
Homotopie II – 2025-2026 – Nicolas Guès

TD 1 - Révisions, localisations

Exercice 1. Let A be a commutative ring and M,L,K be A-modules. We denote by C the category
of A-modules.

(1) Show that C ∋ N 7→ HomA(M ⊗A HomA(N,L),K) defines a (covariant) functor F : C → C.

(2) i) Give conditions on L,M for F to be left exact.

ii) Give conditions on K,M for F to be right exact.

iii) Give conditions on K,L,M for F to be exact.

(3) Assume A = Z, M = Z and K = Q/Z.

i) Show that F is right exact.

ii) Let m ≥ 1 and L = Z. Compute Li(F )(Z/mZ) for all i ∈ Z.

iii) Let m,n ≥ 1 and L = Z/nZ. Compute Li(F )(Z/mZ) for all i ∈ Z.

Solution. (1) Rappelons que la composée de deux foncteurs covariants ou de deux foncteurs con-
travariant est un foncteur covariant. La composée d’un foncteur covariant et d’un foncteur
contravariant (ou le contraire) est un foncteur contravariant. Or pour tout objet N de C,
F (N) = HomA(M ⊗A HomA(N,L),K) est la composée des foncteurs HomA(−,K) : Cop → C
(donc contravariant),M⊗A− : C → C (covariant) et HomA(−, L) : Cop → C (donc contravariant).
C’est donc un foncteur covariant.

(2) i) Par définition F est exact à gauche s’il transforme toute suite exacte 0 → X ′ → X → X” en
une suite exacte 0 → F (X ′) → F (X) → F (X”). En appliquant le foncteur HomA(−, L) à
la suite exacte 0 → X ′ → X → X”, on obtient le complexe

HomA(X”, L) → HomA(X,L) → HomA(X
′, L) → 0.

On sait que ce complexe est une suite exacte lorsque HomA(−, L) est exact à droite, c’est
à dire si L est injectif. En ce cas, comme M ⊗A − est exact à droite, et HomA(−,K) exact
à gauche, on obtient que 0 → F (X ′) → F (X) → F (X”) est exacte. Conclusion : Il suffit
que L soit injectif pour que F soit exact à droite.

ii) Un raisonnement analogue assure que F est exact à gauche si M est plat ( auquel cas M⊗A−
est exact à gauche) et K injectif.

iii) De i), ii), on déduit que F est exact si K,L sont injectifs et M plat.

(3) On remarque que M = Z est libre sur Z, donc plat et K = Q/Z est injectif (voir le lemme de
Baer plus bas).

i) Les hypothèses de (2).ii) sont satisfaites, donc F est exact à droite. En particulier il admet des
foncteurs dérivés à gauche (puisque la catégorie Mod(Z) admet assez d’objets projectifs).
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ii) Il faut trouver une résolution projective de Z/mZ. On utilise la résolution libre (en particulier

projective) déjà vue en TD : · · · → 0 → 0 → Z ×m→ Z. On alors que, pour tout i ∈ Z, les
groupes de cohomologie Li(F )(Z/mZ) sont donnés par la formule :

Li(F )(Z/mZ) = H−i
(
. . . −→ 0 −→ F (Z) F (×m)−→ F (Z)

)
.

Ceci donne immédiatement Li>1(F )(Z/mZ) = 0. Comme Z ⊗Z X ∼= X (l’isomorphisme
étant donné par k ⊗Z x 7→ kx) et HomZ(Z, X) ∼= X (l’isomorphisme étant donné par

φ 7→ φ(1)), on obtient F (Z) ∼= Q/Z et F (×m) = Q/Z ×m−→ Q/Z. Comme Q/Z est divisible
(c’est à dire que pour tout x, n ∈ Z−{0}, il existe y ∈ Q/Z avec ny = x), on en déduit que

L0(F )(Z/mZ) ∼= coker(Q/Z ×m−→ Q/Z) = 0.

Il reste à calculer L1(F )(Z/mZ) ∼= ker(Q/Z ×m−→ Q/Z). Tout élément de Q/Z est représenté
par la classe d’un élément p/q ∈ Q avec p ∧ q = 1 (en notant p ∧ q le pgcd de p et q). On
obtient que mp/q = 0 ∈ Q/Z si q/m. La réciproque est immédiate. Il en découle que

L1(F )(Z/mZ) = Z/mZ.

ii) Evidemment, on utilise la même résolution projective de Z/mZ. Avec L = Z/nZ, on a F (Z) =
HomZ(Z/nZ,Q/Z). Un morphisme φ : Z/nZ → Q/Z est uniquement déterminé par l’image
φ(1) qui en outre doit vérifier 0 = φ(n) = nφ(1). On en déduit que HomZ(Z/nZ,Q/Z) ∼=
ker(Q/Z ×n→ Q/Z) ∼= Z/nZ. Par conséquent on doit calcler la cohomologie du complexe

. . . 0 −→ 0 −→ Z/nZ ×m−→ Z/nZ.

On obtient alors par des calculs similaires à ceux fait en TD

L0(F )(Z/mZ) = Z/n ∧mZ, L1(F )(Z/mZ) = Z/n ∧mZ, Li>1(F )(Z/mZ) = 0.

Exercice 2 (Baer’s Lemma). (1) Let E be an injective A-module. Show that E satisfies the fol-
lowing condition :

for every ideal I of A, the map HomA(A,E) −→ HomA(I, E) is surjective. (0.1)

(2) Let E be an A-module satisfying condition (0.1). We are given a diagram 0 → N ′ f→ N
g ↓
E

. Let X

denote the set of pairs (P, hP ) where P is a submodule of N satisfying f(N ′) ⊂ P ⊂ N and
hP : P → E is an extension of g, that is g = hP ◦ f . We say that (P, hP ) ≤ (Q, hQ) if P ⊂ Q
and hQ/P = hP . Show that ≤ is a partial order relation.

(3) Show that an A-module E is injective if and only if it satisfies condition (0.1) (one may use (2)
and apply Zorn’s lemma).

Solution. (1) Si E est injectif, alors comme I s’injecte dans A, on a que tout morphisme I → E se
prolonge en un morphisme A → E par définition des module injectifs. Ce qui donne la surjectivité
de HomA(A,E) −→ HomA(I, E).

(2) On considère le diagramme 0 → N ′ f→ N
g ↓
E

. L’ensemble des couples (P, hP ) où P est un sous-

module de N vérifiant f(N ′) ⊂ P ⊂ N et hP : P → E est une extension de g est muni de
la relation d’ordre (P, hP ) ≤ (Q, hQ) si P ⊂ Q et hQ/P = hP . On a bien (P, hP ) ≤ (P, hp),
si P ⊂ Q ⊂ R est une suite croissante d’extension, alors, R est une extension de P . De plus
si (P, hP ) ≤ (Q, hQ) et (Q, hQ) ≤ (P, hP ) alors P = Q. La relation est donc bien une relation
d’ordre.
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(3) Montrons que ≤ vérifie les hypothèses du Lemme de Zorn; c’est à dire que toute sous-famille to-
talement ordonnée admet un élément maximal. Soit (Pi, hPi)i∈ℑ une famille totalement ordonnée
d’éléments de X. (Pour tout i, j ∈ ℑ on a (Pi, hPi) ⪯ (Pj , hPj ) ou (Pj , hPj ) ⪯ (Pi, hPi).) On pose

P =
⋃
i∈ℑ

Pi et on définit h : P → E par h(x) = hPi(x) si x ∈ Pi de sorte que (P, hP ) ∈ X.

D’après le lemme de Zorn, on a donc que X admet un

Supposons, par l’absurde, que M ⊊ N . Il existe donc x ∈ N \ M . Alors P = M + A.x est un
sous module de N qui contient strictement M . On définit I = (M : x) = {a ∈ A, a.x ∈ M} qui
est un idéal. Soit γ : I → E, l’application γ(a) = hM (a.x). D’après l’hypothèse de l’énoncé il
existe alors φ : A → E tel que φ|I = γ.

On définit alors hP : P → E par hP (y + a.x) = hM (y) + φ(a) (où y ∈ M). Cette définition
est consistante car si y + a.x = y′ + a′.x alors (a′ − a).x = y − y′ ∈ M donc a′ − a ∈ I et
φ(a′ − a) = γ(a′ − a) = hM ((a′ − a).x) = hM (y − y′) d’où hM (y) + φ(a) = hM (y′) + φ(a′).

On a ainsi obtenu un élément (P, hP ) tel que (M,hM ) ≺ (P, hP ) ce qui est impossible car
(M,hM ) est maximal. On a donc M = N et un morphisme h : N → E tel que h ◦ f = g. Ceci

étant vrai pour tout diagramme 0 → N ′ f→ N
g ↓
E

on a bien montré que E est injectif.

Exercice 3 (Cone of a morphism). Let X•, Y • ∈ Ch(C) be two complexes and f : X• → Y • a
morphism of complexes. The cone of f is defined by Mn(f) = Xn+1⊕Y n. Let df : M•(f) → M•+1(f)

be defined by the matrix

[
−dX 0
f• dY

]
.

(1) Show that (M(f), df ) is an object of Ch(C), i.e., a complex.

(2) Show that M(f) is unique (up to isomorphism) depending only on the class of f in K(C), the
homotopy category of C.

(3) Construct an exact sequence of complexes

0 → Y • → M•(f) → X•[1] → 0.

(4) Identify the morphisms H•(X) → H•(Y ) in the long exact sequence associated with the short ex-
act sequence from question (3). Deduce that f is a quasi-isomorphism if and only if H•(M(f)) =
0.

Solution. (1) On a (df ◦df )(x, y) = df (−dX(x), dY (y)+f(x)) = d2X(x), d2Y (y)−f(dX(x))+dY f(x) =
(0, 0) car dX , dY sont de carrés nuls et f est un morphisme de complexes.

(2) Soit f−f ′ = sdX+dY s avec s : X
• → Y •−1. On vérifie aisément que le morphisme h =

[
1 0
s• 1

]
est un morphisme de C(f) → C(f ′). Il est de plus inversible; d’inverse

[
1 0

−s• 1

]
.

(3) On vérifie que iY : Y • → X•+1 ⊕ Y • est un morphisme de complexes, de même que pX :
X•+1 ⊕ Y • → X•+1 = X[1]• (rappelons que la différentielle sur le complexe X[1] est −dX). De
plus pXiY = 0, pXiX = Id et le noyau de pX est im(iY ) d’après l’équation iXpX + iY pY = Id.On
en conclut que la suite

0 → Y • iY→ M•(f)
pX→ X•[1] → 0

est exacte.
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(4) Il suffit de reprendre la construction du morphisme de connexion δ dans le lemme du serpent. En
effet, d’après le cours, la longue suite exacte en homologie s’écrit

. . . Hn(Y ) → Hn(M(f)) → Hn(X[1])
δ→ Hn+1(Y ) → . . .

avecHn(X[1]) = Hn+1(X). Le morphisme δ est le morphisme ker(Xn+1 dX→ Xn+2) → coker(Y n dY→
Y n+1) donné par le lemme du serpent, voir le cours et le TD 2. Précisément, étant donné
x ∈ Xn+1 avec dX(x) = 0, δ(x) est obtenu en prenant un antécédent (quelconque) de x par
pX , c’est à dire h ∈ M(f)n avec pX(h) = x. Puis on prend z ∈ Y n+1 tel que iY (y) = df (h).
On a alors δ(x) = [y], où [y] est l’image de ypar l’application canonique vers le conoyau. Dans
le cas présent, on peut choisir h = (x, 0). On obtient alors df (h) = (0, f(y)). On conclut que

l’application Hn(X[1])
δ→ Hn+1(Y ) induite dans la longue suite exacte est l’application Hn+1(f)

induite par f via l’isomorphisme Hn(X[1]) = Hn+1(X). Mais f est un quasi-isomorphisme si et
seulement si H•(f) est un isomorphisme. D’après la suite exacte longue, si H•(f) est un isomor-
phisme alors, H•(M(f)) → H•+1(X) est l’application nulle de même que H•(Y ) → H•(M(f))
ce qui par exactitude force H•(M(f)) = 0. réciproquement, si H•(M(f)) = 0, la suite exacte im-
plique immédiatement que H•(f) est un isomorphisme puisqu’elle se réduit à des suites exactes
0 → H•(X) → H•(Y ) → 0.

Exercice 4. Let F : C → D be a functor having a right adjoint G : D → C (we say that D is a
reflexive subcategory of C). Let W denote the collection of morphisms f in C such that F (f) is an
isomorphism in D. Show that the following are equivalent:

1. G is fully faithful;

2. The natural transformation F ◦G → IdD is an isomorphism;

3. The natural functor C[W−1] → D is an equivalence of categories.

Solution. That 1 implies 2 is standard for any adjunction:

D(x, y) ∼= C(G(x), G(y)) ∼= D(F ◦G(x), y).

One can also see that 2 implies 1 by going in the other direction.

Let us prove 2 implies 3: The composition D F→ C → C[W−1] → D is G ◦ F , so it is isomorphic to the

identity. It suffices to show that C[W−1] → D G→ C → C[W−1] is isomorphic to the identity. By the

universality of C → C[W−1], it suffices to show that C → C[W−1] → D G→ C → C[W−1] is isomorphic
to C → C[W−1]. From the composition F → FGF → F = idF given by the unit and counit, we
deduce that the transformation F → FGF is an isomorphism since the second part is. This shows

that C → C[W−1] → D G→ C → C[W−1] is indeed what we want.
Now let’s prove that 3 implies 1. We have that Hom(C[W−1],D) ∼= Hom(C,D) is fully faithful, and
by composition, we get that F ∗ : Hom(D,D) ∼= Hom(C,D) is fully faithful. We want to show that
F ◦ G → Id is an isomorphism, which reduces to showing that FGF → F is an isomorphism, a
consequence of the adjunction.

Exercice 5. Let C = ModZ be the category of abelian groups.

1. (Localization at a single prime) Let p be a prime. Show that the base change functor −⊗ZZ[
1

p
] :

ModZ → ModZ[ 1
p
] is a localization functor along the class W of all maps of abelian groups

f : X → Y such that both kerf and cokerf are p-torsion groups. Hint: Use the pr flatness of

Z[
1

p
] over Z, and the previous exercise.

2. Show that the map Q → Q⊗ZQ sending q 7→ q⊗1 is an isomorphism. Use this and the Exercice
3 to show that the category of Q vector spaces is a localization of the category of abelian groups.
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Solution. We use exercise 4. We will check that the inclusion functor ModZ[ 1
p
] → ZMod is fully

faithful. This amounts to check that HomModZ[ 1p ]
(A,B) = HomModZ(A,B) for any two Z[

1

p
]−modules

A and B. The inclusion of the left term into the right term is automatic. Now take f ∈ HomModZ(A,B)

; We need to show it is automatically a morphism of Z[
1

p
]-modules. But pf(

a

p
) = f(p · a

p
) = f(a) so

f(
a

p
) =

f(a)

p
for all a and we are done. By Exercise 3, the base change functor

−⊗Z Z[
1

p
] : ModZ → ModZ[ 1

p
]

is a localization along maps inducing isomorphism after tensoring by Z[
1

p
]. Let’s describe these maps.

A map A → B is such if and only if ker(A⊗Z[
1

p
] → B⊗Z[

1

p
]) = 0 and coker(A⊗Z[

1

p
] → B⊗Z[

1

p
]) = 0.

By flatness of Z[
1

p
]) = 0 taking ker and coker commute with tensoring, so this amounts to ask that

Z[1/p]⊗ ker(A → B) and Z[1/p]⊗ coker(A → B) are zero. This is true if and only if kerA → B and
cokerA → B are torsion p-groups.
2. The same arguments work by flatness of Q over Z. The fact that a morphism of abelian groups
between two Q-vector spaces is automatically a Q linear map works with the same proof as before.

Exercice 6 (Model structure on slice categories, by Victor Saunier). Let X ∈ A and (C,F ,W) be a
model structure on A. We denote by A/X the category whose objects are maps α : Y → X of A and
whose morphisms are commutative triangles:

Y X

Y ′

α

f
α′

Similarly, we denote C/X (resp. F/X,W/X) the morphisms of A/X as above where f ∈ C (resp.
F ,W).

Show that (C/X,F/X,W/X) determines a model structure on A/X. We call it the slice model
structure.

What are the fibrant objects in the above described model structure? The cofibrant objects?

Solution. Let us check the axioms of a model category.

1. MC1. Colimits in C/X can be computed as colimits in C (for example, because the forgetful
functor C/X → C has a right adjoint given by A 7→ A×X). For limits : if I is a small category
and D : I → C/X, consider I∇ the cocone of I (I to which we added a terminal object ∗). We
have by construction a diagram D∇ : I∇ → C where ∗ is sent to X. Then one can check that
lim
C

D∇ is an object over X and is a limit of D in C/X. So C/X is complete and cocomplete.

2. MC2. The 2 out of 3 from C gives the 2 out of 3 in C/X because weak equivalences are the same.

3. MC3. Automatic since retracts in C/X give retracts in C.

4. MC4. Take a lifting problem in C/X, for example :

A B

C D

f

∼i p∃

g
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where all maps are maps over X.As W, C, F are the same as in C, this gives a lifting problem
in C, so there exist a lifting (dotted arrow) φ in C. There remains to check that this is a map
over X. Call qM the map M → X for any object M . We want to check that qBφ = qA. But
qBφ = qDpφ = qDg = qA so we are done.

5. MC5. We already have functorial factorizations in C. We want to check they are maps over X.
Let f : A → B be a map in C/X. The factorization A ↣ Cf ↠ B is automatically over X using

the map Cf ↠ B
qB−→ X. The same holds for the second kind of factorizations.

Exercice 7 (Universal property of localization). Let C be a small category and W a subset of the
set of morphisms in of C. A localization of C with respect to W is a category C[W−1] together with a
functor

l : C → C[W−1]

satisfying the following universal property: For any category D, composition with l:

Fun(C[W−1],D) → Fun(C, D)

is a fully faithful functor and its essential image consists of those functors C → D sending W to
isomorphisms. In other words, l, if it exists if the universal functor sending W to isomorphisms.

1. Check that C[W−1], if it exists, is unique up to canonical equivalences of categories.

2. Show that when C is the category with a single object ∗ and a monoid M of endomorphisms, and
W = M then C[W−1] is equivalent to the category with one object ∗ and M+ as endomorphisms,
with M+ the group completion of M .

Solution. Note that a functor l : C → D is a localization if and only if it verifies the following two
properties:

� For any functor F : C → E that sends W to isomorphisms, there exists G : D → E such that
F ∼= G ◦ l.

� The map − ◦ l : Nat(G1, G2) → Nat(G1 ◦ l, G2 ◦ l) is a bijection for all functors G1, G2 : D → E .

1. Suppose l : C → E and l′ : C → E ′ are two localizations along W. By the universal property of
these localizations, both l and l′ are isomorphic to functors that invert W. In particular, l′ belongs
to the essential image of the functor − ◦ l : Fun(E , E ′) → FunW(C, E ′), so that there exists a functor
G : E → E ′ such that l′ ∼= G ◦ l.

C E ′

E
l

l′

G

Similarly, l ∼= H ◦ l′ for some functor H : E ′ → E . Using the bijection

Nat(IdE , H ◦G) ∼= Nat(l,H ◦G ◦ l) ∼= Nat(l, l),

one finds a natural transformation α : IdE ⇒ H ◦ G (given by the image of Idl). Similarly, there is
a natural transformation β : H ◦ G ⇒ IdE . Finally, using the bijection Nat(IdE , IdE) ∼= Nat(l, l), one
gets β ◦ α = IdIdE and similarly for the other composition. Hence H ◦G ∼= IdE . Reasoning with E ′ in
a similar manner shows that G and H realize an equivalence of categories E ≃ E ′.

2. Recall that the group completion of a monoid is a group M+ together with a monoid map

ι : M → M+

such that for any monoid map ϕ : M → G, there is a unique group morphism ϕ̃ : M+ → G factorizing
ϕ, that is ϕ = ϕ̃ ◦ ι. It is usual abstract nonsense to prove it is unique up to isomorphism (and there
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is a unique such isomorphism that commutes with the structure maps from M to the completion). To
prove the existence of M+, it is enough to construct it, which can be done by defining it as a quotient
of the free group on the generating set M by the obvious equivalence relation identifying m⋆m′ with
m ·m′, where ⋆ is the product in the free group and · is the product in M .

We now come to the proof. The key fact to note is the following: the full subcategory of Cat spanned
by the categories with a unique object is isomorphic to the category of monoids. Therefore, given a
monoid A, we will also write A for the category with one object ∗ and End(∗) = A as morphisms. Let
M be a monoid. We now show that ι : M → M+, viewed as a functor, satisfies the universal property
of the localization of M along all morphisms. Let D be a category. Then any functor F : M+ → D
factors through the full subcategory DF (∗) spanned by the image of ∗. Thus

Fun(M+,D) ∼=
∐

x∈ob(D)

Fun(M+,Dx)

as categories. Observe that any morphism of monoid f : M+ → EndD(x) factors through the subgroup
of units AutD(x). Hence precomposing with ι inverts all morphisms inM+. Now the universal property
of the group completion gives that the functor

− ◦ ι : Fun(M+,AutD(x)) −→ FunW(M,AutD(x))

is bijective on objects, hence essential surjective. The category Fun(M+,AutD(x)) has objects given by
the group morphisms M+ → AutD(x); the morphisms between f and g are the elements α ∈ AutD(x)
such that g = αfα−1. Using this description, one easily sees that − ◦ ι is fully faithful, hence an
equivalence of categories.
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