
G.Ginot, N.Guès - Homotopie II M2 Paris Centre - 24/25

TD 3 - Quillen functors, Derived functors and (a bit of) homotopy colimits

Exercice 1 (Two-out-of-six). Let W be a collection of arrows of C. We say W satisfies 2-out-of-3 if
for every couple of composable arrows f, g, any two out of the three f, g, g ◦ f being in W implies
the third is. We say W satisfies 2-out-of-6 if for every triple of composable arrows f, g, h such that
g ◦ f ∈ W and h ◦ g ∈ W, then the four other maps f, g, h, h ◦ g ◦ f ∈ W.

1. Let W be a collection of arrows of C satisfying 2-out-of-6. Show W satisfies 2-out-of-3.

2. (a) Show the collection of isomorphisms of a category always satisfies 2-out-of-3. Does it also
satisfy 2-out-of-6?

(b) Let F : C → D be a functor and let IC be the collection of isomorphisms of C. Show F (IC)
satisfies 2-out-of-6.

(c) Find a collection of arrows satisfying 2-out-of-3 but not 2-out-of-6.

Solution. 1. Let A
f−→ B

g−→ C be a pair of composable arrows and suppose f, g ◦ f ∈ W.
Consider the diagram:

A
id−→ A

f−→ B
g−→ C

By 2-out-of-6 we have g ∈ W. The same logic applies if we suppose instead g ◦ f, g ∈ W. Finally
suppose g, f ∈ W. The triplet:

A
f−→ B

id−→ B
g−→ C

satisfies the hypotheses of the 2-out-of-6 property, and so g ◦ f ∈ W.
2. a) The 2-out-of-3 property is straightforward. For the 2-out-of-6 property: Suppose we have

A
f−→ B

g−→ C
h−→ D

and h ◦ g, g ◦ f are isomorphisms.
Then (h ◦ g)−1 ◦ h is a left inverse of g and h ◦ (g ◦ f)−1 is a right inverse of g.
By standard classical category theory facts, g having left and right inverses implies g is an isomor-

phism. Then by the 2-out-of-3 property, f and h are isomorphisms too.
b) W := F (IC) are isomorphisms in D. Take

A
f−→ B

g−→ C
h−→ D

And suppose h ◦ g, g ◦ f ∈ W. By a) we know that all arrows f, g, h are isomorphisms. Moreover their
explicit inverse is a composition of arrows in F (IC) so is in F (IC) too. This implies that all arrows are
in W. c) (Sketch) Call C the following category

A
f−→ B

g−→ C
h−→ D

with three objects and three generating morphisms h, g, f with formal inverses to h ◦ g and g ◦ f and
no other relation. Then it satisfies 2 out of 3 simply because there is nothing to check. But it does not
satisfy 2 out of 6 by construction.

Exercice 2. A model structure on Cat (Charles Rezk)
Denote Cat the category of small categories. We assume that it is complete and cocomplete. We

let W denote equivalences of categories and C denote functors that are injective on objects. We let
F denote functors F : A → B such that for every isomorphism g : F (a) → b of B, there is a map
f : a→ a′ with g = F (f); such functors are called isofibrations.
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1. Denote ∗ the category with one object and no non-trivial arrows, and I the category with two
objects 0, 1 and exactly one isomorphism in each direction. Let i : ∗ → I be the inclusion at 0.
Show that F = RLP ({i}).

2. Show that W verifies 2-out-of-3, and that W, C and F are stable under retracts.

3. (a) Show that every functor F of C ∩W has a left inverse G which is also a quasi-inverse and
such that the natural transformation FG ≃ id is equal to the identity on the image of F .

(b) Deduce that F ⊂ RLP (C ∩W).

4. Show that C ⊂ LLP (F ∩W).

5. Let F : A → B be a functor. Denote Path(F ) := A×B BI where the map BI → B is the source
map, and Cyl(F ) := A × (I

∐
A B). Show that F factors through Path(F ) and Cyl(F ); deduce

that (C,F ,W) is a model structure on Cat. What are the fibrant objects, the cofibrant objects?

On derived functors

Exercice 3 (Derived functors in homological algebra vs model categories). The goal of this exercise
is to understand why the model-categorical notion of derived functor generalizes what you have seen

in homological algebra. Let A F−→ B be an additive functor between abelian categories. We suppose
that F is right exact.

1. Consider the projective model structure on Ch≥0(A). Show that F sends quasi-isos between
cofibrant objects to quasi-isos in Ch≥0B. Deduce that it has a total left derived functor in the
model categorical sense.

2. Show that LF (V ) ≃ F (P ) where P is a projective resolution of V .

3. What is the link between the homological-algebraic derived functors LiF (V ) and LF (V ) ?

4. Apply this to prove the existence and identify the total derived functors of HomR(−,M):

Ch≥0(A)op → Ch≥0(A).

Identify them with the derived functors Extj(−,−) from the homological algebra course. Distin-
guish between the cases of projective and injective structures, and explain how this affects the
computations.

5. Take A = RMod for R a commutative ring. Do the functors − ⊗ − : Ch≥0(A) × Ch≥0(R) →
Ch≥0(A) and Hom(−,−) : Ch≥0(A)op × Ch≥0(A)→ Ch≥0(A) have total derived functors?

Exercice 4 (Composition of Derived Functors). Let F : C1 → C2 and G : C2 → C3 be functors and let
Wi be a class of morphisms in Ci.

1. Assuming all the relevant total left derived functors exist, use their universal properties to
construct a natural transformation LG ◦ LF → L(G ◦ F ).

2. Suppose now that C1, C2 and C3 are model categories and that F and G are left Quillen functors.
Show that G ◦ F is a left Quillen functor.

3. Show that the arrow of 1) induces a natural equivalence L(G ◦ F ) ≃ (LG) ◦ (LF ).

4. Let (L,R) be an adjoint pair. Show that L is left Quillen if and only if R is right Quillen.

5. Suppose the restriction of a functor F to cofibrant objects sends acyclic cofibrations to weak
equivalences, show that F is left derivable. (Hint: Ken Brown’s lemma).
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1. Denote πi : Ci → Ho(Ci) the canonical functors. Let us recall that the total left derived functor
LF1 : Ho(C1)→ Ho(C2) come equipped with a natural transformation LF1◦π1 → F1 which is universal
among such (it is a right Kan extension). In particular we have a commutative diagram

C1
F1 //

π1 ##

C2
F2 //

π2

%%

C3

π3 %%
Ho(C1)

LF1 // Ho(C2)
LF2 // Ho(C3)

.

and natural transformations, given forn any X ∈ C1 and Y ∈ C2 by LF1(π1(X)) → π2(F1(X)) and
LF2(π2(Y ) → π3(F2(Y )). Taking Y = F1(X), the commutativity of the diagram gives a natural
transformation

LF2 ◦ LF1(π1(X))→ π3(F2 ◦ F1(X))

hence by universal property we get a unique natural transformation LL2 ◦ LF1 → L(F2 ◦ F1).
2. Let us now address the second question: first we remark that the composition of left Quillen

functors is again a left Quillen functor. Indeed, by definition if F1 preserves both cofibrations and
acyclic cofibrations and F2 also, clearly so does the composition F2 ◦ F1. Therefore, by the theorem
given in class, the model structures garantee the existence of LF1, LF2 and L(F2 ◦ F1), given on ob-
jects, respectively by LF1(X) = F1(Q1(X)), LF2(Y ) = F2(Q2(Y )) and L(F2◦F1)(X) = F2(F1(Q1(X))
where Q1 is a cofibrant replacement functor in C1 and Q2 is a cofibrant replacement in C2.

3. In this case the natural transformation LL2 ◦ LF1 → L(F2 ◦ F1) is given on each object X ∈ C
by a morphism

F2(Q2(F1(Q1(X)))→ F2(F1(Q1(X))

We only have to notice that by construction (in fact, we have to unfold the proof given in class that
the formula LF = F ◦Q has the universal property of total left derived functor) this morphism is the
image under F2 of the cofibrant-replacement

Q2(F1(Q1(X))→ F1(Q1(X)

which by definition is a weak-equivalence with both source and target cofibrant: the source is cofibrant
by definition. The target is cofibrant because F1 is a left Quillen functor so sends cofibrant objects to
cofibrant objects. Therefore by Brown’s lemma1 its image under F2 is a weak-equivalence and therefore
an isomorphism in the homotopy category.

4. Assume L is left Quillen. We show R preserves fibrations and trivial fibrations.

Let p : X → Y be a fibration in the target model category. To prove R(p) is a fibration, we verify it
has the right lifting property (RLP) against all trivial cofibrations in the source category.

Consider a lifting problem for a trivial cofibration i : A→ B:

A
α−→ R(X)

i ↓ ↓ R(p)

B
β−→ R(Y )

By adjointness, this corresponds to a lifting problem in the target category:

L(A)
α̃−→ X

L(i) ↓ ↓ p

L(B)
β̃−→ Y

1it is always worth recalling that this lemma does imply that all left Quillen functors send all weak equivalences
between cofibrant to weak equivalences and right Quillen functors send weak equivalences between fibrant to weak
equivalences
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Since L is left Quillen, L(i) is a trivial cofibration. As p is a fibration, there exists a lift h : L(B)→ X.
By adjunction, h induces a lift h♯ : B → R(X) in the source category, proving R(p) is a fibration. The
proof that R preserves trivial fibrations is exactly the same.

5. By assumption, the restriction of F to cofibrant objects sends acyclic cofibrations to weak
equivalences. Applying Ken Brown’s lemma, which states that a functor preserving acyclic cofibrations
between cofibrant objects must preserve all weak equivalences between cofibrant objects, we conclude
that F preserves all weak equivalences between cofibrant objects. To construct the left derived functor
LF , we define LF (X) = F (QX), where QX is a cofibrant replacement of X equipped with a weak
equivalence QX

∼−→ X. Since F preserves weak equivalences between cofibrant objects, LF (X) is well-
defined up to weak equivalence and does not depend on the choice of cofibrant replacement, because
they are all equivalent. The universal property of LF follows because any functor G that preserves weak
equivalences admits a natural transformation LF → G, induced by the weak equivalence QX

∼−→ X
and the fact that G preserves weak equivalences. This shows that LF is the left derived functor of F ,
and thus F is left derivable.

Exercice 5 (Slice categories II, by Victor Saunier). Let (C,F ,W) be a model structure on A. Let
f : X → Y be a morphism. Recall that we defined in the last exercise sheet a model structure on
every slice category A/X.

1. Show that the functor f! : A/X → A/Y which postcomposes by f admits a right adjoint f∗ and
describe it.

2. Show that the pair (f!, f
∗) is a Quillen pair of adjoints.

3. Suppose A is right proper, i.e. weak equivalences are stable under pullback by fibrations, and
that f ∈ W. Show that the pair (f!, f

∗) is a Quillen equivalence.

4. (Rezk) Suppose that for every weak equivalence f , the pair (f!, f
∗) is a Quillen equivalence.

Show that A is right proper.

On homotopy (co)limits

Exercice 6 (Homotopy colimits). In this exercise, we first deal with generalities on homotopy pushouts
and then specialize to chain complexes with the projective model structure. Let C be a model category
and let I be the category given by the diagram-shape

b c

a

1. Let f : X → Y be a natural transformation of diagrams X,Y ∈ Fun(I, C). Show that f has the
left lifting property with respect to all projective acyclic fibrations if and only if the the natural
maps

Xa

⊔
Xb

Yb → Ya, Xb → Yb, Xc

⊔
Xb

Yb → Yc

are cofibrations in C. (Here we mean the usual pushouts in C.)
Deduce that a diagram Y : I → C is cofibrant if and only if Yb is cofibrant in C and the maps
Ya → Yb and Ya → Yc are cofibrations. Moreover, show that X → Y has the left lifting property
with respect to projective fibrations if and only the above three maps are acyclic cofibrations.

2. Show that the category of diagrams Fun(I, C) admits the projective model structure (without
using the result seen in class that such a structure exists since I is very small).

3. Show that the colimit functor colim: Fun(I, C)→ C is a left Quillen functor.
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4. Assume that C is left proper (i.e. weak equivalences are stable under pushouts along cofibrations).
Show that any pushout diagram

B C

A A
⊔
B

C

f

where f : B −→ C a cofibration, is also a homotopy pushout diagram.

5. Case of Topological spaces. Assume now that C = Top.

(a) Using that Top is proper (as seen in exercise 3. from the sheet on Quillen model structure),
show that there is a canonical isomorphism

L colim(X ← A→ Y ) ∼= X
h⊔
A

Y = X
⊔

A×{0}

Cyl(A→ Y )

in Ho(Top) between the homotopy pushout computed by the projective model structure
and the formula given by the mapping cylinder.

(b) Give a formula for computing the homotopy colimit of a tower (X0 → X1 → X2 → . . . ) as
well as the homotopy limit of a tower (· · · → Y2 → Y1 → Y0).

6. Case of chain complexes. Assume now that C is the model category of chain complexes over
a ring R.

(a) Show that C is left proper.

(b) Let g : A → B be a map of chain complexes. Recall that the mapping cone of g, denoted
C(g), is the chain complex given in level n by Bn⊕An−1 and whose differential Bn+1⊕An →
Bn ⊕ An−1 is given (b, a) 7→ (∂B(b) + g(a),−∂A(a)). Let I denote the chain complex given
by R⊕R in degree 0 and R in degree 1 with differential given by ∂R : R→ R⊕R given by
r 7→ (−r, r). We define the mapping cylinder of g, denoted Cyl(g), as the pushout in chain
complexes of

A B

I ⊗A Cyl(g)

g

i0

where the vertical arrow A → I ⊗ A is induced by the inclusion i0 : R → I corresponding
to the inclusion of the second factor R ↪→ R ⊕ R in degree 0. The differential on I ⊗ A is
given by r ⊗ a 7→ ∂R(r)⊗ a+ (−1)deg(r)r ⊗ ∂A(a). Show that the mapping cone of g is the
pushout of

I ⊗A Cyl(g)

C(IdA) C(g).

(c) Let ∆1 be the category with two objects and one non trivial morphism in between them.
Show that the construction of the mapping cone defines a functor C : Fun(∆1,Ch(R)) →
Ch(R) sending natural transformations objectwise given by quasi-isomorphisms to quasi-
isomorphisms.

(d) Let Y := (0 ←− A
g−→ B) be a diagram in C. Show that there exists a diagram of the

form Y ′ := (0←− A′ g′−→ B′) with g′ a cofibration and A′ and B′ cofibrant, together with
a natural transformation u : Y ′ → Y which is objectwise a weak equivalence. Notice that
by the previous question the induced map C(g′)→ C(g) is a weak equivalence.
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(e) Let Y := (0 ←− A
g−→ B) be a diagram in C with A and B cofibrant and g a cofibration.

Show that A → I ⊗ A is a weak equivalence and show that we can construct a zigzag of
diagrams Y ← Y ′ → Y ′′ of the form

0 A B

C(A) A B

C(A) I ⊗A Cyl(g)

g

g

g

where each vertical arrow is a weak equivalence and the map I⊗A→ Cyl(g) is a cofibration.

(f) Let Y := (0 ←− A
g−→ B) be any diagram. Conclude that the mapping cone C(g) is a

model for the homotopy colimit of the diagram Y .

First we advise the reader to write down a commutative square of functors in Fun(I, C), which are
given by glueing two commutative cubes on their common face, and in which each face is commutative,
as well as to write down what a lifting mean (which is a family of three maps divding parallel faces
into two commutative triangles). A key feature of the diagram we are considering is that the object
b has only outgoing non-identity arrows and the other two objects have only incoming non-identity
arrows. The object b and its image by a functor will play a specific role. 1. Suppose a morphim X → Y
in Fun(I, C) has the left lifting property with respect to projective acyclic fibrations. We first show
that the the map X(b)→ Y (b) has the left lifting property. Thus, we need to see that for any U → V
a acyclic fibration in C the dotted lifting arrow exists in the diagram

X(b) //

��

U

��
Y (b) //

==

V

.

For this, we notice that the data of such a diagram is equivalent to the data of a morphism of diagrams

X //

��

(∗, U, ∗)

��
Y //

;;

(∗, V, ∗)

where (∗, U, ∗) is a notation for the diagram ∗ ← U → ∗ (and ∗ is the terminal object). The lifting
exists by the assumption that X ↣ Y . This shows that X(b)→ Y (b) is a cofibration. Let us now use
this to show that the map X(a)

∐
X(b) Y (b)→ Y (a) has the left lifting property

X(a)
∐

X(b) Y (b) //

��

U

��
Y (a) //

88

V

with respect to any acyclic fibration U → V in C. We do this using the remark that the data of such
a commutative square is equivalent to the data of a commutative square of diagrams

X //

��

(U,U, ∗)

��
Y //

;;

(V,U, ∗)
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The case of the remaining map is completely analogous.
We now have to check the converse, that if X → Y is of the form given in the exercise then it has

the left lifting property with respect to projective acyclic fibrations. The idea is again to use first the
fact that X(b)→ Y (b) is a cofibration in C to construct the lifting in the middle. This is possible since
each arrow U(a)→ V (a), U(b)→ V (b) and U(c)→ V (c) are acyclic fibrations if U → V is an acyclic
fibration in Fun(I, C).

This being done, we see that the lifing Y (b)→ U(b) gives a commutative diagram

X(b) //

��{{

X(a)

��
Y (b) //// U(b) // U(a)

from which we get a canonical map X(a)
∐

X(b) Y (b) → U(a) which, by the commutativity of the

diagram of squares fits into the commuative square X(a)
∐

X(b) Y (b) //

��

U(a)

≀
����

Y (a) //

77

V (a)

for which the dotted

arrow exists since the left hand vertical map is assumed to be a cofibration. The remaining lifts is the
same. This proves the first equivalence.

The case of acyclic cofibrations is similar, using fibration on the right hand side instead of acyclic
ones.

2.One has to check that all the axioms are satisfied. First one checks that Fun(I, C) admits all
limits and colimits: this is true as long as they exist in C because colimits and limits in Fun(I, C) are
computed objectwise in C. Then one has to check the two-out-of-three property of weak-equivalences.
But again this follows by definition of the weak-equivalences as objectwise weak-equivalences in C
which verifies this property. Then we have to check that fibrations, cofibrations and weak-equivalences
are stable under retracts. For fibrations and weak-equivalences this follows again from the definitions,
so we only have to say something about cofibrations: but since cofibrations are maps defined by a left
lifting property, and the latter are stable under retracts, this is also OK (see the proof of the closedness
of a model category in Class).

The lifting properties were already checked in the previous question so all we have to check is
the factorization property: we explain the case X → Y factored as acyclic cofibration + fibration.
Here is the idea: again, first we factor the middle term X(b)→ Y (b) as a acyclic cofibration followed
by a fibration X(b) → A → Y (b) in C. Then we complete this into a diagram by taking pushouts
X(c) → X(c)

∐
X(b)A → Y (b) and X(a) → X(a)

∐
X(b)A → Y (a). Now we factor the last two maps

X(c)
∐

X(b)A → Hc → Y (b) and X(a)
∐

X(b)A → Ha → Y (a) again in C. The resulting factorization
X → H → Y has the required properties.

3.This follows because by definition its right adjoint is the constant diagram functor which is right
Quillen as by definition it preserves fibrations and acyclic fibrations.

Remark on computations of homotopy pushouts. As we have seen in class, the last point implies
in particular that homotopy pushouts exists for any model category C and are computed as the left
total derived functor of the pushout functor Fun(I, C)→ Ho(C) where the diagram category is given
the projective model structure. This means that it is computed by taking the pushout of a cofibrant
replacement of X(a)← X(b)→ X(c) in Fun(I, C), that is

L colim
(
X(a)← X(b)→ X(c)

)
= colim

(
LX(a)← LX(b)→ LX(c)

)
= LX(a)

∐
LX(b)

LX(c)

where LX
∼
↠ X is the cofibrant replacement.

Note that by question 2., we have that a diagram Z is cofibrant if Z(b) is cofibrant and (since
0
∐
O

Z(b) = Z(b)) the maps Z(b)→ Z(c) and Z(b)→ Z(a) are cofibrations. Thus:
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a cofibrant replacement of a diagram X is a diagram LX(a) LX(b)oooo // // LX(c) ,

with LX(b) cofibrant, and a commutative diagram:

LX(a)

≀
����

LX(b)oooo // //

≀
����

LX(c)

≀
����

X(a) X(b) //oo X(c).

The next question and the proposition below shows that in model categories where weak equivalences
are preserved by pushouts, there is an easier formula to compute it.

4. Indeed, let
C ′

≀
����

A′ // //oooo

≀
����

B′

≀
����

C A //
f //oo B

be a cofibrant resolution of the diagram C ← A→ B (as explained in the remark above). We have to
show that the natural map

C ′
∐
A′

B′ → C
∐
A

B

is a weak-equivalence. But this map can be obtained as a composition of two maps : C ′∐
A′ B′ →

C ′∐
A′ B followed by C ′∐

A′ B → C
∐

AB. The first map can be obtained as a pushout

B′ //

��

C ′∐
A′ B′

��
B // C ′∐

A′ B

The top horizontal arrow is a cofibration (because cofibrations are stable under pushout and A′ ↣ C ′

is a cofibration) and as B′ → B is a weak-equivalence , left properness implies that the left vertical
arrow is a weak-equivalence. The second map can be obtained as a composition of pushout diagrams.

A′ cof //

∼
��

C ′

∼
��

∼

**A
��

f

��

// C ′∐
A′ A

cof

��

∼(2of3) // C

��
B // B

∐
A(C

′∐
A′ A) ≃ B

∐
A′ C ′∼(proper)// B

∐
AC

where the middle vertical arrow is a cofibration as a pushout of the cofibration f and the lower right
horizontal arrow is a weak-equivalence thanks to the properness assumption.

5. Noticing that the factorisation A ↪→ A × [0, 1]
∐

A×{1}
Y

∼→ Y given by the mapping cylinder is

a relative cell complex followed by a weak equivalence, we wee that the result will follow from the
following general fact: If C is a left proper model category, and A ↣ B′ ∼→ B is a replacement of a
morphism i : A → B by a cofibration, then there is a natural isomorphism L colim(X ← A → B) ∼=
X

∐
A

B′. Strictly speaking the proposition asserts that there is an isomorphism in Ho(C) between the

homotopy pushout and the pushout induced by the cofibrant replacement of A→ B and that in fact,
this isomorphism is inducec by a natural zigzag of weak equivalence

LX

∐
LA

LB
∼←?

∼→ X
∐
A

B′
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where the LX ← LA → LB is a cofibrant replacement of X ← A → B (and thus the source of the
weak equivalence is precisely the homotopy pushout) and the question mark ? depends functorially
on the diagram.

We now prove the proposition. By question (3.), the target X
∐
A

B′ is the homotopy pushout

L colim(X ← A ↣ B′). The map B′ → B induces a map of diagrams

X Aoo // // B′

≀
��

X Aoo // B

for which all vertical maps are weak equivalences. Hence this is a weak equivalence of diagrams, and
thus, the induced map on homotopy colimits is an isomorphism in Ho(C).

We thus have a natural isomorphism L colim(X ← A→ B)
≃← L colim(X ← A ↣ B′)

≃→ X
∐
A

B′ in

Ho(C) as claimed and the question mark ? above is just the pushout LX
∐
LA

LB′ where LX ← LA → LB′

is the cofibrant replacement of X ← A→ B′.The category N depicting the colimit of tower is simply
0 → 1 → 2 → 3 → · · · (that is the category associated to the ordinal N, or said otherwise to the
ordered set N) the category with exactly one arrow in between two consecutive non-negative integers.
It is not a very small category so that the theorem seen in class does not guarantee the existence of
homotopy colimit.

However, we can apply the same ideas as in the study of the homotopy pushout. Proceeding
exactly as in question 1. we see that, for any model category C, a morphism X → Y in Fun(N, C)
is a projective cofibration (resp. acyclic cofibration) if and only if X(0) → Y (0) is a cofibration
(resp. acyclic cofibration) and for every i > 0, the natural map Xi

∐
Yi−1

Xi−1 → Yi is a cofibration

(resp. acyclic cofibration). Then one can prove as in 2. that the projective structure on Fun(N, C)
makes the category of towers a model category so that the homotopy colimit of the tower exists.
Further a cofibrant replacement of a diagram X : N → C is thus given by a cofibrant object LX(0)

and cofibrations LX(↣ LX(i+ 1) (for any i ∈ N) together with acyclic fibrations LX(i)
∼
↠ Xi

making the obvious squares commutative. In the specific case where X(0) is cofibrant and all the
maps X(i) → X(i + 1) are cofibrations, we thus have that X is cofibrant and therefore as seen in
class, the canonical map from the homotopy pushout of the tower X to its pushout colimX(i) is a
weak equivalence. It follows that if we have a commutative diagram

Y (0) // //

≀
��

Y (1) // //

≀
��

Y (2) // //

≀
��

· · ·

X(0) // Y (1) // Y (2) // · · ·

with Y (0) cofibrant, then the diagram is a weak equivalence of diagram and by above we thus have a
zigzag of weak equivalences

colim
N

Y (i)
∼← colim

N
LY (i)

∼→ colim
N

LX(i).

This proves that to compute the homotopy colimit of a tower it is enough to replace it by a weakly
equivalent tower consisting of cofibrations whose first object is cofibrant.

A completely dual analysis shows that the injective model structure is also a model category for
Fun(N, C) and thus that homotopy limit of tower exists and can be computed by replacing a tower
by a weakly equivalent tower such that all maps are fibrations and the last object Y0 is fibrant.

Now, recall from class that in Top, every object is fibrant and that for every object X0 there is
a CW-complex X̃0 weakly equivalent to it: X̃0

∼→ X0 (and by composition we have an induced map
X̃0 → X1).
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Hence in Top , the homotopy colimit of a tower is given by the “telescope”

LcolimXi
∼= X̃0 × [0, 1]

∐
X̃0×{1}

X1 × [1, 2]
∐

X1×{2}

X2 × [2, 3]
∐

X2×{3}

X3 × [3, 4]
∐
· · ·

that is a tower of glued cylinders. Now consider the colimit of almost the same telescope but for which
we start at X0. Then we have a pushout diagram

X̃0 × [0, 1[

≀

��

// // X̃0 × [0, 1]
∐̃
X0

( ∐
Xi−1

Xi × [i, i+ 1]
)

��
X0 × [0, 1[ // // X0 × [0, 1]

∐̃
X0

( ∐
Xi−1

Xi × [i, i+ 1]
)

in which the right vertical arrow is a weak equivalence by left properness. Hence the homotopy colimit
of a tower X0 → X1 → · · · is given by the telescope

LcolimXi
∼= X0 × [0, 1]

∐
X0×{1}

X1 × [1, 2]
∐

X1×{2}

X2 × [2, 3]
∐

X2×{3}

X3 × [3, 4]
∐
· · · .

By a similar argument and induction one can prove that if all the maps in the sequenceX0 → X1 →
· · · are cofibration then the colimit of the sequence colim(Xi) is weakly equivalent to its homotopy
colimit LcolimXi.

Similarly a homotopy limit of . . . Y2 → Y1 → Y0 by replacing each map by a fibration and taking
the limit hence as a limit of path spaces.

6. Let

M
g //

f
��

M ′

f ′

��
N

g′ // N ′

be a pushout diagram in Ch(A) where g is assumed to be a cofibration and f is weak-equivalence. We
must show that f ′ is a weak-equivalence. But notice that as g is a cofibration and therefore injective,
we have a short exact sequence of chain complexes and therefore long exact sequence of homology
groups, and finally we have maps of exact sequences

Hn+1(M
′/M) //

��

Hn(M) //

��

Hn(M
′) //

��

Hn(M
′/M) //

��

Hn−1(M)

��
Hn+1(N

′/N) // Hn(N) // Hn(N
′) // Hn(N

′/N) // Hn−1(N)

where the first and fourth vertical maps are isomorphisms because the diagram is a pushout and the
second and last vertical maps are isomorphisms because f is a weak-equivalence. So f ′ is also a weak-
equivalence. Note that in degree n, one has (I1 ⊗ A)n = An ⊕ An ⊕ An−1. The formula given for the
differential gives d(x, y, w) =

(
∂A(x)−z, ∂A(y)+z,−∂A(z)

)
. Hence the pushout Cyl(g) := B

∐
A I1⊗A

is given in degree n by Bn ⊕ An ⊕ An−1 and the map I1 ⊗ A→ B
∐

A I1 ⊗ A is given in degree n by
(x, y, w) 7→ (g(y), x, w). Thus the differential on the pushout Cyl(g) is given by

(b, x, w) 7→
(
∂B(b) + g(w), ∂A(x)− w,−∂A(z)

)
.

The formula for the differential of I1 ⊗A above shows that their linear maps (I1 ⊗A)n = An ⊕An ⊕
An−1 → An ⊕An−1 given by (x, y, z) 7→ (y, z) defines a chain map t : I1 ⊗A→ C(IdA).
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Now we compute the pushout Cyl(g)
∐

I1⊗A

C(IdA). In degree n, we have

(
Cyl(g)

∐
I1⊗A

C(IdA)
)
n
= (Bn ⊕An ⊕An−1)⊕ (An ⊕An−1)/(g(y), x, w, 0, 0) ∼ (0, 0, 0, y, w)

and hence it is isomorphic to Bn⊕An−1 (the terms corresponding to x being killed off in the quotient).
The differential then reads (b, w) 7→ (∂B(b) + g(w),−∂A(w)) which proves that the pushout is indeed
the cone C(g). A functor from ∆1 to any category is simply the data of two objects and one morphism

between them, that is the data of an arrow A
g→ B. A map between functors is simply a natural

transformation thus a commutative diagram A
g //

α
��

B

β
��

A′ g′ // B′

. Now if we are in chain complexes, the

linear maps β ⊕ α : Bn ⊕An−1 → B′
n ⊕A′

n−1 are a map C(g)→ C(g′) of chain complexes (because α
and β commutes with differential and the diagram is commutative). And it is easy to check that this
assignement does make g 7→ C(g) into a functor Fun(∆1, Ch(R)) → Ch(R). It reamains to prove it
send objectwise weak equivalences to weak equivalence. To see this, we note that given f : A → B
one has an exact sequence of complexes 0 → B → C(f) → A[1] → 0. Hence a map of morphisms
produces a map of exact sequences and if the maps are quasi-isomorphisms, by the five-lemma, the
middle terms will also be.

Take ua : A′ ∼
↠ A a cofibrant replacement of A. Then choose a factorization of A′ → A→ B as a

cofibration g′ : A′ ↣ B′ followed by a acyclic fibration ub : B
′ ∼
↠ B and set uc : 0→ 0 as the identity.

This gives us the required natural transformation with g′ a cofibration as we have a commutative
diagram

0 A′

≀ua

��

oo // g
′
// B′

≀ ub

��
0 A //goo B

First note that the composition A
i0
I
1

⊗A → C(IdA) is given y 7→ (0, y, 0) 7→ Since g is assumed
to be a cofibration and cofibrations are stable under pushouts, by definition of the mapping cylinder,
the map I1 ⊗ A → Cyl(g) is a cofibration as well. Now we are only left to prove the vertical arrows

in the diagram 0 Aoo // g // B

C(IdA)

OO

A
t◦i0oo

i0
��

// g // B

��
C(IdA) I1 ⊗A

too // // Cyl(g)

are weak equivalences. For the lower right one, it

follows by left properness once we prove that i0 is. Note that the linear maps s : I1 ⊗ A → A given
in degree n by s(x, y, w) = x+ y are a chain complex morphism. Further s ◦ i0 = IdA. To prove that
i0 is a quasi-isomorphism it is thus enough to prove that i0 ◦ s induces the identity in homology and
thus it is enough to prove it is homotopic to the identity of I1 ⊗ A. Let h : I1 ⊗ A → I1 ⊗ A[−1] be
given by h(x, y, w) = (0, 0, x). Then dh+hd(x, y, w) = (−x, x,−w) = −(x, y, w)+ i0 ◦ s(x, y, w) which
proves that h is indeed a chain homotopy in between Id and i0 ◦ s. Finally, since C(IdA) is acyclic2

the upper left vertical map is a quasi-isomorphism. Given Y we can apply (d) to find Y ′ ∼→ Y where

Y ′ is of the form Y ′ = ( 0 A′oo // g
′
// B′

with A′ and B′ cofibrant. The natural transformation Y ′ ∼→ Y being a weak equivalence, it induces
a quasi-isomorphism of the homotopy colimits of Y ′ to the one of Y . Further, by (c) the mapping

2as follow from the long exact sequence since id is a quasi-isomorphism
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cone of Y ’ and Y are weak-equivalent. Thus it is enough to prove that the mapping cone of g′ : A′ →
B′ is quasi-isomorphic to the homotopy pushout of the diagram Y ′. In other words, we are left to
prove (f) in the case where g;A → B is a cofibration and A, B are cofibrant, which are exactly the
assumptions of (e). Now because of left properness we know that the the pushout of such a Y is
a homotopy pushout. For the same reason, this is also the case for each horizontal diagram in the
string of weak equivalences Y

∼← Y ′ ∼→ Y given by (e). The vertical maps being all weak equivalences
we thus have that the homotopy pushout of the top horizontal diagram is equivalent to the one of
the lower horizontal diagram. The later is thus the same (again by left properness) as the pushout

C(IdA) I1 ⊗A
too // // Cyl(g) , that is by definition the mapping cone C(g) of the original map g

while the first was by above quasi-isomorphic to the homotopy pushout.
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