G.Ginot, N.Gues - Homotopie I1 M2 Paris Centre - 24/25

TD 2 - LOCALIZATIONS AND MODEL STRUCTURES

Exercice 1 (Model structures on the category of sets). Let Sets denote the category of sets.

1.

2.

Show that (Sets, W = bijections, F = All,C = All) determines a model structure.

Do the same for (Sets, W = All, F = surjections, C = injections)

In fact, there are precisely nine model structures in the category of sets. See link.

Solution. 1. Let’s check the axioms of a model structure :

1.

2.

MCI1. It’s a well-known fact that the category of sets is complete and cocomplete.
MC2. Obvious for bijections.

MC3. Stability under retracts : Obvious for C and F. For W, Consider a retract diagram
A B—— A

lq lf lq Suppose f is a bijection. Then r¢~ ' and iq™
AL B A
and left inverses of f, so f is a bijection.

i
Ly are respectively right

MC4. The lifting condition is easy in both cases since it suffices to compose with the inverse i !

(in the case i € CNW)) and with p~! in the case p € F N W.

MC5. The factorization X — X — Y of X — Y is an acyclic cofibration followed by a fibration;
whereas X — Y — Y is a cofibration followed by an acyclic fibration.

Let us check the axioms for the second model structure :

. MC1. Same as 1.

MC2. Obvious since W = All.

MC3. Obvious for W = All If ¢ is an injection, it has a left inverse and thus one can construct
a left inverse of f following the proof of 1. If ¢ is a surjection we can construct similarly a right
inverse for f.

MC4. The lifting property amounts to check that for any square diagram

A%B
3 7
[ 27 ]
C g

where 7 is an injection and p a surjection, there always exists a dotted lift. This amounts to find
exactly a lift of the map C' —i(A) — D to B.We can construct one cpostcomposing with a right
inverse of the surjection B — D (which exists by axiom of choice).

MC5. X i> Y factors as X % X LY M Y which works for the two types of functorial
factorizations we ask for.
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http://www.math.ubc.ca/~oantolin/notes/modelcatsets.html

Exercice 2 (Universal property of localization). Let C be a small category and W a subset of the set
of morphisms in of C. A localization of C with respect to W is a category C[W 1] together with a
functor

1:C—CW™
satisfying the following universal property: For any category D, composition with I:
Fun(C(W™], D) — Fun(C, D)

is a fully faithful functor and its essential image consists of those functors C — D sending W to
isomorphisms. In other words, I, if it exists if the universal functor sending W to isomorphisms.

1. Check that C[W™1, if it exists, is unique up to canonical equivalences of categories.

2. Show that when C is the category with a single object * and a monoid M of endomorphisms, and
W = M then C[W~!] is equivalent to the category with one object * and M+ as endomorphisms,
with M ™ the group completion of M.

Indication: we recall that the group completion M™ of a monoid is a group M ™ together with
a monoid map can : M — M™ such that for any monoid map ¢ : M — G, there is a unique group
morphism ¢ : M+ — G factorizing ¢, that is ¢ = é o can. Tt is usual abstract nonsense to prove it is
unique up (to unique if one requires that the isomorphisms commutes with the structure maps from
M to the completion) isomorphism. To prove the existence of M™, it is enough to construct it which
can be obtained by defining as a quotient of the free group on the generating set M by the obvious
equivalence relation identifiying m * m’ with m - m’ if % is the product in the free group and - is the
product in M.

Solution. Note that a functor [ : C — D is a localization if and only if it verifies the following two
properties:

e For any functor F' : C — &£ that sends W to isomorphisms, there exists G : D — £ such that
F=Gol.

e The map — ol : Nat(G1,G3) — Nat(Gy ol,G o) is a bijection for all functors G1,Ga : D — €.

1. Suppose [ : C — &€ and I : C — &’ are two localizations along W. By the universal property of
these localizations, both [ and I’ are isomorphic to functors that invert Y. In particular, I’ belongs
to the essential image of the functor — ol : Fun(&, &) — Fun"V(C, &), so that there exists a functor
G:€&— & such that I' 2 Gol.
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Similarly, | & H oI’ for some functor H : £’ — £. Using the bijection
Nat(Ide, H o G) = Nat(l, H o G o l) = Nat(l,1),

one finds a natural transformation « : Idg = H o G (given by the image of Id;). Similarly, there is
a natural transformation 5 : H o G = Idg. Finally, using the bijection Nat(Idg,Idg) = Nat(l,[), one
gets o a = Idyq, and similarly for the other composition. Hence H o G = Idg. Reasoning with £’ in
a similar manner shows that G and H realize an equivalence of categories £ ~ &’.

2. Recall that the group completion of a monoid is a group M ™ together with a monoid map

LM — MT

such that for any monoid map ¢ : M — G, there is a unique group morphism é: M+ — G factorizing
¢, that is ¢ = ¢ o . It is usual abstract nonsense to prove it is unique up to isomorphism (and there



is a unique such isomorphism that commutes with the structure maps from M to the completion). To
prove the existence of M7, it is enough to construct it, which can be done by defining it as a quotient
of the free group on the generating set M by the obvious equivalence relation identifying m xm’ with
m - m/, where x is the product in the free group and - is the product in M.

We now come to the proof. The key fact to note is the following: the full subcategory of Cat spanned
by the categories with a unique object is isomorphic to the category of monoids. Therefore, given a
monoid A, we will also write A for the category with one object * and End (%) = A as morphisms. Let
M be a monoid. We now show that ¢ : M — M™, viewed as a functor, satisfies the universal property
of the localization of M along all morphisms. Let D be a category. Then any functor F : M+ — D
factors through the full subcategory Dp(,) spanned by the image of *. Thus

Fun(M*, D)= [[ Fun(M*,D,)
z€ob(D)

as categories. Observe that any morphism of monoid f : M+ — Endp(z) factors through the subgroup
of units Autp(z). Hence precomposing with ¢ inverts all morphisms in M*. Now the universal property
of the group completion gives that the functor

—o¢: Fun(M™, Autp(z)) — Fun”V (M, Autp(z))

is bijective on objects, hence essential surjective. The category Fun(M ™, Autp(z)) has objects given by
the group morphisms M — Autp(z); the morphisms between f and g are the elements o € Autp(z)
such that ¢ = afa~!. Using this description, one easily sees that — o ¢ is fully faithful, hence an
equivalence of categories.

Exercice 3. Let F' : C — D be a functor having a right adjoint G : D — Cﬂ Let W denote the
collection of morphisms f in C such that F(f) is an isomorphism in D. Show that the following are
equivalent:

1. G is fully faithful;
2. The natural transformation ' o G — Idp is an isomorphism;
3. The natural functor C[W~!] — D is an equivalence of categories.
(Solution: That 1 implies 2 is standard for any adjunction:
Dz, ) = C(G(), G(y)) = D(F 0 G(z),y).

One can also see that 2 implies 1 by going in the other direction.

Let’s prove 2 implies 3: The composed map D Leoe W=l — Dis GoF, so it is isomorphic to the
identity. It suffices to show that C[W~!] — D Scoe [W~1] is isomorphic to the identity. By the
universality of C — C[W 1], it suffices to show that C — C[W~!] — D Sc- C[W—1] is isomorphic
to C — C[W~!]. From the composition F' — FGF — F = idp given by the unit and counit, we
deduce that the transformation F© — F'GF is an isomorphism since the second part is. This shows
that C — C[W~!] - D Sc C[W~1] is indeed what we want.

Now let’s prove that 3 implies 1. We have that Hom(C[W 1], D) = Hom(C,D) is fully faithful, and
by composition, we get that F* : Hom(D,D) = Hom(C,D) is fully faithful. We want to show that
F oG — Id is an isomorphism, which reduces to showing that FFGF — F' is an isomorphism, a
consequence of the adjunction. )

D is said to be a reflexive subcategory of C.



Exercice 4 (Model structure on slice categories, by Victor Saunier). Let X € A and (C,F,W) be a
model structure on .A. We denote by A/ X the category whose objects are maps a: Y — X of A and
whose morphisms are commutative triangles:

Y — X

%
Similarly, we denote C/X (resp. F/X,W/X) the morphisms of A/X as above where f € C (resp.
g VSVlz;)W that (C/X,F/X,W/X) determines a model structure on A/X. We call it the slice model
structure.

What are the fibrant objects in the above described model structure? The cofibrant objects?

Let us check the axioms of a model category.

1.

MC1. Colimits in C/X can be computed as colimits in C (for example, because the forgetful
functor C/X — C has a right adjoint given by A — A x X). For limits : if [ is a small category
and D : I — C/X, consider IV the cocone of I (I to which we added a terminal object *). We
have by construction a diagram DV : IV — C where x is sent to X. Then one can check that
lime DV is an object over X and is a limit of D in C/X. So C/X is complete and cocomplete.

MC2. The 2 out of 3 from C gives the 2 out of 3 in C/X because weak equivalences are the same.
MC3. Automatic since retracts in C/X give retracts in C.

MC4. Take a lifting problem in C/X, for example :

Q<>
\\\LI_I \L&h

\M
SR

where all maps are maps over X.As W, C, F are the same as in C, this gives a lifting problem
in C, so there exist a lifting (dotted arrow) ¢ in C. There remains to check that this is a map
over X. Call ¢y the map M — X for any object M. We want to check that qgp = ga. But
qB¥ = qDPY = DY = qA SO we are done.

MC5. We already have functorial factorizations in C. We want to check they are maps over X.
Let f: A — B be amap in C/X. The factorization A — Cy — B is automatically over X using
the map Cy — B 4B, X. The same holds for the second kind of factorizations.

Exercice 5 (Model structures on vector spaces, after Najib Idrissi). Let k be a field and denote Vect(k)
the category of vector spaces over k. We will use that every vector space, even the infinite-dimensional
ones, has a basis (a.k.a. the axiom of choice).

1.

Let there be a commutative square :

u

EFE—V
l l”
F— W

v

(a) Show that u factors through 7 if and only if keri C ker u.
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(b
(c

Show that v factors through p if and only if imv C imp.
Show that there exists a lift ' — V if and only if both conditions are met.

2. (a

b

Show that ¢ 1 p if and only if at least one of ¢, p is surjective and at least one is injective.

Deduce what are the possibilities for LLP(W), when W is any class of arrows.

~ ~— ~— ~—

(
(
3. Suppose (C, F, W) is a model structure on Vect(k).

(a) Show that W = RLP(F)oLLP(C). Using the above, what are the possibilities for W, C,CNW

and F NW?

(b) Using that a model structure is fully determined by the data of YW and F, make a list of
all the model structures on Vect(k).

Exercice 6. Let C = Modz be the category of abelian groups.

1. (Localization at a single prime) Let p be a prime. Show that the base change functor — ®z Z[%] :
Modyz — Modz[;} is a localization functor along the class W of all maps of abelian groups
p

f: X — Y such that both kerf and cokerf are p-torsion groups. (Hint: Use the flatness of Z[-]

1
p
over 7Z.)

2. Show that the map Q - Q®z Q sending ¢ — ¢®1 is an isomorphism. Use this and the Exercice
3 to show that the category of Q vector spaces is a localization of the category of abelian groups.

Solution. We use exercise 3. We will check that the inclusion functor Modz[ 1= ZMod is fully faithful.
P
1
p
B. The inclusion of the left term into the right term is automatic. Now take f € Hompoa, (4, B) ;
We need to show it is automatically a morphism of Z[%]—modules. But pf(%) = f(p- %) = f(a) so

This amounts to check that H OMMod, 1 ](A, B) = Homyjtod, (A, B) for any two Z[:]—modules A and
p

f (%) = %fl) for all @ and we are done. By Exercise 3, the base change functor

1
— QX7 Z[*] : Mody — MOdZ[l]
P P
is a localization along maps inducing isomorphism after tensoring by Z[%]. Let’s describe these maps.
A map A — B is such if and only if ker(A®Z[%] — B®Z[%]) =0 and coker(A@Z[%] — B®Z[%]) =0.

By flatness of Z[2]) = 0 taking ker and coker commute with tensoring, so this amounts to ask that
Z[1/p] ® ker(A — B) and Z[1/p] @ coker(A — B) are zero. This is true if and only if ker A — B and
coker A — B are torsion p-groups.

2. The same arguments work by flatness of Q over Z. The fact that a morphism of abelian groups
between two Q-vector spaces is automatically a QQ linear map works with the same proof as before.



