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Cofibrantly generated model structures and simplicial sets

Exercice 1 (The Kan model structure on sSet). We let ∆n (or ∆[n] in the course notes) be the
standard n-simplex, ∂∆n its interior, Sn the quotient of ∆n by its interior and Λn

k the kth-horn.

(1) We write I for the set of maps ∂∆n → ∆n.
(a) Show that a map of simplicial sets f : X → S is injective in all degrees if and only if it

belongs to LLP (RLP (I)), i.e. it is a cofibration.
(2) Suppose X is a Kan complex, show that for any simplicial set S, Map(S,X) is also a Kan

complex.
Let X be a simplicial set and x ∈ X. Recall that if X is a Kan complex, we have denoted

πn(X,x) the quotient of Map(Sn, X) by the equivalence relation ∼ generated by f ∼ g if there
is a map φ : ∆1 → Map(Sn, X) whose source and target are f and g.

(3) Let f : K → L be a map of Kan complexes. Show that f is a weak equivalence if and only if
f induces an isomorphism on every homotopy group as defined above.

(4) Let X be a topological space and denote Sing•X the simplicial set Hom(∆•, X). Show that
Sing•X is a Kan complex and πn(X,x) ≃ πn(Sing•X,x).

(5) Let X be a Kan complex. Show that π0(X) ≃ π0(Sing• |X|). Deduce inductively that
πn(X,x) ≃ πn(Sing• |X|, x).

(6) Conclude to show that the Kan model structure on sSet is Quillen-equivalent to the classical
model structure on Top.

Exercice 2 (Modules over cdgas). Let A be a cdga (commutative differential graded algebra) over
Q. Let Mod(A) denote the category of dg modules over A. An object in Mod(A) is thus a cochain
complex M together with a morphism of complexes A⊗Q M →M satisfying the module axioms (i.e.
(a · b) ·m = a · (b ·m), 1 ·m = m).

(1) Show that the forgetful functor U : Mod(A) → Ch(Q) is a right adjoint and describe its left
adjoint F .

(2) Show that there is a model structure on Mod(A) where
• weak equivalences are the morphisms f such that U(f) is a quasi-isomorphism,
• fibrations are the morphisms f such that U(f) is surjective.

(3) Show that the functor −⊗
A
− : Mod(A) ×Mod(A) −→ Mod(A) admits a total left derived

functor −
L
⊗
A
− : Ho(Mod(A)×Mod(A)) ∼= Ho(Mod(A))×Ho(Mod(A)) −→ Ho(Mod(A)).

(4) Let f : A → B be a morphism of cdgas. Show that the functor f∗ : Mod(B) → Mod(A),

given by A⊗Q M
f⊗id→ B ⊗Q M →M , is a right Quillen functor.

(5) Assume f : A→ B is a quasi-isomorphism of cdgas. Show that f∗ is a Quillen equivalence.

Solution 1. One possible reference is the book Modules over operads and functors, by Benôıt Fresse
(sections 11.2.5 – 11.2.10).

Exercice 3 (Loops and Suspensions (by Victor Saunier)). Let C be a model category with a zero
object. For X ∈ C, we denote ΣX the homotopy colimit of the following diagram 0←− X −→ 0 and
ΩX the homotopy limit of 0 −→ X ←− 0.

(1) Compute ΩX in sSet∗, Top∗, Ch(Z).
(2) Compute ΣX in sSet∗, Top∗, Ch(Z).
(3) Show that Σ : Ho(C)→ Ho(C) is adjoint to Ω : Ho(C)→ Ho(C). In which of the previous cases

is this adjunction an equivalence?

Exercice 4 (Detailled construction of the Nerve of a category). In this exercise, we establish a link
between the theory of categories and the theory of simplicial sets. More precisely, we check that we
can translate the information provided by a category C into a simplicial set, called the nerve of C and
denoted by N(C). We will see that this translation does not lose any information and that in fact the
theory of categories can be seen as a sub-theory of that of simplicial sets.
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(1) The category of simplexes ∆ can be canonically identified with a full subcategory of Cat,
spanned by the categories of the form [n] := [0 → 1 → · · · → n]. Use this inclusion and the
previous exercise to produce an adjunction sending τ(∆[n]) = [n].

(2) Let C be a small category. Check that the functor N is characterized as follows: N(C)n con-

sists of composable strings of morphims in C of lenght n: X0
f0 // X1

f1 // . . . .
fn−1 // Xn. In

particular, the 0-simplexes of N(C) are the objects of C and the 1-cells are morphisms in C.
Describe the face and degeneracy maps in terms of compositions and identity morphims.

(3) Show that the canonical morphism induced by the inclusion τ(∂∆[n]) → τ(∆[n]) = [n] is an
isomorphism of categories for n ≥ 3. Describe both τ(∂∆[1]) and τ(∂∆[2]).
(Hint: use the construction of ∂∆[n] as a cokernel).

(4) Deduce that the canonical map τ(sk2(X)) → τ(X) is an isomorphism of categories for every
simplicial set X. In other words, the category τ(X) only depends on the 2-skeleton of X.

(5) Let X be a simplicial set. Check that the category τ(sk2(X)) is isomorphic to the quotient
of the free category with X0 as objects and X1 as morphisms under the following relation on
morphisms:
• for every 2-simplex σ : ∆[2]→ X, we identify ∂1(σ) with the composition ∂0(σ) ◦ ∂2(σ).
• for every x ∈ X0, identify ϵ0(x) with Idx

(6) Let C be a category and describe the category τ(sk2(N(C)). Conclude that the adjunction
map τ(N(C))→ C is an isomorphism of categories and that N is fully faithful.

(7) Let In denote the sub-simplicial set (subfunctor) of ∆[n] given by
⋃n

i im αi ⊆ ∆[n] where
αi : ∆[1] → ∆[n] is the map sending 0 → i and 1 7→ i+ 1. Show that In is the colimit of the
diagram

∆[1] ∆[1] . . . ∆[1]

∆[0]

∂0
<<

∂1

bb

∆[0]

∂1

bb
∂0

==

. . . ∆[0]

∂0
<<

∂1

aa

where ∆[1] appears n times.
(8) Let C be a category and let N(C) denote its nerve. Show that the composition with the

inclusion In ⊆ ∆[n] produces a bijection

HomsEns(∆[n], N(C)) ∼= HomsEns(In, N(C))

for all n ≥ 2. Conclude that the canonical map τ(In) → τ(∆[n]) = [n] is an isomorphism of
categories for n ≥ 2.

Note that the category [n] := [0 → 1 → ... → n] is just the category associated to the poset
0 < 1 · · · < n. In particular an order preserving map [n] → [m] is a functor from the category [n] to
the category [m] (as one can simply check by hand).

1. Let us define N : Cat → sSet as the functor defined as follows. To a small category C we
associate the family of sets N(C)n := HomCat([n], C), in other words the set of functors from the
category [n] to C. Since the morphisms of ∆ are precisely the non-decreasing application which as
we have seen are functors between categories of the form [n], it is immediate that any non-decreasing

map f [n] → [m] induces a map f∗ : N(C)m = HomCat([m], C) −◦f−→ HomCat([n], C) = N(C)m by
composition of functors. By functoriality of composition of functors, we obtain a well defined functor
N(C) = HomCat(−, C) : ∆op → sSet given by the collection of the (N(C)n)n∈N. The construction shall
really look like the construction of Sing•(X) for a space. We use the collection of the categories [n]
as an natural cosimplicial category where in the latter we were using the natural cosimplicial space
(∆n)n≥0. That being seen, it is natural to find the left adjoint of the functor N by mimicking the
definition of the geometric realization. More concretely, we set τ : sSet → Cat by setting τ(X•) :=
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(
∐

n∈NXn× [n])
∐

(
∐

f :[n]→[m]∈∆ Xm×[n])

(
∐

m∈NXm× [m]) to be the pushout1 in Cat given by the diagram

τ(X•) :=
∐
n∈N

Xn × [n]
f∗
←−

∐
f :[n]→[m]∈∆

Xm × [n]
f∗−→

∐
m∈N

Xm × [m]

where f∗ is just induced by the map f∗ : Xm → Xn given by the simplicial structure of X• and
f∗ is just induced by f : [n] → [m]. Note that since ∆[n] has a unique non-degenerate n-simplex
(id : [n] → [n]) and all others non-degenerate simplices are faces of it, then, it is immediate that
the pushout defining τ(∆[n]) is nothing more than the category [n] itself. The proof that the two
constructions are indeed an adjunction can be done in a similar way to the proof of the geometric
realisation case seen in class; one only needs to replace continuous maps ∆n → Y by functors, and
elements t ∈ ∆n by objects of [n].

A companion proof is to use that every simplicial set is the colimit X• ∼= colim∆[n]→X• ∆[n]. Since
τ is defined by a colimit, it shows that to prove the adjunction it is enough to check it on all ∆[n].
But then we have

HomsSet(∆[n], N(C)) ∼= N(C)n = HomCat([n], C) ∼= HomCat(τ(∆[n]), C)

where the first identity is given by the Yoneda Lemma for ∆[n] as seen in class.
Remark: the pushout formula defining τ shows that for every degenerate simplex σ ∈ Xn, the category
{σ} × [n] is collapsed into the category {y} × [j] corresponding to the unique non-degenerate simplex
y ∈ Xj that σ is an iterate degeneracy of. Hence, as for the geometric realisation of spaces, the
category τ(X•) is uniquely defined by the non-degenerate simplices. Further, the set of objects of
τ(X•) is exactly the set X0 of vertices and every non-degenerate 1-simplex σ yields a morphism
d1(σ)→ d0(σ) in τ(X•).

2. We have seen that N(C)n = HomCat([n], C). Since [n] has only n + 1 objects (the integers
0, . . . , n) and exactly one non-identity morphisms i→ j between two objects i, j such that i < j (and
no such morphism for j ≥ i, a functor is given by n + 1-objects X0, . . . Xn ∈ C and one morphism
fi : Xi → Xi+1 for any i < n.

3. Pour n = 1, ∂∆[1] est un ensemble discret à deux éléments, donc τ(∂∆[1]) = ∗ ⊔ ∗ est une
catégorie discrète à deux objets, tandis que τ(∆[1]) = ∗ → ∗. Pour n = 2, τ∂∆[2] est la catégorie
libre engendrée par trois objets 0, 1, 2 et trois morphismes 0 → 1, 1 → 2, 0 → 2. En particulier, rien
n’impose que 0 → 1 → 2 soit égal au morphisme générateur 0 → 2. Ainsi τ(∂∆[2]) est différent de
τ∆[2] (qui est égal à [2] d’après les questions précédentes).
Passons au cas n ≥ 3. On va utiliser le fait qu’on peut écrire ∂∆[n] comme un coégalisateur :⊔

0≤i<j≤n

∆[n− 2] ⇒
⊔

0≤k≤n

∆[n− 1]

(On recolle les faces de ∆n le long de leurs faces communes). Comme τ est un adjoint à gauche, il
commute avec les colimites et donc on peut écrire :

τ(∂∆[n]) = coeq

 ⊔
0≤i<j≤n

[n− 2] ⇒
⊔

0≤k≤n

[n− 1]


Où les deux flèches sont les inclusions de [n − 2](i,j) dans [n − 1]i et [n − 1]j respectivement en
évitant la position j et la position i. Ici [n − 2](i,j) désigne la copie de [n − 2] indexée par (i, j).
Pour y voir plus clair, on va réindexer les objets de ces catégories. On va remplacer [n − 2](i,j) par

0→ · · · → î→ · · · → ĵ → · · · → n où î désigne qu’on omet l’objet i. De même on remplacera [n− 1]i
par la catégorie (0 → · · · → î → · · · → n). Avec ces notations, les flèches dans le coégalisateur sont
simplement les inclusions naturelles de ces catégories, vues comme sous-catégorie de [n]. Comme les
objets d’une colimite de catégorie se calculent par la colimite ensembliste, on voit déjà que la colimite
est une catégorie à n + 1 objets 0, ..., n, munie de morphismes i → i + 1 induits par les morphisems

1this pushout is precisely the coequalizer of the maps f∗, f
∗
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dans (0→ · · · → k̂ → · · · → n) pour un k différent de i et i+ 1. Tous les choix de k donnent le même
morphisme dans la colimite car on a dans le coégalisateur un diagramme

(0→ · · · → k̂2 → · · · → n)← (0→ · · · k̂1 → · · · → k̂2 → · · · → n)→ (0→ · · · k̂1 → · · · → n)

qui montre que les deux flèches i → i + 1 dans les catégories à gauche et à droite s’envoient sur le
même morphisme dans la colimite. Il reste à montrer que le morphisme i→ i+ 2 provenant de

(0→ · · · → î+ 1→ · · · → n)

est bien égal à la composition i → i + 1 → i + 2 bien définie dans la colimite. Ce n’était pas le cas
pour n = 2, mais c’est vrai pour n = 3 : il suffit de prendre j ∈ [n]− {i, i+ 1, i+ 2} (supposons par
exemple j < i, l’autre cas se fait par symétrie) et de considérer le diagramme

(0→ · · · → ĵ → · · · → n)← (0→ · · · ĵ → · · · → î+ 1→ · · · → n)→ (0→ · · · î+ 1→ · · · → n)

ce qui montre que la flèche i→ i+2 à droite s’identifie avec la même flèche dans la catégorie de gauche
: or dans cette catégorie elle est égale à la composée i→ i+1→ i+2 ce qui implique que c’est le cas
dans la colimite aussi.

4. We know that X is the colimit of its skeletons and that each skeleton is built by induction via
the pushouts along the inclusions ∂∆[n] → ∆[n]. As τ commutes with colimits the previous exercise
solves the question.

5. Since Sk2(X) has no non-degenerates simplices of degree ≥ 3, we only have to understand the
contributions of non-degenerate simplices of degree 1 and 2. We have seen in question 1 that the
objects of τ(Sk2(X) are X0 and that X1 generates morphisms. Note that if σ ∈ X1 is degenerate,
that is σ = ϵ0(x), then, in the colimit defining τ(Sk2(X), we have that τ(σ) = ϵ0(τ(x)) = Idx. Now
it remains to understand the two simplices. But in the two simplex [2] we have that the unique
morphism 0 → 2 is the composition 0 → 1 → 2. But 0 → 2 is just the image d1([1]) by the functor
associated to d1 while the subcategory 0 → 1 ⊂ [2] is the image of d2 and 1 → 2 the one of d0.
Hence the explicit formula of the colimit defining τ shows that every two simplex σ imposes a relation
∂1(σ) = ∂0(σ) ◦ ∂2(σ). We have no other relations since we only need to consider non-degenerates
simplices of degree less than 2.

6. By question 2., N(C)0 is the set of objects of C and N(C)1 is the set of morphisms in C and

N(C)2 is the set of all composable two arrows. Its faces are given by ∂0( X0
f0 // X1

f1 // X2 ) = f1,

∂1( X0
f0 // X1

f1 // X2 ) = f1 ◦ f0 and ∂2( X0
f0 // X1

f1 // X2 ) = f0. Hence by question 5., we

have that τ(Sk2(N(C))) is the free category generated by the objects and arrows of C quotiented by
the relation of composition in C. It is thus isomorphic to C itself. By direct inspection, the adjunction
map τ(N(C))→ C is the map taking the category τ(N(C)) which is the identity on objects and maps
string of arrows to their class in C. By the previous computations it is thus an isomorphism. This
being proved we thus have the isomorphisms

HomCat(D, C) ∼= HomCat(τ(N(D)), C) ∼=sSet (N(D), N(C))

which proves the fully faithfulness of N .
7. This essentially reduces to a computation of colimits of sets.
8. The simplicial set In has exactly n+1 non-degenerate 1-simplices, denoted αi

∼= {i, i+1}, and no
higher non-degenerates ones. The only relation between these 1-simplices are that d1(αi+1) = d0(αi)
hence, a simplicial set map from In to X• is given by a n-tuple (x1, . . . , xn) satisfying that d0(x1) =
d1(x2) and so on. In other words, HomSSet(In, X) ∼= X1 ×X0 X1 × · · · ×X0 X1. Applying this to
X• = N(C), we obtain that a map from In to N(C) is exactly a string of n-composable arrows, hence
the claimed isomorphism. We take C = [n] = τ(∆[n]). The canonical map τ(In) → τ(∆[n]) = [n] is

by definition the image of the identity of [n] under the map HomCat([n], [n])
−◦τ(i)−→ HomCat(τ(In), [n])

where i : In ↪→ ∆[n] is the inclusion. But by adjunction, and since τ(∆[n]) = [n], we have a
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commutative diagram HomCat([n], [n])

−◦τ(i)
��

∼= // HomsEns(∆[n], N([n]))

−◦i
��

HomCat(τ(In), [n])
∼= // HomsEns(In, N([n]))

where the right vertical map

is a bijection by above. Hence the left vertical one is bijective too.


