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Given any regularly varying dislocation measure, we identify a natural
self-similar fragmentation tree as scaling limit of discrete fragmentation trees
with unit edge lengths. As an application, we obtain continuum random tree
limits of Aldous’s beta-splitting models and Ford’s alpha models for phylo-
genetic trees. This confirms in a strong way that the whole trees grow at the
same speed as the mean height of a randomly chosen leaf.

1. Introduction. For a number of years, there has been an increased inter-
est in random tree models, both in the mathematical literature and in applied sci-
ences such as genetics. Fundamental classes of trees are trees with n leaves and
no degree-2 nodes. Denote by T

◦
n the space of such trees, which can be made

mathematically precise as a space of connected acyclic graphs with n+1 degree-1
vertices, one of which is distinguished as the root. Also, denote by Tn the space
of such trees where the other n degree-1 vertices (the leaves) are labeled 1, . . . , n.
Such trees are called cladograms in the genetics literature, up to trivial differences
and an extension. Here, the trees are planted, that is, the root has only one neigh-
bor, and they are not necessarily binary, as is usually assumed in the phylogenetics
literature. The only edge adjacent to the root is called the root-edge.

A class of probability distributions on T
◦
n or Tn can be specified by a proce-

dure called Markov branching [1]: P ◦
1 is the unique distribution on the single-

ton T
◦
1. Recursively, P ◦

n is the distribution of a random tree T ◦
n , where the unique

branch point neighboring the root connects r ≥ 2 subtrees with k1 ≥ · · · ≥ kr ≥ 1
leaves, respectively, k1 + · · · + kr = n, with some probability qn(k1, . . . , kr) (so
that qn is a probability distribution on the set of partitions of the integer n). Given
the branching into sizes k1, . . . , kr , these subtrees are independent, with distribu-
tions P ◦

kr
. Finally, define Pn as the distribution of the random tree T ◦

n , equipped
with leaf labels uniform among all possible labelings with {1, . . . , n}. Therefore,
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all Markov branching models on Tn, thus defined, have exchangeable leaf la-
bels.

Important models in phylogenetics such as the Yule, uniform and comb mod-
els, and, more generally, Aldous’s beta-splitting models [1, 5] and Ford’s alpha
models [21] have the Markov branching property (see [1, 21] for references to
the phylogenetics literature). They also have a property of sampling consistency,
that is, the subtree of Tn ∼ Pn generated by the leaves labeled 1, . . . , n − 1 has
distribution Pn−1.

By a standard argument using Kolmogorov’s extension theorem, for sampling
consistent (Pn)n≥1, one can consider a strongly sampling consistent sequence
(T ◦

n )n≥1 [resp. (Tn)n≥1] defined on some probability space, in the (stronger) sense
that T ◦

n−1 is the subtree of T ◦
n ∼ P ◦

n generated by n− 1 leaves chosen uniformly at
random (resp. leaves 1, . . . , n − 1) for all n ≥ 2.

The recursive definition of Pn is due to Aldous [1] in the binary case, where
qn is supported by partitions of n of the form (n − k, k),1 ≤ k ≤ n/2, for all n.
Not all Markov branching models are sampling consistent [e.g., a splitting rule for
which q4(2,2) = 1 cannot be sampling consistent] and Aldous leaves as an open
problem the characterization of sampling consistent Markov branching models (on
cladograms). Ford [21] gives an answer in terms of a certain consistency condition
that has to be satisfied by the associated (binary) splitting rules qn. See also (14)
for the general nonbinary case.

A more explicit answer in the form of an integral representation, also for
nonbinary models, can be obtained from Bertoin’s study of homogeneous frag-
mentation processes [8]. In the present paper, we interpret sampling consis-
tent Markov branching models as trees associated with (discrete) fragmentations,
where T ◦

n ∼ P ◦
n describes the fragmentation of an initial mass of size n (or of

the set {1, . . . , n} for Tn ∼ Pn), first into blocks of sizes k1, . . . , kr and then of
each block, recursively, until all blocks have unit size. These branching models
can be characterized in terms of homogeneous fragmentation processes, as fol-
lows.

A homogeneous fragmentation process is a continuous-time continuous-mass
analog of the above discrete fragmentations. The most intuitive class is that of
mass fragmentation processes, that is, right-continuous Markov processes (Ft )t≥0

in

S↓ =
{
(si)i≥1 : s1 ≥ s2 ≥ · · · ≥ 0,

∑
i≥1

si ≤ 1

}
,

whose transition kernels have the property that given state s = (si)i≥1 at time u,
each fragment of mass si evolves independently and with distribution identical to
(siFt )t≥0. More precisely, for each t ≥ 0, Fu+t can be written as the decreasing
rearrangement of masses of all fragments of siFt , i ≥ 1. Bertoin has shown that
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the distribution of such a process is determined by an erosion coefficient c ∈ R+
and a dislocation measure ν on S↓ which satisfies

ν({(1,0, . . .)}) = 0 and
∫
S↓

(1 − s1)ν(ds) < ∞.(1)

In the sequel, for s ∈ S↓, we let s0 = 1 −∑i≥1 si ∈ [0,1].
THEOREM 1. Sampling consistent splitting rules (qn, n ≥ 2) are all of the

following form: if (k1, . . . , kr) is a partition of n with r ≥ 2 parts, of which exactly
mi ≥ 0 parts are equal to i, 1 ≤ i ≤ n, then

q(c,ν)
n (k1, . . . , kr)

(2)

:= Ck1,...,kr

Zn

(
nc1{r=2,k2=1} +

∫
S↓

m1∑
l=0

(
m1
l

) ∑
i1,...,ir−l≥1

distinct

sl
0

r−l∏
j=1

s
kj

ij
ν(ds)

)

for some pair (c, ν), where c ≥ 0 and ν satisfies (1). Here, Ck1,...,kr is a combina-
torial factor and Zn the normalization constant, as follows:

Ck1,...,kr = n!
k1! . . . kr !m1! . . .mn! , Zn = nc +

∫
S↓

(
1 −∑

i≥1

sn
i

)
ν(ds).(3)

Moreover, one has q
(c,ν)
n = q

(c′,ν′)
n for every n ≥ 2 if and only if (c′, ν′) = (Kc,Kν)

for some K > 0.

The intuitive meaning of (2) is that (si)i≥0 is chosen according to ν and an
independent sample from (si)i≥0 of size n is taken, jointly conditioned not to have
all sample points in one fragment si , i ≥ 1. The term s0 is special in that each of
the l sample points in s0 is considered a singleton. We note that

Ck1,...,kr

(
m1
l

)
=
(

n

l, k1, . . . , kr−l

)(
(m1 − l)!

n∏
i=2

mi !
)−1

,

where
( n
l,k1,...,kr−l

)
is the number of permutations with the same given fre-

quencies l, k1, . . . , kr−l . The allocation of indices ij to box sizes kj is such
that (m1 − l)!∏n

i=2 mi ! sequences (i1, . . . , ir−l) lead to the same configuration
{(i1, k1), . . . , (ir−l, kr−l)} and hence contribute to the coefficient of the same
monomial sl

0s
k1
i1

· · · skr−l

ir−l
.

A homogeneous fragmentation process for which c = 0, is said to have no ero-
sion. Also, a dislocation measure ν is said to be conservative if

ν({s ∈ S↓ : s0 > 0}) = 0.(4)

The conditions that c = 0 and ν is conservative are equivalent to the dust-free
property of the associated homogeneous fragmentation (Ft )t≥0, namely that the
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terms of Ft sum to 1 for any t ≥ 0, a.s. Under these conditions, formula (2) takes
the much simpler form

q(0,ν)
n (k1, . . . , kr)

(5)

= 1

Zn

(
n

k1, . . . , kr

)( n∏
i=1

mi !
)−1∫

S↓

∑
i1,...,ir≥1

distinct

r∏
j=1

s
kj

ij
ν(ds).

In [9], Bertoin introduced self-similar fragmentation processes (F
(a)
t )t≥0 in S↓

with parameter a ∈ R: given state s at time u, the evolution of each fragment
of mass si is independent and distributed as (siF

(a)

sa
i t

)t≥0. Once a is fixed, such
processes are in one-to-one correspondence with homogeneous fragmentations
and are hence characterized by an erosion parameter c and a dislocation measure ν

satisfying (1). In the sequel, we will only deal with negative index a < 0 and write
γ = −a.

For γ > 0, c = 0 and conservative dislocation measures ν, associated fragmen-
tation trees T(γ,ν) have been studied in [29] using Aldous’s continuum random
tree (CRT) formalism of trees as subsets of l1 = l1(N) (cf. [2–4]). Alternative
tree representations have been developed and we shall here use abstract R-trees
as introduced for use in probability by Evans and co-authors [18–20] (see also
[27]). Following these references, the space of R-trees will be endowed with the
Gromov–Hausdorff metric, which provides a notion of convergence for these ab-
stract spaces. All the necessary concepts are discussed in Section 3.3.

Under the regular variation condition

ν(s1 ≤ 1 − ε) = ε−γν �

(
1

ε

)
(6)

for some γν ∈ (0,1) and a function x → �(x) slowly varying as x → ∞, the case
γ = γν is special. Under the further regularity condition∫

S↓

∑
i≥2

si | ln(si)|ρν(ds) < ∞(7)

for some ρ > 0 [this is satisfied, e.g., if ν(sr+1 > 0) = 0 for some r > 0],
our main theorem identifies the γν-self-similar fragmentation tree as a scaling
limit of discrete fragmentation trees associated with a (homogeneous) fragmen-
tation process or, equivalently, by Theorem 1, associated with sampling consistent
Markov branching models.

THEOREM 2. Let ν be a conservative dislocation measure satisfying (6) and
(7) and (T ◦

n )n≥1 a strongly sampling consistent family of discrete fragmentation
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trees T ◦
n ∼ P ◦

n as associated via (5). If we consider T ◦
n as a random R-tree (with

unit edge lengths), then there is the convergence in probability

T ◦
n

nγν �(n)�(1 − γν)

(p)−→
n→∞T(γν,ν)

with respect to the Gromov–Hausdorff metric, where T(γν,ν) is a γν-self-similar
fragmentation tree with dislocation measure ν, defined as a random R-tree on the
same probability space that supports (T ◦

n )n≥1.

Note that we obtain a convergence of objects with constant edge lengths to ob-
jects which, heuristically, may be expected to have “shorter” edge lengths close to
the leaves, where the fragmentation rate goes to infinity. Here, we find that all suf-
ficiently regular dislocation measures ν have an intrinsic self-similarity parameter
γν , which gives a natural scale for the whole tree. As an application, we obtain lim-
iting continuum random trees for alpha and beta-splitting models. In [1], Aldous
introduced a wide class of sampling consistent binary Markov branching models,
via splitting rules qn(n − k, k), 1 ≤ k ≤ �n/2�, n ≥ 2, which he symmetrized to
model a planar order so that q̃n(k) = q̃n(n − k) = 1

2qn(n − k, k) for 1 ≤ k < n/2
and q̃n(k) = qn(n− k, k) if n = 2k is even. That is, q̃n is the distribution of a block
selected by a fair coin toss from the split of a block of size n. He then studied in
more detail the one-parameter family

q̃n(k) = 1

Z
(β)
n

∫ 1

0

(
n

k

)
xk+β(1 − x)n−k+β dx

= 1

Z
(β)
n

(
n

k

)
�(β + k + 1)�(β + n − k + 1)

�(n + 2β + 2)
,

where β > −2. This beta-splitting model satisfies the conditions of Theorem 2 for
−2 < β < −1 with γ = −β − 1. As an important case, when β = −3/2, the tree
Tn is uniform on the binary trees of Tn. Thus, we reobtain Aldous’s theorem [2],
stating that the scaling limit of uniform random variables on Tn is the celebrated
Brownian continuum random tree, with self-similarity index −1/2. This will be
discussed in more detail in Sections 2.4 and 5.1.

In [21], Ford studied a model based on a simple sequential construction as fol-
lows. The tree T ◦

1 is the unique single-leaf tree in T
◦
1. Given T ◦

n , choose one of its
edges according to a weight 1 − α for an edge between a leaf and another vertex,
and a weight α for an edge between two other vertices. Split the edge in two, in-
troduce a new vertex between the two edges and add another edge from the new
vertex to a new leaf. The new random tree is called T ◦

n+1. It is implicit in the work
of Ford that this model satisfies the conditions of Theorem 2 if 0 < α < 1, with
γ = α, so there is a CRT limit. We discuss this in more detail in Sections 5.2–5.3.

Section 2 carefully introduces the discrete framework and establishes the char-
acterization of sampling consistent splitting rules in terms of dislocation measures
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of homogeneous fragmentation processes (Theorem 1). Section 3 introduces the
fragmentation CRTs that appear as limits in Theorem 2. Section 4 establishes the
proof of Theorem 2. Specifically, we check finite-dimensional convergence for
Theorem 2 (Proposition 7), provide a tightness estimate (Proposition 9) that allows
the extension of finite-dimensional convergence to convergence in the Gromov–
Hausdorff sense (Section 4.2) and give a version of Theorem 2 for convergence of
height functions (Theorem 15), allowing a planar order and a mass measure to be
carried over to the limiting CRT. The latter convergence was conjectured by Al-
dous [1] in the special case of the beta-splitting models. Section 5 concludes with
applications to alpha, beta-splitting and stable trees.

2. Markov branching models and discrete fragmentations trees. Our goal
in this section is to identify the sampling consistent Markov branching models on
labeled trees with laws of trees that are naturally associated with homogeneous
fragmentations. As first discussed in Bertoin [8], a convenient way to study homo-
geneous fragmentation processes is to use a “discretization of space.” This amounts
to considering processes that take their values in the set P of partitions of the set
N = {1,2, . . .}, rather than in S↓. To study these, we need some terminology and
notation.

2.1. Partitions. For B ⊆ N, we let PB denote the set of partitions of B into
disjoint nonempty blocks, so P = PN. For π ∈ PB , we write B ′ ∈ π to indicate
that B ′ is a block of π and i

π∼ j to indicate that i, j ∈ B belong to the same block
of π . We let π1, π2, . . . be the blocks of π ranked by order of least element, so
π1 is the block containing the least element of B , π2 is the block containing the
least element not in π1 and so on, with the convention that πk = ∅ if π has strictly
fewer than k blocks. Thus, any element π of PB can be represented as a sequence
(π1, π2, . . .), which might eventually be constant, equal to ∅. We also let π(i)

denote the block of π that contains the integer i ∈ B . If π ∈ PB and B ′ ⊆ N, we let
π |B ′ = B ′ ∩π be the partition of B ′ ∩B obtained by restricting π to the elements of
B ′ ∩B . We let π |n = π |[n] for every n ≥ 1, where [n] = {1, . . . , n}. By convention,
we let 1B be the trivial partition (B,∅, . . .) of B and 0B = ({i1}, {i2}, . . .) be the
partition of B into singletons, where i1 < i2 < · · · is the ranked list of elements
of B .

In the sequel, the set P will be endowed with the distance �(π,π ′) =
2−N(π,π ′), where N(π,π ′) = sup{n ≥ 1 :π |n = π ′|n} ∈ N ∪ {0,∞}, and the as-
sociated Borel σ -algebra.

We say that a partition π ∈ PB is finer than π ′ ∈ PB , and write π � π ′, if any
block of π is included in some block of π ′. This defines a partial order � on PB .
A process or a sequence with values in PB is called refining if it is decreasing for
this partial order.
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2.2. Trees. There is a natural relation between trees with labeled leaves and
refining partition-valued processes. Write B ⊂f N if B is a finite subset of N. For
B ⊂f N with n elements, we let TB denote the set of t, where each t is a collection
of subsets of B and also contains ROOT ∈ t, such that:

• B ∈ t—we call B the common ancestor in t;
• {i} ∈ t for all i ∈ B—we call {i}, i ∈ B , the leaves of t;
• for all A,C ∈ t, either A ∩ C = ∅, or A ⊆ C or C ⊆ A.

A ∈ t is called a descendant of C ∈ t if A ⊂ C, and C is then called an ancestor
of A. A set A is called a child of C and C is called the parent of A if A ⊂ C and for
all D ∈ t with A ⊆ D ⊆ C either A = D or D = C. If we equip t with the parent-
child relation and also relate ROOT with B ∈ t, then t is a rooted connected acyclic
graph so that T[n] can be identified with Tn in the notation of the Introduction.

For t ∈ TB and C ∈ t with k children A1, . . . ,Ak ∈ t, (A1, . . . ,Ak) is a partition
of C. We can define the subtrees tA1, . . . , tAk

pending from C as tAi
= {ROOT} ∪

{A ∈ t :A ⊆ Ai}. Then tAi
is an element of TAi

for 1 ≤ i ≤ k. Conversely, for any
finite sequence of trees t1 ∈ TB1, . . . , tk ∈ TBk

, where B1, . . . ,Bk are the nonempty
blocks of a partition of some B ⊂f N, we define 〈t1, . . . , tk〉 = {B}∪⋃k

i=1 ti ∈ TB .

DEFINITION 1. Let (π(t), t ≥ 0) take values in PB for some B ⊂f N and be
refining. Assume, further, that π(0) = 1B and π(t) = 0B for some finite t > 0.
We define the associated fragmentation tree to be tπ = {ROOT} ∪ {A ⊆ B :A ∈
π(t) for some t ≥ 0}.

A similar association can be made for refining sequences (π(0),π(1), . . . ,

π(m)) of partitions of some B ⊂f N starting at π(0) = 1B and ending at
π(m) = 0B .

2.3. Homogeneous fragmentations. If  is a random variable with values in
PB , then we say that  is exchangeable if its law is invariant under the natural
action of the permutations of B . Similarly, a PB -valued process ((t), t ≥ 0) is
exchangeable if its law is invariant under the action of permutations of B .

DEFINITION 2. Let B ⊂ N and consider a PB -valued Markov process
((t), t ≥ 0). We assume that for every t, t ′ ≥ 0, the distribution of (t + t ′),
given (t) = π , is the same as that of the random partition whose blocks are
given by

i(t) ∩ πi
j , i, j ≥ 1,

where π1, π2, . . . is an i.i.d. sequence of exchangeable partitions of N. Then the
process  is called a homogeneous fragmentation of B .
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When a homogeneous fragmentation of B starts from the trivial partition 1B

of B , we say that the process is standard. We will also assume nondegeneracy
of the process, namely that it is not constant a.s. It is then elementary from the
definition that (nondegenerate) homogeneous fragmentation processes are refining
processes whose blocks all decrease to singletons. In view of the preceding section
(Definition 1), this allows us to introduce the following definition.

DEFINITION 3. Let ((t), t ≥ 0) be a standard homogeneous fragmentation
of some finite B ⊂ N. The tree TB := t ∈ TB is called the discrete fragmentation
tree associated with .

As argued by Bertoin, a P -valued process  is a homogeneous fragmentation if
and only if its restrictions to [n] are homogeneous fragmentations of [n], n ≥ 1. In
other words, homogeneous fragmentations of N are the same as consistent families
of homogeneous fragmentations of [n], n ≥ 1. Obviously, this amounts to a con-
sistency property for the associated sequence T[n], n ≥ 1, of fragmentation trees,
namely that T[n] is the tree obtained from T[n+1] by removing the leaf with label
n + 1 (and the internal vertex if it has only two other neighbors, that will then be
connected by a direct edge instead). We claim that the laws (Pn,n ≥ 1) associ-
ated with sampling consistent splitting rules as explained in the Introduction are in
one-to-one correspondence with the sequence of distributions of trees T[n], n ≥ 1,
associated with some homogeneous fragmentation of N.

Before we tackle this (in Proposition 3), we need some more notation. Let
s = (sj , j ∈ N) ∈ R

N+ have total sum
∑

j∈N sj ≤ 1. By setting s0 = 1 −∑
j∈N sj ,

we define a probability mass function (sj )j≥0 on N ∪ {0}. Independent random
variables (Ii, i ≥ 1) with probability mass function (sj )j≥0 can be interpreted as
an urn scheme, with urns labeled by N and a “dustbin” with label 0.

As shown by Bertoin, (the laws of) standard homogeneous fragmentations of N

are in one-to-one correspondence with σ -finite measures κ on P that satisfy

κ({π ∈ P :π |n �= 1[n]}) < ∞ for all n ≥ 1

and which informally correspond to the jump measures of the fragmentation
processes. We call such measures dislocation measures on P . As shown in [8],
such measures admit the following, simple, representation. For s ∈ S↓, we let κs
be the distribution on P of the random variable  obtained by Kingman’s paint-
box construction: let I1, I2 . . . be i.i.d. with law (sj )j≥0 and let i, j be in the same
block of  if and only if i = j or Ii = Ij > 0. Then for every dislocation measure
κ on P , there exists c ≥ 0 and a measure ν on S↓ satisfying (1) such that

κ(dπ) =
∫
S↓

κs(dπ)ν(ds) + c

∞∑
i=1

δεi
(dπ),(8)

where εi is the partition of N into two blocks {i} and N \ {i}.
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2.4. Characterization of sampling consistent Markov branching models. We
are now almost ready to give the proof of Theorem 1. For any distribution qn on
partitions of the integer n (splitting rule), and for B with n elements, we define
the associated exchangeable splitting rule on PB \ {1B}, which is the probability
distribution on PB defined by

q̄B(π) =
(

n

k1, . . . , kr

)−1
(

n∏
i=1

mi !
)
qn(k1, . . . , kr)(9)

whenever π is a partition of B with r nonempty blocks of sizes k1 ≥ · · · ≥ kr , block
size i appearing with frequency mi , 1 ≤ i ≤ n. Informally, this is what we obtain
when uniformly choosing a partition of PB that is compatible with a partition of
n that has been sampled according to qn. It is elementary that a random partition
with law q̄B is exchangeable.

Also, it is plain that the laws (Pn,n ≥ 1) on labeled trees associated with (not
necessarily sampling consistent) splitting rules (qn, n ≥ 2) can also be described
as follows. Define P{i} to be the Dirac mass on the only element of T{i}, in the
notation of Section 2.2. Then, recursively, define PB as the law of 〈t1, . . . , tr〉,
where π is taken at random according to q̄B and, given π = (π1, . . . , πr,∅, . . .)

with πr �= ∅, t1, . . . , tr are picked independently in Tπ1, . . . ,Tπr with respective
laws Pπ1, . . . ,Pπr . Then Pn = P[n]. Moreover, (qn, n ≥ 2) is sampling consistent
if and only if the image distribution of P[n+1] by the operation that removes the
leaf with label n + 1 is P[n].

PROPOSITION 3. Sampling consistent splitting rules (qn, n ≥ 2) are in one-
to-one correspondence with dislocation measures κ on PN of homogeneous frag-
mentation processes (modulo constant multiples).

More precisely, for any (qn)n≥2, the formulas λ2 = 1,

λn+1 = λn

1 − q̄[n+1]({1, . . . , n}, {n + 1})(10)

and

κ({� ∈ P :�|n = π}) = λnq̄[n](π),(11)

for all π ∈ P[n] \ {1[n]}, define a dislocation measure κ on P .
Conversely, for any dislocation measure κ ,

q̄B(π) = κ({� ∈ P :�|B = π})
κ({� ∈ P :�|B �= 1B}) , π ∈ PB \ {1B} and B ⊂f N,(12)

defines an exchangeable sampling consistent splitting rule.
Moreover, if  is a homogeneous fragmentation process with dislocation mea-

sure κ , then the sequence of distributions of the discrete fragmentation trees T[n],
n ≥ 1, is exactly (Pn,n ≥ 1), as associated with (qn, n ≥ 2).
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PROOF. Let ((t))t≥0 be a homogeneous P -valued fragmentation process
with dislocation measure κ . For B ⊂f N, let q̄B be the distribution of π =
|B(DB), where DB = inf{t ≥ 0 :|B(t) �= 1B}. It is plain that the q̄B are ex-
changeable. Thus, they specify partition-valued splitting rules. We denote the as-
sociated “unlabeled” splitting rules (i.e., on partitions of n) by qn, n ≥ 2.

By the strong Markov property ([8]) applied at time DB , given π = (π1, . . . , πr,

∅, . . .) with πr �= ∅, the processes (|πi
(DB + t), t ≥ 0) for 1 ≤ i ≤ r are inde-

pendent and, respectively, have the same law as |πi
,1 ≤ i ≤ r . From this, we see

that the discrete fragmentation tree TB = t|B has distribution PB associated with
the splitting rules q̄B . Sampling consistency for the splitting rules qn,n ≥ 2, fol-
lows immediately from the property that T[n] is obtained from T[n+1] by deletion
of the leaf with label n+1. It is argued in Bertoin [8] that q̄B is indeed given by the
formula (12) in the case B = [n] and the general case follows by exchangeability.

Conversely, a sampling consistent system of Markov branching models allows
us to consider a strongly sampling consistent system of trees Tn ∼ Pn, n ≥ 1.
Note that Tn and Tn+1 are related in one of two possible ways: with probabil-
ity pn+1 := q̄[n+1]({1, . . . , n}, {n + 1}), the branch point adjacent to the root in
Tn+1 splits into {1, . . . , n} and {n + 1} and has Tn as a subtree; with probabil-
ity 1 − pn+1, the branch point closest to the root in Tn+1 can be identified with
the branch point closest to the root of Tn. Necessarily, if Pn,n ≥ 0, can be ob-
tained from some homogeneous fragmentation process , then the holding rates
λn = E[D[n]]−1, n ≥ 1, for the state 1[n] of the Markov process |n should thus
satisfy

P
(
D[n] = D[n+1]

)= 1 − pn+1 and, on
{
D[n] �= D[n+1]

}
,

D[n] ∼ D[n+1] + D̃n,

where D̃n is independent of D[n+1] and exponential with rate λn. Taking expecta-
tions, we get

λ−1
n = (1 − pn+1)λ

−1
n+1 + pn+1(λ

−1
n+1 + λ−1

n ) ⇒ λn = (1 − pn+1)λn+1.

If we arbitrarily put λ2 = 1, this determines (λn)n≥3 from (qn)n≥2. Furthermore,
by the same reasoning, we get, for all π ∈ P[n],

q̄[n](π) = q̄[n+1]({� ∈ P[n+1] :�|n = π})
(13)

+ q̄[n+1]({1, . . . , n}, {n + 1})q̄[n](π),

that is, after rearrangement and multiplication by λn+1,

λnq̄[n](π) = λn+1q̄[n+1]
({� ∈ P[n+1] :�|n = π})

so that we can define κ consistently by (11) as a σ -finite measure on PN.
Finally, for the uniqueness, note that the choice of λ2 was arbitrary and any other

choice λ2 ∈ (0,∞) leads to a constant multiple of κ , that is, a linear time change of
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an associated fragmentation process. It is easily checked that if κ is defined by (10)
and (11) for any λ2 ∈ (0,∞), then (12) holds for B = [n] and then for B ⊂ [n];
and if q̄[n] is defined by (12), then (10) and (11) hold with λn = κ({� ∈ PN :�n �=
1[n]}). �

The consistency equation (13) can be written in terms of qn as

qn(k1, . . . , kr) =
r∑

j=1

(kj + 1)(mkj+1 + 1)

(n + 1)mkj

qn+1
(
(k1, . . . , kj + 1, . . . , kr)

↓)

+ m1 + 1

n + 1
qn+1(k1, . . . , kr ,1)(14)

+ 1

n + 1
qn+1(n,1)qn(k1, . . . , kn),

which is structurally similar to but not the same as, the backward recursions for the
rows of the decrement matrix associated with coalescents with simultaneous multi-
ple collisions; see [13]. The binary special case was already obtained by Ford [21],
Proposition 41, and can be compared with coalescents with no simultaneous but
multiple collisions, as in [14]. See also [25, 24] for similar recursions in the context
of regenerative composition and partition structures.

PROOF OF THEOREM 1. The fact that all sampling consistent splitting rules
are of the stated form is now a simple exercise using (12), (8) and (9). The theorem
will be proven if we show that c, ν can be recovered from the dislocation measure κ

associated, up to a constant multiple, with a sampling consistent splitting rule as in
Proposition 3. Obviously, c = κ({ε1}), so we can assume c = 0 in (8). We then use
Kingman’s paintbox construction to obtain that κ-almost every π has an asymp-
totic frequency, and that the restriction of κ to Aε := {π ∈ P : maxi |πi | < 1− ε} is
finite with total mass mε = ν({s ∈ S↓ : s1 < 1 − ε}). Then the probability measure
ν(· ∩ {s : s1 < 1 − ε})/mε is just the distribution of |π |↓ under κ(· ∩ Aε)/mε so
that ν is recovered from κ . �

The binary special case is worth discussing separately. It is characterized by
those dislocation measures that have the property

κ
({π = (π1, π2, . . .) ∈ PN :π1 ∪ π2 �= N})= 0.

Writing κ = κ0 + c
∑

i≥1 δ({i},N\{i}) (for the highest c such that κ0 is a nonnega-
tive measure) and using the one-to-one correspondence of dislocation measures on
PN and pairs of erosion coefficient c ≥ 0 and dislocation measure ν on S↓, these
correspond to (c, ν) with

c ≥ 0 and ν({(si)i≥1 ∈ S↓ : s1 + s2 < 1}) = 0.(15)

The presentation is nicest for a symmetrized setting. We define ν̃(A) = 1
2(ν(s1 ∈

A) + ν(s2 ∈ A)) for Borel sets A ⊆ [0,1].
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COROLLARY 4. Sampling consistent binary splitting rules qn,n ≥ 2, are in
one-to-one correspondence (modulo constant multiples) with pairs (c, ν) satisfy-
ing (15).

Specifically, for any (c, ν),

q̃n(k) = 1

Zn

((
n

k

)∫
(0,1)

xk(1 − x)n−kν̃(dx) + nc1{k=1}
)
,

1 ≤ k ≤ n−1, where Zn = ∫
(0,1)(1−xn−(1−x)n)ν̃(dx)+nc is the normalization

constant, induces a sampling consistent splitting rule by qn(n − k, k) = q̃n(k) +
q̃n(n − k), 1 ≤ k < n/2, qn(n/2, n/2) = q̃n(n/2), n even.

The symmetric splitting rules q̃n(k) [for c = 0 and ν̃(dx) = f (x) dx absolutely
continuous] give Aldous’s (planar) Markov branching models and Corollary 4
shows that, essentially, Aldous had found all binary exchangeable sampling con-
sistent Markov branching models without erosion and expressed them in terms of
(a density of) a binary dislocation measure.

Vice versa, we can calculate c and ν from n−1Znq̃n(1) → c and

Zn

∑
an≤k≤bn

q̃n(k) = ∑
an≤k≤bn

∫ 1

0

(
n

k

)
xk(1 − x)n−kν̃(dx) → ν̃([a, b])(16)

for any continuity points 0 < a < b < 1 for ν̃, provided Zn (or another normaliza-
tion sequence Z̃n ∼ Zn) can be calculated. The proof, which is easily done using
de Finetti’s representation for exchangeable sequences of 0’s and 1’s, is left as an
exercise to the reader.

3. Self-similar fragmentations and continuum trees. In this section, we set
the bases needed to prove convergence of discrete fragmentation trees to some
continuum random trees that are naturally related to the so-called self-similar frag-
mentations [10, 9].

3.1. Self-similar fragmentations. A nice feature of exchangeable partitions in
the case B = N is that Kingman’s theory [31] entails that the blocks of such a
partition  admit asymptotic frequencies almost surely, namely

|i | := lim
n→∞

#i ∩ [n]
n

.

We let || = (|i |, i ≥ 1) and ||↓ be the random element of S↓ obtained from
|| by ranking its terms in decreasing order.

Let ((t), t ≥ 0) be an exchangeable càdlàg (right-continuous with left lim-
its) P -valued stochastic process such that (0) = 1N, and |(t)| exists for every
t ≥ 0, a.s. Suppose, also, that the process of sizes of the block containing i,
(|(i)(t)|, t ≥ 0), is right-continuous for every i ∈ N a.s.
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DEFINITION 4. The process ((t), t ≥ 0) is a P -valued self-similar frag-
mentation process with index a ∈ R if, given (t) = π , the random variable
(t + s) has same law as the random partition whose blocks are those of
πi ∩ (i)(|πi |as), i ≥ 1, where ((i), i ≥ 1) is a sequence of i.i.d. copies of
((t), t ≥ 0).

When a = 0, we recover the definition of standard homogeneous fragmenta-
tions in P . To avoid trivialities, we will only work with nonconstant processes.
We notice that if ((t), t ≥ 0) is a self-similar P -valued fragmentation, then
(|(t)|↓, t ≥ 0) is a self-similar fragmentation with values in S↓, as defined in the
Introduction (and any S↓-valued fragmentation can be represented in this form;
see [7, 9]). Bertoin has shown in [9] that P -valued self-similar fragmentations
are characterized by a triple (a, c, ν), where c ≥ 0 and ν is a dislocation measure
(1) on S↓. Hereafter, we will only be interested in the cases where c = 0 and ν

is conservative (4) (no sudden loss of mass and no erosion). We call (a, ν) the
characteristic pair of such self-similar fragmentations.

There is a useful way to relate self-similar fragmentations to homogeneous frag-
mentations, which is as follows.

LEMMA 5 ([9]). Let (0(t), t ≥ 0) be a standard homogeneous fragmenta-
tion with dislocation measure ν and let a ∈ R. We then define a sequence of time
changes,

η(i)(t) = inf
{
u ≥ 0 :

∫ u

0

∣∣0
(i)(w)

∣∣−a
dw > t

}
, t ≥ 0, i ≥ 1.(17)

Let a(t) be the element of P whose blocks are those of the partitions
0

(i)(η(i)(t)), i ≥ 1. Then:

(i) the process (a(t), t ≥ 0) is a self-similar fragmentation with characteris-
tic pair (a, ν);

(ii) for the size |0
(i)(t)| of the block containing i, the process ξ(i)(t) =

− log |0
(i)(t)|, t ≥ 0 is a pure-jump subordinator with Lévy measure

�(dx) = e−x
∑
i≥1

ν
(
(sj )j≥1 ∈ S↓ :− log si ∈ dx

)
.(18)

Thus, |a
(i)(t)| = exp(−ξ(i)(η(i)(t))), where

η(i)(t) = inf
{
u ≥ 0 :

∫ u

0
eaξ(i)(w) dw > t

}
, t ≥ 0.(19)

We refer to [9] for the proof of this result. Note that because the partitions 0(t)

are refining as t increases, if two of the blocks of the partitions 0
(i)(η(i)(t)), i ≥ 1,

have a common element, then they are equal and the definition of a(t) makes
sense.
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3.2. Trees with edge lengths. Let ((t), t ≥ 0) be a self-similar fragmentation
process with index a. We may then construct a family of random trees TB indexed
by B ⊂f N, defined by TB = t|B , the fragmentation tree associated with the re-
strictions of ((t), t ≥ 0) to B (see Definition 1). The time-change construction of
Lemma 5 provides a coupling of all self-similar fragmentations with same disloca-
tion measure and different indices a ∈ R, all with the same TB . The only difference
lies in the times at which splits occur, which do not appear in TB . These times pro-
vide extra information on the tree associated with a fragmentation process, which
we can interpret as edge lengths associated with the fragmentation tree TB for a
particular index a ∈ R.

A (rooted labeled) tree with edge lengths is a pair ϑ = (t, (ηe, e ∈ E(t))), where
t ∈ TB for some B ⊂f N, E(t) is the set of edges of t and (ηe, e ∈ E(t)) ∈
(0,∞)E(t) are positive marks, interpreted as the lengths of the associated edges.
The tree t is called the shape and we let �B be the set of trees with edge lengths
whose shape is in TB .

Let (π(t), t ≥ 0) be a refining process with values in P , starting at 1N. Assume,
further, that

Di := D{i} = inf
{
s ≥ 0 : {i} ∈ π(s)

}
< ∞ for all i ≥ 1,

so that in particular, π |B(t) = 0B for some finite t . Recall that a vertex v of any
t ∈ TB is naturally identified with the set Bv of labels of the leaves that descend
from v. We are going to make this identification in the sequel.

For B ⊂f N, we let θπ |B ∈ �B be the tree with edge lengths whose shape
is tπ |B and whose edge lengths are ηe = Dv − D¬v whenever e ∈ E(tπ |B ) is
the edge linking a nonroot vertex v and its parent ¬v. Notice that whereas
Dv = inf{t ≥ 0 :|Bv(t) �= 1Bv } for a nonleaf vertex v only depends on |Bv , Di

is defined differently and depends on the whole process (π(t), t ≥ 0) rather than
its restriction to {i} or B .

Now, suppose that ((t), t ≥ 0) is a self-similar fragmentation with dislocation
measure ν and index a < 0. By [9], it holds that 0 < Di < ∞ a.s. for every i and, in
fact, supi≥1 Di < ∞ in that case. Therefore, RB = θ|B is well defined. This tree
was called R(B) in [29], Section 2.3, where it was constructed slightly differently.
We conclude this section by establishing the link between the two presentations.

If ϑ ∈ �B has a root-edge e with length ηe and if x < ηe, then we let ϑ − x be
the element of �B with the same shape and edge lengths, except for the root-edge,
which is assigned length ηe − x. If ϑ1, . . . , ϑr are elements of �B1, . . . ,�Br with
shapes t1, . . . , tr for pairwise disjoint nonempty Bi ⊂f N, and if x > 0, we let

〈ϑ1, . . . , ϑr〉x
be the element of �∪iBi

whose shape is 〈t1, . . . , tr〉, whose root-edge length is x

and whose other edge lengths are inherited from those of ϑ1, . . . , ϑr in the natural
way.
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The trees RB can be recursively described in the following way. Let R{i} have
as shape the only element of T{i} and (single) edge length equal to D{i}. Then let

RB = 〈RB1 − DB, . . . ,RBr − DB〉DB
,

where B1, . . . ,Br are the nonempty blocks of the partition of B induced by
(DB). This is the definition of [29], Section 2.3.

3.3. Continuum trees and fragmentation processes.

3.3.1. R-trees. We now introduce the continuous version of trees that is
needed to deal with continuum random trees, following [4, 19].

An R-tree (τ, d) is a complete separable metric space such that for every x, y ∈
τ :

1. there is an isometry ϕx,y : [0, d(x, y)] → τ such that ϕx,y(0) = x and
ϕx,y(d(x, y)) = y;

2. for every injective path c : [0,1] → τ with c(0) = x, c(1) = y, one has
c([0,1]) = ϕx,y([0, d(x, y)]).

In other words, there exists a geodesic in τ linking any two points and this
geodesic is the only simple path linking these points (up to reparameterization).
We usually denote by [[x, y]] the range of ϕx,y . This is indeed a continuous analog
of the graph-theoretic definition of a tree as a connected graph with no cycle. The
R-trees we will be considering are also rooted, that is, they have a distinguished
element which we denote by ρ.

We say that two rooted R-trees (τ, ρ, d), (τ ′, ρ′, d ′) are equivalent if there exists
an isometry from τ onto τ ′ that sends the ρ to ρ′. We denote by � the set of
equivalence classes of compact rooted R-trees. It has been shown in [19] that �

is a Polish space when endowed with the so-called pointed Gromov–Hausdorff
distance dGH, where, by definition, the distance dGH((τ, ρ), (τ ′, ρ′)) is equal to
the infimum of the quantities

δ(r, r ′) ∨ δH (T , T ′),

where (T , r), (T ′, r ′) are isometric embeddings of (τ, ρ), (τ ′, ρ′) into a common
metric space (M, δ) and δH is the Hausdorff distance between compact subsets of
(M, δ). It is elementary that this distance does not depend on particular choices
in the equivalence classes of (τ, ρ) and (τ ′, ρ′). We endow � with the associated
Borel σ -algebra. In the sequel, by a slight abuse of notation, we will still call
elements of � rooted R-trees, and we will denote them by τ , omitting mention
of the root and the distance d . Also, by a probability measure on an element τ ∈
�, we will mean an equivalence class of a 4-tuple (τ, ρ, d,μ), where we call
(τ, ρ, d,μ) and (τ ′, ρ′, d ′,μ′) equivalent if there exists an isometry from (τ, ρ, d)

to (τ ′, ρ′, d ′) such that μ′ is the push-forward of μ.
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If τ ∈ �, then and for x ∈ τ , we call the quantity d(ρ, x) the height of x. If
x, y ∈ τ , we say that x is an ancestor of y whenever x ∈ [[ρ,y]]. We let x ∧ y ∈ τ

be the unique element of τ such that [[ρ,x]] ∩ [[ρ,y]] = [[ρ,x ∧ y]] and call it
the highest common ancestor of x and y in τ . For x ∈ τ , we denote by τx the set
of y ∈ τ such that x is an ancestor of y. The set τx , endowed with the restriction of
the distance d and rooted at x, is in turn a rooted R-tree called the fringe subtree
of τ rooted at x.

We say that x ∈ τ , x �= ρ, in a rooted R-tree is a leaf if its removal does not
disconnect τ and we let L(τ ) denote the set of leaves of τ . A branch point is an
element of τ of the form x ∧ y, where x is not an ancestor of y, nor vice versa.
It is also characterized by the fact that the removal of a branch point disconnects
the R-tree into three or more components (two or more for the root). We let B(τ )

denote the set of branch points of τ .

3.3.2. Relation with trees with edge lengths, reduced trees. There is a natural
connection between the trees with edge lengths with shape in T

◦
n (resp. TB ) of the

previous sections and rooted R-trees with n leaves (resp. #B leaves labeled by B)
and where the root is not a branch point. If τ is a rooted R-tree with ρ /∈ B(τ ) and
exactly n leaves labeled L1, . . . ,Ln, then we consider the graph whose vertices are
the set V = {ρ} ∪ L(τ ) ∪ B(τ ) and such that two vertices x, y are connected by
an edge if and only if [[x, y]] ∩ V = {x, y}. The resulting graph is a tree which is
naturally rooted at ρ and the edge connecting x and y naturally inherits the length
d(x, y) = |d(ρ, x)−d(ρ, y)|. This construction can be reversed, associating an R-
tree with a tree with edge lengths, for example, by means of Aldous’s sequential
construction [4], page 252.

Also, if t is an element of T
◦
n or TB , one naturally puts edge lengths equal to 1 on

each edge and considers t as an R-tree as well, the restriction of the distance of this
R-tree to the set of branch points, leaves and the root being the usual combinatorial
distance on the vertices of t.

For τ a rooted R-tree and x1, x2, . . . , xn ∈ τ , we let

R(τ, x1, . . . , xn) =
n⋃

i=1

[[ρ,xi]]

be the reduced subtree associated with τ, x1, . . . , xn. It is elementary that
R(τ, x1, . . . , xn) is, in turn, an R-tree, which is naturally rooted at ρ and whose
leaves are included in {x1, . . . , xn} (it might be that xi is not a leaf of the reduced
tree whenever xi is an ancestor of xj for some j �= i, but note that this never
happens if x1, . . . , xn are distinct leaves of τ ). By the discussion of the previ-
ous paragraph, if τ is such that ρ /∈ B(τ ) and if x1, . . . , xn are leaves of τ , then
R(τ, x1, . . . , xn) can also be considered as a tree with edge lengths, whose shape
is in Tn, since the leaves inherit a natural labelling from that of x1, . . . , xn.
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3.3.3. Continuum random trees and fragmentation trees. The fragmentation
trees introduced in [29] are yet another way to consider self-similar fragmentation
processes whose characteristic pair (−γ, ν) satisfies γ > 0. In order to introduce
them, we first need to give some definitions and results on continuum trees, fol-
lowing [4].

We say that a pair (τ,μ) is a continuum tree if τ ∈ � and μ is a probability
measure on τ such that:

1. μ is supported by the set L(τ );
2. μ has no atom;
3. for every x ∈ τ \ L(τ ), μ(τx) > 0.

Notice that continuum trees automatically satisfy a number of properties. For
example, the set L(τ ) must be uncountable (by 1 and 2) and cannot have isolated
points (by 2 and 3).

A continuum random tree (CRT) is a “random variable” whose values are con-
tinuum trees, defined on some probability space (�,A,P). To formalize this, we
should endow the set of continuum trees with a σ -algebra. A natural possibility
would be to use Evans’ and Winter’s separable and complete metric structure [20]
on the space of “weighted R-trees,” although we would have to incorporate the fact
that our trees are rooted. Another, probably even more natural, approach would be
to use the Gromov-weak topology on the set of metric measure spaces introduced
in the recent work of Greven, Pfaffelhuber and Winter [27].

However, for technical simplicity, in this paper, we prefer to follow Aldous [4]
and use the space l1 = l1(N) as a base space for defining our CRTs. Namely, we
endow the set of compact subsets of l1 with the Hausdorff metric, and the set of
probability measures on l1 with any metric inducing the topology of weak conver-
gence, so that the set of pairs (T ,μ), where T is a rooted R-tree embedded as a
subset of l1 and μ is a measure on T , is endowed with the product σ -algebra. Con-
vergence for the Hausdorff metric for subsets of l1 is stronger than convergence
of the associated equivalence classes for the Gromov–Hausdorff topology. In the
sequel, we always keep in mind that the usual probability “operations” such as
conditioning, for example, with respect to μ, and then sampling i.i.d. random vari-
ables with law μ, are done by using this l1-embedded measurable representative
before taking isometric equivalence classes. In this sense, given (T ,μ), we will
call an i.i.d. sequence L1,L2, . . . with common law μ an exchangeable sequence
with directing law μ.

For a > 0 and (τ, ρ(τ ), d) ∈ �, we denote by aτ the element (τ, ρ(τ ), ad)

obtained by scaling distances by a factor a.
For (τ,μ) a continuum tree, we let C1

t ,C2
t , . . . be the connected components

of the open set {x ∈ τ :d(x,ρ(τ )) > t}, ranked so that μ(C1
t ) ≥ μ(C2

t ) ≥ · · · . We
then let σ i

t be the element of τ at height t such that Ci
t ⊂ τσ i

t
. Then τ i

t = Ci
t ∪ {σ i

t }
is a compact R-tree which we root at σ i

t . Notice that τ i
t is equal to τσ i

t
unless

σ i
t ∈ B(τ ).
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DEFINITION 5. A self-similar tree with index −γ < 0 is a continuum random
tree (T ,μ) such that for every t ≥ 0, given (μ(T i

t ), i ≥ 1), the continuum random
trees (

μ(T 1
t )−γ T 1

t ,
μ(· ∩ T 1

t )

μ(T 1
t )

)
,

(
μ(T 2

t )−γ T 2
t ,

μ(· ∩ T 2
t )

μ(T 2
t )

)
, . . .

are i.i.d. copies of (T ,μ).

Again, the last sentence means that there exist i.i.d. copies of a representative of
(T ,μ) embedded in l1, whose isometry classes are those of (μ(T 1

t )−γ T 1
t ,μ(· ∩

T 1
t )/μ(T 1

t )), . . . .

As was shown in [29], Theorem 1, Proposition 1, (laws of) self-similar contin-
uum random trees with index −γ < 0 are in one-to-one correspondence with (laws
of) self-similar fragmentation processes with index −γ , no erosion and no sudden
loss of mass. We briefly describe how the two objects are related.

PROPOSITION 6. Let (−γ, ν) be a characteristic pair with γ > 0. There then
exists a (unique) self-similar CRT (T ,μ) with index −γ such that the following
holds. Given (T ,μ), let L1,L2, . . . be an exchangeable sequence with directing
law μ. For every t ≥ 0, we let (t) be the random element of P such that i and j

are in the same block of (t) if and only if d(ρ(T ),Li ∧ Lj) > t , that is, if and
only if Li and Lj belong to the same element of {T 1

t ,T 2
t , . . .}. Then:

(i) the process ((t), t ≥ 0) is a P -valued self-similar fragmentation with
characteristic pair (−γ, ν) and the process ((μ(T i

t ), i ≥ 1), t ≥ 0) is equal to the
process (|(t)|↓, t ≥ 0), that is, it is an S↓-valued fragmentation process with
characteristic pair (−γ, ν);

(ii) if T (i)
t denotes the element of {T 1

t ,T 2
t , . . .} that contains Li , then the

process (μ(T (i)
t ), t ≥ 0) is equal to (|(i)(t)|, t ≥ 0);

(iii) the reduced tree R(T ,L1, . . . ,Lk) is equal to the tree with edge lengths
R[k], as defined in Section 3.2.

PROOF. (i) It was shown in [29] that there is a unique tree (T ,μ) such that
((μ(T i

t ), i ≥ 1), t ≥ 0) is the S↓-valued fragmentation process with characteristic
pair (−γ, ν). The fact that (μ(T i

t ), i ≥ 1) = |(t)|↓ for every t comes from the
fact that μ is a.s. the limit of the empirical measure on L1,L2, . . . . It is easy to
show that this process is right-continuous and that ((t), t ≥ 0) is a càdlàg P -
valued process, and it follows that ((t), t ≥ 0) is the P -valued fragmentation
process with characteristic pair (−γ, ν). (ii) is immediate from the fact that i and
j are in the same block of (t) if and only if Lj is in T (i)

t and the fact that μ is
a.s. the limit of the empirical measure on the leaves L1, . . . ,Ln as n → ∞. Finally,
(iii) is [29], Lemma 4. �



1808 HAAS, MIERMONT, PITMAN AND WINKEL

4. Asymptotics of discrete fragmentation trees. We now embark on the
proof of Theorem 2. We can obtain a weaker statement of convergence in dis-
tribution by using Aldous’ theorems [4], Theorem 18, Corollary 19 and Remark 4.
With a little more effort, we establish the stronger statement of Theorem 2 that,
in fact, there exists a fragmentation tree defined on the given probability space, to
which the discrete fragmentation trees converge in probability.

It will often be convenient to initially assume the following.

HYPOTHESIS (H). Assume that we are given a probability space support-
ing (T ,μ), a fragmentation tree associated with a self-similar fragmentation
with characteristic pair (−γν, ν), where ν satisfies the assumptions (6), (7). For
simplicity, we let γ = γν . We assume that our probability space also supports
L1,L2, . . . , an exchangeable sample of leaves with directing measure μ. We let
Rk = R(T ,L1, . . . ,Lk) and define a self-similar P -valued fragmentation process
((t), t ≥ 0) with index −γ by the device explained in Proposition 6. Also,
we let (0(t), t ≥ 0) be the homogeneous fragmentation process obtained from
((t), t ≥ 0) by the time-change transformation of Lemma 5. We denote by
ξ(t) = − log |0

(1)(t)|, t ≥ 0 the pure-jump subordinator with Lévy measure (18)
associated by Lemma 5.

We let Tn be the discrete fragmentation tree with n leaves associated with
((t), t ≥ 0) [or (0(t), t ≥ 0)], as in Section 2. The tree Tn is then considered
as an R-tree by assuming that its edges are segments with length 1, in accordance
with the discussion of Section 3.3.2.

To see that Theorem 2 remains true without Hypothesis (H), simply note that
a strongly consistent sequence (T ◦

n ) has the same distribution (as a sequence of
random variables) as if it were constructed under Hypothesis (H). Since conver-
gence in probability for random variables with values in a complete space can be
metrized by a complete distance (see [15], Theorem 9.2.3), we deduce that (T ◦

n ) is
a Cauchy sequence for this distance, and thus converges in probability, because the
set of compact real trees endowed with the Gromov–Hausdorff distance is com-
plete. The distribution of the limit is identified as that of the fragmentation tree T .

We recall that all trees involved in Aldous’ study [4] are subspaces of l1, en-
dowed with the l1-distance, and that convergence of (compact) trees holds with
respect to the Hausdorff distance. Using l1-representatives of the trees Tn and T
(which is always possible; see [29]) and applying Aldous’ asymptotic results will
then lead us to the claimed convergence in the Gromov–Hausdorff sense. More
precisely, using Theorem 18, Corollary 19 and Remark 4 in [4], we see that the
proof of the convergence in distribution for the Gromov–Hausdorff topology,

Tn

nγ �(n)

(d)−→ �(1 − γ )T ,

amounts to the following:
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(i) the leaf-tightness of (Rk, k ≥ 1), that is, min2≤j≤k d(L1,Lj )
(p)→ 0 as k →

∞;
(ii) the (a.s.) compactness of T ;

(iii) the convergence of “finite-dimensional marginals”;
(iv) a tightness criterion, which is stated precisely in Proposition 9 below.

We will obtain the stronger convergence in probability under Hypothesis (H) by
using the particular coupling of the discrete and continuum fragmentation trees,
and establishing an almost sure convergence result in (iii). The tightness estimate
of Aldous then provides the uniform bound that is needed to extend convergence
of finite-dimensional marginals to Gromov–Hausdorff convergence, at the price of
turning the a.s. convergence into convergence in probability.

The two first points are proved in [29], Lemmas 3 and 5. The aim of this section
is therefore to prove the latter two: Section 4.1 is devoted to the convergence of
finite-dimensional marginals and Section 4.2 to the tightness estimate. Section 4.2
also contains the proof of Theorem 2. Finally, Section 4.3 provides an analog of
Theorem 2 for convergence of leaf-height functions.

4.1. Convergence of finite-dimensional marginals. The first step is given by
the following proposition, which contains the convergence of “finite dimensional
marginals” for Theorem 2, but note that we do not need the integrability condi-
tion (7).

PROPOSITION 7. Let ν be a conservative dislocation measure satisfying the
regular variation condition (6), (Tn)n≥1 an associated strongly sampling consis-
tent family of discrete fragmentation trees defined on any probability space. Then
the same probability space also supports Rk so that

n−γ �(n)−1R(Tn, [k]) a.s.−→
n→∞�(1 − γ )Rk,

in the Gromov–Hausdorff sense, for all k ≥ 1.

We observe that the convergence is in the sense of the Gromov–Hausdorff met-
ric, but in the context of trees with edge lengths, there is a simple sufficient con-
dition: finite trees with edge lengths ϑn converge to another finite tree with edge
lengths ϑ if the shape of ϑn is eventually that of ϑ and the edge lengths converge
pointwise. This condition is almost necessary, but there is a complication when
some edge lengths converge to zero and shapes oscillate—this will be irrelevant
here.

A key ingredient is provided by the following lemma.

LEMMA 8 ([26]). Let ξ = (ξt , t ≥ 0) be a pure-jump subordinator with Lévy
measure � satisfying

�([x,∞)) = x−γ �(1/x), x ↓ 0.(20)
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Let V1,V2, . . . be a sequence of nonnegative random variables which conditionally
given ξ are independent and identically distributed with

P(Vi > v) = exp(−ξv), v ≥ 0,

and for s ≥ 0, let

Kn(s) := #{Vi : 1 ≤ i ≤ n,Vi ≤ s},
which is the number of distinct values among the Vi : 1 ≤ i ≤ n with Vi ≤ s. Then

lim
n→∞ sup

0≤s≤∞

∣∣∣∣ Kn(s)

nγ �(n)
− �(1 − γ )

∫ s

0
exp(−γ ξv) dv

∣∣∣∣= 0 a.s.(21)

and hence for every random variable S with values in [0,∞],

lim
n→∞

Kn(S)

nγ �(n)
= �(1 − γ )

∫ S

0
exp(−γ ξv) dv a.s.(22)

PROOF. The joint distribution of the two processes (Kn(s), s ≥ 0) and (ξt , t ≥
0) is the same as if V1,V2, . . . were more specifically of the form Vi = inf{v ≥
0 : e−ξv < Ui}, where U1,U2, . . . is a sequence of independent uniform (0,1) vari-
ables independent of ξ . Then Kn(s) is, as in [26], the minimal number of open in-
tervals of the form (exp(−ξv), exp(−ξv−)), v ≤ s, containing Ui,1 ≤ i ≤ n [with
Ui ≥ exp(−ξs)].

If P(S = s) = 1 for some fixed s ∈ [0,∞], then the conclusion (22) is read from
[26], Theorem 4.1, as indicated [26], Corollary 5.2, in the case s = ∞. The uniform
convergence (21) follows by a standard pathwise argument, using the facts that the
process (Kn(s), s ≥ 0) is increasing in s for each n and that the limit process
(
∫ s

0 exp(−γ ξv) dv, s ≥ 0) has continuous paths. �

PROOF OF PROPOSITION 7. Recall that the discrete tree Tn is also consid-
ered as an R-tree by letting its edge lengths all be 1, so we may consider reduced
trees of the form R(Tn, x1, . . . , xk) where x1, . . . , xk are vertices of Tn. We let
R(Tn,B) be the reduced tree of Tn spanned by the root and the vertices labeled
by B . By exchangeability of the partition-valued process ((t), t ≥ 0), it is plain
that R(Tn,L

n
1, . . . ,L

n
k) has same law as R(Tn,B) for any B with #B = k and

n ≥ maxB . We are going to show that almost surely, for every finite B ⊂ N,

n−γ �(n)−1R(Tn,B)
a.s.−→

n→∞�(1 − γ )R(T , {Li, i ∈ B}).(23)

Notice that the shape of R(Tn,B) is exactly TB , as in Definition 3, although the
edge lengths are different from 1 in general.

Now, assume Hypothesis (H). Consider the case k = 1. By exchangeability, it
is enough to discuss B = {1}. Let Dn

1 be the (combinatorial) distance between the
root of Tn and {1}. By construction of Tn, we see that Dn

1 − 1 is the number of



CONTINUUM TREE ASYMPTOTICS OF DISCRETE FRAGMENTATIONS 1811

fragmentations that the block of (0|n(t), t ≥ 0) containing 1 undergoes from [n]
to {1}. Similarly,

Dn
1 − 1 = #{L1 ∧ Li,2 ≤ i ≤ n} = #

{
d
(
ρ(T ),L1 ∧ Li

)
,2 ≤ i ≤ n

}
,(24)

which is the number of branch points of R(T ,L1, . . . ,Ln) located on [[ρ(T ),

L1]]. Conditionally given (T ,μ) and L1, the random variables d(ρ(T ),L1 ∧ Li),
i ≥ 2, are independent and identically distributed with

P
(
d
(
ρ(T ),L1 ∧ Li

)
> t |T ,μ,L1

)= μ
(
T (1)

t

)= ∣∣(1)(t)
∣∣= ∣∣0

(1)

(
η(1)(t)

)∣∣,
where, according to (ii) in Proposition 6 and Lemma 5, the process η(1) is the
inverse of the process

η−1
(1) : t �−→

∫ t

0

∣∣0
(1)(s)

∣∣γ ds.

Moreover, ξ := (− log |0
(1)(t)|, t ≥ 0) is a pure-jump subordinator with Lévy

measure defined in (18). Since the time-change η(1) is continuous and strictly in-
creasing, we also see that

Dn
1 − 1 = #{Vi,2 ≤ i ≤ n}, where Vi = η(1)

(
d(ρ(T ),L1 ∧ Li)

)
(25)

so that, conditionally given (T ,μ) and L1, the Vi for i ≥ 2 are independent and
identically distributed with

P(Vi > v|T ,μ,L1) = exp(−ξv).

The desired conclusion that

n−γ �(n)−1Dn
1

a.s.−→
n→∞�(1 − γ )

∫ ∞
0

exp(−γ ξs) ds = η−1
(1)(∞) = D1

is now read from (22) with S = ∞.
Next, assume that (23) holds for every B with #B = k. We show that it then

holds for #B = k + 1. Again by exchangeability, it is enough to discuss the case
B = [k + 1]. Let D[k+1] be the first time t when [k + 1] is not included in a block
of (t) so that D[k+1] is, by definition, the length of the edge adjacent to the root
in R(T ,L1, . . . ,Lk+1), that is, the height of L1 ∧ L2 ∧ · · · ∧ Lk+1. Similarly, we
let D0[k+1] be the analogous time, but for the process (0(t), t ≥ 0). By the time-

change correspondence between  and 0 (Lemma 5), if ξt = − log |0
(1)(t)|, t ≥

0, we know that

D[k+1] =
∫ D0[k+1]

0
e−γ ξs ds.

Let Dn[k+1] be the height of the first branch point in R(Tn, {1}, . . . , {k + 1}).
Then Dn[k+1] − 1 is the number of fragmentation events undergone by |n(t), 0 ≤
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t ≤ D[k+1]. This is also the number of distinct branch points of R(T ,L1, . . . ,Ln)

belonging to R(T ,L1, . . . ,Lk+1) with height ≤ D[k+1], that is,

Dn[k+1] − 1 = #
{
L1 ∧ Li, k + 2 ≤ i ≤ n,d

(
ρ(T ),L1 ∧ Li

)≤ D[k+1]
}

(one could use any Lj , j ≤ k + 1, instead of L1 in this formula). By the same
argument used for k = 1,

Dn[k+1] − 1 = #
{
Vi, k + 2 ≤ i ≤ n,Vi ≤ D0[k+1]

}
where Vi = η(1)

(
d
(
ρ(T ),L1 ∧ Li

))
,

as before. Formula (22) applied with S = D0[k+1] now yields

n−γ �(n)−1Dn[k+1]
a.s.−→

n→∞�(1 − γ )

∫ D0[k+1]

0
e−γ ξs ds = �(1 − γ )D[k+1],(26)

so the renormalized length of the root-edge of R(Tn, {1}, . . . , {k + 1}) converges
to the length of the root-edge of R(T ,L1, . . . ,Lk+1), up to the renormalization
factor �(1 − γ ).

Next, let π = 0|k+1(D
0[k+1]), with nonempty blocks π1, . . . , πr . Recalling the

notation of Sections 3.2 and 3.3.2, we have

R(Tn, [k + 1]) = 〈
R(Tn,π1) − Dn[k+1], . . . ,R(Tn,πr) − Dn[k+1]

〉
Dn[k+1]

because Dn[k+1] is the height of the first branch point of R(Tn, [k + 1]), while
πi ⊂ [k + 1]. For the same reason,

R(T , {L1, . . . ,Lk+1})
= 〈

R(T , {Li, i ∈ π1}) − D[k+1], . . . ,R(T , {Li, i ∈ πr}) − D[k+1]
〉
D[k+1] .

Now, condition on the first split π . The conclusion follows from (26) and the in-
duction hypothesis, which implies that for 1 ≤ i ≤ r ,

n−γ �(n)−1R(Tn,πi)
a.s.−→

n→∞�(1 − γ )R(T , {Lj , j ∈ πi}).
This completes the proof under Hypothesis (H). Note, however, that the joint

distribution of (Tn)n≥1 as a sequence of �-valued random variables is the same
under Hypothesis (H) as in the apparently more general setting of Proposition 7.
Since � is complete, we conclude that also in the setting of Proposition 7, there
exists a tree Rk on the given probability space to which the rescaled R(Tn, [k])
converge a.s. �

4.2. Tightness estimate. The aim of this subsection is to prove the forthcoming
tightness estimate (Proposition 9).
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PROPOSITION 9. For k ≤ n, let

�(n, k) := max
1≤i≤n

dn

({i},R(Tn, {1}, . . . , {k})),
dn being the metric associated with the tree Tn. Then, under the hypotheses of
Theorem 2, for each η > 0,

lim
k→∞ lim sup

n→∞
P

(
�(n, k)

�(n−1)
> η

)
= 0.

Before we give the proof of this proposition, let us deduce Theorem 2.

PROOF OF THEOREM 2. First, assume Hypothesis (H). Fix ε, η > 0 and
choose k large enough that P(�(1 − γ )dGH(Rk,T ) > η) < ε (we know from [29]
that l1-representatives of Rk converge to T a.s. as k → ∞; Hausdorff convergence
in l1 implies Gromov–Hausdorff convergence) and

lim sup
n→∞

P
(
dGH(R(Tn, {1}, . . . , {k}), Tn) > �(n−1)η

)
< ε

(such k exists by Proposition 9). Then for n sufficiently large,

P
(
dGH(R(Tn, {1}, . . . , {k}), Tn) > �(n−1)η

)
< ε

and also

P
(
dGH

(
R(Tn, {1}, . . . , {k})/�(n−1),�(1 − γ )Rk

)
> η

)
< ε

since R(Tn, {1}, . . . , {k})/�(n−1) converges a.s. to �(1 − γ )Rk as n → ∞ (see
Proposition 7). Hence, for n sufficiently large, P(dGH(Tn/�(n−1),�(1 − γ )T ) >

3η) < 3ε. This completes the proof for the setting of this section, where Tn, n ≥
1, are derived from an exchangeable sample of leaves L1,L2, . . . with directing
measure μ of a given CRT (T ,μ). If we do not assume (H), then we argue, as
at the end of the proof of Proposition 7, that for any probability space supporting
(Tn, n ≥ 1), there exists a random R-tree T(γν,ν) on the same probability space, to
which the rescaled Tn converge in probability. �

The proof of Proposition 9 which we postponed is given in Section 4.2.2, Sec-
tion 4.2.1 being devoted to the proof of key intermediate results (Lemma 10 and
its Corollary 11). We will work under Hypothesis (H), without loss of generality.

4.2.1. A key lemma. Throughout, we consider a fixed ν. Implicitly, the con-
stants appearing in this section may depend on ν. Note that the conditions (6) and
(7) satisfied by ν imply that the tail � of the Lévy measure � [defined in (18)],
that is, �(x) = ∫∞

x �(dy), x > 0, satisfies both the regular variation condition
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�(x) ∼ x−γ �(1/x) as x → 0 and
∫∞

xρ�(dx) < ∞. We may, and will, also as-
sume, without loss of generality, that 0 < ρ < γ . We claim that this implies the
existence of some finite constant C� > 0 such that

�(xy) ≤ C��(x)y−ρ for all y ≥ 1,0 < x ≤ 1.(27)

To see this, choose δ < γ −ρ and note that Potter’s theorem ([11], Theorem 1.5.6)
implies the existence of some X > 0 such that for x ∈ (0,1], y ≥ 1 with xy ≤ X,
we have

�(xy)/�(x) ≤ 2yδ−γ ≤ 2y−ρ.

On the other hand, if x ∈ (0,1] and xy ≥ X, we have

�(xy) ≤ (xy)−ρ
∫ ∞
X

zρ�(dz),

where the last integral is finite, while x−ρ ≤ C′
��(x) for some constant C′

� > 0
because x−ρ/�(x) is regularly varying with exponent γ − ρ > 0 at 0 and is hence
bounded on (0,1]. The estimate (27) will be useful in the sequel.

Let Hn be the height of the tree Tn, that is, Hn := max1≤i≤n Dn
i , where Dn

i

denotes the height of the leaf {i} (i.e., its distance to the root) in the tree Tn.

LEMMA 10. There exists a random variable X∞, with positive moments of
all orders, such that, for all p ≥ 2/γ , there exists a constant Cp such that, for all
x ≥ 1 and all integers n,

P
(
Hn > (1 + x)2X∞�(n−1)

)≤ Cp

xp
.

COROLLARY 11. For all a > 0 and p ≥ 2/γ , there exists some constant Cp,a

such that, for all x ≥ 1 and all integers n,

P
(
Hn > ax�(n−1)

)≤ Cp,a

xp
.

PROOF. We simply use the fact that

P
(
Hn > ax�(n−1)

)≤ P
(
Hn > ax�(n−1), ax ≥ (1 + √

x
)
2X∞

)
+ P

((
1 + √

x
)
2X∞ > ax

)
,

then bound the right-hand side from above side using the upper bound of Lemma
10 for the first probability and the fact that E[X2p∞ ] is finite for the second proba-
bility. �

The main idea needed to prove Lemma 10 is to transfer the problem on the tail
of Hn onto a problem on the tail of Dn

1 , using Hn = max1≤i≤n Dn
i . Indeed, for all
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(random) sequences (Xi)i≥1 such that the random variables (Dn
i ,Xi), 1 ≤ i ≤ n,

are identically distributed, one has

P(Hn > X∞x) ≤ nP(Dn
1 > X1x) ∀x ≥ 0,

where X∞ := supi≥1 Xi . Therefore, it is sufficient to find random variables Xi , i ≥
1, whose supremum possesses moments of all positive orders and then a suitable
upper bound for the tail of Dn

1 to conclude. This is the goal of the remainder of
this subsection. Define Xi by

Xi := (1 + Aγ )C�

∞∑
k=0

exp(−ρξ i
k) + 1,

where

Aγ := 2
∞∑

k=1

(k + 1)
√

γ

k(k + 1)
< ∞,

since γ ∈ (0,1), and ξ i is the subordinator describing the evolution of the sizes of
the blocks containing i in the fragmentation 0, as explained in Lemma 5. Clearly,
(Dn

i ,Xi), 1 ≤ i ≤ n, are identically distributed (by exchangeability) and

X∞ = sup
i≥1

Xi ≤ (1 + Aγ )C�(1 + ζρ) + 1,

where

ζρ := sup
i≥1

∫ ∞
0

exp(−ρξ i
t ) dt

is (in distribution) the first time at which a self-similar fragmentation with para-
meters (−ρ, ν) reaches the trivial partition {{1}, {2}, . . .} (in others words, it is the
height of the associated fragmentation tree). It was proven in [28] (Proposition 14)
that ζρ (hence X∞) has exponential moments. Lemma 10 is therefore an immedi-
ate consequence of the following result.

LEMMA 12. For all p ≥ 0, there exists a constant C′
p such that for all x ≥ 1

and all integers n,

P
(
Dn

1 > (1 + x)2X1�(n−1)
)≤ C′

p

xpnγp−1 .

The remainder of this subsection is devoted to the proof of this lemma. To sim-
plify the notation, we omit the index 1 wherever we can (i.e., ξ now stands for ξ1,
X for X1). We also set Dn := Dn+1

1 −1 for the number of internal vertices between
the root and leaf {1} in Tn+1. Since Dn+1

1 ≤ 2Dn and �(n−1) ≤ �((n+ 1)−1), the
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upper bound stated in Lemma 12 is a consequence of the existence of some con-
stant C′′

p such that for all x ≥ 1 and all integers n,

P
(
Dn > (1 + x)X�(n−1)

)≤ C′′
p

xpnγp−1 .(28)

To prove this latter inequality, we proceed in three steps.
Let Nx(s, t) denote the number of jumps of ξ of size at least x in the time

interval [s, t], Ñx(s, t) denote the number of jumps of 1 − exp(−ξ) of size at least
x in the same time interval and Ñx := Ñx(0,∞).

Step 1. Large deviations for Ñx . The regular variation of � at 0 ensures that
Ñx ∼ �(x)D a.s. as x → 0, where D = ∫∞

0 exp(−γ ξt ) dt (Theorem 5.1, [26]).
The goal of this first step is to give some kind of large deviations result on this
convergence.

LEMMA 13. For all x > 0 and 0 < y ≤ 1,

P

(
Ñy > (1 + x)C�

∞∑
i=0

(exp(−ρξi))�(y)

)
≤ exp(−ax�(y)),

where ax := (1 + x) ln(1 + x) − x > 0.

PROOF. Let Ft denote the σ -field generated by ξ until time t and F the one
generated by ξ , and observe that

Ñy =
∞∑
i=0

Ñy(i, i + 1) ≤
∞∑
i=0

Ny exp(ξi )(i, i + 1).

Conditional on Fi , Ny exp(ξi )(i, i + 1) is a Poisson random variable with mean
�(y exp(ξi)). But for any Poisson random variables P with mean λ, one has

E
[
exp
(
tP − (1 + x)tλ

)]= exp
((

exp(t) − 1 − (1 + x)t
)
λ
) ∀t ∈ R.

In particular, when t = ln(1 + x), exp(t)− 1 − (1 + x)t = −ax < 0 and the expec-
tation is smaller than 1. Hence, for all n ∈ N, using (27) for the first inequality, we
get, for all y ≤ 1,

P

(
n∑

i=0

Ny exp(ξi )(i, i + 1) ≥ (1 + x)C�

n∑
i=0

exp(−ρξi)�(y)

)

≤ P

(
n∑

i=0

Ny exp(ξi )(i, i + 1) ≥ (1 + x)

n∑
i=0

�(y exp(ξi))

)

≤ E

[
exp

(
t

(
n∑

i=0

(
Ny exp(ξi )(i, i + 1) − (1 + x)�(y exp(ξi))

)))]
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≤ E

[
exp

(
t

(
n−1∑
i=0

· · ·
))

E
[
exp
(
t
(
Ny exp(ξn)(n, n + 1)

− (1 + x)�(y exp(ξn))
))|Fn

]]

≤ · · · ≤ exp(−ax�(y)),

the last line being obtained by induction: at each step but the last, we use the upper
bound 1 for the (conditional) expectation and for the last step, we use the upper
bound exp(−ax�(y)) for the expectation E[exp(t (Ny(0,1) − (1 + x)�(y)))]. It
remains to let n → ∞ in the first probability involved in the above sequence of
inequalities and to use Fatou’s lemma. �

Step 2. Large deviations for E[Dn|F ]. We now establish a result similar to
the required inequality (28), but for the quantity E[Dn|F ], where F = F∞ is the
σ -field generated by the whole subordinator ξ [recall that we work under Hypoth-
esis (H)].

LEMMA 14. Let Bγ :=∑∞
k=1 exp(−4−1a1k

γ/2) with a1 = 2 ln 2−1. Then for
all x ≥ 1 and all integers n large enough,

P
(
E[Dn|F ] > (1 + x)(X − 1)�(n−1)

)≤ (1 + Bγ ) exp(−4−1a1x�(n−1)).

PROOF. According to the formula (4) of [26],

E[Dn|F ] = n

∫ 1

0
(1 − y)n−1Ñy dy ≤ Ñ1/n + n

∫ 1/n

0
Ñy dy.

Hence, setting S := C�

∑∞
i=0 exp(−ρξi),

P
(
E[Dn|F ] > (1 + x)(1 + Aγ )S�(n−1)

)
≤ P

(
Ñ1/n > (1 + x)S�(n−1)

)
+ P

(
n

∫ 1/n

0
Ñy dy > (1 + x)Aγ S�(n−1)

)
.

The first probability in the right-hand side is smaller than exp(−ax�(n−1)), ac-
cording to Lemma 13. To bound the second probability, we use n

∫ 1/kn
1/(k+1)n Ñy dy ≤

Ñ1/(n(k+1))
1

k(k+1)
, which gives

P

(
n

∫ 1/n

0
Ñy dy > Aγ (1 + x)S�(n−1)

)

≤
∞∑

k=1

P
(
Ñ1/n(k+1) > 2(k + 1)

√
γ (1 + x)S�(n−1)

)
.
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Since � is regularly varying at 0 with index −γ , we have, provided n is large
enough, that �(n−1)(k + 1)γ /2 ≤ 2�(((k + 1)n)−1) and �(((k + 1)n)−1) ≤
2�(n−1)(k + 1)

√
γ for all k ≥ 1 (to see this, use, e.g., Potter’s theorem, Theo-

rem 1.5.6, [11]). Combined with Lemma 13, this implies that the above sum of
probabilities is smaller than

∞∑
k=1

exp
(−ax�

((
(k + 1)n

)−1))≤ ∞∑
k=1

exp
(−2−1ax�(n−1)(k + 1)γ /2).

Last, the exponential in the latter sum can be split in two, using (k + 1)γ /2 ≥
2−1(kγ/2 + 1), to get the upper bound

exp(−4−1ax�(n−1))

∞∑
k=1

exp(−ax4−1�(n−1)kγ/2),

which is smaller than exp(−4−1a1x�(n−1))Bγ for all x ≥ 1 (ax ≥ a1x for x ≥ 1)
and n large enough. �

Step 3. Proof of inequality (28). To start with, fix x ≥ 1, n ∈ N, and note that

P
(
Dn > (1 + x)X�(n−1)

)≤ P
(
E[Dn|F ] > (1 + x)(X − 1)�(n−1)

)
(29)

+ P
(
Dn − E[Dn|F ] > (1 + x)�(n−1)

)
.

Lemma 14 gives an upper bound for the first probability, provided n is large
enough. To get an upper bound for the second probability, we use a result on urn
models (Devroye [12], Section 6) which ensures that

P(Dn − E[Dn|F ] > y|F ) ≤ exp
(
− y2

2E[Dn|F ] + 2y/3

)
∀y ≥ 0, n ∈ N.

This implies that for all m ≥ 1, there exists some deterministic constant Bm de-
pending only on m such that

P
(
Dn − E[Dn|F ] > (1 + x)�(n−1)|F )

≤ Bm

(
E[Dn|F ] + (1 + x)�(n−1)

((1 + x)�(n−1))2

)m

≤ 2m−1Bm

(E[Dn|F ])m + ((1 + x)�(n−1))m

((1 + x)�(n−1))2m

≤ 2m−1Bm

E[Dm
n |F ] + ((1 + x)�(n−1))m

((1 + x)�(n−1))2m
,

the last line being obtained by Jensen’s inequality. We then take expectations on
both sides of the resulting inequality. Theorem 6.3 of [26] ensures that E[Dm

n ] ∼
(�(n−1))m (up to a constant). Therefore, we have

P
(
Dn − E[Dn|F ] > (1 + x)�(n−1)

)≤ Bm,�

(
(1 + x)�(n−1)

)−m
,(30)
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where Bm,� depends only on m and �.
Next, recall the upper bound given by Lemma 14 for the first probability in-

volved in the right-hand side of (29). Together with the upper bound (30), it leads
to the existence of B ′

m,� such that

P
(
Dn > (1 + x)X�(n−1)

)≤ B ′
m,�x−m(�(n−1))−m

for all x ≥ 1 and n large enough, say n ≥ n0. Since �(n−1) ∼ nγ �(n) when n →
∞, this upper bound is, in turn, bounded from above by x−mn1−γm, up to some
constant, which is the required result (28).

Finally, inequality (28) is also true when n ≤ n0 (for all x ≥ 1) since Dn ≤
n ≤ n0 and X ≥ 1, and therefore the probability P(Dn > (1 + x)X�(n−1)) is null
whenever 1 + x ≥ n0(�(1))−1.

4.2.2. Proof of Proposition 9. The crucial point is that

�(n, k) = max
j≥1

H
n

k,n
j

,

where the n
k,n
j and H

n
k,n
j

, 1 ≤ k ≤ n, j ≥ 1, are defined as follows. Let (i)(t)

denote the block of (t) containing i, i ≥ 1. Then for all k ≥ 1, introduce

tki := inf
{
t ≥ 0 :(i)(t) ∩ [k] = ∅

}
,

the first time at which the fragment containing i is disjoint from [k] (in particular,
tki = ∞ for 1 ≤ i ≤ k). For all t ≥ 0, the collection of blocks ((i)(t

k
i + t), i ≥

k + 1) induces a partition, denoted (tk + t), of N \ [k] and each j(t
k + t)

admits asymptotic frequencies, as (tk + t) is an exchangeable partition of N\[k].
We call n

k,n
j the cardinality of j(t

k) ∩ [n] and λk
j the a.s. limit of n

k,n
j /n as

n → ∞. Clearly, λk
max := maxj≥1 λk

j → 0 a.s. as k → ∞.

Then let G(k) be the σ -field generated by (tk). In the terminology of Bertoin
([10], Definition 3.4), the sequence (tki , i ∈ N) is a stopping line and, as such,
satisfies the extended branching property ([10], Lemma 3.14) which ensures that
given G(k), the process ((tk + t), t ≥ 0) is a fragmentation process starting from
(tk). This implies that given G(k), the discrete fragmentation trees, with re-
spectively n

k,n
1 , n

k,n
2 , . . . leaves, associated with the fragmentations of the blocks

j(t
k), j ≥ 1, evolve independently as n → ∞ with laws respectively distributed

as T
n

k,n
j

, j ≥ 1. In particular, given G(k), the respective heights of those trees,

H
n

k,n
j

, j ≥ 1, are independent and distributed as H
n

k,n
j

, j ≥ 1.

Let η > 0. We now turn back to our goal, which is to prove that

lim
k→∞ lim inf

n→∞ P
(
�(n, k) ≤ η�(n−1)

)= 1.
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Note that first applying dominated convergence (for the limit in k, everything is
bounded by 1) and then Fatou’s lemma (for the lim inf in n), it is sufficient to show
that

lim
k→∞ lim inf

n→∞ P
(
�(n, k) ≤ η�(n−1)|G(k)

)→ 1 a.s.

According to the discussion above,

P
(
�(n, k) ≤ η�(n−1)|G(k)

)= ∏
j≥1

P
(
H

n
k,n
j

≤ η�(n−1)|G(k)
)

and our goal turns into the proof of

lim
k→∞ lim inf

n→∞
∑
j≥1

ln
(
1 − P

(
H

n
k,n
j

> η�(n−1)|G(k)
))= 0.

For the rest of the argument, we may consider that n
k,n
j , λk

j , j ≥ 1, are deterministic

and drop the conditioning on G(k) from the notation. Let p > max(ρ−1,2/γ ). By
inequality (27), for all j, k, n ≥ 1 such that n

k,n
j �= 0,

C��(n−1) ≥
(

n

n
k,n
j

)ρ

�((n
k,n
j )−1).

Corollary 11 then ensures that

P
(
H

n
k,n
j

> η�(n−1)
)≤ Cp,�,η

(n
k,n
j

n

)pρ

,

where Cp,�,η, depends only on p, � and η, for all i, k, n ≥ 1, with the convention
H0 := 0.

In the rest of the proof, we choose k large enough, say k ≥ k0, so that λk
max ≤

(2(2Cp,�,η)
1/pρ)−1. Then consider some integer jk such that

∑
j≥jk

λk
j ≤ λk

max.

Since n
k,n
j /n → λk

j as n → ∞ for all j ≥ 1 and also
∑

j≥jk
n

k,n
j /n →∑

j≥jk
λk

j ,

there exists an integer nk such that for all n ≥ nk , n
k,n
j /n ≤ 2λk

j , 1 ≤ j < jk , and∑
j≥jk

n
k,n
j /n ≤ 2λk

max. In particular, n
k,n
j /n ≤ 2λk

max for all j ≥ 1. Consequently,
using the fact that | ln(1 − x)| ≤ 2x when 0 < x ≤ 1/2, we have for all n ≥ nk ,

∑
j≥1

∣∣ ln(1 − P
(
H

n
k,n
j

> η�(n−1)
))∣∣≤ 2Cp,�,η

∑
j≥1

(n
k,n
j )pρ

npρ

≤ 2Cp,�,η

( jk∑
j=1

(n
k,n
j )pρ

npρ
+ (2λk

max)
pρ

)
.

The parenthesis in the upper bound converges to (
∑ik

i=1(λ
k
i )

pρ + (2λk
max)

pρ) as

n → ∞, which is smaller than (λk
max)

pρ−1(1 + 2pρ) (since
∑ik

i=1 λk
i ≤ 1). The

result follows since λk
max → 0 as k → ∞.
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4.3. Height functions. The aim of this section is to provide an analog of The-
orem 2 for a family of functions coding the heights of leaves in ordered versions
of the trees. In the special case of beta-splitting models, this convergence of leaf-
height functions was suggested, but not proven, by Aldous [1].

The ordered version of Tn is obtained by putting the set of children of every
nonleaf vertex of Tn in exchangeable random order, independently over distinct
vertices and conditionally on Tn. This is usually achieved by taking (rooted) planar
embeddings of the trees, where the order among children of a vertex is read from
the clockwise ordering of edges going from the vertex to its children. We then
define the order �n as a linear order on the leaves {1}, . . . , {n} of Tn by saying that
{i} �n {j} if the subtree pending from the most recent common ancestor {i} ∧ {j}
of {i} and {j} that contains {i} comes before the subtree pending from {i} ∧ {j}
that contains {j}.

If (Tn, n ≥ 1) is a strongly consistent family of trees, we also want the orders
(�n, n ≥ 1) to satisfy a consistency property, namely, the restriction of �n+1 to
{1}, {2}, . . . , {n} is �n. With our interpretation of ordered trees as planar embed-
dings, this means that the embeddings are drawn consistently. This can be achieved
inductively as follows, starting from �1, the trivial order on {{1}}. Suppose we are
given Tn+1 and �n. Denote by b({n + 1}) the father of {n + 1} in Tn+1. For any
nonleaf vertex v of Tn+1 distinct from b({n + 1}), the children of v are ordered in
the same way for Tn,�n. Hence, the restriction to {1}, . . . , {n} of �n+1 must be
�n.

Next, two possibilities occur: either b({n + 1}) was already a vertex of Tn or
b({n + 1}) is a newly added vertex in Tn+1 with two offspring.

• If b({n+1}) is a vertex of Tn with r children ordered as c1, . . . , cr , we let {n+1}
be the j th son of b({n + 1}) in Tn+1, 1 ≤ j ≤ r + 1, with equal probability
1/(r + 1), and the order of the other children is preserved.

• Otherwise, b({n + 1}) must have a unique son c besides {n + 1} in Tn+1 and we
let {n + 1} be placed before or after c with equal probability 1/2.

Note that �n naturally extends to a linear order on Tn by letting v �n w if
either v is an ancestor of w or v ∧ w = {i} ∧ {j} for some leaves {i}, {j} such that
{i} �n {j}. This corresponds to the usual depth-first search order for rooted planar
trees.

For each n ≥ 1, we associate with the ordered tree T ord
n = (Tn,�n) its leaf-

height function hn, defined on [0,1] by hn(0) := 0, hn(1) := 0 and, for 1 ≤ i ≤ n,

hn

(
i

n + 1

)
:= height of the ith leaf (in the left-to-right ordering),

with linear interpolation. In general, the leaf-height function does not encode the
full shape of the discrete tree and, more precisely, leaves some ambiguity where
there are multiple branch points (e.g., the two possible unlabeled ordered trees
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with five leaves, all at distance 3 from the root vertex, are not distinguished by the
leaf-height process).

Similarly, but fully encoding, a continuous height function h : [0,1] → R
+,

h(0) = h(1) = 0, can be associated with the limiting fragmentation tree T .
Roughly, the construction of h proceeds as follows (for details, we refer to The-
orem 3 and Section 4.1 of [29], where it is more precisely proved that any frag-
mentation tree with an infinite dislocation measure—which is the case here—can
be encoded into such continuous function). For each k,n such that k ≤ n, let
In
k ∈ {1, . . . , n} be the position of the leaf {k} among the leaves of Tn, with re-

spect to the left-to-right ordering �n. Then define

Uk := lim
n→∞

In
k

n + 1
.

These limits exist a.s. and the Uk , k ≥ 1, are i.i.d. uniformly distributed on [0,1].
The height function h is then defined on {Uk, k ≥ 1} by h(Uk) :=height of {k}
in T and its definition can be extended continuously to [0,1]. The tree T can
be recovered from h: it is isometric to the quotient space ([0,1], d)/ ∼, where
d(x, y) := h(x) + h(y) − 2 infz∈[x,y] h(z) and x ∼ y ⇔ d(x, y) = 0. An order �
on the leaves of T is then implicitly given by the natural order on [0,1]: let x, y ∈
[0,1]; if their images x, y by projection on the quotient space are leaves, then
x ≤ y ⇔ x � y. Further, according to Theorem 4 of [29], the function h is a.s.
Hölder-continuous of any order θ < γ , but not of order θ > γ when ν integrates
s−1

1 .
The a.s. convergence in Proposition 7 gives us a first connection between hn

and h; namely, for all k,

n−γ �(n)−1
(
hn

(
In

1

n + 1

)
, . . . , hn

(
In
k

n + 1

))
(31)

a.s.−→
n→∞�(1 − γ )(h(U1), . . . , h(Uk)).

More precisely, the following holds.

THEOREM 15. In the situation of Theorem 2,(
hn(t)

nγ �(n)

)
0≤t≤1

(p)−→
n→∞

(
�(1 − γ )h(t)

)
0≤t≤1

for the uniform norm on the space of continuous functions on [0,1].

PROOF. Let hn := hn/nγ �(n)�(1 − γ ) and note that the convergences (31)
imply that the only possible uniform limit (in distribution) for subsequences of hn

is h. Similarly to the proof of Theorem 2, we can strengthen (31) into convergence
in probability for the uniform norm, by using a certain uniform estimate. This is
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inspired by a tightness estimate used the proof of Aldous [4], Theorem 20 for
convergence of contour functions.

Fix k ≤ n and consider the order statistics I
n,k
(i) ,1 ≤ i ≤ k, of In

k ,1 ≤ i ≤ k. Also

let I
n,k
(0) := 0, I

n,k
(k+1) := n + 1. Then introduce

w0
k(hn) := max

0≤i≤k
sup

t∈[In,k
(i) /(n+1),I

n,k
(i+1)/(n+1)]

∣∣hn(t) − hn

(
I

n,k
(i) /(n + 1)

)∣∣.
Our goal is to prove that

lim
k→∞ lim sup

n→∞
P
(
w0

k(hn) > η
)= 0 ∀η > 0,(32)

which is the analog of formula (30) of Aldous [4], Theorem 20, with α = 0 there.
Following the last lines of the proof of Aldous, one sees that (32) implies the
tightness of (hn, n ≥ 1).

To get (32), first note that

w0
k(hn) ≤ max

0≤i≤k

∣∣∣∣ max
t∈[In,k

(i) /(n+1),I
n,k
(i+1)/(n+1)]

hn(t) − min
t∈[In,k

(i) /(n+1),I
n,k
(i+1)/(n+1)]

hn(t)

∣∣∣∣
≤ max

0≤i≤k
|dn({qn,k,i

max }, {qn,k,i
min })|,

where dn is the metric associated with the real trees Tn/(n
γ �(n)�(1 − γ )) and

{qn,k,i
max } is the leaf of Tn that has the highest height among the leaves {j} of Tn

such that {In,k
(i) } �n {j} �n {In,k

(i+1)}, where, by convention, both {In,k
(0) } and {In,k

(k+1)}
denote the root ρ(T ) of T . Similarly, among these leaves, {qn,k,i

min } is the one that
has the lowest height. Then define vn,k,i

max in Rn
k := R(Tn, {1}, . . . , {k}) by

dn({qn,k,i
max }, vn,k,i

max ) = dn({qn,k,i
max },Rn

k )

and define similarly v
n,k,i
min . Now, fix ε, η > 0. Proposition 9 ensures that for k large

enough and then for n sufficiently large,

P

(
max

0≤i≤k
dn({qn,k,i

max }, vn,k,i
max ) > η

)
≤ ε

and

P

(
max

0≤i≤k
dn({qn,k,i

min }, vn,k,i
min ) > η

)
≤ ε.

On the other hand, dn(v
n,k,i
max , v

n,k,i
min ) ≤ dn({In,k

(i) }, {In,k
(i+1)}) and, using Proposi-

tion 7,

max
0≤i≤k

dn

({
I

n,k
(i)

}
,
{
I

n,k
(i+1)

})→ max
0≤i≤k

d
(
Lk

(i),L
k
(i+1)

)
a.s. as n → ∞,
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where Lk
(1) � · · · � Lk

(k) denotes the �-ordered sequence of leaves {1}, . . . , {k} in

T and Lk
(0) := Lk

(k+1) := ρ(T ). Finally, it is not hard to check that the compactness
of T and its ordered leaf-density (informally, this means that the leaves are dense
with respect to the order �; see [29], Section 4.1, for precise details) imply that
max0≤i≤k d(Lk

(i),L
k
(i+1)) → 0 a.s. as k → ∞. Therefore, for k large enough and

then for n sufficiently large,

P
(
w0

k(hn) > 3η
)≤ 3ε,

hence (32).
With this available, we just write

sup
0≤t≤1

|hn(t) − h(t)|

≤ w0
k(hn) + max

0≤i≤k
sup

t∈[In,k
(i) /(n+1),I

n,k
(i+1)/(n+1)]

∣∣∣∣h(t) − h

( I
n,k
(i)

n + 1

)∣∣∣∣

+ max
0≤i≤k

∣∣∣∣hn

(
In
i

n + 1

)
− h(Ui)

∣∣∣∣+ max
1≤i≤k

∣∣∣∣h(U(i)

)− h

( I
n,k
(i)

n + 1

)∣∣∣∣,
where U(i),1 ≤ i ≤ k, are the order statistics of U1, . . . ,Uk . The desired conver-
gence in probability is now a consequence of (31), (32), the fact that In

k /(n + 1)

converges to Uk a.s., and the a.s. continuity of h.
It was implicit in this proof that we were working with a strongly consistent

family of discrete trees built from a self-similar fragmentation continuum tree and
our usual argument shows that it still holds for any strongly consistent family. �

5. Beta-splitting, alpha and stable trees.

5.1. Aldous’s beta-splitting models. Aldous [1] suggests a further study of
what he calls beta-splitting models, where

q̃Aldous−β
n (k) = 1

Z
(β)
n

∫ 1

0

(
n

k

)
xk+β(1 − x)n−k+β dx

= 1

Z
(β)
n

(
n

k

)
�(β + k + 1)�(β + n − k + 1)

�(n + 2β + 2)
,

1 ≤ k ≤ n − 1, for some −2 < β < ∞. He says that these are sampling consistent
and that he would like to establish continuum random tree limits (known only for
β = −3/2, the Brownian CRT of Aldous [2]) also for all −2 < β < −1. He studies
the asymptotic behavior of a randomly chosen leaf and heuristically argued that
leaf-height functions rescaled in the same way should also converge. Our Theorem
2 and its height function ramification in Theorem 15 turn Aldous’s heuristics into
rigorous mathematics.
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It is clear from Aldous’s work [1] that the beta-splitting model with −2 < β <

−1 corresponds to a binary dislocation measure

νAldous−β(s1 ∈ dx) = Cβxβ(1 − x)β1{1/2≤x≤1} dx

and therefore satisfies the regular variation condition (6) with γ = −β − 1 and
�(x) ∼ Cβ/(−1−β). Since the splitting rules do not depend on Cβ , we will choose
Cβ = (−β − 1)/�(2 + β) in the sequel.

Note that the symmetrized binary splitting rule above naturally gives rise to
rooted ordered (or planar) trees T ord

n by the obvious recursive construction that
builds tree T ord

n from a left subtree with k leaves and a right subtree with n − k

leaves, with probability q̃
Aldous−β
n (k), 1 ≤ k ≤ n−1. We can now enumerate leaves

from left to right and record their heights

hn

(
i/(n + 1)

)= distance from the root of the ith leaf from left to right.(33)

Also putting hn(0) = hn(1) = 0 and continuously extending to [0,1] by linear in-
terpolation gives the leaf-height function (which, in the binary case, fully encodes
the discrete tree, just as the limiting height function fully encodes the limiting
CRT) referred to by Aldous [1].

COROLLARY 16. For a strongly sampling consistent family of trees T ◦
n , n ≥ 1,

from the beta-splitting model with −2 < β < −1, we have

T ◦
n

n−β−1

(p)−→
n→∞T(−β−1,νAldous−β)

for the Gromov–Hausdorff metric. Furthermore, the associated rescaled leaf-
height functions converge to an associated limiting height function (see Section
4.3) (

hn(t)

n−β−1

)
0≤t≤1

(p)−→
n→∞(h−β−1,νAldous−β

(t))0≤t≤1

for the uniform norm.

5.2. Ford’s alpha models. There are several versions of the alpha model of
random binary combinatorial trees, ordered and unordered, labeled and unlabeled,
and each can be described in different ways; see Ford [22, 21]. We focus here
on the induced distributions P ord,◦

n on T
ord,◦
n , unlabeled shapes of planted (ac-

tually binary) plane (i.e., ordered) trees with n leaves. Ford’s original sequen-
tial construction leads to an increasing sequence of random trees T̃ ord,◦

n ∼ P ord,◦
n ,

n ≥ 1, and we shall use this notation throughout our alpha model discussion. Fix
α ∈ [0,1].

The sequential construction starts with the unique planted binary unlabeled
plane trees T̃

ord,◦
1 and T̃

ord,◦
2 with one and two leaves, respectively. Given the
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random tree T̃ ord,◦
n with n leaves constructed following these rules, the (n + 1)st

leaf is added as follows: choose an edge according to weights α on edges
between two inner vertices and 1 − α on edges between a leaf and an in-
ner vertex. Since there are n − 1 inner edges and n leaf edges, the normal-
ization constant is n − α. Replace this edge between its two vertices by a
new vertex and two edges linking its two vertices to the new vertex. Choose
whether to attach the new leaf to the left or to the right of the new vertex
with equal probability. The resulting random tree with n + 1 leaves is called
T̃

ord,◦
n+1 .

We can now deduce the following corollary from Theorems 2 and 15.

COROLLARY 17. Let T̃ ◦
n be the unlabeled tree derived from Ford’s sequential

construction by forgetting the order of branches. Then

T̃ ◦
n

nα

(d)−→
n→∞T(α,νFord−α)(34)

for the Gromov–Hausdorff topology, where

νFord−α(s1 ∈ dx)

= 1

�(1 − α)

(
α
(
x(1 − x)

)−α−1 + (2 − 4α)
(
x(1 − x)

)−α)1{1/2≤x≤1} dx.

Furthermore, the associated rescaled leaf-height functions (33) encoding T̃ ord,◦
n

converge (
hn(t)

nα

)
0≤t≤1

(d)−→
n→∞(hα,νFord−α

(t))0≤t≤1

for the uniform topology on continuous functions defined on [0,1].

PROOF. Ford [21] shows that (P ord,◦
n )n≥1 are the distributions of a sampling

consistent Markov branching model with splitting kernel

q̃Ford−α
n (k) = �α(k)�α(n − k)

�α(n)

(
α

2

(
n

k

)
+ (1 − 2α)

(
n − 2
k − 1

))
,

1 ≤ k ≤ n − 1,

where �α(n) = (n − 1 − α)(n − 2 − α) · · · (2 − α)(1 − α) = �(n − α)/�(1 − α).
For 0 < α < 1, Ford [22] also indicates that as n → ∞, for all 0 < x < 1,

n1+αq̃n([xn]) ∼ 1

�(1 − α)

(
α

2

(
x(1 − x)

)−α−1 + (1 − 2α)
(
x(1 − x)

)−α
)

=: fFord−α(x).
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In the light of (16), we associate the binary dislocation measure

νFord−α(s1 ∈ dx) = (fFord−α(x) + fFord−α(1 − x))1{1/2≤x≤1} dx

= 2fFord−α(x)1{1/2≤x≤1} dx.

It is clear from Corollary 4 and the discussion which followed that the dislocation
measure νFord−α induces Ford’s splitting rule (q̃n)n≥2. By application of Theo-

rem 2, (34) holds with
(d)−→ replaced by

(p)−→ for T ◦
n instead of T̃ ◦

n , where (T ◦
n )n≥1

is a strongly sampling consistent family derived from the homogeneous fragmen-
tation with dislocation measure νFord−α . But, according to Ford [21], for each fixed
n ≥ 1, there is the identity in distribution T̃ ◦

n ∼ T ◦
n . Theorem 15 can now be applied

in the same way. �

As remarked by Ford [21], q̃Ford−α· = q̃Aldous−β· if and only if α = −β−1 = 1/2
(uniform model), α = β = 0 (Yule model) or α = −β − 1 ↑ 1 (comb model).
Also, we see that Ford’s alpha model, as a model of exchangeable probability
distributions on cladograms (by adding exchangeable leaf labels), is one of the
wider class of Aldous’s Markov branching models of type c = 0, ν̃(dx) = f (x) dx

in Corollary 4.
Finally, we make some rather subtle points about Ford’s sequential construction.

It will be convenient to also consider T̃ ord
n as the tree T̃ ord,◦

n equipped with leaf
labels in the order of Ford’s sequential construction, and the unordered labeled
tree T̃n derived from T̃ ord

n . In the following list, we consider α ∈ (0,1) and also
exclude α = 1/2, where no such subtleties arise.

• If a uniform leaf of T̃ ord,◦
n is deleted, the tree generated by the remaining leaves

has the same distribution as T̃
ord,◦
n−1 . Nevertheless, for T̃ ord

n , with leaf labels in
order of appearance, these labels are not exchangeable for n ≥ 3. For example,
in T̃ ord

3 , leaf 3 has height 2 if the edge of T̃ ord
2 chosen for the insertion of 3 is

adjacent to the root with probability α/(2 − α) �= 1/3.
• For fixed n ≥ 5, the joint distribution of the unlabeled trees (T̃ ord,◦

m )1≤m≤n is
not the same as the joint distribution of (T̃

ord,◦,(m)
n )1≤m≤n, where T̃

ord,◦,(n)
n =

T̃ ord,◦
n , and T̃

ord,◦,(m−1)
n is obtained from T̃

ord,◦,(m)
n by deleting a uniform leaf,

m = n, . . . ,2. Therefore, (T̃ ◦
n )n≥1 is not strongly sampling consistent.

• We showed in Proposition 7 that for a strongly sampling consistent family of
trees, convergence of finite-dimensional marginals holds almost surely with lim-
iting trees Rk with edge lengths. In the next subsection, we will establish a cor-
responding result for (T̃n)n≥1. We also give a line-breaking construction of the
almost sure limiting trees R̃k , k ≥ 1.

• We conjecture that the completion of
⋃

R̃k has the same distribution as
T(α,νFord−α) and that R̃k can be embedded in T(α,νFord−α) by suitable nonuniform,
and presumably dependent, sampling of leaves.
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5.3. Limiting edge lengths in Ford’s sequential construction. Let 0 < α < 1.
The limiting continuum random tree T(α,νFord−α) naturally contains its uniformly
sampled subtrees Rk , k ≥ 1, and ordered versions Rord

k are coded in hFord−α . If
we denote the tree shape of Rord

n by T ord
n , then the distribution P ord

n of T ord
n is

P ord,◦
n , equipped with exchangeable leaf labels. Rord

k is the almost sure scaling
limits of the reduced trees R(T ord

n , [k]) as n → ∞; see Proposition 7.
On the other hand, we naturally define P̃ ord

2 to be uniform on the set T
ord
2 of two

elements, and then P̃ ord
n+1 directly from the sequential construction as the distribu-

tion of T̃ ord
n+1, which is T̃ ord

n with the new leaf added according to Ford’s rule and
labeled n + 1, that is, we label leaves in their order of appearance. In this setting,
we also establish a.s. convergence of reduced subtrees.

PROPOSITION 18. (a) For all k ≥ 1, we have

n−αR(T̃ ord
n , [k]) a.s.−→

n→∞ R̃ord
k ,

in the sense of Gromov–Hausdorff convergence, where (R̃ord
k )k≥1 is an increasing

family of leaf-labeled R-trees with edge lengths.
(b) The distribution of R̃ord

k is determined by the distributions of three inde-
pendent random variables: (i) its shape T̃ ord

k ∼ P̃ ord
k ; (ii) its total length Sk with

density

�(k + 1 − α)

�(k/α)
sk/α−1gα(s),

where gα(s) = 1
α
s−1−1/αfα(s−1/α) is the Mittag–Leffler density derived from the

stable density fα with Laplace transform e−λα
; (iii) Dirichlet edge length propor-

tions Dk = (D
(1)
k , . . . ,D

(2k−1)
k ) ∼ D(1, . . . ,1, (1 − α)/α, . . . , (1 − α)/α), where,

in Dk , we first list the k − 1 inner edges, then the k leaf edges, each by depth-first
search.

(c) R̃ord
k is an inhomogeneous Markov process in its natural filtration (Hk)k≥1.

More precisely, given (T̃ ord
k , Sk,Dk), the conditional distribution of T̃ ord

k+1 is that
where the Ford insertion happens at an edge Ek , sampled from the distribution on
edges induced by Dk ; Sk+1 has conditional density

fSk+1|Sk=z(y) = α1/α

�((1 − α)/α)
(y − z)1/α−2 ygα(y)

gα(z)
;

given Ek is an inner edge, let Ck+1 ∼ Unif(0,1), otherwise, Ck+1 ∼ β(1, (1 −
α)/α), independently from Sk+1; split Ek into its proportions Ck+1 and 1 − Ck+1,
Ck+1 being closer to the root. This determines the proportions Dk+1.

PROOF. Fix k ≥ 1 and T̃ ord
k . For n ≥ k, the reduced trees R(T̃ ord

n , [k]) all have
the same shape as T̃ ord

k . In the transition from n to n + 1, there may be no change



CONTINUUM TREE ASYMPTOTICS OF DISCRETE FRAGMENTATIONS 1829

of the reduced tree or one of the edge lengths may increase by 1. We can associate
edges with 2k−1 colors, where each edge in T̃ ord

k represents a color (but not white,
which is reserved for later). Edges have weights which increase. Initially (n = k),
the weights are one for each inner edge and (1 − α)/α for each leaf edge, zero for
white. Each round, we pick a color at random, according to the current weights,
and apply an updating rule as follows. Whenever an edge of the reduced tree is
chosen (we recognize Ford’s rule), the weight of that edge is increased by 1 and
also the weight of white is increased by (1 − α)/α. Whenever we pick white, the
weight of white is increased by 1/α.

This model contains the essence of a Chinese restaurant process (see, e.g., [36],
Lecture 3). Specifically, if we further discriminate the white weight by colored
numbers identifying the subtree on the reduced tree in which the new leaf is added,
then these subtrees can be considered tables in a restaurant and their leaves are
customers. Suppose, at stage n, m subtrees are present on R(T̃ ord

n , [k]). Each new
customer joins any occupied table i = 1, . . . ,m with probability (ni −α)/(n−α),
where ni ≥ 1 is the number of customers already sitting at that table, and chooses
a new table with remaining probability (k + (m − 1)α)/(n − α). This describes an
(α, k − α) seating plan in the terminology of [36].

(a)–(b) By [36], Theorem 3.8, the total number of tables scaled by (n − k)α

(where n − k is the number of customers at stage n) converges almost surely so
that for the total length S

(n)
k of R(T̃ ord

n , [k]),
S

(n)
k

nα
= S

(n)
k − 2k + 1

(n − k)α

S
(n)
k

S
(n)
k − 2k + 1

(n − k)α

nα
→ Sk

and the distribution of Sk is as specified.
In particular, if ignoring white, the total color weight still tends to infinity,

even though it is asymptotically negligible against white weight. If we only
record changes to the color weights, the restricted model still has the dynamics
of the updating rule and so the pre-limiting proportions Dk(n) converge a.s. to
the Dirichlet limit, as specified. Furthermore, S

(n)
k Dk(n)/nα → SkDk a.s. and,

since the shape of reduced trees does not change (not even in the limit, as Dk

has only positive entries a.s.), this implies convergence in the Gromov–Hausdorff
sense.

The independence of T̃ ord
k , Sk and Dk can be seen by a conditioning argument:

the independence of (Sk,Dk) from T̃ ord
k follows since our argument actually gives

us the conditional distribution of (Sk,Dk) given T̃ ord
k , which does not depend on

T̃ ord
k . Similarly, S(n)

k gives us the times at which the color weights change that leads

to Dk ; if we condition on (S
(n)
k )k≤n≤N , then we still observe the same dynamics

of color weights and letting N → ∞, we get independence of Dk from the σ -field
Sk generated by (S

(n)
k )n≥k with respect to which Sk is measurable.
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(c) Consider weight processes Wm leading to R̃ord
m as 1 ≤ m ≤ k + 1 varies.

First, note that for 1 ≤ m < k, (T̃ ord
m ,Sm,Dm) is a measurable function of

(T̃ ord
k , Sk,Dk). Therefore, the Markov property is trivially satisfied.
Now, let tk+1 ∈ T

ord
k+1 be such that k + 1 was added to an inner edge of the

subtree tk of tk+1, without loss of generality, directly to the left of the trunk. We
then wish to calculate the expectation

E
(
f (Dk+1, Sk+1)1{T̃ ord

k+1=tk+1}
)

= P(T̃ ord
k+1 = tk+1)

∫
· · ·
∫

f (e1, . . . , e2k,1 − e1 − · · · − e2k, r)

× �(k + 1 + k(1 − α)/α)

(�((1 − α)/α))k

× (ek+1 · · · e2k(1 − e1 − · · · − e2k)
(1−2α)/α

× �(k + 2 − α)

�((k + 1)/α)
r(k+1)/α−1gα(r) dedr,

where e = (e1, . . . , e2k,1 − e1 − · · · − e2k) so as to identify the conditional
distribution of (T̃ ord

k+1,Ck+1, Sk+1) given (T̃ ord
k ,Dk, Sk) = (tk,d, s), where d =

(d1, . . . , d2k−2,1 − d1 − · · · − d2k−2). We change variables

e1 = d1cs

r
, e2 = d1(1 − c)s

r
,

e3 = d2s

r
, . . . , ek = dk−1s

r
, ek+2 = dks

r
, . . . , e2k = d2k−2s

r
,

ek+1 = r − s

r

and calculate the Jacobian

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cs

r
0 · · · 0

d1s

r

d1c

r

(1 − c)s

r
0 · · · 0 −d1s

r

d1(1 − c)

r

0
s

r
· · · 0 0

d2

r

...
. . .

. . .
...

...
...

0 0 · · · s

r
0

d2k−2

r

0 0 · · · 0 0 −1

r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= d1s
2k−1

r2k
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by a development of the first row. This gives

E
(
f (Dk+1, Sk+1)1{T̃ ord

k+1=tk+1}
)

= P(T̃ ord
k = tk)

×
∫

· · ·
∫

f

(
d1cs

r
,
d1(1 − c)s

r
,
d2s

r
, . . . ,

dk−1s

r
,
r − s

r
,
dks

r
,

. . . ,
d2k−2s

r
,
(1 − d1 − · · · − d2k−2)s

r
, r

)

× K
(
dk · · ·d2k−2(1 − d1 − · · · − d2k−2)

)(1−2α)/α
sk/α−1gα(s)

× d1s(r − s)(1−2α)/α gα(r)

gα(s)
dddc ds dr

for a positive constant K . We conclude that T̃ ord
k+1, Ck+1 and Sk+1 are conditionally

independent and that

P(T̃ ord
k+1 = tk+1|T̃ ord

k = tk,Dk = d, Sk = s) = 1
2d1,

f
Ck+1|T̃ ord

k =tk,Dk=d,Sk=s
(c) = 1,

f
Sk+1|T̃ ord

k =tk,Dk=d,Sk=s
(r) = K1r(r − s)(1−2α)/α gα(r)

gα(s)
.

Similarly, if k+1 was added to a leaf edge of the subtree tk of tk+1, without loss of
generality, to the left of the first leaf edge in the order of depth-first search, which
we may furthermore assume to be adjacent to the trunk in tk , then there will be an
additional (1 − c)(1−2α)/α in the change of variables since, now, e2 and ek+1 take
the roles of e1 and e2, where ek+1 is now the proportion of a leaf edge. We then
get

P(T̃ ord
k+1 = tk+1|T̃ ord

k = tk,Dk = d, Sk = s) = 1
2dk,

f
Ck+1|T̃ ord

k =tk,Dk=d,Sk=s
(c) = K2(1 − c)(1−2α)/α,

f
Sk+1|T̃ ord

k =tk,Dk=d,Sk=s
(r) = K1r(r − s)(1−2α)/α gα(r)

gα(s)
. �

Proposition 18 is a generalization and refinement of [36], Exercises 7.4.10–
7.4.13 dealing with the tree growth process in a Brownian excursion, α = 1/2.

COROLLARY 19. The counting process Nt = sup{k ≥ 0 :Sk ≤ t}, t ≥ 0, is a
time-inhomogeneous renewal process with hazard function

ht (y) = y(1−α)/α−1tgα(t)∫∞
0 (y + x)(1−α)/α−1(t + x)gα(t + x)dx

,

that is, the hazard rate is ht (y) at time t if the last renewal occurred at t − y ≥ 0.
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Note that since fSm+1|Sm=z(y) integrates to 1, we have, for all z ≥ 0,∫ ∞
0

y(1−α)/α−1(z + y)gα(z + y)dy = �((1 − α)/α)

α
gα(z).

In the case α = 1/2, we have (1 − α)/α − 1 = 0 so that the tilting coefficients
disappear and we can apply this formula to get ht (y) = t . This is the Poisson line-
breaking construction of the Brownian continuum random tree TAldous−(−3/2) =
TFord−1/2 (see Aldous [2]), where the trees R̃k ∼ Rk are constructed sequentially
by breaking a line at the times of a Poisson point process in the wedge {(x, t) : t ≥
0,0 ≤ x ≤ t} with unit intensity per unit square. The heights of points generate the
branch points on the previously grown tree.

Proposition 18(iii) can be interpreted as the line-breaking construction of the
alpha model random tree. The inhomogeneous renewal process replaces the in-
homogeneous Poisson arrival process at linearly increasing rate t . The branch
points (heights of points in the point process) are no longer chosen uniformly as
in the Brownian case, but with intensity skewed within each leaf edge, by the
β(1, (1 − α)/α) choice replacing the uniform.

Denote by V
(n)
1 the number of leaves (out of n) added in (or as) subtrees to the

left of the spine connecting leaf 1 to the root.

PROPOSITION 20. We have a.s.

V
(n)
1

n
→ V1 ∼

∞∑
k=0

AkWk

(
k−1∏
i=0

(1 − Wi)

)
,

where Wi ∼ β(1 − α, iα + 1 − α) are independent, i ≥ 0, and, independently Ak ,
k ≥ 0, are independent symmetric Bernoulli random variables.

PROOF. This is a consequence of the observation made in the proof of Propo-
sition 18 that the partition of leaves according to subtrees is a Chinese restaurant.
It is well known (see, e.g., [36]) that the table proportions are given by the prod-
ucts Wm(1−Wm−1) · · · (1−W0). At the time of their creation, each subtree has an
equal chance to grow on the left- and right-hand side of the spine, hence the result.

�

The distribution of V1 is not a new distribution. It naturally arises in the more
general context of size-biased sampling of Poisson point processes. Specifically,
[35] identifies these atoms as the normalized jumps of a stable subordinator σ with
Laplace exponent λα , tilted by σ

−(1−α)
1 , that is, we can also express the distribution

of V1 as

E(f (V1)) = �(2 − α)

�(1/α)
E(f (σ1/2/σ1)σ

−(1−α)
1 ).



CONTINUUM TREE ASYMPTOTICS OF DISCRETE FRAGMENTATIONS 1833

See also [6, 36]. Recently, James, Lijoy and Pruenster [30] specified the density of
V1.

In general, V1 does not have a uniform distribution as for α = 1/2. Also, V
(k)
1

is not independent of T̃ ord
k . For example, for k = 3, with two different shapes,

P
(
V

(3)
1 = 0|T̃ ord

3 =v
Y
)= 1

4 − 2α
and P

(
V

(3)
1 = 0|T̃ ord

3 =Y
v)= 2 − 2α

4 − 2α

and these coincide if and only if α = 1/2.

5.4. Stable trees. Duquesne and Le Gall [17] introduced a CRT that they
called the stable tree T ord

stable−α of index α ∈ (1,2], which describes the geneal-
ogy of a (continuous-state) stable branching process with a single infinitesimal
ancestor conditioned to have unit total family size (integral of population sizes
over time). For α = 2, this is Aldous’s Brownian continuum random tree, associ-
ated with Feller’s diffusion. They have given the explicit distribution of the tree
R(T ord

stable−α,L1, . . . ,Ln) spanned by n uniformly sampled leaves as follows. In
fact, this identification of the finite-dimensional marginal distributions of T ord

stable−α
may be taken as an alternative definition of the stable tree.

PROPOSITION 21 (Theorem 3.3.3 of [17]). (i) Denote the shape of
R(T ord

stable−α,L1, . . . ,Ln) by T ord
n . Then

P(T ord
n = tn) = α�(1 − 1/α)

�(n − 1/α)

∏
v∈tn,rv≥2

(α − 1)�(rv − α)

rv!�(2 − α)

for any tn ∈ T
ord
n , where rv is the number of children of vertex v ∈ tn.

(ii) Given T ord
n = tn, the total length Sn and the edge length proportions Dn are

conditionally independent; Dn has a D(1, . . . ,1) distribution on vectors of length
l = |tn| − 1, the number of edges of tn; Sn has density

fSn|T ord
n =tn(s) = α�(n − 1/α)

�(δtn)�(l)
(αs)l−1

∫ 1

0
uδtn−1η(αs,1 − u)du,

where δtn = n − 1/α + (1 − 1/α)l and η(t, v) is the density of a (1 − 1/α)-stable
subordinator (σt , t ≥ 0) with Laplace exponent exp{−λ1−1/α}.

There are a number of direct consequences.

COROLLARY 22 (Theorem 3.2.1 of [17], Lemma 5 of [33]). (i) The tree shape
without leaf labels, T ord,◦

n , is a Galton–Watson tree conditioned to have n leaves,
whose offspring distribution has probability generating function z + α−1(1 − z)α .

(ii) The unordered tree shapes T ◦
n , n ≥ 1, form a strongly sampling consistent

family of Markov branching models with splitting rule

qn(k1, . . . , kr) = Ck1,...,kr �(2 − 1/α)α−(r−2)�(r − α)

�(n − 1/α)�(2 − α)

r∏
j=1

�(kj − 1/α)

�(1 − 1/α)
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for any r ≥ 2, k1 ≥ · · · ≥ kr ≥ 1, where Ck1,...,kr is the combinatorial constant
given in (3).

Miermont [33, 34] studies fragmentation processes associated with Tstable−α

and identifies the associated dislocation measure.

PROPOSITION 23 ([33]). Let (σx, x ≥ 0) be a stable subordinator with
Laplace exponent λ1/α . Denote by �σ[0,1] = (�σx, x ∈ [0,1])↓ the jump sizes
�σx = σx − σx− in decreasing order. Then Tstable−α is a (1 − 1/α)-self-similar
fragmentation CRT with dislocation measure

νstable−α(ds) = α2�(2 − 1/α)

�(2 − α)
E

(
σ1; �σ[0,1]

σ1
∈ ds

)
.

The associated Lévy measure (18) of the tagged particle subordinator is

�stable−α(dx) = α − 1

�(1/α)
(1 − e−x)1/α−2e−(1−1/α)x dx.

By virtue of (20), which is equivalent to (6), the dislocation measure satisfies
the regular variation condition with �(x) ∼ α/�(1/α) and also satisfies (7) for any
ρ > 0 because the density of �stable−α decays exponentially as x → ∞ (see also
the discussion in Section 4.2). Therefore, we can apply Theorems 2 and 15.

COROLLARY 24. For a strongly sampling consistent family of trees T ◦
n , n ≥ 1,

from the Markov branching model with splitting rules identified in Corollary 22(ii)
for some 1 < α ≤ 2, we have

α
T ◦

n

n1−1/α

(p)−→
n→∞Tstable−α

for the Gromov–Hausdorff metric. Furthermore, the associated rescaled leaf-
height functions (33) converge to the associated limiting height function (see Sec-
tion 4.3) (

α
hn(t)

n1−1/α

)
0≤t≤1

(p)−→
n→∞(h1−1/α,νstable−α

(t))0≤t≤1

for the uniform norm.

It is known ([17]) that Tstable−2 ∼ 2TAldous−(−3/2). Here, doubling a fragmen-
tation CRT (i.e., all distances, or the associated height function) corresponds to
halving the fragmentation rates. Also, for α ∈ (1,2), the factor α can be built into
the limiting CRT as Tstable−α/α, which is the CRT associated with the dislocation
measure ανstable−α .

Several papers study the convergence of conditioned discrete Galton–Watson
trees. There are several different schemes of conditioning. The closest to our
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setting is conditioning on the total number of vertices in a Galton–Watson tree
with offspring distribution in the domain of attraction of a stable law. Geiger and
Kauffmann [23] study the convergence of reduced subtrees and show that the un-
conditional total length of Rk has a Gamma(k + 1/α,1) distribution. Duquesne
[16] establishes the convergence of associated height functions to the stable tree.
It is not surprising that conditioning on the total number of leaves or the to-
tal number of vertices leads to the same limit, when suitably rescaled, since
there are at most twice as many vertices as leaves and the ratio converges to α

a.s.
Marchal [32] has a sequential construction of the shapes of the reduced stable

tree similar to Ford’s sequential construction of the alpha model. Marchal asso-
ciates weights 1 − 1/α with each edge, but also puts weight k/α − 1 onto any
vertex with k subtrees. These weights also sum to n − 1/α at growth stage n.
At each growth stage, an edge or vertex is chosen according to these weights
and a new leaf edge added, either with an additional vertex in the “middle”
of the edge or just attaching in the vertex increasing its number of subtrees
by 1.

Acknowledgments. Thanks are due to Daniel Ford for discussing his al-
pha model with us at an early stage of his work. We would also like to thank
two referees for valuable comments that led to an improvement of the presenta-
tion.
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