TD 3 - QUILLEN FUNCTORS, DERIVED FUNCTORS AND (A BIT OF) HOMOTOPY COLIMITS

Exercice 1 (Two-out-of-six). Let \mathcal{W} be a collection of arrows of \mathcal{C} . We say \mathcal{W} satisfies 2-out-of-3 if for every couple of composable arrows f, g, any two out of the three $f, g, g \circ f$ being in \mathcal{W} implies the third is. We say \mathcal{W} satisfies 2-out-of-6 if for every triple of composable arrows f, g, h such that $g \circ f \in \mathcal{W}$ and $h \circ g \in \mathcal{W}$, then the four other maps $f, g, h, h \circ g \circ f \in \mathcal{W}$.

- 1. Let \mathcal{W} be a collection of arrows of \mathcal{C} satisfying 2-out-of-6. Show \mathcal{W} satisfies 2-out-of-3.
- 2. (a) Show the collection of isomorphisms of a category always satisfies 2-out-of-3. Does it also satisfy 2-out-of-6?
 - (b) Let $F : \mathcal{C} \to \mathcal{D}$ be a functor and let $\mathcal{I}_{\mathcal{C}}$ be the collection of isomorphisms of \mathcal{C} . Show $F(\mathcal{I}_{\mathcal{C}})$ satisfies 2-out-of-6.
 - (c) Find a collection of arrows satisfying 2-out-of-3 but not 2-out-of-6.

Exercice 2. A model structure on Cat (Charles Rezk)

Denote Cat the category of small categories. We assume that it is complete and cocomplete. We let \mathcal{W} denote equivalences of categories and \mathcal{C} denote functors that are injective on objects. We let \mathcal{F} denote functors $F : \mathcal{A} \to \mathcal{B}$ such that for every isomorphism $g : F(a) \to b$ of \mathcal{B} , there is a map $f : a \to a'$ with g = F(f); such functors are called isofibrations.

- 1. Denote * the category with one object and no non-trivial arrows, and I the category with two objects 0, 1 and exactly one isomorphism in each direction. Let $i : * \to I$ be the inclusion at 0. Show that $\mathcal{F} = RLP(\{i\})$.
- 2. Show that \mathcal{W} verifies 2-out-of-3, and that \mathcal{W}, \mathcal{C} and \mathcal{F} are stable under retracts.
- 3. (a) Show that every functor F of $\mathcal{C} \cap \mathcal{W}$ has a left inverse G which is also a quasi-inverse and such that the natural transformation $FG \simeq \operatorname{id}$ is equal to the identity on the image of F.
 - (b) Deduce that $\mathcal{F} \subset RLP(\mathcal{C} \cap \mathcal{W})$.
- 4. Show that $\mathcal{C} \subset LLP(\mathcal{F} \cap \mathcal{W})$.
- 5. Let $F : \mathcal{A} \to \mathcal{B}$ be a functor. Denote $\operatorname{Path}(F) := \mathcal{A} \times_{\mathcal{B}} \mathcal{B}^{I}$ where the map $\mathcal{B}^{I} \to \mathcal{B}$ is the source map, and $\operatorname{Cyl}(F) := \mathcal{A} \times (I \coprod_{\mathcal{A}} \mathcal{B})$. Show that F factors through $\operatorname{Path}(F)$ and $\operatorname{Cyl}(F)$; deduce that $(\mathcal{C}, \mathcal{F}, \mathcal{W})$ is a model structure on Cat. What are the fibrant objects, the cofibrant objects?

ON DERIVED FUNCTORS

Exercice 3 (Derived functors in homological algebra vs model categories). The goal of this exercise is to understand why the model-categorical notion of derived functor generalizes what you have seen in homological algebra. Let $\mathcal{A} \xrightarrow{F} \mathcal{B}$ be an additive functor between abelian categories. We suppose that F is right exact.

- 1. Consider the projective model structure on $Ch_{\geq 0}(\mathcal{A})$. Show that F sends quasi-isos between cofibrant objects to quasi-isos in $Ch_{\geq 0}\mathcal{B}$. Deduce that it has a total left derived functor in the model categorical sense.
- 2. Show that $\mathbb{L}F(V) \simeq F(P)$ where P is a projective resolution of V.
- 3. What is the link between the homological-algebraic derived functors $L^i F(V)$ and $\mathbb{L}F(V)$?

4. Apply this to prove the existence and identify the total derived functors of $\operatorname{Hom}_R(-, M)$:

$$Ch_{\geq 0}(A)^{op} \to Ch_{\geq 0}(A).$$

Identify them with the derived functors $\operatorname{Ext}^{j}(-,-)$ from the homological algebra course. Distinguish between the cases of projective and injective structures, and explain how this affects the computations.

5. Take $\mathcal{A} = RMod$ for R a commutative ring. Do the functors $- \otimes - : Ch_{\geq 0}(\mathcal{A}) \times Ch_{\geq 0}(R) \rightarrow Ch_{\geq 0}(\mathcal{A})$ and $\operatorname{Hom}(-,-): Ch_{\geq 0}(\mathcal{A})^{op} \times Ch_{\geq 0}(\mathcal{A}) \rightarrow Ch_{\geq 0}(\mathcal{A})$ have total derived functors?

Exercice 4 (Composition of Derived Functors). Let $F : \mathcal{C}_1 \to \mathcal{C}_2$ and $G : \mathcal{C}_2 \to \mathcal{C}_3$ be functors and let \mathcal{W}_i be a class of morphisms in \mathcal{C}_i .

- 1. Assuming all the relevant total left derived functors exist, use their universal properties to construct a natural transformation $\mathbb{L}G \circ \mathbb{L}F \to \mathbb{L}(G \circ F)$.
- 2. Suppose now that C_1, C_2 and C_3 are model categories and that F and G are left Quillen functors. Show that $G \circ F$ is a left Quillen functor.
- 3. Show that the arrow of 1) induces a natural equivalence $\mathbb{L}(G \circ F) \simeq (\mathbb{L}G) \circ (\mathbb{L}F)$.
- 4. Let (L, R) be an adjoint pair. Show that L is left Quillen if and only if R is right Quillen.
- 5. Suppose the restriction of a functor F to cofibrant objects preserves acyclic cofibrations, show that F is left derivable. (Hint: Ken Brown's lemma).

Exercice 5 (Slice categories II, by Victor Saunier). Let $(\mathcal{C}, \mathcal{F}, \mathcal{W})$ be a model structure on \mathcal{A} . Let $f : X \to Y$ be a morphism. Recall that we defined in the last exercise sheet a model structure on every slice category \mathcal{A}/X .

- 1. Show that the functor $f_! : \mathcal{A}/X \to \mathcal{A}/Y$ which postcomposes by f admits a right adjoint f^* and describe it.
- 2. Show that the pair (f_1, f^*) is a Quillen pair of adjoints.
- 3. Suppose \mathcal{A} is right proper, i.e. weak equivalences are stable under pullback by fibrations, and that $f \in \mathcal{W}$. Show that the pair $(f_!, f^*)$ is a Quillen equivalence.
- 4. (Rezk) Suppose that for every weak equivalence f, the pair (f_1, f^*) is a Quillen equivalence. Show that \mathcal{A} is right proper.

ON HOMOTOPY (CO)LIMITS

Exercice 6 (Homotopy colimits). In this exercise, we first deal with generalities on homotopy pushouts and then specialize to chain complexes with the projective model structure. Let C be a model category and let I be the category given by the diagram-shape

$$\begin{array}{c} b \longrightarrow c \\ \downarrow \\ a \end{array}$$

1. Let $f: X \to Y$ be a natural transformation of diagrams $X, Y \in Fun(I, C)$. Show that f has the left lifting property with respect to all projective acyclic fibrations if and only if the the natural maps

$$X_a \bigsqcup_{X_b} Y_b \to Y_a, \quad X_b \to Y_b, \quad X_c \bigsqcup_{X_b} Y_b \to Y_c$$

are cofibrations in C. (Here we mean the usual pushouts in C.)

Deduce that a diagram $Y : I \to C$ is cofibrant if and only if Y_b is cofibrant in C and the maps $Y_a \to Y_b$ and $Y_a \to Y_c$ are cofibrations. Moreover, show that $X \to Y$ has the left lifting property with respect to projective fibrations if and only the above three maps are acyclic cofibrations.

- 2. Show that the category of diagrams $\operatorname{Fun}(I, \mathcal{C})$ admits the projective model structure (without using the result seen in class that such a structure exists since I is very small).
- 3. Show that the colimit functor colim: $\operatorname{Fun}(I, \mathcal{C}) \to \mathcal{C}$ is a left Quillen functor.
- 4. Assume that C is left proper (i.e. weak equivalences are stable under pushouts along cofibrations). Show that any pushout diagram

$$\begin{array}{c} B \xrightarrow{f} C \\ \downarrow & \downarrow \\ A \longrightarrow A \bigsqcup_{B} C \end{array}$$

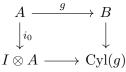
where $f: B \longrightarrow C$ a cofibration, is also a homotopy pushout diagram.

- 5. Case of Topological spaces. Assume now that $\mathcal{C} = \text{Top}$.
 - (a) Using that Top is proper (as seen in exercise 3. from the sheet on Quillen model structure), show that there is a canonical isomorphism

$$\mathbb{L}\operatorname{colim}(X \leftarrow A \to Y) \cong X \bigsqcup_{A}^{\mathbf{h}} Y = X \bigsqcup_{A \times \{0\}} \operatorname{Cyl}(A \to Y)$$

in Ho(Top) between the homotopy pushout computed by the projective model structure and the formula given by the mapping cylinder.

- (b) Give a formula for computing the homotopy colimit of a tower $(X_0 \to X_1 \to X_2 \to ...)$ as well as the homotopy limit of a tower $(\dots \to Y_2 \to Y_1 \to Y_0)$.
- 6. Case of chain complexes. Assume now that C is the model category of chain complexes over a ring R.
 - (a) Show that \mathcal{C} is left proper.
 - (b) Let g : A → B be a map of chain complexes. Recall that the mapping cone of g, denoted C(g), is the chain complex given in level n by B_n⊕A_{n-1} and whose differential B_{n+1}⊕A_n → B_n ⊕ A_{n-1} is given (b, a) ↦ (∂_B(b) + g(a), -∂_A(a)). Let I denote the chain complex given by R ⊕ R in degree 0 and R in degree 1 with differential given by ∂_R : R → R ⊕ R given by r ↦ (-r, r). We define the mapping cylinder of g, denoted Cyl(g), as the pushout in chain complexes of



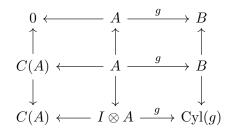
where the vertical arrow $A \to I \otimes A$ is induced by the inclusion $i_0 : R \to I$ corresponding to the inclusion of the second factor $R \hookrightarrow R \oplus R$ in degree 0. The differential on $I \otimes A$ is given by $r \otimes a \mapsto \partial_R(r) \otimes a + (-1)^{\deg(r)} r \otimes \partial_A(a)$. Show that the mapping cone of g is the pushout of

$$I \otimes A \longrightarrow \operatorname{Cyl}(g)$$

$$\downarrow \qquad \qquad \downarrow$$

$$C(\operatorname{Id}_A) \longrightarrow C(g).$$

- (c) Let Δ^1 be the category with two objects and one non trivial morphism in between them. Show that the construction of the mapping cone defines a functor C: Fun $(\Delta^1, Ch(R)) \rightarrow Ch(R)$ sending natural transformations objectwise given by quasi-isomorphisms to quasi-isomorphisms.
- (d) Let $Y := (0 \leftarrow A \xrightarrow{g} B)$ be a diagram in \mathcal{C} . Show that there exists a diagram of the form $Y' := (0 \leftarrow A' \xrightarrow{g'} B')$ with g' a cofibration and A' and B' cofibrant, together with a natural transformation $u : Y' \to Y$ which is objectwise a weak equivalence. Notice that by the previous question the induced map $C(g') \to C(g)$ is a weak equivalence.
- (e) Let $Y := (0 \longleftarrow A \xrightarrow{g} B)$ be a diagram in \mathcal{C} with A and B cofibrant and g a cofibration. Show that $A \to I \otimes A$ is a weak equivalence and show that we can construct a zigzag of diagrams $Y \leftarrow Y' \to Y''$ of the form



where each vertical arrow is a weak equivalence and the map $I \otimes A \to Cyl(g)$ is a cofibration.

(f) Let $Y := (0 \leftarrow A \xrightarrow{g} B)$ be any diagram. Conclude that the mapping cone C(g) is a model for the homotopy colimit of the diagram Y.