Homotopie IT — 2025-2026 — Nicolas Gues

TD 1 - Révisions, localisations

Exercice 1. Let A be a commutative ring and M, L, K be A-modules. We denote by C the category
of A-modules.

(1) Show that C 5 N — Homu(M ®4 Homy (N, L), K) defines a (covariant) functor F': C — C.

(2) i) Give conditions on L, M for F' to be left exact.
ii) Give conditions on K, M for F' to be right exact.
iii) Give conditions on K, L, M for F to be exact.

(3) Assume A=7, M =7 and K = Q/Z.

i) Show that F' is right exact.
ii) Let m > 1 and L = Z. Compute L'(F)(Z/mZ) for all i € Z.
iii) Let m,n > 1 and L = Z/nZ. Compute L'(F)(Z/mZ) for all i € Z.

Solution. (1) Rappelons que la composée de deux foncteurs covariants ou de deux foncteurs con-
travariant est un foncteur covariant. La composée d’un foncteur covariant et d’un foncteur
contravariant (ou le contraire) est un foncteur contravariant. Or pour tout objet N de C,
F(N) = Homy(M ®4 Homu (N, L), K) est la composée des foncteurs Homy(—, K) : C? — C
(donc contravariant), M ®4— : C — C (covariant) et Hom(—, L) : C°? — C (donc contravariant).
C’est donc un foncteur covariant.

(2) i) Par définition F est exact & gauche s’il transforme toute suite exacte 0 — X’ — X — X7 en
une suite exacte 0 — F(X') — F(X) — F(X”). En appliquant le foncteur Hom4(—, L) &
la suite exacte 0 = X’ — X — X7, on obtient le complexe

Homy (X7, L) — Hom (X, L) — Homu4 (X', L) — 0.

On sait que ce complexe est une suite exacte lorsque Hom 4 (—, L) est exact a droite, c’est
a dire si L est injectif. En ce cas, comme M ®4 — est exact a droite, et Hom4(—, K) exact
A gauche, on obtient que 0 — F(X') — F(X) — F(X”) est exacte. Conclusion : Il suffit
que L soit injectif pour que F' soit exact a droite.

ii) Un raisonnement analogue assure que F est exact a gauche si M est plat (auquel cas M ®4 —
est exact a gauche) et K injectif.

iii) De i), ii), on déduit que F' est exact si K, L sont injectifs et M plat.

(3) On remarque que M = Z est libre sur Z, donc plat et K = Q/Z est injectif (voir le lemme de
Baer plus bas).

i) Les hypotheses de (2).ii) sont satisfaites, donc F' est exact a droite. En particulier il admet des
foncteurs dérivés a gauche (puisque la catégorie Mod(Z) admet assez d’objets projectifs).



ii) Il faut trouver une résolution projective de Z/mZ. On utilise la résolution libre (en particulier
projective) déja vueen TD : -+ - 0 - 0 — Z % 7. On alors que, pour tout ¢ € Z, les
groupes de cohomologie L;(F)(Z/mZ) sont donnés par la formule :

Li(F)(Z/mZ)=H"(... — 0 — F(Z) F(Z)).

Ceci donne immédiatement L”Y(F)(Z/mZ) = 0. Comme Z ®z X = X (Iisomorphisme
étant donné par k ®z v — kz) et Homz(Z,X) = X (Iisomorphisme étant donné par

@ — (1)), on obtient F(Z) = Q/Z et F(xm) = Q/Z “B Q/Z. Comme Q/Z est divisible
(c’est a dire que pour tout =, n € Z — {0}, il existe y € Q/Z avec ny = z), on en déduit que

LO(F)(Z/mZ) = coker(Q/Z =5 Q/Z) = 0.

Il reste & calculer LY(F)(Z/mZ) = ker(Q/Z =% Q/7Z). Tout élément de Q/Z est représenté
par la classe d’'un élément p/q € Q avec p A ¢ = 1 (en notant p A g le pged de p et ¢). On
obtient que mp/q =0 € Q/Z si q/m. La réciproque est immédiate. Il en découle que

LYF)(Z/mZ) = Z/mZ.

ii) Evidemment, on utilise la méme résolution projective de Z/mZ. Avec L = Z/nZ,on a F(Z) =
Homy(Z/nZ,Q/Z). Un morphisme ¢ : Z/nZ — Q/Z est uniquement déterminé par I'image
(1) qui en outre doit vérifier 0 = p(n) = ny(1). On en déduit que Homy(Z/nZ,Q/Z) =
ker(Q/Z % Q/Z) = 7Z/nZ. Par conséquent on doit calcler la cohomologie du complexe

0 —0—Z/n7 8 7/
On obtient alors par des calculs similaires a ceux fait en TD

LY(F)(Z/mZ) =Z/n AmZ,  LYF)(Z/mZ)=7Z/nAmZ,  LZYF)(Z/mZ)=0.

Exercice 2 (Baer’s Lemma). (1) Let E be an injective A-module. Show that E satisfies the fol-
lowing condition :

for every ideal I of A, the map Homu(A, E) — Homyu ([, E) is surjective. (0.1)

(2) Let E be an A-module satisfying condition (0.1). We are given a diagram 0 — N’ N Let X
g

E
denote the set of pairs (P, hp) where P is a submodule of N satisfying f(N') ¢ P C N and
hp : P — E is an extension of g, that is g = hp o f. We say that (P,hp) < (Q,hq) if P C Q
and hg /P = hp. Show that < is a partial order relation.

(3) Show that an A-module E is injective if and only if it satisfies condition (0.1) (one may use (2)
and apply Zorn’s lemma).

Solution. (1) Si E est injectif, alors comme I s’injecte dans A, on a que tout morphisme I — E se
prolonge en un morphisme A — FE par définition des module injectifs. Ce qui donne la surjectivité
de Hom (A, E) — Homyu(I, E).

(2) On considere le diagramme 0 — N’ Iy N. Leensemble des couples (P, hp) ot P est un sous-

gl

module de N vérifiant f(N') C Ig C N et hp : P = E est une extension de g est muni de
la relation d’ordre (P,hp) < (Q,hqg) si P C Q et hg/P = hp. On a bien (P,hp) < (P, hy),
si P C @ C R est une suite croissante d’extension, alors, R est une extension de P. De plus
si (P,hp) < (Q,hq) et (Q,hg) < (P, hp) alors P = Q. La relation est donc bien une relation
d’ordre.



(3) Montrons que < vérifie les hypotheses du Lemme de Zorn; c’est a dire que toute sous-famille to-
talement ordonnée admet un élément maximal. Soit (P;, hp,);cs une famille totalement ordonnée
d’éléments de X. (Pour tout i,j € S on a (P, hp,) X (Pj, hp;) ou (Pj, hp;) = (P, hp,).) On pose
P = U P; et on définit h : P — E par h(z) = hp,(z) si © € P; de sorte que (P,hp) € X.

€S
D’apres le lemme de Zorn, on a donc que X admet un

Supposons, par 1'absurde, que M C N. Il existe donc x € N\ M. Alors P = M + A.x est un
sous module de N qui contient strictement M. On définit [ = (M : z) = {a € A, a.x € M} qui
est un idéal. Soit v : I — E, Papplication vy(a) = hps(a.x). D’apres 'hypothese de I’énoncé il
existe alors ¢ : A — E tel que o1 = 7.

On définit alors hp : P — E par hp(y + a.x) = hy(y) + ¢(a) (ot y € M). Cette définition
est consistante car si y + a.x = 3 +d .z alors (a/ —a)x =y —y € M donc a —a € I et
ola' —a)=~(a"—a) = hy((a —a)x) =hy(y—y) dott har(y) + pla) = har(y') + p(a’).

On a ainsi obtenu un élément (P, hp) tel que (M, hy) < (P,hp) ce qui est impossible car
(M, hpr) est maximal. On a donc M = N et un morphisme h : N — E tel que ho f = g. Ceci

étant vrai pour tout diagramme 0 — N’ i> N on a bien montré que E est injectif.

g
E

Exercice 3 (Cone of a morphism). Let X* Y* € Ch(C) be two complexes and f : X* — Y* a
morphism of complexes. The cone of f is defined by M™(f) = X" @Y™ Let dy : M*(f) — M*T'(f)

be defined by the matrix [ _d.X 0 } )
I° dy

(1) Show that (M (f),dy) is an object of Ch(C), i.e., a complex.

(2) Show that M (f) is unique (up to isomorphism) depending only on the class of f in K(C), the
homotopy category of C.

(3) Construct an exact sequence of complexes

0—=Y*— M*(f)— X°*[1] — 0.

(4) Identify the morphisms H*(X) — H*(Y) in the long exact sequence associated with the short ex-
act sequence from question (3). Deduce that f is a quasi-isomorphism if and only if H*(M(f)) =
0.

Solution. (1) Ona (dsody)(z,y) = dy(~dx (@), dy (y)+ (2)) = & (@), d (y) — Fdx (@) +dy f(x) =
(0,0) car dx,dy sont de carrés nuls et f est un morphisme de complexes.

(2) Soit f—f" = sdx +dys avec s : X* — Y*~L. On vérifie aisément que le morphisme h = [ sl° (1) ]

est un morphisme de C(f) — C(f'). Il est de plus inversible; d’inverse [ —1s° (1) } .

(3) On vérifie que iy : Y* — X*' @ Y* est un morphisme de complexes, de méme que py :
X oye - X*t = X[1]* (rappelons que la différentielle sur le complexe X[1] est —dx). De
plus pxiy =0, pxix = Id et le noyau de px est im(iy) d’apres I'équation ixpx +iypy = Id.On
en conclut que la suite

0—=Y* 2 M () X*[1] =0

est exacte.



(4) 1l suffit de reprendre la construction du morphisme de connexion § dans le lemme du serpent. En
effet, d’apres le cours, la longue suite exacte en homologie s’écrit

CLHMY) — HMM(f)) — HY(X[1]) > H™ (V) > ...

avec H"(X[1]) = H""(X). Le morphisme § est le morphisme ker( X" & X"2) = coker(Y™ &
Y”H) donné par le lemme du serpent, voir le cours et le TD 2. Précisément, étant donné
z € X" avec dx(z) = 0, §(z) est obtenu en prenant un antécédent (quelconque) de z par
px, c’est & dire h € M(f)" avec px(h) = z. Puis on prend z € Y™ tel que iy (y) = ds(h).
On a alors d(x) = [y], ou [y] est 'image de ypar I'application canonique vers le conoyau. Dans
le cas présent, on peut choisir ~ = (x,0). On obtient alors ds(h) = (0, f(y)). On conclut que
Papplication H"(X[1]) S gt (Y) induite dans la longue suite exacte est ’application H"1(f)
induite par f via 'isomorphisme H™(X[1]) = H"™!(X). Mais f est un quasi-isomorphisme si et
seulement si H®(f) est un isomorphisme. D’apres la suite exacte longue, si H*(f) est un isomor-
phisme alors, H*(M(f)) — H*"1(X) est Papplication nulle de méme que H®*(Y) — H®*(M(f))
ce qui par exactitude force H®*(M(f)) = 0. réciproquement, si H*(M(f)) = 0, la suite exacte im-
plique immédiatement que H®(f) est un isomorphisme puisqu’elle se réduit a des suites exactes
0— H*(X)— H*(Y)—0.

Exercice 4. Let F' : C — D be a functor having a right adjoint G : D — C (we say that D is a
reflexive subcategory of C). Let W denote the collection of morphisms f in C such that F(f) is an
isomorphism in D. Show that the following are equivalent:

1. G is fully faithful;
2. The natural transformation ' o G — Idp is an isomorphism;

3. The natural functor C[W™!] — D is an equivalence of categories.

Solution. That 1 implies 2 is standard for any adjunction:
D(z,y) = C(G(x),G(y)) = D(F o G(x),y).

One can also see that 2 implies 1 by going in the other direction.

Let us prove 2 implies 3: The composition D LNV CW™1] = Dis GoF, so it is isomorphic to the
identity. It suffices to show that C[W~!] — D Scoe [W~1] is isomorphic to the identity. By the
universality of C — C[W ™1, it suffices to show that C — C[W '] — D Sco C[W~1 is isomorphic

to C — C[W™!. From the composition F — FGF — F = idp given by the unit and counit, we
deduce that the transformation FF — FGF is an isomorphism since the second part is. This shows

that C — C[W ] = D % ¢ — C[W!] is indeed what we want.

Now let’s prove that 3 implies 1. We have that Hom(C[W '], D) = Hom(C, D) is fully faithful, and
by composition, we get that F* : Hom(D,D) = Hom(C, D) is fully faithful. We want to show that
F oG — Id is an isomorphism, which reduces to showing that FGF — F' is an isomorphism, a
consequence of the adjunction.

Exercice 5. Let C = Modz be the category of abelian groups.

1
1. (Localization at a single prime) Let p be a prime. Show that the base change functor — ®yz Z[—] :

Modyz — ModZ[l} is a localization functor along the class W of all maps of abelian groups
p
f X — Y such that both kerf and cokerf are p-torsion groups. Hint: Use the pr flatness of

Z[-] over Z, and the previous exercise.

2. Show that the map Q — Q®z Q sending ¢ — ¢®1 is an isomorphism. Use this and the Exercice
3 to show that the category of Q vector spaces is a localization of the category of abelian groups.



Solution. We use exercise 4. We will check that the inclusion functor Modz[l] — ZMod is fully
P

1

-]

faithful. This amounts to check that HomMOdZ[l] (A, B) = Homyjod, (A, B) for any two Z[—]|—modules
P

A and B. The inclusion of the left term into the right term is automatic. Now take f € Homyiod, (A, B)

1
; We need to show it is automatically a morphism of Z[—]-modules. But pf(g) = f(p- g) = f(a) so
p p p
f (ﬂ) = @ for all @ and we are done. By Exercise 3, the base change functor
p p

1
P P

1
is a localization along maps inducing isomorphism after tensoring by Z[—]. Let’s describe these maps.

1 1 1 1
A map A — B issuch if and only if ker(A®Z[-] — B®Z[-]) = 0 and coker(A®Z[-] - B®Z[-]) = 0.
p p p p

1
By flatness of Z[—]) = 0 taking ker and coker commute with tensoring, so this amounts to ask that
p

Z[1/p] @ ker(A — B) and Z[1/p] ® coker(A — B) are zero. This is true if and only if ker A — B and
coker A — B are torsion p-groups.

2. The same arguments work by flatness of Q over Z. The fact that a morphism of abelian groups
between two Q-vector spaces is automatically a QQ linear map works with the same proof as before.

Exercice 6 (Model structure on slice categories, by Victor Saunier). Let X € A and (C, F,W) be a
model structure on .A. We denote by A/ X the category whose objects are maps a: Y — X of A and
whose morphisms are commutative triangles:

Yy 245 X

|

Similarly, we denote C/X (resp. F/X,W/X) the morphisms of A/X as above where f € C (resp.
F.W).

Show that (C/X,F/X,W/X) determines a model structure on A/X. We call it the slice model
structure.

What are the fibrant objects in the above described model structure? The cofibrant objects?

Solution. Let us check the axioms of a model category.

1. MCI1. Colimits in C/X can be computed as colimits in C (for example, because the forgetful
functor C/X — C has a right adjoint given by A — A x X). For limits : if [ is a small category
and D : I — C/X, consider IV the cocone of I (I to which we added a terminal object *). We
have by construction a diagram DV : IV — C where * is sent to X. Then one can check that
lién DY is an object over X and is a limit of D in C/X. So C/X is complete and cocomplete.

2. MC2. The 2 out of 3 from C gives the 2 out of 3 in C/X because weak equivalences are the same.
3. MC3. Automatic since retracts in C/X give retracts in C.

4. MCA4. Take a lifting problem in C/X, for example :

Qe
\\\LI_I \Lkh

Sy
U«?UU



where all maps are maps over X.As W, C, F are the same as in C, this gives a lifting problem
in C, so there exist a lifting (dotted arrow) ¢ in C. There remains to check that this is a map
over X. Call gp; the map M — X for any object M. We want to check that ¢qpp = ga. But
qBY = qDp¥ = qpg = qA SO we are done.

5. MC5. We already have functorial factorizations in C. We want to check they are maps over X.
Let f: A — B be amap in C/X. The factorization A — C; — B is automatically over X using

the map Cy — B 4B, X . The same holds for the second kind of factorizations.

Exercice 7 (Universal property of localization). Let C be a small category and W a subset of the
set of morphisms in of C. A localization of C with respect to W is a category C[W™'] together with a
functor

1:C—CcW™
satisfying the following universal property: For any category D, composition with I:
Fun(C(W™!], D) — Fun(C, D)

is a fully faithful functor and its essential image consists of those functors C — D sending W to
isomorphisms. In other words, I, if it exists if the universal functor sending W to isomorphisms.

1. Check that C[W_l], if it exists, is unique up to canonical equivalences of categories.

2. Show that when C is the category with a single object * and a monoid M of endomorphisms, and
W = M then C [Wﬁl] is equivalent to the category with one object * and M as endomorphisms,
with M ™ the group completion of M.

Solution. Note that a functor [ : C — D is a localization if and only if it verifies the following two
properties:

e For any functor F' : C — &£ that sends W to isomorphisms, there exists G : D — £ such that
F=Gol.

e The map — ol : Nat(G1,G2) — Nat(Gy ol, G2 ol) is a bijection for all functors G1,G2: D — €.

1. Suppose [ : C — £ and I' : C — &' are two localizations along W. By the universal property of
these localizations, both [ and I’ are isomorphic to functors that invert W. In particular, I’ belongs
to the essential image of the functor — ol : Fun(&, ") — Fun"v(C,&’), so that there exists a functor
G:&— & such that ' 2 Gol.

c— % ¢

/7(
\‘ ////G
&

Similarly, [ = H o[’ for some functor H : &’ — £. Using the bijection
Nat(Idg, H o G) = Nat(l, H o G o l) = Nat(l, 1),

one finds a natural transformation « : Ide = H o G (given by the image of Id;). Similarly, there is
a natural transformation 5 : H o G = Idg. Finally, using the bijection Nat(Ide,Ide) = Nat(l,1), one
gets B o a = Idyg, and similarly for the other composition. Hence H o G 2 Idg. Reasoning with &' in
a similar manner shows that G and H realize an equivalence of categories £ ~ &’.

2. Recall that the group completion of a monoid is a group M ™ together with a monoid map

LM — MT

such that for any monoid map ¢ : M — G, there is a unique group morphism é: MT — G factorizing
¢, that is ¢ = ¢ o ¢. It is usual abstract nonsense to prove it is unique up to isomorphism (and there



is a unique such isomorphism that commutes with the structure maps from M to the completion). To
prove the existence of M7, it is enough to construct it, which can be done by defining it as a quotient
of the free group on the generating set M by the obvious equivalence relation identifying m x m’ with
m -m/, where * is the product in the free group and - is the product in M.

We now come to the proof. The key fact to note is the following: the full subcategory of Cat spanned
by the categories with a unique object is isomorphic to the category of monoids. Therefore, given a
monoid A, we will also write A for the category with one object * and End (%) = A as morphisms. Let
M be a monoid. We now show that ¢ : M — M, viewed as a functor, satisfies the universal property
of the localization of M along all morphisms. Let D be a category. Then any functor F : M+t — D
factors through the full subcategory Dp(,) spanned by the image of *. Thus

Fun(M*, D)= [ Fun(M*, D,)
z€ob(D)

as categories. Observe that any morphism of monoid f : M — Endp(z) factors through the subgroup
of units Autp(z). Hence precomposing with ¢ inverts all morphisms in M. Now the universal property
of the group completion gives that the functor

— o : Fun(M™, Autp(z)) — Fun”V(M, Autp(z))

is bijective on objects, hence essential surjective. The category Fun(M ', Autp(z)) has objects given by
the group morphisms M+ — Autp(x); the morphisms between f and g are the elements a € Autp(z)
such that ¢ = afa™!. Using this description, one easily sees that — o ¢ is fully faithful, hence an
equivalence of categories.



