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TD 2 - Model structures on chain complexes

Let R be a commutative unital ring (or a commutative unital k-algebra). Recall that Ch(R) is the
category of (unbounded) chain complexes (Ci∈Z, d) of R-modules, and Ch≥0(R) its full subcategory of
chain complexes concentrated in nonnegative degrees (Ci = 0 if i < 0). Finally, we denote by Ch≤0(R)
the full subcategory of chain complexes concentrated in nonpositive degrees (Ci = 0 if i > 0); this
subcategory is isomorphic (via Ci = C−i) to the category of cochain complexes concentrated in
nonnegative degrees.

Définition 0.1 (Projective model structure). Let C = Ch(R) or Ch≥0(R). We define the so-called
projective structure on C by setting

Weak equivalences W these are the quasi-isomorphisms (that is, morphisms of complexes inducing
isomorphisms in homology).

Fibrations F these are the surjective morphisms of complexes (in every degree) in Ch(R), and the
morphisms of complexes that are surjective in every degree > 0 in Ch≥0(R).

Cofibrations C these are the morphisms of complexes having the left lifting property with respect
to acyclic fibrations.

Dually, we define the so-called injective structure on C by setting W as the quasi-isomorphisms.
Cofibrations are the injective morphisms of complexes (in every degree) in Ch(R), and the morphisms
of complexes that are injective in every degree < 0 in Ch≤0(R). Fibrations are the morphisms of
complexes having the right lifting property with respect to acyclic cofibrations.

We admit the following theorem, and we will illustrate the structure thus defined in what follows.

Theorem 0.2. The above projective structures endow Ch(R) and Ch≥0(R) with the structure of a
model category. Moreover,

1. The cofibrations of Ch≥0(R) are exactly the degreewise inclusions whose cokernel is projective
in every degree.

2. The cofibrations of Ch(R) are the morphisms of complexes which are injective and have projec-
tive cokernel in every degree, and whose cokernel is cofibrant.

3. Any morphism of complexes in Ch(R), injective in every degree, whose cokernel is a bounded
below complex1 of projective modules, is a cofibration.

Exercice 1. 1. State the analogue of the previous theorem for the injective structure.

2. Prove that in the projective structure, all objects are fibrant, and give the analogue in the
injective structure.

3. Prove that if f : A↣ B is a cofibration, then coker(f) is cofibrant (hint: use a pushout).

In the following exercise, we will not use the characterization of cofibrations given by the theorem.

Exercice 2. Let R be a ring, and equip Ch(R) with the projective structure.

1. We want to show that if a complex (C∗, d) is cofibrant, then Cn is projective for all n.

1that is, Ci = 0 for i ≪ 0
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(a) Show that morphisms of complexes C∗ → Dn+1(M) are in bijection with linear maps
Cn →M .

(b) Check, for all n, that M 7→ Dn+1(M) is a functor from R-modules to acyclic chain com-
plexes.

(c) Prove that C∗ cofibrant implies that Cn is projective (hint: use the previous two questions
to produce an acyclic fibration).

2. Prove that any cofibration i : A∗ ↣ B∗ is degreewise injective. (Hint: check that Dn+1(An) → 0
is an acyclic fibration and consider a morphism A∗ → Dn+1(An) → 0.)

3. Deduce that for any cofibration i : A∗ ↣ B∗, writing P∗ = coker(i), one has Bn
∼= An ⊕ Pn

where Pn is projective.

4. The goal of this question is to show that a chain complex in Ch(R) may be made of projective
modules but be non-cofibrant.

(a) Consider the quotient ring R = K[x]/(x2) where K is a field. For n ∈ Z, set Pn = R and
consider the map dn : Pn → Pn−1 given by multiplication by x in R: r 7→ x · r. Prove that
P∗ = (Pn, dn) is a chain complex with zero homology. Deduce that if P∗ is cofibrant, then
0 → P∗ is an acyclic cofibration.

(b) Consider p : R → K = R/(x) the canonical projection, and equip K with the induced
R-module structure. Prove that S0(p) : S0(R) → S0(K) is a fibration in Ch(R).

(c) Prove that there exists a morphism of chain complexes P∗ → S0(K) which is equal to p
in degree 0, and that, for any R-module M , if u : P∗ → S0(M) is a morphism of chain
complexes, then u(d1(P1)) = 0.

(d) Assuming that P∗ is cofibrant, deduce a contradiction from the previous questions.

5. We want to prove that any chain complex P∗ ∈ Ch≥0(R) consisting of projective modules is

cofibrant. Let f : X∗
∼
↠ Y∗ be an acyclic fibration in Ch≥0(R) and 0

��

// X∗

f
��

P∗ q
// Y∗

a commutative

diagram. We will construct a lift q̃∗ : P∗ → X∗ by induction.

(a) Prove that f0 : X0 → Y0 is surjective and that ker(f) is a chain complex with zero homology
in every degree.

(b) Using that P0 is projective, construct a q̃0 : P0 → X0 which works.

(c) Suppose now that q̃0, . . . , q̃n−1 have been constructed so that the diagrams commute and
they commute with the differentials.

i. Using that Pn is projective, construct an hn : Pn → Xn making the diagram commute
in degree n.

ii. Prove that d ◦ hn − q̃n−1 ◦ d : Pn → Xn−1 takes values in Zn−1(ker(f)) (that is, the
cycles of ker(f)).

iii. Using that Pn is projective, show that there exists a map ψ : Pn → ker(f)n such that

d ◦ ψ = d ◦ hn − q̃n−1 ◦ d.

iv. Check that q̃n = hn − ψ gives the desired lift.

Exercice 3 (Strong Cylinders). Fix a model category C where every object is fibrant. A strong cylinder

is a cylinder X ⊔X ↣ C
∼
↠ X where the last arrow is an acyclic fibration (for a general cylinder, we

only ask for a weak equivalence). The goal of the exercise is to show that if CX is a strong cylinder
for X and two maps f, g : X → Y are left homotopic, they are left homotopic with CX as a choice of
cylinder.
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1. Suppose f, g are left homotopic through H : C → Y where C
∼→ X is an arbitrary cylinder.

Explain how we can reduce to the case where C is a strong cylinder (Hint : use the factorization
axiom).

2. Conclude by finding a lift CX → C.

Exercice 4. (Homotopy equivalence in chain complexes) We recall that two morphisms of chain
complexes f, g : X → Y are chain homotopic if there exists h : X∗ → Y∗+1 such that dh+ hd = f − g.
Let I be the chain complex concentraed in degree 0 et 1 given by I0 = R⊕R, I1 = R with differential
∂(r) = (r,−r).

1. Give for any chain complex X, a factorisation id
∐
id : X

∐
X → X of the form

X ⊔X
i0

∐
i1

↪→ X ⊗ I
∼
↠ X

with i0(r) = (r, 0, 0) et i1(r) = (0, r, 0).

2. Prove that two chain complexes morphisms f, g : X → Y are chain homotopic if and only if
there exists a chain complex morphism H : X ⊗ I → Y such that H ◦ i0 = f and H ◦ i1 = g.

3. Prove that if X is cofibrant, f and g are chain homotopic if and only if they are homotopic in
the sense of the model structure. (Hint: use that every chain complex is fibrant and that X ⊗ I
is a strong cylinder object).

4. Deduce that for any complex A, we have a natural (in A) isomorphism

Hn(A) ∼= HomHo(Ch(R))(S
n(R), A).

Exercice 5. The goal of the exercise is to prove that liftings associated to a model structure are
actually unique up to homotopy.

Let (C,W,Cof,Fib) be a model category, and A
φ−→ Y be a morphism. We denote CA/

φ the category

of objects of C under A and over φ. That is, an object of CA/
φ is an object X ∈ C together with two

morphisms iX : A→ X and pX : X → Y satisfying φ = pX ◦iX . A morphism (X, iX , pX) → (Z, iZ , pZ)
is a morphism f : X → Z such that the following diagram commutes:

X Y

A Z

pX

f
iX

iZ
pZ

1. Prove that CA/
φ is complete and cocomplete and that it has a model structure such that the weak

equivalences, cofibrations and fibrations are the morphisms f : X → Z that are respectively
weak equivalences, cofibrations and fibrations in C.

2. Determine a necessary and sufficient condition on A
iX−→ X for (X, iX , pX) to be cofibrant in

CA/
φ .

3. Consider a commutative square

A X

B Y

f

i p

g

in which i is a cofibration and p an acyclic fibration. Prove that if h, h′ : B → X are two lifts

in the diagram, then they are homotopic in CA/
φ for a well chosen φ (hint: consider the induced

morphism B
⋃

AB → B). Are they homotopic in C?
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Exercice 6. Let C be a category equipped with two model structures: (W1,Cof1,Fib1) and (W2,Cof2,Fib2).
Assume that W1 ⊆ W2 and Fib1 ⊆ Fib2. The mixed structure (Wm,Cofm,Fibm) is defined by setting
Wm =W2 and Fibm = Fib1. The mixed cofibrations Cofm are defined via the lifting property.

1. Show that Cof2 ⊆ Cofm ⊆ Cof1.

2. Prove that Cofm ∩Wm = Cof1 ∩W1. (Hint: Use MC3 and MC5. Start with ⊃ )

3. Prove that the mixed structure (Wm,Cofm,Fibm) is a model category structure.

4. A map f is called a special mixed cofibration if there exist i ∈ Cof2 and j ∈ Cof1 ∩W1 such that
f = j ◦ i. Show that:

� Every special mixed cofibration is a mixed cofibration,

� Every mixed cofibration is a retract of a special mixed cofibration (Hint : MC5 twice).

5. A model category is called left proper if the pushout of a weak equivalence along a cofibration
is a weak equivalence. Deduce that if (W2,Cof2,Fib2) is left proper, then the mixed structure is
also left proper.

Exercice 7 (Model category of equivalence relations). Let Eq be the category whose objects are pairs
(X,∼) where X is a set and ∼ is an equivalence relation on X, and whose morphisms are maps which
preserve equivalence, i.e.:

HomEq((X,∼X), (Y,∼Y )) := {f : X → Y | ∀x, x′ ∈ X, x ∼X x′ =⇒ f(x) ∼Y f(x′)}.

We will often allow ourselves the notational shortcut X = (X,∼X), Y = (Y,∼Y ), etc.

1. Prove that the categorical product is given by (X,∼X)× (Y,∼Y ) = (X × Y,∼X×Y ), where:

(x, y) ∼X×Y (x′, y′) ⇐⇒ (x ∼X x′ and y ∼Y y′).

2. Let A = {a, b, c} with a ∼ b ̸= c; B = {x, y} with x ∼ y; and C = {u, v} with u ̸= v. Let
f : C → A be given by f(u) = b, f(v) = c, and g : C → B be given by g(u) = x and g(v) = y.
Prove that in the pushout A ∪C B, one has a ∼ c. (A picture can help.)

For X ∈ Eq and x ∈ X, we let [x] = {x′ ∈ X | x′ ∼X x} and (X/ ∼) := {[x] | x ∈ X}. For any
X,Y ∈ Eq, a morphism f : X → Y in Eq is called a:

� Cofibration if f : X → Y is injective as a map of sets.

� Fibration if, for all x ∈ X, the restriction f |[x] : [x] → [f(x)] is surjective.

� Weak equivalence if the induced map on the quotient f∗ : (X/ ∼) → (Y/ ∼) is bijective.

3. Let j : {0} → ({0, 1},∼) with 0 ∼ 1. Prove that a morphism is a fibration if, and only if, it has
the right lifting property against j. (You may not yet assume that Eq is a model category.)

4. Let i0 : ∅ → {0} and let i1 : ({0, 1},∼1) → ({0, 1},∼2) where 0 ̸∼1 1 and 0 ∼2 1. Prove that a
morphism is an acyclic fibration if, and only if, it has the right lifting property against i0 and
i1.

5. Prove that two morphisms f, g are homotopic in Eq if and only if f ≈ g.

6. Prove that the functor π : Eq → Set, given on objects by X 7→ X/ ∼X , induces an equivalence
of categories Ho(Eq) ≃ Set.

7. Prove that the pullback of a weak equivalence along a fibration is a weak equivalence.
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