp)? ω
(k,n) → (Fp)?(Fp)? ω(k,n)

1/pTrFp−−−−−→ ω(k,n), where the first map is
given on the p-component by (πDp )? ⊗ [(πDp )? ⊗ ((π∨p )?)−1]. As before the natural pullback map (πDp )?

decomposes as

∧2H1
dR(A)p ∧2H1

dR(A/Hp)p

(e∗Ω1
A)p ⊗ Lie(A∨)p (e∗Ω1

A/Hp
)p ⊗ Lie((A/Hp)∨)p,

(πDp )?

' '
(πDp )?⊗Lie((πDp )∨)

where Lie((πDp )∨) = ((πDp )∨)? : (e∗Ω1
A∨)∨ ' Lie(A∨)→ (e∗Ω1

(A/Hp)∨)∨ ' Lie((A/Hp)∨). The composition

(π∨p )? ◦ ((πDp )∨)? is given by multiplication by p on (e∗Ω1
A∨)∨, so we obtain

Up = 1
p TrFp

◦(πDp )? ⊗ [(πDp )? ⊗ ((π∨p )?)−1] = p−npUπDp .

These maps are all invariant by the action of the units, so we obtain the desired statement for the map
between the sheaves over Xord. �

We now compare these operators with the operator Tp constructed in § 3.1. As we did for M and
X, the moduli space and Shimura variety of level K such that Kp = G(Zp), we can consider M0(p)
and X0(p) the formal completion of M0(p) and of X0(p) along their special fibres. The ordinary locus
M0(p)ord of M0(p) is the disjoint union of the loci M0(p)ét and M0(p)m, where the universal p-isogeny
has respectively étale and multiplicative kernel. Passing to the quotient by the action of the units, we
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similarly let X0(p)ét,X0(p)m, noting that the kernel of the isogeny is independent on the polarisations. By
construction we have that the two projection maps p1, p2 are either an isomorphism or can be identified
with Fp when restricted to X0(p)ét,X0(p)m, more precisely

(4.12)
X0(p)ét

Xord Xord

p2

'p1=Fp

X0(p)m

Xord Xord.

p2=Fp'
p1

Using the previous lemma, we can prove the following

Lemma 4.2.9. Let Fp and Up be the specialisations of the operators Fp and Up in weight (k, n), where

n = w−k
2 , for w, k as in (4.6). We have the following equalities

(i) Tp = pkp−1Fp + Up when kp ≥ 1;
(ii) Tp = Fp + p1−kpUp when kp < 1.

Proof. We denote by Tnaive,ét
p , Tnaive,mp the projection of the restriction of the correspondence Tnaivep

over X0(p)ord on the component X0(p)ét and X0(p)m respectively. They are obtained via the pullback
induced by the isogeny πDp and πp respectively. By the above observations and Lemma 4.2.8, we have that

Fp = p−kp−npTnaive,mp and Up = p−np−1Tnaive,ét
p . Our definition of the normalised operator Tp gives

Tp =

{
p−np−1(pkp+npFp + pnp+1Up) = pkp−1Fp + Up if kp ≥ 1

p−np−kp(pkp+npFp + pnp+1Up) = Fp + p1−kpUp if kp < 1.

�

Note that, in particular, this lemma tells us that we have Tp ≡ Up mod ℘ when kp > 1 and Tp ≡ Fp

mod ℘ when kp < 1. This will be crucial in the next section to reduce the classicality result in characteristic
zero to the classicality result we proved modulo ℘ in §4.1.

Finally, we have the following analogue of Proposition 3.1.2.

Lemma 4.2.10. We have D(Fp) = Up.

Proof. Using the description of the specialisations of Fp and Up given in Lemma 4.2.8 we can obtain
the claimed result similarly as in the proof on Proposition 3.1.2. Alternatively, this follows by the same
proposition and the equalities of Lemma 4.2.9. �

4.2.4. Construction of p-adic families. Recall that X is the formal completion of X along its special fibre
and we denoted by Xi = X ×SpecR Spec(R/℘i) the reduction of X modulo ℘i and by Xord

i the ordinary
locus of Xi. In order to define the desired Λ-modules, we need to extend over X suitable quotients of the
sheaf Ω(κ1,κ2), which is only defined over Xord. We start by considering a general framework.

Let F be any quasi coherent sheaf defined over Xord
i . Let I the sheaf of ideals corresponding to the

divisor Di = Xi \Xord
i ; we can write it as I =

∏
Iτ , where Iτ is the sheaf of ideals corresponding to Dτ,i.

We consider an extension F̄ of F over Xi. In particular we have

(4.13) j?F = colim
−−−−−→
`

I−`F̄

where j denotes the inclusion j : Xord
i → Xi. Let J ⊂ Σ∞, consider m = (mτ )τ 6∈J ∈ Z#(Σ∞−J)

≥0 , n =

(nτ )τ∈J ∈ Z#J
≥0 and let

H∗i (F̄)m,n = H∗(Xi,
∏
τ 6∈J

I−mττ

∏
τ∈J
Inττ F̄),

H∗,Ji (F̄) =

(
lim
←−−
nτ

)
τ∈J

(
colim
−−−−−→
mτ

)
τ 6∈J

H∗i (F̄)m,n.

These modules may a priori depend on the extension F̄ of F . We now go back to the Igusa sheaf, quotient
it by a certain Λ-ideal so that is a quasi coherent sheaf over Xord

i and show that it has a locally finite
action of the operator

(4.14) TJ :=
∏
p6∈J

Up

∏
p∈J

Fp.

We can then apply the idempotent e(TJ) to H∗,Ji (F̄) and we show that the obtained module is independent
on the choice of F̄ .
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Let Λ̃ = R[[(Z×p )2n]]. Recall that we defined the sheaf of Λ̃ ⊗ OMord -modules Ω(κ,κ′) in (4.5). We

will now define truncated versions of this sheaf using IGm,i, (IG∨)m,i the level pm Igusa towers on the

reduction modulo ℘i of Mord. Let Λ̃i = R/℘iZ[[((Z/piZ)×)2n]] and let πm,i : IGm,i → Mord
i , π′m,i :

IGm,i × (IG∨)m,i → Mord
i . For m ≥ i let (κm,i, κ

′
m,i) : ((Z/pm)×)2n → Λ̃×i the natural character that

factors through ((Z/piZ)×)2n. We let

Ω
(κ,κ′)
m,i =

(
((πm,i)?OIGm,i ⊗OMord

i

(π′m,i)?OIGm,i×(IG∨)m,i)⊗ Λ̃i

)
[(κm,i, κ

′
m,i)].

This is a sheaf of Λ̃i⊗OMord
i

-modules. Let us denote by m̃i the kernel of the map Λ̃→ Λ̃i. We have natural

inclusions m̃i ⊂ m̃i−1 and the kernel of the natural map Λ̃i → Λ̃i−1 can be identified with m̃i−1/m̃i. These
maps induce the horizontal maps in the diagram

Ω
(κ,κ′)
m,i Ω

(κ,κ′)
m,i−1

Ω
(κ,κ′)
m−1,i Ω

(κ,κ′)
m−1,i−1,

where on the other hand the vertical maps are induced by the natural maps between the Igusa towers. Let

Ω
(κ,κ′)
∞,i = colim

−−−−−→m Ω
(κ,κ′)
m,i . We then have Ω(κ,κ′) = lim

←−−i Ω
(κ,κ′)
∞,i . We can identify Ω

(κ,κ′)
∞,i = Ω(κ,κ′)/mi, which

is a quasi-coherent sheaf over Mord
i .

Let Λi = R/℘i[(1 + pZp/1 + piZp)n+1]. Let mi be the kernel of the map Λ → Λi; we have a natural

surjective map Λ̃i/m̃i → Λ/mi. The sheaf Ω(κ1,κ2) = Ω(κ,κ′) ⊗Λ̃ Λ over Mord can hence be written as

lim
←−−i Ω(κ,κ′)/m̃i ⊗Λ̃/mi

Λ/mi = lim
←−−i Ω(κ1,κ2)/mi. From the above construction and the definition of the

descent datum in § 4.2.2, we obtain that the above description remains valid when we descend Ω(κ1,κ2)

and Ω(κ1,κ2)/mi to sheaves over Xord and Xord
i respectively.

Finally, we denote by Ω(κ1,κ2)/mi(−D) the OXord
i
⊗ Λ-modules (Ω(κ1,κ2) ⊗O

Xord
OXord(−D))⊗Λ Λ/mi,

where D is the cuspidal divisor in X.

Proposition 4.2.11. For any i ≥ 1, let Fi := Ω(κ1,κ2)/mi and Fi(−D) := Ω(κ1,κ2)/mi(−D).

(i) The natural map Xord
i → Xord

i+1 induces a well defined map H∗,Ji+1(F̄i+1)→ H∗,Ji (F̄i) and, similarly,

a well-defined map H∗,Ji+1(F̄i+1(−D))→ H∗,Ji (F̄i(−D)).

(ii) The operator TJ acts on H∗,Ji (F̄i) compatibly with respect to the maps H∗,Ji+1(F̄i+1) → H∗,Ji (F̄i).
Moreover TJ is locally finite on lim

←−−iH
∗,J
i (F̄i). The same statements hold for H∗,Ji (F̄i(−D)).

(iii) H∗,Ji (F̄i(−D)) = 0 for ∗ 
 #J , H∗,Ji (F̄i) = 0 for ∗ � #J

(iv) The modules e(TJ)H∗,Ji (F̄i), e(TJ)H∗,Ji (F̄i(−D)) are independent on the choice of the extension
F̄i of Fi.

Proof. We start by proving (i). Recall that, as explained in 3.2.1, the natural map Xi → Xi+1 maps
p ·Dτ,i to the divisor Dτ,i+1. Hence the map induces H∗i+1(F̄i+1)m,n → H∗i (F̄i)pm,pn, where (pm)τ = pmτ

and similarly for pn. Since we can rewrite H∗,Ji (F̄) = (lim
←−−nτ

)τ∈J(colim
−−−−−→mτ

)τ 6∈JM
∗
i (F̄)pm,pn we obtain the

desired map passing to the limits-colimits.

To prove (ii), we exhibit a continuous action of TJ on HiJ ,J
i (F̄i) compatible for all i’s. Once we have

that, in order to prove that the action is locally finite, it is enough to prove it for i = 1. Then we can
use [Pil20, Lemma 2.1.2] to deduce that TJ is locally finite on the limit. The statement for i = 1 follows
from the isomorphism we will find later in (4.16), which is compatible with the action of TJ on the left
and Tp on the right by Lemma 4.2.9. Moreover we have that Tp is locally finite on the right hand side by
Proposition 4.1.5.

For every p, we can decompose X0(p)ord
i = X0(p)ét

i t X0(p)mi , where X0(p)ét
i and X0(p)mi are the

components where the universal p-isogeny has étale and connected kernel. Using the diagram (4.12), we
can think of Fp : F ?p Ω(κ1,κ2) → Ω(κ1,κ2) (respectively Up : (Fp)?Ω

(κ1,κ2) → Ω(κ1,κ2)) as a cohomological

correspondence p?2(Ω(κ1,κ2)/mi)→ p!
1(Ω(κ1,κ2)/mi) on X0(p)ord

i given by Fp on X0(p)mi and by zero on the
other component (respectively by Up on X0(p)ét

i and by zero on X0(p)mi ). From (4.13) we get that there
exists `p, `

′
p such that Fp (respectively Up) induces

Fp : p?2F̄i → p!
1(I−`pF̄i), (resp. Up : p?2F̄i → p!

1(I−`
′
pF̄i) )
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Moreover, when restricting to X0(p)mi (respectively X0(p)ét
i ), there exists hp, h

′
p ≥ 1 such that p?2(Ihp

p ) ⊂
p?1(Ip) (resp. p?2(Ip) ⊂ p?1(Ih

′
p

p )) and p?2(Iq) = p?1(Iq) for every q 6= p. This gives us maps

Fp : H∗(Xi, I
hpnp
p

∏
q 6∈J

I−mq
q

∏
p6=q∈J

Inq
q F̄i)→ H∗(Xi, I

np−`p
p

∏
q 6∈J

I−mq−`p
q

∏
p6=q∈J

Inq−`p
q F̄i),

Up : H∗(Xi,
∏
q 6∈J

I−mq
q

∏
q∈J
Inq
q F̄i)→ H∗(Xi, I

−h′pmp−`′p
p

∏
p6=q 6∈J

I−mq−`′p
q

∏
q∈J
Inq−`′p
q F̄i),

where p ∈ J and p 6∈ J respectively. We can deduce that there exist h, h′ ∈ (Z≥1)n, L,L′ ∈ (Z≥0)n such
that, for every m ∈ (Z≥0)n−#J , n ∈ (Z≥0)#J , TJ gives a map

(4.15) TJ : H∗,Ji (F̄i)(m,h·n) → H∗,Ji (F̄i)(h′·m+L′,n−L).

One can take h = (hp)p ∈ J, h′ = (h′p)p 6∈ J and we can replace the `p’s, `′p’s to be big enough such that∏
q∈J hq | `p, `′p for every p and, choosing an order p1, . . . , ps ∈ J, p′1, . . . , p′r 6∈ J , we can take

Lj =

r∑
k=1

`′p′k
+ (

j−1∑
u=1

`pu)/hpj +

s∑
u=j

`pu ; L′j = h′p′j (

s∑
u=1

`pu +

j−1∑
k=1

`′p′k
) + `′p′j .

Taking the limits-colimits, we therefore obtain a continuous map TJ : H∗,Ji (F̄i)→ H∗,Ji (F̄i). It is not hard
to show that the maps (4.15) can be chosen to be compatible with respect to the maps Xi → Xi+1. This
concludes the proof of (ii).

In order to prove (iii), the key ingredient is Proposition 4.1.5. Firstly we treat the case i = 1. We
consider the following module, obtained for any (k, n) ∈ Z2n as in Proposition 4.1.5:

H∗(k,w) :=

(
lim
←−−
np

)
p:kp≤0

(
colim
−−−−−→
np

)
p:kp≥2

H∗(X1, ω
(k,w)(

∑
p:kp≥2

npDp −
∑

p:kp≤0

npDp)).

By definition, we find that Ω(κ1,κ2)/m1 is isomorphic to the sheaf ω(k,w), where kp, w : Z×p → F×p are any

characters factoring through the trivial character T0×(1+pZp)→ F×p . We can then choose kp = −2(p−1)
when p ∈ J , kp = +2(p− 1) when p 6∈ J and w = 2(p− 1). We obtain

(4.16) H∗,J1 (F̄1) ' H∗(k,w),

Then Proposition 4.1.5 tells us that H∗,J1 (F̄1(−D)) 6= 0 only if ∗ ≤ #J and H∗,J1 (F̄1) 6= 0 only if ∗ ≥ #J .
Now consider the following exact sequence of sheaves over Xord

i+1

0→ Fi+1 ⊗Λ/mi+1
mi/mi+1 → Fi+1 → Fi+1/(Fi+1 ⊗Λ/mi+1

mi/mi+1)→ 0.

Since the first sheaf is isomorphic to F1 and the third one to Fi, we obtain the following long exact sequence

(4.17) · · · → Hj−1,J
i (F̄i)→ Hj,J

1 (F̄1)→ Hj,J
i+1(F̄i+1)→ Hj,J

i (F̄i)→ Hj+1,J
1 (F̄1)→ . . .

This follows similarly as in [Har72, §3(a)]; one needs to choose the extensions of the sheaves to Xi+1 in
order to still have a short exact sequence of sheaves over Xi+1 and then the long exact sequence is obtained
using the fact that the colimit functors are exact and so are the inverse limit functors (since the modules
H∗i+1(F̄i+1)m,n are finite R/℘i+1-modules and hence their inverse system varying one nτ satisfies the

Mittag-Leffler condition and similarly for H∗i+1(Ḡ)m,n for G the other sheaves in the short exact sequence).
We can similarly obtain analogous exact sequences replacing the shaves with their cuspidal versions.

We have proved that H∗,J1 (F̄1(−D)) 6= 0 only if ∗ ≤ #J and by induction and using (4.17), we obtain

H∗,Ji (F̄i(−D)) 6= 0 only if ∗ ≤ #J for every i. We obtain similarly the vanishing statement for H∗,Ji (F̄i).
We finally prove (iv). We now fix i and to ease the notation we write F for the sheaf Fi. If we have two

sheaves F̄ , F̄ ′ extending F , the sheaf F̄ ∩ F̄ ′ also extends F , hence we can reduce to prove that if F̄ ′ ⊂ F̄
are two sheaves extending F to Xi, then H∗,Ji (F̄) ' H∗,Ji (F̄ ′).

In particular, under this assumption, we have that the sheaf F̄/F̄ ′ is supported on a subset of ∪p|pDp,i,

hence we find that there exists t ≥ 0 such that ItF̄ ⊂ F̄ ′ and therefore for any m ∈ (Z≥0)n−#J , n ∈
(Z≥0)#J (with mτ 
 t) we find maps

(4.18) H∗i (F̄)m−t,n+t → H∗i (F̄ ′)m,n → H∗i (F̄)m,n,

where (m− t)τ = mτ − t, (n+ t)τ = nτ + t. Consider the cohomological correspondence TJ . As discussed
above, from (4.13) we get that there exist L,L′, L1, L

′
1 such that T induces

TJ : H∗,Ji (F̄)(m,h·n) → H∗,Ji (F̄)(h′·m+L′,n−L), T ′J : H∗,Ji (F̄ ′)(m,h·n) → H∗,Ji (F̄ ′)(h′·m+L′1,·n−L1).
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Assume without loss of generality that L ≥ L1, L
′ ≥ L′1, so that we can write T ′J : H∗,Ji (F̄ ′i)(m,h·n) →

H∗,Ji (F̄ ′i)(h′·m+L′,n−L). Moreover we can replace t by a bigger integer and we can therefore assume that
(
∏

p∈J hp) | t and we have maps as in (4.18). We find the following diagram

H∗i (F̄ ′)m,hn H∗i (F̄)m,hn

H∗i (F̄ ′)m+t,hn−t H∗i (F̄)m+t,hn−t

H∗i (F̄ ′)
h′(m+t)+L′,n− th−L

H∗i (F̄)
h′(m+t)+L′,n− th−L

H∗i (F̄ ′)h′m+L′,n−L H∗i (F̄)h′m+L′,n−L

T ′J TJ

f

T ′J TJ

where f is given by the first map in (4.18), the horizontal arrows are given by F̄ ′ ⊂ F̄ and the maps
from the bigger square to the smaller one are given by the connecting maps H∗i (G)m,n → H∗i (G)m′,n′ for
mτ ≤ m′τ for every τ 6∈ J , nτ ≥ n′τ for every τ ∈ J .

Taking the limits-colimits we obtain continuous maps T ′J ∈ End(H∗,Ji (F̄ ′)), TJ ∈ End(H∗,Ji (F̄)) and a
commutative diagram

H∗,Ji (F̄ ′) H∗,Ji (F̄)

H∗,Ji (F̄ ′) H∗,Ji (F̄),

T ′J TJ
T ′J

which implies that the map e(T ′J)H∗,Ji (F̄ ′)→ e(TJ)H∗,Ji (F̄) is an isomorphism. �

We now define the following Λ-modules

H∗J(Ω(κ1,κ2)) := lim
←−−
i

H∗,Ji (F̄i), ,M∗J (Ω(κ1,κ2)) := lim
←−−
i

e(TJ)H∗,Ji (F̄i)

where the limit is taken with respect to the maps of Proposition 4.2.11(i).

Remark 4.2.12. Note that a priori the module H∗J(Ω(κ1,κ2)) may depend on the chosen extension of the

sheaves Ω(κ1,κ2)/mi from Xord
i to Xi, but the definition of M∗J (Ω(κ1,κ2)) is independent on such choice

by Proposition 4.2.11(iv). Moreover, the definition of M∗J (Ω(κ1,κ2)) is also independent on the order in

which we take the limits and colimits in the definitions of H∗,Ji (F̄i). More precisely, writing J = J1 t J3,

Jc = J2 t J4, for Jj ⊂ Σ∞, one could define M̃∗J (Ω(κ1,κ2)) = lim
←−−i e(TJ)H̃∗,Ji (F̄i), where

H̃∗,Ji (F̄i) =

(
lim
←−−
nτ

)
τ∈J1

(
colim
−−−−−→
mτ

)
τ∈J2

(
lim
←−−
nτ

)
τ∈J3

(
colim
−−−−−→
mτ

)
τ∈J4

H∗i (F̄i)m,n.

The definition of M∗J (Ω(κ1,κ2)) is the one for the choice J3 = J2 = ∅. We have natural maps between the

M̃∗J (Ω(κ1,κ2)) for different choices of Jj and for different ordering in each subset Jj . Using the isomorphism
(4.16), Corollary 4.1.4 and Lemma 4.2.9 we obtain that these maps are isomorphisms modulo the maximal
ideal m. Since all these modules are finite projective over Λ (which we prove in Theorem 4.2.13 below

for J3 = J2 = ∅ and follows similarly in general), Nakayama’s lemma implies that the M̃∗J (Ω(κ1,κ2)) are
isomorphic Λ-modules.

In order to state the main theorem, we first write maps, which are the characteristic zero analogues of
(4.1)-(4.2) in Remark 4.1.8, obtained using the universal properties of limits and colimits

H∗J(Ω(κ1,κ2))→ lim
←−−
i

(colim
−−−−−→
mτ

)τ 6∈JH
∗(Xi,

∏
τ 6∈J

I−mττ F̄i)← lim
←−−
i

H∗(Xi, F̄i),

H∗J(Ω(κ1,κ2))← lim
←−−
i

(lim
←−−
nτ

)τ∈JH
∗(Xi,

∏
τ∈J
Inττ F̄i)→ lim

←−−
i

H∗(Xi, F̄i).
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Moreover, using the isomorphism (4.7) for any algebraic character (k,w) satisfying (4.6), we obtain

H∗J(Ω(κ1,κ2))⊗Λ,(k,w) R→ lim
←−−
i

(colim
−−−−−→
mτ

)τ 6∈JH
∗(Xi,

∏
τ 6∈J

I−mττ ω(k,w))← H∗(X,ω(k,w)),(4.19)

H∗J(Ω(κ1,κ2))⊗Λ,(k,w) R← lim
←−−
i

(lim
←−−
nτ

)τ∈JH
∗(Xi,

∏
τ∈J
Inττ ω(k,w))→ H∗(X,ω(k,w)).(4.20)

Theorem 4.2.13. The Λ-module M∗J (Ω(κ1,κ2)) is finite and projective and M∗J (Ω(κ1,κ2)) = 0 if ∗ � #J .

Let k ∈ Zn, w ∈ Z such that kp,
w−kp

2 ≡ 0 mod p − 1 for every p | p, w ≡ kp mod 2 for every p and
kp ≤ −1 for p ∈ J , kp ≥ 3 for p 6∈ J . Then

M∗J (Ω(κ1,κ2))⊗Λ,(k,w) R ' e(Tp)H∗(X,ω(k,w)).

Proof. The vanishing result follows from [Pil20, Proposition 2.2.1] and Proposition 4.2.11(iii). Moreover
M∗J (Ω(κ1,κ2)) is free over Λ by applying Nakayama’s lemma and the fact that (4.16), together with Theorem
4.1.7, implies that the module is finite modulo m. In order to prove the classicality result, recall that,

thanks to the condition kp,
w−kp

2 ≡ 0 mod p− 1 for every p | p, by (4.7), we obtain an isomorphism

M#J
J (Ω(κ1,κ2))⊗Λ,(k,w) R ' H#J

J ((ω(k,w))|Xord
R

),

where the right hand side is the limit over i of (lim
←−−np

)p∈J(colim
−−−−−→np

)p6∈Je(TJ)H#J(Xi,
∏

p6∈J I
−np
p

∏
p∈J I

np
p ω(k,w)).

Hence applying the projectors, (4.19) and (4.20) give us maps of free R-modules

M∗J (Ω(κ1,κ2))⊗Λ,(k,w) R→ lim
←−−
i

e(TJ)(colim
−−−−−→
mτ

)τ 6∈JH
∗(Xi,

∏
τ 6∈J

I−mττ ω(k,w))← e(Tp)H
∗(X,ω(k,w)),

M∗J (Ω(κ1,κ2))⊗Λ,(k,w) R← lim
←−−
i

e(TJ)(lim
←−−
nτ

)τ∈JH
∗(Xi,

∏
τ∈J
Inττ ω(k,w))→ e(Tp)H

∗(X,ω(k,w)),

where we used that, by our assumptions on the weights and Lemma 4.2.9, the projectors e(TJ) and e(Tp)
are the same. The classicality result modulo ℘ (Theorem 4.1.7, combined with Remark 4.1.8) and Lemma
4.2.9 imply that these maps are isomorphisms modulo ℘. By Nakayama’s lemma we deduce that they are
isomorphisms over R. �

Remark 4.2.14. We obtain the analogous result if we consider cuspidal cohomology, i.e. M∗J (Ω(κ1,κ2)(−D)).
In this case, by [Pil20, Proposition 2.2.1] and Proposition 4.2.11(iii), this module vanishes for ∗ 
 #J .

4.3. Duality. The goal of this section is to define a pairing

〈−,−〉 : H#J
J (Ω(κ1,κ2))×H#Jc

Jc (Ω(2−κ1,−1−κ2)(−D))→ Λ

interpolating in classical weights the Serre duality pairing. Let us fix J ⊂ Σ∞ and let iJ = #J . For every
i, consider the modules

Am,n = HiJ (Xi,
∏
τ 6∈J

I−mττ

∏
τ∈J
Inττ F̄i),

Bm,n = Hn−iJ (Xi,
∏
τ 6∈J

Imττ

∏
τ∈J
I−nττ

ˇ̄Fi ⊗ (ω(2,−1)(−D)⊗ Λi))

which come with the Serre duality pairing, that we denote by

〈−,−〉m,n : Am,n ×Bm,n → Λi.

Recall HiJ ,J
i (F̄i) =

(
lim
←−−nτ

)
τ∈J

(
colim
−−−−−→mτ

)
τ 6∈J Am,n and let

Hn−iJ ,Jc
i ( ˇ̄Fi) =

(
lim
←−−
mτ

)
τ 6∈J

(
colim
−−−−−→
nτ

)
τ∈J

Bm,n.

Lemma 4.3.1. The pairing 〈−,−〉m,n induces a well-defined pairing

〈−,−〉 : HiJ ,J
i (F̄i)×Hn−iJ ,Jc

i ( ˇ̄Fi)→ Λi.

Proof. For any q 6∈ J, p ∈ J , let 1q ∈ Zn−#J , 1p ∈ Z#J be the vectors which are equal to zero everywhere
but at the q-th (respectively p-th) place, where they are equal to 1. Hence we have maps

Am,n
amq−−−→ Am+1q,n, Am,n

anp−−→ Am,n−1p
, Bm,n

bmq−−→ Bm−1q,n, Bm,n
bnp−−→ Bm,n+1p

.
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Since the pairings 〈−,−〉m,n are just obtained by Serre duality, they are compatible with respect to these
maps. Namely, the following diagram is commutative

Am−1q,n × Bm−1q,n

Am,n × Bm,n Λi.

Am,n−1p
× Bm,n−1p

amq−1

〈−,−〉m−1q,n

anp

bmq

〈−,−〉m,n

bnp−1
〈−,−〉m,n−1p

Therefore the pairings 〈−,−〉m,n induce a well-defined pairing on the limits with respect to these maps. �

Let Ω(2−κ1,−κ2)(−D) = ω(2,−1)(−D) ⊗ Hom(Ω(κ1,κ2),Λ ⊗ OXord). Taking the limit over i, we obtain
from the previous lemma, a pairing

〈−,−〉 : H#J
J (Ω(κ1,κ2))×H#Jc

Jc (Ω(2−κ1,−κ2)(−D))→ Λ.

Note that we have an isomorphism of Λ⊗OXord -modules Ω(2−κ1,−κ2)(−D) ' Ω(κ1,κ2)(−D)⊗φ,Λ Λ, where
φ is the automorphism of Λ induced by the character

φ :(1 + pZp)n+1 → Λ×

((xp)p, y) 7→
∏
p

x2
p · κ1((xp)p)−1κ2(y)−1,

which commutes with taking the twist of Ω(κ,κ′) by the homomorphism of R[[(Zp)2n]] induced by the

character ((xp)p, (yp)p) 7→
∏

p x
2
py
−1
p ·κ((xp)p)−1κ′((yp)p)−1. Note that, similarly as in the proof of Propo-

sition 4.2.11, we have a well-defined action of the operator TJc on H#Jc

Jc (Ω(2−κ1,−κ2)(−D)). Moreover,
the classicality result (Theorem 4.2.13) for this module reads as follows: for k ∈ Zn, w ∈ Z such that

kp,
w−kp

2 ≡ 0 mod p − 1 for every p | p, w ≡ kp mod 2 for every p and kp ≤ −1 for p ∈ J , kp ≥ 3 for
p 6∈ J . Then

M#Jc

Jc (Ω(2−κ1,−κ2)(−D))⊗Λ,(k,w) R ' e(Tp)H#Jc(X,ω(2−k,−w)),

where M#Jc

Jc (Ω(2−κ1,−κ2)(−D)) is defined, similarly to M#Jc

Jc (Ω(κ1,κ2)(−D)), by applying e(TJc) to the

module H#Jc

Jc (Ω(2−κ1,−κ2)(−D)).

Theorem 4.3.2. (i) For any (f, g) ∈ H#J
J (Ω(κ1,κ2))×H#Jc

Jc (Ω(2−κ1,−κ2)(−D)), we have

〈TJf, g〉 = 〈f, TJcg〉,

and hence the pairing restricts to a pairing

〈−,−〉 : M#J
J (Ω(κ1,κ2))×M#Jc

Jc (Ω(2−κ1,−κ2)(−D))→ Λ.

(ii) It is a perfect pairing compatible with Serre duality, namely, for any J ⊂ Σ∞ and classical weights
(k,w) as in Theorem 4.2.13, the following diagram commutes

M#J
J (Ω(κ1,κ2))⊗Λ,(k,w) R × M#Jc

Jc (Ω(2−κ1,−κ2)(−D))⊗Λ,(k,w) R R

e(Tp)H
#J(X,ω(k,w)) × e(Tp)H

n−#J(X,ω(2−k,−w)(−D))

' '

where the bottom pairing is the restriction of the classical Serre duality pairing on the ordinary
part of the cohomology.

Proof. Recall that Zn+1 ⊂ Homcont((1 + pZp)n+1,Z×p ) is dense, where the embedding is given by sending

(k1, . . . , kn+1) to the character (x1, . . . , xn+1) 7→
∏
xkii . Consider the subset of Zn+1 given by H ⊂

((p− 1)2Z)n+1. Since (p− 1) and p are coprime, this set is again dense in Homcont((1 + pZp)n+1,Z×p ) and

hence for M = H#J
J (Ω(κ1,κ2)) or M = H#Jc

Jc (Ω(2−κ1,−κ2)(−D)), the map M →
∏

(k,w)∈HM ⊗(k,w) R is

injective and so is the map Λ →
∏

(k,w)∈H R. Hence to prove the identity claimed in (i), it is enough to

prove it for the pairing specialised in weight (k,w) for every (k,w) ∈ H, which is a pairing

H#J
J (ω(k,w))×H#Jc

Jc (ω(2−k,−w)(−D))→ R.
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Then the statement follows using Lemma 4.2.10, which tells us that, when specialised at classical weights,
Fp and Up are dual to each other for every p.

In order to prove that this pairing is perfect, it is enough to prove the commutativity of the diagram in
(ii), since the bottom pairing is perfect. By construction, we have a commutative diagram

H#J
J (Ω(κ1,κ2))⊗Λ,(k,w) R × H#Jc

Jc (Ω(2−κ1,−κ2)(−D))⊗Λ,(k,w) R

lim
←−−i(colim

−−−−−→mτ
)τ 6∈JH

#J(Xi,
∏
τ 6∈J I−mττ ω(k,w)) × lim

←−−i(lim←−−mτ )τ 6∈JH
#Jc(Xi,

∏
τ 6∈J Imττ ω(k,w)) R.

H#J(X,ω(k,w)) × Hn−#J(X,ω(2−k,−w)(−D))

ji

where the vertical maps are the ones obtained in (4.19) (for the left ones) and in (4.20) (for the right
ones). As before, since the projectors e(TJ) and e(Tp) are the same for our choice of (k,w) we can
write analogous maps for the image of such projectors. We need to check the pairings commute. This
follows from (i). Indeed the top square is commutative by construction. For the bottom one, if we take
f ∈ e(Tp)H#J(X,ω(k,w)) and g ∈ lim

←−−i e(TJ)(lim
←−−mτ

)τ 6∈JH
#Jc(Xi,

∏
τ 6∈J Imττ ω(k,w)), we obtain

〈e(TJ)i(f), g〉 (a)
= 〈i(f), e(TJc)g〉

(b)
= 〈i(f), g〉 = 〈f, j(g)〉 (b′)

= 〈e(Tp)f, j(g)〉 (a′)
= 〈f, e(Tp)j(g)〉,

where for (a) and (a′) we used part (i) of the theorem and Proposition 3.1.2 respectively and for (b) and
(b′) the fact that the projectors are idempotent and g lies in the image of e(Tp), f lies in the image of
e(TJ) respectively. The remaining equality follows from the commutativity of the bottom part of the above
diagram. �
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