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TD 2 - Localizations and model structures

Exercice 1 (Model structures on the category of sets). Let Sets denote the category of sets.

1. Show that (Sets,W = bijections,F = All, C = All) determines a model structure.

2. Do the same for (Sets,W = All,F = surjections, C = injections)

In fact, there are precisely nine model structures in the category of sets. See link.

Solution. 1. Let’s check the axioms of a model structure :

1. MC1. It’s a well-known fact that the category of sets is complete and cocomplete.

2. MC2. Obvious for bijections.

3. MC3. Stability under retracts : Obvious for C and F . For W, Consider a retract diagram

A B A

A′ B′ A′

i
q

r

f q

i′ r′

Suppose f is a bijection. Then rq−1i′ and iq−1r are respectively right

and left inverses of f , so f is a bijection.

4. MC4. The lifting condition is easy in both cases since it suffices to compose with the inverse i−1

(in the case i ∈ C ∩W)) and with p−1 in the case p ∈ F ∩W.

5. MC5. The factorization X → X → Y of X → Y is an acyclic cofibration followed by a fibration;
whereas X → Y → Y is a cofibration followed by an acyclic fibration.

Let us check the axioms for the second model structure :

1. MC1. Same as 1.

2. MC2. Obvious since W = All.

3. MC3. Obvious for W = All. If q is an injection, it has a left inverse and thus one can construct
a left inverse of f following the proof of 1. If q is a surjection we can construct similarly a right
inverse for f .

4. MC4. The lifting property amounts to check that for any square diagram

A B

C D

f

i p∃

g

where i is an injection and p a surjection, there always exists a dotted lift. This amounts to find
exactly a lift of the map C − i(A) → D to B.We can construct one cpostcomposing with a right
inverse of the surjection B → D (which exists by axiom of choice).

5. MC5. X
f−→ Y factors as X

id−→ X ⊔ Y
f⊔idY−−−−→ Y which works for the two types of functorial

factorizations we ask for.
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Exercice 2 (Universal property of localization). Let C be a small category and W a subset of the set
of morphisms in of C. A localization of C with respect to W is a category C[W−1] together with a
functor

l : C → C[W−1]

satisfying the following universal property: For any category D, composition with l:

Fun(C[W−1],D) → Fun(C, D)

is a fully faithful functor and its essential image consists of those functors C → D sending W to
isomorphisms. In other words, l, if it exists if the universal functor sending W to isomorphisms.

1. Check that C[W−1], if it exists, is unique up to canonical equivalences of categories.

2. Show that when C is the category with a single object ∗ and a monoid M of endomorphisms, and
W = M then C[W−1] is equivalent to the category with one object ∗ and M+ as endomorphisms,
with M+ the group completion of M .

Indication: we recall that the group completion M+ of a monoid is a group M+ together with
a monoid map can : M → M+ such that for any monoid map ϕ : M → G, there is a unique group
morphism ϕ̃ : M+ → G factorizing ϕ, that is ϕ = ϕ̃ ◦ can. It is usual abstract nonsense to prove it is
unique up (to unique if one requires that the isomorphisms commutes with the structure maps from
M to the completion) isomorphism. To prove the existence of M+, it is enough to construct it which
can be obtained by defining as a quotient of the free group on the generating set M by the obvious
equivalence relation identifiying m ⋆ m′ with m ·m′ if ⋆ is the product in the free group and · is the
product in M .

Solution. Note that a functor l : C → D is a localization if and only if it verifies the following two
properties:

• For any functor F : C → E that sends W to isomorphisms, there exists G : D → E such that
F ∼= G ◦ l.

• The map − ◦ l : Nat(G1, G2) → Nat(G1 ◦ l, G2 ◦ l) is a bijection for all functors G1, G2 : D → E .

1. Suppose l : C → E and l′ : C → E ′ are two localizations along W. By the universal property of
these localizations, both l and l′ are isomorphic to functors that invert W. In particular, l′ belongs
to the essential image of the functor − ◦ l : Fun(E , E ′) → FunW(C, E ′), so that there exists a functor
G : E → E ′ such that l′ ∼= G ◦ l.

C E ′

E
l

l′

G

Similarly, l ∼= H ◦ l′ for some functor H : E ′ → E . Using the bijection

Nat(IdE , H ◦G) ∼= Nat(l,H ◦G ◦ l) ∼= Nat(l, l),

one finds a natural transformation α : IdE ⇒ H ◦ G (given by the image of Idl). Similarly, there is
a natural transformation β : H ◦ G ⇒ IdE . Finally, using the bijection Nat(IdE , IdE) ∼= Nat(l, l), one
gets β ◦ α = IdIdE and similarly for the other composition. Hence H ◦G ∼= IdE . Reasoning with E ′ in
a similar manner shows that G and H realize an equivalence of categories E ≃ E ′.

2. Recall that the group completion of a monoid is a group M+ together with a monoid map

ι : M → M+

such that for any monoid map ϕ : M → G, there is a unique group morphism ϕ̃ : M+ → G factorizing
ϕ, that is ϕ = ϕ̃ ◦ ι. It is usual abstract nonsense to prove it is unique up to isomorphism (and there
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is a unique such isomorphism that commutes with the structure maps from M to the completion). To
prove the existence of M+, it is enough to construct it, which can be done by defining it as a quotient
of the free group on the generating set M by the obvious equivalence relation identifying m⋆m′ with
m ·m′, where ⋆ is the product in the free group and · is the product in M .

We now come to the proof. The key fact to note is the following: the full subcategory of Cat spanned
by the categories with a unique object is isomorphic to the category of monoids. Therefore, given a
monoid A, we will also write A for the category with one object ∗ and End(∗) = A as morphisms. Let
M be a monoid. We now show that ι : M → M+, viewed as a functor, satisfies the universal property
of the localization of M along all morphisms. Let D be a category. Then any functor F : M+ → D
factors through the full subcategory DF (∗) spanned by the image of ∗. Thus

Fun(M+,D) ∼=
∐

x∈ob(D)

Fun(M+,Dx)

as categories. Observe that any morphism of monoid f : M+ → EndD(x) factors through the subgroup
of units AutD(x). Hence precomposing with ι inverts all morphisms inM+. Now the universal property
of the group completion gives that the functor

− ◦ ι : Fun(M+,AutD(x)) −→ FunW(M,AutD(x))

is bijective on objects, hence essential surjective. The category Fun(M+,AutD(x)) has objects given by
the group morphisms M+ → AutD(x); the morphisms between f and g are the elements α ∈ AutD(x)
such that g = αfα−1. Using this description, one easily sees that − ◦ ι is fully faithful, hence an
equivalence of categories.

Exercice 3. Let F : C → D be a functor having a right adjoint G : D → C1. Let W denote the
collection of morphisms f in C such that F (f) is an isomorphism in D. Show that the following are
equivalent:

1. G is fully faithful;

2. The natural transformation F ◦G → IdD is an isomorphism;

3. The natural functor C[W−1] → D is an equivalence of categories.

(Solution: That 1 implies 2 is standard for any adjunction:

D(x, y) ∼= C(G(x), G(y)) ∼= D(F ◦G(x), y).

One can also see that 2 implies 1 by going in the other direction.

Let’s prove 2 implies 3: The composed map D F→ C → C[W−1] → D is G ◦F , so it is isomorphic to the

identity. It suffices to show that C[W−1] → D G→ C → C[W−1] is isomorphic to the identity. By the

universality of C → C[W−1], it suffices to show that C → C[W−1] → D G→ C → C[W−1] is isomorphic
to C → C[W−1]. From the composition F → FGF → F = idF given by the unit and counit, we
deduce that the transformation F → FGF is an isomorphism since the second part is. This shows

that C → C[W−1] → D G→ C → C[W−1] is indeed what we want.
Now let’s prove that 3 implies 1. We have that Hom(C[W−1],D) ∼= Hom(C,D) is fully faithful, and
by composition, we get that F ∗ : Hom(D,D) ∼= Hom(C,D) is fully faithful. We want to show that
F ◦ G → Id is an isomorphism, which reduces to showing that FGF → F is an isomorphism, a
consequence of the adjunction. )

1D is said to be a reflexive subcategory of C.
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Exercice 4 (Model structure on slice categories, by Victor Saunier). Let X ∈ A and (C,F ,W) be a
model structure on A. We denote by A/X the category whose objects are maps α : Y → X of A and
whose morphisms are commutative triangles:

Y X

Y ′

α

f
α′

Similarly, we denote C/X (resp. F/X,W/X) the morphisms of A/X as above where f ∈ C (resp.
F ,W).

Show that (C/X,F/X,W/X) determines a model structure on A/X. We call it the slice model
structure.

What are the fibrant objects in the above described model structure? The cofibrant objects?

Let us check the axioms of a model category.

1. MC1. Colimits in C/X can be computed as colimits in C (for example, because the forgetful
functor C/X → C has a right adjoint given by A 7→ A×X). For limits : if I is a small category
and D : I → C/X, consider I∇ the cocone of I (I to which we added a terminal object ∗). We
have by construction a diagram D∇ : I∇ → C where ∗ is sent to X. Then one can check that
limC D

∇ is an object over X and is a limit of D in C/X. So C/X is complete and cocomplete.

2. MC2. The 2 out of 3 from C gives the 2 out of 3 in C/X because weak equivalences are the same.

3. MC3. Automatic since retracts in C/X give retracts in C.

4. MC4. Take a lifting problem in C/X, for example :

A B

C D

f

∼i p∃

g

where all maps are maps over X.As W, C, F are the same as in C, this gives a lifting problem
in C, so there exist a lifting (dotted arrow) φ in C. There remains to check that this is a map
over X. Call qM the map M → X for any object M . We want to check that qBφ = qA. But
qBφ = qDpφ = qDg = qA so we are done.

5. MC5. We already have functorial factorizations in C. We want to check they are maps over X.

Let f : A → B be a map in C/X. The factorization A
∼
↣ Cf ↠ B is automatically over X using

the map Cf ↠ B
qB−→ X. The same holds for the second kind of factorizations.

Exercice 5 (Model structures on vector spaces, after Najib Idrissi). Let k be a field and denote Vect(k)
the category of vector spaces over k. We will use that every vector space, even the infinite-dimensional
ones, has a basis (a.k.a. the axiom of choice).

1. Let there be a commutative square :

E V

F W

u

i p

v

(a) Show that u factors through i if and only if ker i ⊆ keru.
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(b) Show that v factors through p if and only if im v ⊆ im p.

(c) Show that there exists a lift F → V if and only if both conditions are met.

2. (a) Show that i ⊥ p if and only if at least one of i, p is surjective and at least one is injective.

(b) Deduce what are the possibilities for LLP(W), when W is any class of arrows.

3. Suppose (C,F ,W) is a model structure on Vect(k).

(a) Show thatW = RLP(F)◦LLP(C). Using the above, what are the possibilities forW, C, C∩W
and F ∩W?

(b) Using that a model structure is fully determined by the data of W and F , make a list of
all the model structures on Vect(k).

Exercice 6. Let C = ModZ be the category of abelian groups.

1. (Localization at a single prime) Let p be a prime. Show that the base change functor −⊗ZZ[1p ] :
ModZ → ModZ[ 1

p
] is a localization functor along the class W of all maps of abelian groups

f : X → Y such that both kerf and cokerf are p-torsion groups. (Hint: Use the flatness of Z[1p ]
over Z.)

2. Show that the map Q → Q⊗ZQ sending q 7→ q⊗1 is an isomorphism. Use this and the Exercice
3 to show that the category of Q vector spaces is a localization of the category of abelian groups.

Solution. We use exercise 3. We will check that the inclusion functor ModZ[ 1
p
] → ZMod is fully faithful.

This amounts to check that HomModZ[ 1p ]
(A,B) = HomModZ(A,B) for any two Z[1p ]−modules A and

B. The inclusion of the left term into the right term is automatic. Now take f ∈ HomModZ(A,B) ;
We need to show it is automatically a morphism of Z[1p ]-modules. But pf(ap ) = f(p · a

p ) = f(a) so

f(ap ) =
f(a)
p for all a and we are done. By Exercise 3, the base change functor

−⊗Z Z[
1

p
] : ModZ → ModZ[ 1

p
]

is a localization along maps inducing isomorphism after tensoring by Z[1p ]. Let’s describe these maps.

A map A → B is such if and only if ker(A⊗Z[1p ] → B⊗Z[1p ]) = 0 and coker(A⊗Z[1p ] → B⊗Z[1p ]) = 0.

By flatness of Z[1p ]) = 0 taking ker and coker commute with tensoring, so this amounts to ask that
Z[1/p]⊗ ker(A → B) and Z[1/p]⊗ coker(A → B) are zero. This is true if and only if kerA → B and
cokerA → B are torsion p-groups.
2. The same arguments work by flatness of Q over Z. The fact that a morphism of abelian groups
between two Q-vector spaces is automatically a Q linear map works with the same proof as before.
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