Kolyvagin's conjecture and Iwasawa theory GIADA GROSSI

(joint work with Ashay Burungale, Francesc Castella, and Christopher Skinner)

Let E/\mathbb{Q} be an elliptic curve and p be an odd prime of good ordinary reduction for E. In 1991 Kolyvagin conjectured that the system of cohomology classes derived from Heegner points on the p-adic Tate module of E over an imaginary quadratic field K is non-trivial (see [10]). We report on a joint work with A. Burungale, F. Castella and C. Skinner, in which we prove Kolyvagin's conjecture in the cases where an anticyclotomic Iwasawa Main Conjecture for E/K is known. In particular, we provide the first known cases when p is an Eisenstein prime.

Let K be a quadratic imaginary field of odd conductor $D_K \neq -3$ and such that p and all primes dividing the conductor N of E split in K. Assume also that $E(K)[p] = \{0\}$. For any integer $n \geq 1$, using the modular parametrisation of the elliptic curve, one can construct the Heegner points

$$P_n \in E(K[n])$$

defined over K[n], the ring class field of K of conductor n. The Kummer map yields a class in $H^1(K[n], T/p^M)$, where $T = T_p(E)$ is the *p*-adic Tate module of E and $M \ge 0$. Applying the *Kolyvagin derivative* and using the assumption $E(K)[p] = \{0\}$ (which yields the surjectivity of the restriction map), one can build a collection of classes

$$\{\kappa_n \in H^1(K, T/p^{M(n)})\}_{n \in \mathcal{N}},\$$

where \mathcal{N} is the set of square-free products of inert primes ℓ coprime to p and N such that $M(\ell) = \min\{\operatorname{ord}_p(\ell+1), \operatorname{ord}_p(a_\ell)\} > 0, M(n) = \min\{M(\ell) : \ell \mid n\}$, and by convention $1 \in \mathcal{N}$ with $M(1) = \infty$.

Such collection of classes forms a *Kolyvagin system*; in particular if $\ell n, n \in \mathcal{N}$, one can show that:

- the restriction to the cohomology group $H^1(K_{\ell}, T/p^{M(n)})$ of the completion K_{ℓ} of K at the unique prime of K above ℓ of the class κ_n , denoted by $\log_{\ell}(\kappa_n)$, lies in the unramified subspace $H^1_f(K_{\ell}, T/p^{M(n)}) \subset$ $H^1(K_{\ell}, T/p^{M(n)})$;
- the image $\operatorname{loc}_{\ell}^{s}(\kappa_{n\ell})$ of $\operatorname{loc}_{\ell}(\kappa_{n\ell})$ in the singular quotient $H^{1}_{s}(K_{\ell}, T/p^{M(n\ell)})$ of $H^{1}(K_{\ell}, T/p^{M(n\ell)})$ is non trivial (unless $\operatorname{loc}_{\ell}(\kappa_{n\ell}) = 0$);
- the elements $\operatorname{loc}_{\ell}^{s}(\kappa_{n\ell})$ and $\operatorname{loc}_{\ell}(\kappa_{n})$ have the same order (in the corresponding local cohomology groups with coefficients T/p^{k} for $k \leq M(n), M(n\ell)$.

These properties follow from the definition of the classes and the so called *norm* relations between the point $P_n, P_{n\ell}$. One also has an explicit description of the bottom class κ_1 which is simply obtained as the image via the Kummer map in $H^1(K,T)$ of the Heegner point $P_K := \operatorname{Tr}_{K[1]/K} P_1 \in E(K)$. The celebrated work of Gross–Zagier [6] gives the following:

(GZ)
$$\kappa_1 \neq 0 \iff L'(E/K, 1) \neq 0.$$

In [10] Kolyvagin conjectured that even when the analytic rank of E/K is not one, the system $\{\kappa_n\}_n$ is non-trivial, namely:

Conjecture A (Kolyvagin). There exists $n \in \mathcal{N}$ such that $\kappa_n \neq 0$.

The first major progress towards this conjecture is due to W. Zhang [16], who proved Kolyvagin's conjecture using level raising techniques when $p \neq 2, 3$ is a prime of good ordinary reduction for E under the assumption that

(sur)
$$\bar{\rho}_E : G_{\mathbb{Q}} = \operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{Aut}_{\mathbb{F}_p}(E[p])$$
 is surjective

and $\bar{\rho}_E$ satisfies certain ramification hypotheses. More recently, some of the hypotheses have been relaxed by N. Sweeting [13] using an ultrapatching method for bipartite Euler systems.

The main result of [1] shows that Iwasawa theory can be used to prove new results about Conjecture A:

Theorem 1. Let E/\mathbb{Q} be an elliptic curve with good ordinary reduction at p > 2and K a quadratic imaginary field as above. Conjecture A holds true if the rational anticyclotomic main conjecture for E/K holds.

In particular, Conjecture A holds true if

- (i) E[p]^{ss} ≃ F_p(φ) ⊕ F_p(φ⁻¹ω) as G_Q-module, where φ : G_Q → F[×]_p is a character such that φ|_{G_p} ≠ 1, ω, with G_p a decomposition group at p and ω the Teichmüller character;
- (ii) p > 3 is such that E[p] is an irreducible $G_{\mathbb{Q}}$ -module.

In case (i), we rely on the work [4] where we prove the (integral) anticyclotomic main conjecture at Eisenstein primes, strengthening our previous work [3] which applied only in the co-rank one case (when $\kappa_1 \neq 0$). Case (ii) follows from the main conjecture proved in [2]. Previous results interlacing Iwasawa theory and Kolyvagin's conjecture (in the case where (sur) holds) appeared in [9].

Strategy of the proof. We briefly mention which are the main ingredients in the proof. Firstly, using Heegner points of *p*-power conductor, one can construct a Λ -adic Kolyvagin system, where $\Lambda = \mathbb{Z}_p[[\Gamma]]$ and Γ is the Galois group of the anticyclotomic \mathbb{Z}_p -extension K_{∞} of K. It is a collection of classes

$$\{\kappa_{\Lambda,n} \in H^1(K, T \hat{\otimes} \Lambda/p^{M(n)})\}_{n \in \mathcal{N}}.$$

For any character $\alpha : \Gamma \to \mathbb{Z}_p^{\times}$, we can consider the *specialization* of the Λ -adic system at α , giving classes $\kappa_n(\alpha) \in H^1(K, T \otimes \mathbb{Z}_p(\alpha)/p^{M(n)})$. The main ingredients of the proof will then be:

(a) The existence of a character $\alpha_m: \Gamma \to \mathbb{Z}_p^{\times}$ with $\alpha_m \equiv 1 \mod p^m$ for $m \gg 0$ such that

$$\kappa_1(\alpha_m) \neq 0.$$

This follows from Mazur's conjecture, proved by Cornut and Vatsal.

(b) A suitable control theorem/explicit reciprocity law characterizing the objects appearing in the Iwasawa main conjecture *specialized* at α_m . Combining such results with the (integral) anticyclotomic main conjecture, we will get:

 $\operatorname{length}_{\mathbb{Z}_p}\operatorname{III}(E \otimes \alpha_m/K)[p^{\infty}] + \operatorname{ord}_p \operatorname{Tam}(E/K) = 2 \cdot \operatorname{ind}(\kappa_1(\alpha_m)),$

where $\operatorname{III}(E \otimes \alpha_m/K)[p^{\infty}]$ denotes the Shafarevic-Tate group of $E[p^{\infty}] \otimes \alpha_m$, $\operatorname{Tam}(E/K)$ denotes the product of the Tamagawa factors of E/K and $\operatorname{ind}(\kappa_1(\alpha_m))$ denotes the maximal power of p dividing the class $\kappa_1(\alpha_m)$. If one only has the rational main conjecture, an extra term (independent on α_m) appears in the equality, causing no harm for the proof of the result.

(c) A Kolyvagin system bound (with an *error term* \mathcal{E} , which is non-zero only when (sur) does not hold, but crucially not depending on α_m) for the Selmer groups of $E[p^{\infty}] \otimes \alpha_m$ given any weak Kolyvagin system $\{\kappa'_n\}$ with $\kappa'_1 \neq 0$:

$$\operatorname{length}_{\mathbb{Z}_n}\operatorname{III}(E \otimes \alpha_m/K)[p^{\infty}] \leq 2 \cdot \operatorname{ind}(\kappa_1') + \mathcal{E}.$$

The idea of the proof is then to bound the *index of divisibility* of the Kolyvagin system showing that if p^t divides κ_n for every n, then, choosing a suitable α_m as in (a), p^t also divides $\kappa_n(\alpha_m)$ for every n and we can consider the weak Kolyvagin system $\{\kappa'_n := p^{-t}\kappa_n(\alpha_m)\}$. Applying the bound in (c) and the equality in (b), we get a bound on t.

Further results. The above strategy also yields a bound on the index of divisibility μ_{∞} of the Kolyvagin system in terms of the Tamagawa factors of E. Let $m_r := \min\{\operatorname{ind}(\kappa_n) : n \text{ is divisible by exactly } r \text{ primes}\}$. One shows that $m_r \geq m_{r+1}$ for every $r \geq 0$. Let

$$\mu_{\infty} = \lim_{r \to \infty} m_r.$$

Note that Conjecture A is equivalent to $\mu_{\infty} < \infty$. In the case where (sur) holds, we are working on upgrading the bound $\mu_{\infty} \leq \operatorname{ord}_p \operatorname{Tam}(E/\mathbb{Q})$ obtained by the above argument to an exact equality, replacing the Kolyvagin system bound in (c) (which was proved in [4]) with the exact structure theorem

$$\operatorname{length}_{\mathbb{Z}_p}\operatorname{III}(E \otimes \alpha_m/K)[p^{\infty}] = 2 \cdot (\operatorname{ind}(\kappa_1(\alpha_m)) - \mu_{\infty})$$

That leads to the *refined* form of Conjecture A, as formulated in [17, Conjecture 4.5]:

$$\mu_{\infty} = \operatorname{ord}_p \operatorname{Tam}(E/\mathbb{Q}).$$

One could also ask about the non-vanishing of other Kolyvagin systems. For example we can consider the Kolyvagin system κ_n^{Kato} , for *n* in some set $\mathcal{N}_{\text{Kato}}$, obtained from the Euler system constructed by Kato [7] over cyclotomic extensions of \mathbb{Q} . A similar strategy applies: the non-vanishing results in (a) above are provided by Rohrlich's work [11] and Kato's explicit reciprocity law in [7] and the Kolyvagin system bound in (c) proved by Mazur–Rubin is generalized in our work to the case where (sur) does not hold. This allows us to prove the following: **Theorem 2.** Let E/\mathbb{Q} be an elliptic curve without CM, and let p be an odd prime of good ordinary reduction for E such that $E(\mathbb{Q})[p] = 0$. Assume that the rational cyclotomic Iwasawa main conjecture holds, then

there exists $n \in \mathcal{N}_{Kato}$ such that $\kappa_n^{Kato} \neq 0$. In particular, $\{\kappa_n^{Kato}\} \neq 0$ in the cases (i) and (ii) in Theorem 1.

For Eisenstein primes, we apply the new results on Mazur's cyclotomic main conjecture proved in [4]. Case (ii) follows from the main conjecture proved in [12, 7, 15]. Previous results on the non-vanishing of Kato's Kolyvagin system (in the case where (sur) holds) were proved in [8], where also an analogue of the refined Kolyvagin conjecture is formulated. We also prove such conjecture using Mazur–Rubin's structure theorem and the strategy outlined above in the Heegner point case.

References

- A. Burungale, F. Castella, G. Grossi, C. Skinner, Non-vanishing of Kolyvagin systems and Iwasawa theory, preprint 2023.
- [2] A. Burungale, F. Castella, C. Skinner, Base change and Iwasawa main conjectures for GL₂, preprint, 2023.
- [3] F. Castella, G. Grossi, J. Lee, C. Skinner, On the anticyclotomic Iwasawa theory of rational elliptic curves at Eisenstein primes, Invent. Math. 227 (2022), 517–580.
- [4] F. Castella, G. Grossi, C. Skinner, Mazur's main conjecture at Eisenstein primes, preprint 2023.
- [5] C. Cornut, Mazur's conjecture on higher Heegner points, Invent. Math. 148 (2002), 495–523.
- [6] B.H. Gross, D.B. Zagier, *Heegner points and derivatives of L-series*, Invent. Math. 84 (1986), 225–320.
- [7] K. Kato, p-adic Hodge theory and values of zeta functions of modular forms, Astérisque 295 (2004), 117–290.
- [8] C.H. Kim, The structure of Selmer groups and the Iwasawa main conjecture for elliptic curves, preprint 2022.
- [9] C.H. Kim, A higher Gross-Zagier formula and the structure of Selmer groups, preprint 2022.
- [10] V.A. Kolyvagin, On the structure of Selmer groups, Math. Ann. 291 (1991), 253-259.
- [11] D.E.. Rohrlich, On L-functions of elliptic curves and anticyclotomic towers, Invent. Math. 75 (1984), 383–408.
- [12] C. Skinner, E. Urban, The Iwasawa main conjectures for GL₂, Invent. Math. 195 (2014), 1–277.
- [13] N. Sweeting, Kolyvagin's Conjecture and patched Euler systems in anticyclotomic Iwasawa theory, preprint 2020.
- [14] V. Vatsal, Special values of anticyclotomic L-functions, Duke Math. J. 116 (2003), 219–261.
- [15] X. Wan, The Iwasawa main conjecture for Hilbert modular forms, Forum of Mathematics. Sigma 3 (2015).
- [16] W. Zhang, Selmer groups and the indivisibility of Heegner points, Camb. J. Math. 2 (2014), 191–253.
- [17] W. Zhang, The Birch-Swinnerton-Dyer conjecture and Heegner points: a survey, Current developments in mathematics (2014), 169–203.