

TD 1 - Révisions, localisations

Exercice 1. Let A be a commutative ring and M, L, K be A -modules. We denote by \mathcal{C} the category of A -modules.

(1) Show that $\mathcal{C} \ni N \mapsto \text{Hom}_A(M \otimes_A \text{Hom}_A(N, L), K)$ defines a (covariant) functor $F : \mathcal{C} \rightarrow \mathcal{C}$.

(2) i) Give conditions on L, M for F to be left exact.

ii) Give conditions on K, M for F to be right exact.

iii) Give conditions on K, L, M for F to be exact.

(3) Assume $A = \mathbb{Z}$, $M = \mathbb{Z}$ and $K = \mathbb{Q}/\mathbb{Z}$.

i) Show that F is right exact.

ii) Let $m \geq 1$ and $L = \mathbb{Z}$. Compute $L^i(F)(\mathbb{Z}/m\mathbb{Z})$ for all $i \in \mathbb{Z}$.

iii) Let $m, n \geq 1$ and $L = \mathbb{Z}/n\mathbb{Z}$. Compute $L^i(F)(\mathbb{Z}/m\mathbb{Z})$ for all $i \in \mathbb{Z}$.

Exercice 2 (Baer's Lemma). (1) Let E be an injective A -module. Show that E satisfies the following condition :

for every ideal I of A , the map $\text{Hom}_A(A, E) \longrightarrow \text{Hom}_A(I, E)$ is surjective. (0.1)

(2) Let E be an A -module satisfying condition (0.1). We are given a diagram $0 \rightarrow N' \xrightarrow{f} N$. Let X

$$g \downarrow$$

$$E$$

denote the set of pairs (P, h_P) where P is a submodule of N satisfying $f(N') \subset P \subset N$ and $h_P : P \rightarrow E$ is an extension of g , that is $g = h_P \circ f$. We say that $(P, h_P) \leq (Q, h_Q)$ if $P \subset Q$ and $h_Q/P = h_P$. Show that \leq is a partial order relation.

(3) Show that an A -module E is injective if and only if it satisfies condition (0.1) (one may use (2) and apply Zorn's lemma).

Exercice 3 (Cone of a morphism). Let $X^\bullet, Y^\bullet \in \text{Ch}(\mathcal{C})$ be two complexes and $f : X^\bullet \rightarrow Y^\bullet$ a morphism of complexes. The cone of f is defined by $M^n(f) = X^{n+1} \oplus Y^n$. Let $d_f : M^\bullet(f) \rightarrow M^{\bullet+1}(f)$

be defined by the matrix $\begin{bmatrix} -d_X & 0 \\ f^\bullet & d_Y \end{bmatrix}$.

(1) Show that $(M(f), d_f)$ is an object of $\text{Ch}(\mathcal{C})$, i.e., a complex.

(2) Show that $M(f)$ is unique (up to isomorphism) depending only on the class of f in $K(\mathcal{C})$, the homotopy category of \mathcal{C} .

(3) Construct an exact sequence of complexes

$$0 \rightarrow Y^\bullet \rightarrow M^\bullet(f) \rightarrow X^\bullet[1] \rightarrow 0.$$

(4) Identify the morphisms $H^\bullet(X) \rightarrow H^\bullet(Y)$ in the long exact sequence associated with the short exact sequence from question (3). Deduce that f is a quasi-isomorphism if and only if $H^\bullet(M(f)) = 0$.

Exercice 4. Let $F : \mathcal{C} \rightarrow \mathcal{D}$ be a functor having a right adjoint $G : \mathcal{D} \rightarrow \mathcal{C}$ (we say that \mathcal{D} is a reflexive subcategory of \mathcal{C}). Let \mathcal{W} denote the collection of morphisms f in \mathcal{C} such that $F(f)$ is an isomorphism in \mathcal{D} . Show that the following are equivalent:

1. G is fully faithful;
2. The natural transformation $F \circ G \rightarrow Id_{\mathcal{D}}$ is an isomorphism;
3. The natural functor $\mathcal{C}[\mathcal{W}^{-1}] \rightarrow \mathcal{D}$ is an equivalence of categories.

Exercice 5. Let $\mathcal{C} = \text{Mod}_{\mathbb{Z}}$ be the category of abelian groups.

1. (Localization at a single prime) Let p be a prime. Show that the base change functor $-\otimes_{\mathbb{Z}}\mathbb{Z}[\frac{1}{p}] : \text{Mod}_{\mathbb{Z}} \rightarrow \text{Mod}_{\mathbb{Z}[\frac{1}{p}]}$ is a localization functor along the class \mathcal{W} of all maps of abelian groups $f : X \rightarrow Y$ such that both $\ker f$ and $\text{coker } f$ are p -torsion groups. *Hint: Use the pr flatness of $\mathbb{Z}[\frac{1}{p}]$ over \mathbb{Z} , and the previous exercise.*
2. Show that the map $\mathbb{Q} \rightarrow \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$ sending $q \mapsto q \otimes 1$ is an isomorphism. Use this and the Exercice 3 to show that the category of \mathbb{Q} vector spaces is a localization of the category of abelian groups.

Exercice 6 (Model structure on slice categories, by Victor Saunier). Let $X \in \mathcal{A}$ and $(\mathcal{C}, \mathcal{F}, \mathcal{W})$ be a model structure on \mathcal{A} . We denote by \mathcal{A}/X the category whose objects are maps $\alpha : Y \rightarrow X$ of \mathcal{A} and whose morphisms are commutative triangles:

$$\begin{array}{ccc} Y & \xrightarrow{\alpha} & X \\ f \downarrow & \nearrow \alpha' & \\ Y' & & \end{array}$$

Similarly, we denote \mathcal{C}/X (resp. $\mathcal{F}/X, \mathcal{W}/X$) the morphisms of \mathcal{A}/X as above where $f \in \mathcal{C}$ (resp. \mathcal{F}, \mathcal{W}).

Show that $(\mathcal{C}/X, \mathcal{F}/X, \mathcal{W}/X)$ determines a model structure on \mathcal{A}/X . We call it the *slice model structure*.

What are the fibrant objects in the above described model structure? The cofibrant objects?

Exercice 7 (Universal property of localization). Let \mathcal{C} be a small category and \mathcal{W} a subset of the set of morphisms in of \mathcal{C} . A localization of \mathcal{C} with respect to \mathcal{W} is a category $\mathcal{C}[\mathcal{W}^{-1}]$ together with a functor

$$l : \mathcal{C} \rightarrow \mathcal{C}[\mathcal{W}^{-1}]$$

satisfying the following universal property: For any category \mathcal{D} , composition with l :

$$\text{Fun}(\mathcal{C}[\mathcal{W}^{-1}], \mathcal{D}) \rightarrow \text{Fun}(\mathcal{C}, \mathcal{D})$$

is a fully faithful functor and its essential image consists of those functors $\mathcal{C} \rightarrow \mathcal{D}$ sending \mathcal{W} to isomorphisms. In other words, l , if it exists is the universal functor sending \mathcal{W} to isomorphisms.

1. Check that $\mathcal{C}[\mathcal{W}^{-1}]$, if it exists, is unique up to canonical equivalences of categories.
2. Show that when \mathcal{C} is the category with a single object $*$ and a monoid M of endomorphisms, and $\mathcal{W} = M$ then $\mathcal{C}[\mathcal{W}^{-1}]$ is equivalent to the category with one object $*$ and M^+ as endomorphisms, with M^+ the group completion of M .