G. Ginot, N. Guès - Homotopie II - Paris Centre 2024-2025

COFIBRANTLY GENERATED MODEL STRUCTURES AND SIMPLICIAL SETS

Exercise 1 (The Kan model structure on **sSet**). We let Δ^n (or $\Delta[n]$ in the course notes) be the standard *n*-simplex, $\partial\Delta^n$ its interior, S^n the quotient of Δ^n by its interior and Λ^n_k the k^{th} -horn.

- (1) We write \mathcal{I} for the set of maps $\partial \Delta^n \to \Delta^n$.
 - (a) Show that a map of simplicial sets $f: X \to S$ is injective in all degrees if and only if it belongs to $LLP(RLP(\mathcal{I}))$, i.e. it is a cofibration.
- (2) Suppose X is a Kan complex, show that for any simplicial set S, Map(S, X) is also a Kan complex.

Let X be a simplicial set and $x \in X$. Recall that if X is a Kan complex, we have denoted $\pi_n(X, x)$ the quotient of $\operatorname{Map}(S^n, X)$ by the equivalence relation ~ generated by $f \sim g$ if there is a map $\varphi : \Delta^1 \to \operatorname{Map}(S^n, X)$ whose source and target are f and g.

- (3) Let $f: K \to L$ be a map of Kan complexes. Show that f is a weak equivalence if and only if f induces an isomorphism on every homotopy group as defined above.
- (4) Let X be a topological space and denote $\operatorname{Sing}_{\bullet} X$ the simplicial set $\operatorname{Hom}(\Delta^{\bullet}, X)$. Show that $\operatorname{Sing}_{\bullet} X$ is a Kan complex and $\pi_n(X, x) \simeq \pi_n(\operatorname{Sing}_{\bullet} X, x)$.
- (5) Let X be a Kan complex. Show that $\pi_0(X) \simeq \pi_0(\operatorname{Sing}_{\bullet} |X|)$. Deduce inductively that $\pi_n(X, x) \simeq \pi_n(\operatorname{Sing}_{\bullet} |X|, x)$.
- (6) Conclude to show that the Kan model structure on **sSet** is Quillen-equivalent to the classical model structure on **Top**.

Exercice 2 (Modules over cdgas). Let A be a cdga (commutative differential graded algebra) over \mathbb{Q} . Let $\mathbf{Mod}(A)$ denote the category of dg modules over A. An object in $\mathbf{Mod}(A)$ is thus a cochain complex M together with a morphism of complexes $A \otimes_{\mathbb{Q}} M \to M$ satisfying the module axioms (i.e. $(a \cdot b) \cdot m = a \cdot (b \cdot m), 1 \cdot m = m$).

- (1) Show that the forgetful functor $U : \mathbf{Mod}(A) \to \mathrm{Ch}(\mathbb{Q})$ is a right adjoint and describe its left adjoint F.
- (2) Show that there is a model structure on Mod(A) where
 - weak equivalences are the morphisms f such that U(f) is a quasi-isomorphism,
 - fibrations are the morphisms f such that U(f) is surjective.
- (3) Show that the functor $-\bigotimes_{A} -: \mathbf{Mod}(A) \times \mathbf{Mod}(A) \longrightarrow \mathbf{Mod}(A)$ admits a total left derived \mathbb{L}

functor
$$- \bigotimes_{A} - : \mathbf{Ho}(\mathbf{Mod}(A) \times \mathbf{Mod}(A)) \cong \mathbf{Ho}(\mathbf{Mod}(A)) \times \mathbf{Ho}(\mathbf{Mod}(A)) \longrightarrow \mathbf{Ho}(\mathbf{Mod}(A)).$$

- (4) Let $f : A \to B$ be a morphism of cdgas. Show that the functor $f_* : \mathbf{Mod}(B) \to \mathbf{Mod}(A)$, given by $A \otimes_{\mathbb{Q}} M \xrightarrow{f \otimes id} B \otimes_{\mathbb{Q}} M \to M$, is a right Quillen functor.
- (5) Assume $f: A \to B$ is a quasi-isomorphism of cdgas. Show that f_* is a Quillen equivalence.

Solution 1. One possible reference is the book *Modules over operads and functors*, by Benoît Fresse (sections 11.2.5 - 11.2.10).

Exercice 3 (Loops and Suspensions (by Victor Saunier)). Let C be a model category with a zero object. For $X \in C$, we denote ΣX the homotopy colimit of the following diagram $0 \leftarrow X \rightarrow 0$ and ΩX the homotopy limit of $0 \rightarrow X \leftarrow 0$.

- (1) Compute ΩX in \mathbf{sSet}_* , \mathbf{Top}_* , $\mathbf{Ch}(\mathbb{Z})$.
- (2) Compute ΣX in \mathbf{sSet}_* , \mathbf{Top}_* , $\mathbf{Ch}(\mathbb{Z})$.
- (3) Show that $\Sigma : \operatorname{Ho}(\mathcal{C}) \to \operatorname{Ho}(\mathcal{C})$ is adjoint to $\Omega : \operatorname{Ho}(\mathcal{C}) \to \operatorname{Ho}(\mathcal{C})$. In which of the previous cases is this adjunction an equivalence?

Exercice 4 (Detailed construction of the Nerve of a category). In this exercise, we establish a link between the theory of categories and the theory of simplicial sets. More precisely, we check that we can translate the information provided by a category C into a simplicial set, called the nerve of C and denoted by N(C). We will see that this translation does not lose any information and that in fact the theory of categories can be seen as a sub-theory of that of simplicial sets.

- (1) The category of simplexes Δ can be canonically identified with a full subcategory of *Cat*, spanned by the categories of the form $[n] := [0 \rightarrow 1 \rightarrow \cdots \rightarrow n]$. Use this inclusion and the previous exercise to produce an adjunction sending $\tau(\Delta[n]) = [n]$.
- (2) Let \mathcal{C} be a small category. Check that the functor N is characterized as follows: $N(\mathcal{C})_n$ consists of composable strings of morphims in \mathcal{C} of lenght n: $X_0 \xrightarrow{f_0} X_1 \xrightarrow{f_1} \dots \xrightarrow{f_{n-1}} X_n$. In particular, the 0-simplexes of $N(\mathcal{C})$ are the objects of \mathcal{C} and the 1-cells are morphisms in \mathcal{C} . Describe the face and degeneracy maps in terms of compositions and identity morphims.
- (3) Show that the canonical morphism induced by the inclusion $\tau(\partial \Delta[n]) \to \tau(\Delta[n]) = [n]$ is an isomorphism of categories for $n \geq 3$. Describe both $\tau(\partial \Delta[1])$ and $\tau(\partial \Delta[2])$. (*Hint:* use the construction of $\partial \Delta[n]$ as a cokernel).
- (4) Deduce that the canonical map $\tau(\operatorname{sk}_2(X)) \to \tau(X)$ is an isomorphism of categories for every simplicial set X. In other words, the category $\tau(X)$ only depends on the 2-skeleton of X.
- (5) Let X be a simplicial set. Check that the category $\tau(\text{sk}_2(X))$ is isomorphic to the quotient of the free category with X_0 as objects and X_1 as morphisms under the following relation on morphisms:
 - for every 2-simplex $\sigma : \Delta[2] \to X$, we identify $\partial_1(\sigma)$ with the composition $\partial_0(\sigma) \circ \partial_2(\sigma)$.
 - for every $x \in X_0$, identify $\epsilon_0(x)$ with Id_x
- (6) Let \mathcal{C} be a category and describe the category $\tau(\operatorname{sk}_2(N(\mathcal{C})))$. Conclude that the adjunction map $\tau(N(\mathcal{C})) \to \mathcal{C}$ is an isomorphism of categories and that N is fully faithful.
- (7) Let I_n denote the sub-simplicial set (subfunctor) of $\Delta[n]$ given by $\bigcup_i^n \text{ im } \alpha_i \subseteq \Delta[n]$ where $\alpha_i : \Delta[1] \to \Delta[n]$ is the map sending $0 \to i$ and $1 \mapsto i+1$. Show that I_n is the colimit of the diagram

where $\Delta[1]$ appears n times.

(8) Let \mathcal{C} be a category and let $N(\mathcal{C})$ denote its nerve. Show that the composition with the inclusion $I_n \subseteq \Delta[n]$ produces a bijection

 $\operatorname{Hom}_{\mathbf{sEns}}(\Delta[n], N(\mathcal{C})) \cong \operatorname{Hom}_{\mathbf{sEns}}(I_n, N(\mathcal{C}))$

for all $n \ge 2$. Conclude that the canonical map $\tau(I_n) \to \tau(\Delta[n]) = [n]$ is an isomorphism of categories for $n \ge 2$.