TD 2 - Localizations and model structures

Exercice 1 (Model structures on the category of sets). Let Sets denote the category of sets.

- 1. Show that (Sets, $\mathcal{W} =$ bijections, $\mathcal{F} = All, \mathcal{C} = All$) determines a model structure.
- 2. Do the same for (Sets, $\mathcal{W} = All, \mathcal{F} =$ surjections, $\mathcal{C} =$ injections)

In fact, there are precisely nine model structures in the category of sets. See link.

Exercice 2 (Universal property of localization). Let C be a small category and W a subset of the set of morphisms in of C. A localization of C with respect to W is a category $C[W^{-1}]$ together with a functor

$$l: \mathcal{C} \to \mathcal{C}[\mathcal{W}^{-1}]$$

satisfying the following universal property: For any category \mathcal{D} , composition with l:

$$\operatorname{Fun}(\mathcal{C}[\mathcal{W}^{-1}], \mathcal{D}) \to \operatorname{Fun}(\mathcal{C}, D)$$

is a fully faithful functor and its essential image consists of those functors $\mathcal{C} \to \mathcal{D}$ sending \mathcal{W} to isomorphisms. In other words, l, if it exists if the universal functor sending \mathcal{W} to isomorphisms.

- 1. Check that $\mathcal{C}[\mathcal{W}^{-1}]$, if it exists, is unique up to canonical equivalences of categories.
- 2. Show that when C is the category with a single object * and a monoid M of endomorphisms, and $\mathcal{W} = M$ then $\mathcal{C}[\mathcal{W}^{-1}]$ is equivalent to the category with one object * and M^+ as endomorphisms, with M^+ the group completion of M.

Indication: we recall that the group completion M^+ of a monoid is a group M^+ together with a monoid map $can : M \to M^+$ such that for any monoid map $\phi : M \to G$, there is a unique group morphism $\tilde{\phi} : M^+ \to G$ factorizing ϕ , that is $\phi = \tilde{\phi} \circ can$. It is usual abstract nonsense to prove it is unique up (to unique if one requires that the isomorphisms commutes with the structure maps from M to the completion) isomorphism. To prove the existence of M^+ , it is enough to construct it which can be obtained by defining as a quotient of the free group on the generating set M by the obvious equivalence relation identifying $m \star m'$ with $m \cdot m'$ if \star is the product in the free group and \cdot is the product in M.

Exercice 3. Let $F : \mathcal{C} \to \mathcal{D}$ be a functor having a right adjoint $G : \mathcal{D} \to \mathcal{C}^1$. Let \mathcal{W} denote the collection of morphisms f in \mathcal{C} such that F(f) is an isomorphism in \mathcal{D} . Show that the following are equivalent:

- 1. G is fully faithful;
- 2. The natural transformation $F \circ G \to Id_{\mathcal{D}}$ is an isomorphism;
- 3. The natural functor $\mathcal{C}[\mathcal{W}^{-1}] \to \mathcal{D}$ is an equivalence of categories.

 $^{{}^{1}\}mathcal{D}$ is said to be a reflexive subcategory of \mathcal{C} .

Exercice 4 (Model structure on slice categories, by Victor Saunier). Let $X \in \mathcal{A}$ and $(\mathcal{C}, \mathcal{F}, \mathcal{W})$ be a model structure on \mathcal{A} . We denote by \mathcal{A}/X the category whose objects are maps $\alpha : Y \to X$ of \mathcal{A} and whose morphisms are commutative triangles:

$$\begin{array}{ccc} Y & \stackrel{\alpha}{\longrightarrow} X \\ f & \swarrow \\ f' & \swarrow \\ Y' & & \end{array}$$

Similarly, we denote \mathcal{C}/X (resp. $\mathcal{F}/X, \mathcal{W}/X$) the morphisms of \mathcal{A}/X as above where $f \in \mathcal{C}$ (resp. \mathcal{F}, \mathcal{W}).

Show that $(\mathcal{C}/X, \mathcal{F}/X, \mathcal{W}/X)$ determines a model structure on \mathcal{A}/X . We call it the *slice model structure*.

What are the fibrant objects in the above described model structure? The cofibrant objects?

Exercice 5 (Model structures on vector spaces, after Najib Idrissi). Let k be a field and denote Vect(k) the category of vector spaces over k. We will use that every vector space, even the infinite-dimensional ones, has a basis (a.k.a. the axiom of choice).

1. Let there be a commutative square :

$$\begin{array}{ccc} E & \stackrel{u}{\longrightarrow} V \\ i & & \downarrow^{p} \\ F & \stackrel{v}{\longrightarrow} W \end{array}$$

- (a) Show that u factors through i if and only if ker $i \subseteq \ker u$.
- (b) Show that v factors through p if and only if $\operatorname{im} v \subseteq \operatorname{im} p$.
- (c) Show that there exists a lift $F \to V$ if and only if both conditions are met.
- 2. (a) Show that $i \perp p$ if and only if at least one of i, p is surjective and at least one is injective.
 - (b) Deduce what are the possibilities for $LLP(\mathcal{W})$, when \mathcal{W} is any class of arrows.
- 3. Suppose $(\mathcal{C}, \mathcal{F}, \mathcal{W})$ is a model structure on $\operatorname{Vect}(k)$.
 - (a) Show that $\mathcal{W} = \text{RLP}(\mathcal{F}) \circ \text{LLP}(\mathcal{C})$. Using the above, what are the possibilities for $\mathcal{W}, \mathcal{C}, \mathcal{C} \cap \mathcal{W}$ and $\mathcal{F} \cap \mathcal{W}$?
 - (b) Using that a model structure is fully determined by the data of \mathcal{W} and \mathcal{F} , make a list of all the model structures on Vect(k).

Exercice 6. Let $\mathcal{C} = \operatorname{Mod}_{\mathbb{Z}}$ be the category of abelian groups.

- 1. (Localization at a single prime) Let p be a prime. Show that the base change functor $-\otimes_{\mathbb{Z}} \mathbb{Z}[\frac{1}{p}]$: $\operatorname{Mod}_{\mathbb{Z}} \to \operatorname{Mod}_{\mathbb{Z}[\frac{1}{p}]}$ is a localization functor along the class \mathcal{W} of all maps of abelian groups $f: X \to Y$ such that both ker f and coker f are p-torsion groups. (Hint: Use the flatness of $\mathbb{Z}[\frac{1}{p}]$ over \mathbb{Z} .)
- 2. Show that the map $\mathbb{Q} \to \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$ sending $q \mapsto q \otimes 1$ is an isomorphism. Use this and the Exercice 3 to show that the category of \mathbb{Q} vector spaces is a localization of the category of abelian groups.