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TD 2 - Model structures on chain complexes

Let R be a commutative unital ring (or a commutative unital k-algebra). Recall that Ch(R) is the
category of (unbounded) chain complexes (Ci∈Z, d) of R-modules, and Ch≥0(R) its full subcategory of
chain complexes concentrated in nonnegative degrees (Ci = 0 if i < 0). Finally, we denote by Ch≤0(R)
the full subcategory of chain complexes concentrated in nonpositive degrees (Ci = 0 if i > 0); this
subcategory is isomorphic (via Ci = C−i) to the category of cochain complexes concentrated in
nonnegative degrees.

Définition 0.1 (Projective model structure). Let C = Ch(R) or Ch≥0(R). We define the so-called
projective structure on C by setting

Weak equivalences W these are the quasi-isomorphisms (that is, morphisms of complexes inducing
isomorphisms in homology).

Fibrations F these are the surjective morphisms of complexes (in every degree) in Ch(R), and the
morphisms of complexes that are surjective in every degree > 0 in Ch≥0(R).

Cofibrations C these are the morphisms of complexes having the left lifting property with respect
to acyclic fibrations.

Dually, we define the so-called injective structure on C by setting W as the quasi-isomorphisms.
Cofibrations are the injective morphisms of complexes (in every degree) in Ch(R), and the morphisms
of complexes that are injective in every degree < 0 in Ch≤0(R). Fibrations are the morphisms of
complexes having the right lifting property with respect to acyclic cofibrations.

We admit the following theorem, and we will illustrate the structure thus defined in what follows.

Theorem 0.2. The above projective structures endow Ch(R) and Ch≥0(R) with the structure of a
model category. Moreover,

1. The cofibrations of Ch≥0(R) are exactly the degreewise inclusions whose cokernel is projective
in every degree.

2. The cofibrations of Ch(R) are the morphisms of complexes which are injective and have projec-
tive cokernel in every degree, and whose cokernel is cofibrant.

3. Any morphism of complexes in Ch(R), injective in every degree, whose cokernel is a bounded
below complex1 of projective modules, is a cofibration.

Exercice 1. 1. State the analogue of the previous theorem for the injective structure.

2. Prove that in the projective structure, all objects are fibrant, and give the analogue in the
injective structure.

3. Prove that if f : A↣ B is a cofibration, then coker(f) is cofibrant (hint: use a pushout).

Solution 1. 1. Simply replace cokernel by kernel, injective by surjective, projective by injective,
and bounded below by bounded above.

2. All objects are fibrant in the projective structure because the terminal mapM → 0 is surjective.

1that is, Ci = 0 for i ≪ 0
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3. coker f is exactly the pushout of A→ B along the zero map A→ 0. As cofibrations are preserved
under pushouts, 0 → coker f is a cofibration and hence coker f is cofibrant.

In the following exercise, we will not use the characterization of cofibrations given by the theorem.

Exercice 2. Let R be a ring, and equip Ch(R) with the projective structure.

1. We want to show that if a complex (C∗, d) is cofibrant, then Cn is projective for all n.

(a) Show that morphisms of complexes C∗ → Dn+1(M) are in bijection with linear maps
Cn →M .

(b) Check, for all n, that M 7→ Dn+1(M) is a functor from R-modules to acyclic chain com-
plexes.

(c) Prove that C∗ cofibrant implies that Cn is projective (hint: use the previous two questions
to produce an acyclic fibration).

2. Prove that any cofibration i : A∗ ↣ B∗ is degreewise injective. (Hint: check that Dn+1(An) → 0
is an acyclic fibration and consider a morphism A∗ → Dn+1(An) → 0.)

3. Deduce that for any cofibration i : A∗ ↣ B∗, writing P∗ = coker(i), one has Bn
∼= An ⊕ Pn

where Pn is projective.

4. The goal of this question is to show that a chain complex in Ch(R) may be made of projective
modules but be non-cofibrant.

(a) Consider the quotient ring R = K[x]/(x2) where K is a field. For n ∈ Z, set Pn = R and
consider the map dn : Pn → Pn−1 given by multiplication by x in R: r 7→ x · r. Prove that
P∗ = (Pn, dn) is a chain complex with zero homology. Deduce that if P∗ is cofibrant, then
0 → P∗ is an acyclic cofibration.

(b) Consider p : R → K = R/(x) the canonical projection, and equip K with the induced
R-module structure. Prove that S0(p) : S0(R) → S0(K) is a fibration in Ch(R).

(c) Prove that there exists a morphism of chain complexes P∗ → S0(K) which is equal to p
in degree 0, and that, for any R-module M , if u : P∗ → S0(M) is a morphism of chain
complexes, then u(d1(P1)) = 0.

(d) Assuming that P∗ is cofibrant, deduce a contradiction from the previous questions.

5. We want to prove that any chain complex P∗ ∈ Ch≥0(R) consisting of projective modules is

cofibrant. Let f : X∗
∼
↠ Y∗ be an acyclic fibration in Ch≥0(R) and 0

��

// X∗

f
��

P∗ q
// Y∗

a commutative

diagram. We will construct a lift q̃∗ : P∗ → X∗ by induction.

(a) Prove that f0 : X0 → Y0 is surjective and that ker(f) is a chain complex with zero homology
in every degree.

(b) Using that P0 is projective, construct a q̃0 : P0 → X0 which works.

(c) Suppose now that q̃0, . . . , q̃n−1 have been constructed so that the diagrams commute and
they commute with the differentials.

i. Using that Pn is projective, construct an hn : Pn → Xn making the diagram commute
in degree n.

ii. Prove that d ◦ hn − q̃n−1 ◦ d : Pn → Xn−1 takes values in Zn−1(ker(f)) (that is, the
cycles of ker(f)).

2



iii. Using that Pn is projective, show that there exists a map ψ : Pn → ker(f)n such that

d ◦ ψ = d ◦ hn − q̃n−1 ◦ d.

iv. Check that q̃n = hn − ψ gives the desired lift.

Exercice 3 (Strong Cylinders). Fix a model category C where every object is fibrant. A strong cylinder

is a cylinder X ⊔ X ↣ C
∼
↠ X where the last arrow is acyclic fibration (for a general cylinder, we

only ask for a weak equivalence). The goal of the exercise is to show that if CX is a strong cylinder
for X and two maps f, g : X → Y are left homotopic, they are left homotopic with CX as a choice of
cylinder.

1. Suppose f, g are left homotopic through H : C → Y where C
∼→ X is an arbitrary cylinder.

Explain how we can reduce to the case where C is a strong cylinder (Hint : use the factorization
axiom).

2. Conclude by finding a lift CX → C.

Solution 2. By MC5, factorize C
∼−→ X by C

∼
↣ C ′ ∼

↠ X (last fibration is a weak equivalence by
two-out-of-three). We want to lift C → Y to C ′ → Y . This can be done:

C Y

C ′ •

because C → C ′ is an acyclic cofibration and Y is fibrant. Thus, we lifted the left homotopy through
a strong cylinder C ′. Now let us show that we can get a homotopy through CX . It suffices to find a
map CX → C which commutes with the structure maps X ⊔X → C → X and X ⊔X → CX → X.
This is possible by finding a lift :

X ⊔X C ′

CX X

because C ′ ∼
↠ X is an acyclic fibration and X ⊔X ↣ CX a cofibration.

Exercice 4. (Homotopy equivalence in chain complexes) We recall that two morphisms of chain
complexes f, g : X → Y are chain homotopic if there exists h : X∗ → Y∗+1 such that dh+ hd = f − g.
Let I be the chain complex concentraed in degree 0 et 1 given by I0 = R⊕R, I1 = R with differential
∂(r) = (r,−r).

1. Give for any chain complex X, a factorisation id
∐
id : X

∐
X → X of the form

X ⊔X
i0

∐
i1

↪→ X ⊗ I
∼
↠ X

with i0(r) = (r, 0, 0) et i1(r) = (0, r, 0).

2. Prove that two chain complexes morphisms f, g : X → Y are chain homotopic if and only if
there exists a chain complex morphism H : X ⊗ I → Y such that H ◦ i0 = f and H ◦ i1 = g.

3. Prove that if X is cofibrant, f and g are chain homotopic if and only if they are homotopic in
the sense of the model structure. (Hint: use that every chain complex is fibrant and that X ⊗ I
is a strong cylinder object).
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4. Deduce that for any complex A, we have a natural (in A) isomorphism

Hn(A) ∼= HomHo(Ch(R))(S
n(R), A).

Solution 3. 1.

2.

3. Suppose f and g are chain homotopic. By the previous question, there is a map H : X ⊗ I → Y
such that H ◦i0 = f and H ◦i1 = g. We need to check that X⊗I is a cylinder to deduce that they
are left homotopic. For this it must be checked that i : X ⊔X → X ⊗ I is a cofibration. By the
characterization of cofibrations of theorem 0.2, it is the case if and only if i is injective and cokeri
is cofibrant. But i is obviously injective and a short computation shows that cokeri ≃ X[1] the
shift of X. As X is cofibrant, X[1] is degreewise projective and hence cofibrant. Finally, as X is
cofibrant and Y projective, being left homotopic is equivalent to being homotopic.
Let’s do the converse. Suppose f and g are homotopic. Hence they are left homotopic through
an arbitrary cylinder C of X. By the previous exercise, they are homotopic through X⊗I which
is a strong cylinder as the map X ⊗ I → X is a fibration by question 1.

4. By the previous questions, HomHo(Ch(R))(S
nR,A) ≃ HomCh(R)(S

nR,A)/(chain homotopy). A
chain map SnR → A amounts to the choice of an element a ∈ An such that da = 0, i.e.
Hom(SnR,A) ≃ Zn(A). But a and b in Zn(A) seen as maps SnR → A are chain homo-
topic if and only if there exists h ∈ An+1 such that a − b = dh, i.e. a − b ∈ BnA. Hence
HomHo(Ch(R))(S

nR,A) ≃ HnA.

Exercice 5. The goal of the exercise is to prove that liftings associated to a model structure are
actually unique up to homotopy.

Let (C,W,Cof,Fib) be a model category, and A
φ−→ Y be a morphism. We denote CA/

φ the category

of objects of C under A and over φ. That is, an object of CA/
φ is an object X ∈ C together with two

morphisms iX : A→ X and pX : X → Y satisfying φ = pX ◦iX . A morphism (X, iX , pX) → (Z, iZ , pZ)
is a morphism f : X → Z such that the following diagram commutes:

X Y

A Z

pX

f
iX

iZ
pZ

1. Prove that CA/
φ is complete and cocomplete and that it has a model structure such that the weak

equivalences, cofibrations and fibrations are the morphisms f : X → Z that are respectively
weak equivalences, cofibrations and fibrations in C.

2. Determine a necessary and sufficient condition on A
iX−→ X for (X, iX , pX) to be cofibrant in

CA/
φ .

3. Consider a commutative square

A X

B Y

f

i p

g

in which i is a cofibration and p an acyclic fibration. Prove that if h, h′ : B → X are two lifts

in the diagram, then they are homotopic in CA/
φ for a well chosen φ (hint: consider the induced

morphism B
⋃

AB → B). Are they homotopic in C?
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Solution 4. 1. Let X : D → C
A/
φ be a diagram, then in particular we get a diagram in the cone

category c(D) which has an additional initial object, and the data of the maps X(i) → X(j)
and the canonical maps iX(i) : A → X(i) determines a c(D)-diagram (still denoted X) for
which we can take the colimit. This colimit has a canonical map from A. The collection of maps
pX(i) : X(i) → Y assembles to give a map from colimc(D)X to Y whose composition with the
map coming from A is indeed φ. We can proceed dually for limits.

The (co)completeness being proved, all other axioms of a model category follow from their
analogues in C, since they only require the data of maps X → Y in C sitting in commutative
diagrams with respect to A and Y . These diagrams do not affect composition, retracts, lifting,
or factorization properties.

2. The above construction shows that the initial object of C
A/
φ is A

id−→ A
φ−→ Y . Therefore a

cofibrant object is given by (X, iX , pX) and a commutative diagram

A Y

X X

φ

iX pX

iX

for which the vertical map, which is iX , is a cofibration. Hence a cofibrant object is (X, iX , pX)
with iX : A→ X a cofibration. And similarly (X, iX , pX) is fibrant iff pX : X → Y is a fibration.

3. Let h, h′ : B → X be two lifts. Choose φ = p ◦ f = g ◦ i. In the C
A/
φ model structure, X is thus

fibrant and B is cofibrant. Therefore h and h′ being homotopic is equivalent to them being left
homotopic. The coproduct of B with itself in this category is just B ∪A B (by question 1) with
canonical structure maps A → B ∪A B and g ∪A g → Y . By definition of lifts we have a well-
defined map h∪A h

′ : B ∪A B → X, and we consider the canonical map id∪A id : B ∪A B → B.

Factoring this as B ∪A B → C
g−→ B gives a cylinder object for (B, i, g) ∈ C

A/
φ . Therefore we

obtain a commutative diagram

B ∪A B X

C Y

h∪Ah′

p p

g◦q

Exercice 6. Let C be a category equipped with two model structures: (W1,Cof1,Fib1) and (W2,Cof2,Fib2).
Assume that W1 ⊆ W2 and Fib1 ⊆ Fib2. The mixed structure (Wm,Cofm,Fibm) is defined by setting
Wm =W2 and Fibm = Fib1. The mixed cofibrations Cofm are defined via the lifting property.

1. Show that Cof2 ⊆ Cofm ⊆ Cof1.

2. Prove that Cofm ∩Wm = Cof1 ∩W1. (Hint: Use MC3 and MC5. Start with ⊃ )

3. Prove that the mixed structure (Wm,Cofm,Fibm) is a model category structure.

4. A map f is called a special mixed cofibration if there exist i ∈ Cof2 and j ∈ Cof1 ∩W1 such that
f = j ◦ i. Show that:

� Every special mixed cofibration is a mixed cofibration,

� Every mixed cofibration is a retract of a special mixed cofibration (Hint : MC5 twice).
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5. A model category is called left proper if the pushout of a weak equivalence along a cofibration
is a weak equivalence. Deduce that if (W2,Cof2,Fib2) is left proper, then the mixed structure is
also left proper.

Solution 5. 1. Note that if C ⊂ D, then the class of maps with left lifting properties satisfy the
inverse inclusion LLP(C) ⊃ LLP(D). In a model category we have that Cof = LLP(Fib ∩W ).
Since Fibm ⊂ Fib2 and Wm =W2, we have Fibm ∩Wm ⊂ Fib2 ∩W2, hence Cofm ⊃ Cof2. Using
Fibm = Fib1 and W1 ⊂W2, we obtain the other inclusion.

2. Let us first prove Cofm∩Wm ⊃ Cof1∩W1. Note that Cof1∩W1 = LLP(Fib1) since (W1,Cof1,Fib1)
is a model structure by assumption. In particular a map in Cof1 has LLP with respect to any
map in Fib1 ∩W2 = Fibm ∩Wm. Therefore it lies in Cofm. Further W1 ⊂ Wm = W2, hence
Cof1 ∩W1 ⊂Wm and we get the claimed inclusion.

The reverse inclusion requires more work. Let f ∈ Cofm∩Wm. We factor it as f = A
∼−→ C → B

with respect to (W1,Cof1,Fib1) (which is a model structure). Since f ∈W2 =Wm andW1 ⊂W2,
the 2-out-of-3 property guarantees that C → B is also in W2. And since Fib1 ⊂ Fib2, we get
that C → B belongs to Fib1 ∩W2 = Fibm ∩Wm. Hence f (which lies in Cofm) has LLP with
respect to C → B. This yields a lift

A C

B B

∼

f

which exhibits f : A → B as a retract of A
∼−→ C, hence it is indeed in Cof1 ∩W1 by retract

stability of acyclic cofibrations.

3. The (co)completeness axioms and 2-out-of-3 property are immediate since they hold for the
second model structure. The retract stability of Fibm = Fib1 and Wm = W2 follows from those
of the first two model structures. The retract stability for cofibrations follows from cofibrations
being defined as solutions to a LLP property, which is automatic, as is the lifting property of
mixed cofibrations with respect to acyclic mixed fibrations by definition. Question 2 shows that
Cofm ∩ Wm = Cof1 ∩ W1 = LLP(Fib1), and since Fibm = Fib1, the second lifting axiom is
satisfied.

Only the factorization axiom remains. Given any morphism f : X → Y , the first model structure
gives a factorization f : X → A→ Y where the first map is in Cof1 ∩W1 = Cofm ∩Wm and the
second is in Fib1 = Fibm. Hence the first factorization is trivial.

For the second factorization, we factor f using the second model structure as f = X
2−→ B

2−→ C,
where the subscript 2 indicates (co)fibrations in the second model structure. Now we also factor

B
2−→ C using the first model structure as B

1−→ B′ 1−→ C, so that f is factored as

f = (X
2−→ B

1−→ B′)
1−→ C.

But Cof2 ⊂ Cofm and Cof1 ∩W1 ⊂ Cofm, hence the first part of the factorization is a mixed

cofibration. It remains to prove that B′ 1−→ C is also in Wm = W2 (since Fibm = Fib1). By the

2-out-of-3 property, since B
2−→ C is inW2 and B

1−→ B′ is inW1 ⊂W2, we conclude that indeed

B′ 1−→ C ∈W2, completing the proof (all factorizations being given by the functors coming from
both model structures in the above construction).

4. Let f = j ◦ i with i ∈ Cof2 and j ∈ Cof1∩W1. By question 2, j is an (acyclic) mixed cofibration,
and by question 1, i is a mixed cofibration. Hence their composition is a mixed cofibration.
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Now let f be a mixed cofibration. We apply the same idea as in the proof of the factorization

axiom. Factor f : A→ C as f = A
2−→ B

2−→ C, and factor B
2−→ C as B

1−→ B′ 1−→ C, so that
f is factored as

f = (A
2−→ B

1−→ B′)
1−→ C.

But Cof2 ⊂ Cofm and Cof1 ∩W1 ⊂ Cofm, hence the first part of the factorization is a special

mixed cofibration. By the 2-out-of-3 property, we again have that B′ 1−→ C ∈W2. Hence it is an
acyclic mixed fibration (since Fibm = Fib1) and has the lifting property with respect to f . We

deduce that f is a retract of A
2−→ B

1−→ B′.

5. Since the pushout of a retract is a retract, it is enough to prove the result for pushout along

a special mixed cofibration. Let A
2−→ B

1−−→
∼

C be such and f : A
m−→ Y be a mixed weak-

equivalence (which is thus in W2 =Wm). The pushout B ∪A Y splits as the composition of two
pushout squares:

A B

Y Y ∪A B

Y ∪A C

2

∼m ∼m

∼1

where the middle vertical arrow is in Wm = W2 by the left properness of the second model
structure and the right horizontal arrow is an acyclic cofibration for the first structure as a
pushout of such. Then by the 2-out-of-3 property (using that W1 ⊂W2), the right vertical map
is in W2 =Wm, which concludes.

Exercice 7 (Model category of equivalence relations). Let Eq be the category whose objects are pairs
(X,∼) where X is a set and ∼ is an equivalence relation on X, and whose morphisms are maps which
preserve equivalence, i.e.:

HomEq((X,∼X), (Y,∼Y )) := {f : X → Y | ∀x, x′ ∈ X, x ∼X x′ =⇒ f(x) ∼Y f(x′)}.

We will often allow ourselves the notational shortcut X = (X,∼X), Y = (Y,∼Y ), etc.

1. Prove that the categorical product is given by (X,∼X)× (Y,∼Y ) = (X × Y,∼X×Y ), where:

(x, y) ∼X×Y (x′, y′) ⇐⇒ (x ∼X x′ and y ∼Y y′).

2. Let A = {a, b, c} with a ∼ b ̸= c; B = {x, y} with x ∼ y; and C = {u, v} with u ̸= v. Let
f : C → A be given by f(u) = b, f(v) = c, and g : C → B be given by g(u) = x and g(v) = y.
Prove that in the pushout A ∪C B, one has a ∼ c. (A picture can help.)

For X ∈ Eq and x ∈ X, we let [x] = {x′ ∈ X | x′ ∼X x} and (X/ ∼) := {[x] | x ∈ X}. For any
X,Y ∈ Eq, a morphism f : X → Y in Eq is called a:

� Cofibration if f : X → Y is injective as a map of sets.

� Fibration if, for all x ∈ X, the restriction f |[x] : [x] → [f(x)] is surjective.

� Weak equivalence if the induced map on the quotient f∗ : (X/ ∼) → (Y/ ∼) is bijective.

3. Let j : {0} → ({0, 1},∼) with 0 ∼ 1. Prove that a morphism is a fibration if, and only if, it has
the right lifting property against j. (You may not yet assume that Eq is a model category.)
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4. Let i0 : ∅ → {0} and let i1 : ({0, 1},∼1) → ({0, 1},∼2) where 0 ̸∼1 1 and 0 ∼2 1. Prove that a
morphism is an acyclic fibration if, and only if, it has the right lifting property against i0 and
i1.

5. Prove that two morphisms f, g are homotopic in Eq if and only if f ≈ g.

6. Prove that the functor π : Eq → Set, given on objects by X 7→ X/ ∼X , induces an equivalence
of categories Ho(Eq) ≃ Set.

7. Prove that the pullback of a weak equivalence along a fibration is a weak equivalence.
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