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BEHAVIOR NEAR THE EXTINCTION TIME IN SELF-SIMILAR
FRAGMENTATIONS II: FINITE DISLOCATION MEASURES

BY CHRISTINA GOLDSCHMIDT1 AND BÉNÉDICTE HAAS2

University of Oxford and Université Paris-Dauphine

We study a Markovian model for the random fragmentation of an ob-
ject. At each time, the state consists of a collection of blocks. Each block
waits an exponential amount of time with parameter given by its size to some
power α, independently of the other blocks. Every block then splits randomly
into sub-blocks whose relative sizes are distributed according to the so-called
dislocation measure. We focus here on the case where α < 0. In this case,
small blocks split intensively, and so the whole state is reduced to “dust” in a
finite time, almost surely (we call this the extinction time). In this paper, we
investigate how the fragmentation process behaves as it approaches its extinc-
tion time. In particular, we prove a scaling limit for the block sizes which, as
a direct consequence, gives us an expression for an invariant measure for the
fragmentation process. In an earlier paper [Ann. Inst. Henri Poincaré Probab.
Stat. 46 (2010) 338–368], we considered the same problem for another fam-
ily of fragmentation processes, the so-called stable fragmentations. The re-
sults here are similar, but we emphasize that the methods used to prove them
are different. Our approach in the present paper is based on Markov renewal
theory and involves a somewhat unusual “spine” decomposition for the frag-
mentation, which may be of independent interest.

CONTENTS

1. Introduction and main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740
2. The last fragment process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744
3. Asymptotics along a subsequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747
4. Asymptotics of the last fragment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 760
5. The spine decomposition for the fragmentation . . . . . . . . . . . . . . . . . . . . . . . . . 767
6. Convergence of the full fragmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773
7. An invariant measure for the fragmentation process . . . . . . . . . . . . . . . . . . . . . . 785
8. Discussion of geometric fragmentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 788
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 793
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 804
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 804

Received September 2013; revised September 2014.
1Supported in part by EPSRC Postdoctoral Fellowship EP/D065755/1.
2Supported in part by ANR-08-BLAN-0190 and ANR-08-BLAN-0220-01.
MSC2010 subject classifications. 60J25, 60G18.
Key words and phrases. Self-similar fragmentations, extinction time, scaling limits, invariant

measure, Markov renewal theory, spine decomposition.

739

http://www.imstat.org/aop/
http://dx.doi.org/10.1214/14-AOP988
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


740 C. GOLDSCHMIDT AND B. HAAS

1. Introduction and main results. We consider a Markovian model for the
random fragmentation of a collection of blocks of some material, where the man-
ner in which the fragmentation occurs is controlled solely by the masses of the
blocks. More specifically, suppose that the current state consists of blocks of
masses m1,m2, . . . which are such that (for definiteness) m = (m1,m2, . . .) be-
longs to the state-space

S :=
{

s = (s1, s2, . . .) : s1 ≥ s2 ≥ · · · ≥ 0,

∞∑
i=1

si < ∞
}
,

which is endowed with the �1-distance

d
(
s, s′) = ∥∥s − s′∥∥

1 := ∑
i≥1

∣∣si − s′
i

∣∣ for s, s′ ∈ S.

The transition mechanism depends on two parameters: a real number α and a prob-
ability measure ν on S1 := {s ∈ S :‖s‖1 = 1}, and can be described as follows. The
different blocks evolve independently. For i ≥ 1, block i splits after an exponen-
tial time of mean m−α

i into sub-blocks of masses miS, where the random sequence
S = (S1, S2, . . .) is distributed according to ν. To avoid “phantom” fragmentation
events, we will always assume that ν(1) = 0, where the state 1 = (1,0, . . .) con-
sists of a single block of mass 1. We will then write

F(t) = (
F1(t),F2(t), . . .

) ∈ S
for the state of the fragmentation process at time t , and Ps for the law of
(F (t), t ≥ 0) started from a state s ∈ S . By default, we will start our processes from
the state 1, and we will write P instead of P1. Whenever we write (F (t), t ≥ 0)

without making explicit reference to its law, we implicitly assume F(0) = 1. It is
clear that (whatever its starting point) (F (t), t ≥ 0) is a transient Markov process
with a single absorbing state at 0 = (0,0, . . .).

This model described in the previous paragraph is a self-similar fragmentation
process, as introduced by Filippov in [17] and Bertoin in [8, 9]. We refer to the
second pair of papers for a rigorous construction based on Poisson point processes.
This construction gives a version of the fragmentation which is càdlàg for the
topology of pointwise convergence. Proposition 1.9 of [11] shows, in addition, that
the sum of the masses of the blocks is a continuous function almost surely. Hence,
there exists a càdlàg version of the fragmentation for the �1-distance, which is
the version we will always consider in this paper. More precisely, (F (t), t ≥ 0)

is a càdlàg strong Markov process which possesses the following self-similarity
property:

(F (t), t ≥ 0) has the same distribution under Pm1 as (mF(mαt), t ≥ 0)

has under P1

(we will revisit a stronger version of this property in Proposition 2.1 below). Con-
sequently, the parameter α is known as the index of self-similarity. The probability
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measure ν is called the dislocation measure. In [8, 9], Bertoin constructs a more
general class of processes in which ν is allowed to be an infinite (but σ -finite) mea-
sure satisfying a certain integrability condition; roughly speaking, these processes
are allowed to jump at a dense set of times. He also allows dislocation measures
which do not preserve the original mass, and the possibility of deterministic ero-
sion of the block masses, but we will not consider any of these variants further
here.

Henceforth, we will restrict our attention to the case α < 0. In this case, smaller
blocks split (on average) faster than larger ones. Despite the fact that each splitting
event preserves the total mass present in the system, the fragmentation exhibits
the striking phenomenon of loss of mass, whereby splitting events accumulate in
such a way that blocks are reduced in finite time to blocks of mass 0 (known as
dust). This is reflected by the fact that the total mass M(t) = ∑

i≥1 Fi(t) decreases
as time passes [so that the dust has mass 1 − M(t)]. Moreover, if we define the
extinction time,

ζ = inf
{
t ≥ 0 :F(t) = 0

}
,

then ζ < ∞ almost surely; see [10]. The manner in which mass is lost has been
studied in detail by Bertoin [10] and Haas [19, 20]. Our focus here is different: we
aim to understand the behavior of the fragmentation process close to its extinction
time.

In most of the sequel, we will impose a further condition on the dislocation
measure ν: we will require it to be nongeometric. That is, for any r ∈ (0,1), we
have

ν
(
si ∈ rN ∪ {0},∀i ≥ 1

)
< 1

(where N := {1,2, . . .}). Fragmentations with geometric dislocation measures be-
have in a genuinely different way to their nongeometric counterparts; we will
discuss this difference further below. For technical reasons, we will also need to
impose the condition that

∫
S1

s
−1−ρ
1 ν(ds) < ∞ for some ρ > 0. This assumption

is not very restrictive: for example, it is always satisfied for fragmentations where
blocks split into at most N sub-blocks (N being fixed) since then s1 +· · ·+sN = 1,
and so the largest mass s1 is bounded below by 1/N ν-a.s.

We consider the usual Skorokhod topology on the space of càdlàg functions
f : [0,∞) → S . By convention, we will set F(t) = 1 for t < 0. Our principal
result is then the following theorem.

THEOREM 1.1. Suppose that ν is nongeometric and that
∫
S1

s
−1−ρ
1 ν(ds) < ∞

for some ρ > 0. Then there exists C∞, a càdlàg S-valued self-similar process
independent of ζ , such that(

ε1/α(
F

(
(ζ − εt)−)

, t ≥ 0
)
, ζ

) law→ ((
C∞(t), t ≥ 0

)
, ζ

)
.

Moreover, C∞(0) = 0 and P(C∞,i(1) > 0) > 0 for all i ≥ 1.
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In particular, as ε → 0,

ε1/αF (ζ − ε)
law→ C∞(1).

Since S is endowed with the �1-distance, this entails that the rescaled total mass
ε1/αM(ζ − ε) has a nontrivial limit in distribution as ε → 0.

The self-similarity of the limit process C∞ takes the form

(
a1/αC∞(at), t ≥ 0

) law= (
C∞(t), t ≥ 0

)
for all a > 0. We will specify the distribution of C∞ more precisely below once
we have established the necessary notation; see Definition 5.3. This process models
the evolution of masses that coalesce, with a regular immigration of infinitesimally
small masses, as illustrated in Figure 3. Reversing time, this gives a fragmentation
process that starts from one infinitely large mass. A connection with a biased ran-
domized version of F is made in Proposition 5.4.

In a first paper [18], we proved a result of the same form as Theorem 1.1 for
a different subclass of self-similar fragmentations with negative index, the sta-
ble fragmentations. The stable fragmentations, which were introduced in [24], are
qualitatively rather different in that they all have infinite dislocation measures.
They can be represented in terms of stable Lévy trees (see [14, 15] for a defini-
tion), and the methods used in our earlier paper rely crucially on the excursion
theory available for these trees. The methods used in the present work are quite
different and are dependent on the finiteness of the dislocation measure. We con-
jecture, nonetheless, that Theorem 1.1 is true for generic nongeometric self-similar
fragmentations with negative index.

The proof of Theorem 1.1 proceeds in two main steps. We begin by studying the
last fragment process F∗, where F∗(t) is the mass of the unique fragment present at
time t that dies exactly at time ζ . We construct this process in Section 2, where we
also discuss some properties of ζ . We are, of course, interested in the asymptotic
behavior of F∗ close to time ζ . A significant difficulty is that the evolution of
the process F∗ is not Markovian. To overcome this difficulty, we introduce the
discrete-time process

Zn = F∗(Tn)
α(ζ − Tn), n ≥ 0,

where Tn denotes the nth jump time of the last fragment process F∗. The quantity
Zn can be thought of as an updated notion of the extinction time seen in the nat-
ural timescale of the last fragment at its nth jump time. It turns out that (Zn)n≥0
is a Markov chain which converges to a stationary distribution as n → ∞. This
is proved in Section 3 using standard Foster–Lyapunov criteria. Moreover, the
Markov chain (Zn)n≥0 drives a bigger Markov chain which additionally tracks
the relative sizes of the fragments produced by the split at time Tn. From this big-
ger Markov chain we derive a Markov renewal process in Section 4, and we then
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use a version of renewal theory, developed for such processes in [3, 4, 6, 21, 22,
25, 28], to obtain the behavior of F∗ near ζ .

The second step of the proof consists of decomposing the fragmentation process
along its spine F∗, in order to get the behavior of the whole process near ζ . This is
the purpose of Sections 5 and 6, where we prove a detailed version of Theorem 1.1.
Roughly speaking, the limiting process C∞ is built from a spine, the limit process
of F∗ near ζ , by grafting onto it independent fragmentation processes conditioned
to die before specific times. A significant technical difficulty in this proof is to deal
with blocks which separated from the spine “a long time in the past” and have not
yet become extinct, and for this we will need to establish a tightness criterion.

Spine methods are standard in the study of branching processes. In earlier work
on fragmentation processes (e.g., in [9, 10]), the so-called tagged fragment has
proved to be a very useful tool. This is again a sort of spine but of a rather different
nature to ours (in particular, the tagged fragment is a Markov process). However,
the tagged fragment vanishes at a time which is strictly smaller than ζ and, as a
consequence, cannot help us to understand the behavior of the fragmentation near
its extinction time ζ . We believe that the spine decomposition we develop in the
present paper, based on the last fragment process, should not be particular to the
finite dislocation measure case. However, our results do not immediately extend to
the case of infinite dislocation measures.

As a direct consequence of Theorem 1.1, we are able to construct an invariant
measure for the fragmentation process (since F is transient, this is necessarily an
infinite measure).

THEOREM 1.2. Under the conditions of Theorem 1.1, consider the occupation
measure λ of C∞, which is defined on (S,B(S)) by

λ(A) =
∫ ∞

0
P

(
C∞(t) ∈ A

)
dt

for all A ∈ B(S). Then λ is a σ -finite invariant measure for the transition kernel
of the fragmentation process F ; that is, for all u > 0 and all A ∈ B(S),

λ(A) =
∫
S
Ps

(
F(u) ∈ A

)
λ(ds).

We can interpret λ heuristically as the “law” of C∞ “sampled at a uniform time
in [0,∞).” To the best of our knowledge, this is the first time that invariant mea-
sures have been considered for self-similar fragmentation processes. Theorem 1.2
is proved in Section 7, where we will see that it is an easy consequence of the
convergence in distribution of ε1/αF (ζ − ε) to C∞(1). In particular, this invari-
ance result also holds for the stable fragmentations and, more generally, for any
fragmentation process such that ε1/αF (ζ − ε) has a nontrivial limit in distribution
[in (S, d)] as ε → 0.
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We conclude the main part of the paper in Section 8 by investigating the case of
geometric fragmentations. These fragmentations should not be viewed simply as a
degenerate special case: they can be interpreted in terms of various other models,
in particular discounted branching random walks (introduced by Athreya [5]) and
randomly growing k-ary trees (studied by Barlow, Pemantle and Perkins [7]). The-
orem 1.1 is not valid for geometric fragmentations. Indeed, we will see in Proposi-
tion 8.1 that the rescaled sequence ε1/αF (ζ − ε) does not converge in distribution
in this situation. However, we do obtain convergence along suitable subsequences,
which entails the existence of a continuum set of distinct invariant measures, in-
dexed by x ∈ [0,1).

Appendix containing various technical lemmas. It is split into two sections. The
first concerns criteria for convergence in the space (S, d) and in the Skorokhod
topology on càdlàg processes taking values in (S, d). The second section contains
the proofs of fine results about stationary and biased versions of the Markov chain
(Zn)n≥0 which are necessary for the proof of Theorem 1.1 but which are not of
much intrinsic interest.

2. The last fragment process. In this section, we gather together some results
on the extinction time ζ and prove the existence of the last fragment process. We
refer to [9, 11] for background on fragmentation processes. In particular, we will
use the following strong fragmentation property on several occasions.

PROPOSITION 2.1 (Bertoin [9]). Let T be a stopping time with respect to the
filtration generated by F . Write, for t ≥ T ,

F(t) = (
F (1,T )(t),F (2,T )(t), . . .

)
,

where, for each i ≥ 1, F (i,T ) is the process evolving in S which has F (i,T )(T ) =
Fi(T ) and, for t > T , tracks the evolution of the fragments coming from the ith
block of F(T ). Then

F (i,T )(T + t) = Fi(T )G(i)(tFi(T )α
) ∀i ≥ 1,

where the processes G(i) are independent and have the same distribution as F .
They are also independent of T and F(T ).

2.1. The extinction time. We begin by establishing some properties of the ex-
tinction time ζ , which will be useful to us in the sequel. We will make use of
Proposition 14 of [19], which states that

E
[
exp(aζ )

]
< ∞ for all positive a sufficiently small.

LEMMA 2.2. The distribution of ζ is absolutely continuous with respect to
Lebesgue measure on (0,∞), and there exists a continuous and strictly positive
version of its density, which we denote fζ . Furthermore:
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(i) fζ (x) ≤ 1 for all x ∈ (0,∞);
(ii) fζ (x) = o(exp(−cx)) as x → ∞, for some c > 0;

(iii) fζ (x) = o(1) as x → 0 and, moreover, for each β > α such that∫
S1

s
−β
1 ν(ds) < ∞, Fζ (x) := P(ζ ≤ x) = O(x1−β/α).

PROOF. Let T1 := inf{t ≥ 0 :F(t) �= (1,0, . . .)} be the first splitting time of F .
Then T1 is exponentially distributed with parameter 1, and F(T1) is distributed
according to ν. Moreover, since T1 is a stopping time with respect to the filtration
generated by F , we get from Proposition 2.1 that

ζ = T1 + sup
i≥1

{
Fi(T1)

−αζ (i)},
where T1, F(T1) and (ζ (i), i ≥ 1) are independent, and (ζ (i), i ≥ 1) is a collection
of independent random variables with the same distribution as ζ . Since T1 has an
exponential distribution, this implies that ζ possesses a density, say fζ , which in
turn implies that ξ := supi≥1{Fi(T1)

−αζ (i)} possesses a density, given by

fξ (y) =
∫
S1

∑
i : si>0

fζ

(
sα
i y

)
sα
i

∏
j �=i

Fζ

(
sα
j y

)
ν(ds),(2.1)

where Fζ is the cumulative distribution function corresponding to fζ . Note that
if Fζ (s

α
j y) > 0, for all j �= i, then necessarily

∏
j �=i Fζ (s

α
j y) > 0. This is obvious

when the set {j : sj > 0} is finite. When it is infinite, taking logarithms and using
the fact that

log
(
Fζ

(
sα
j y

)) ∼ −P
(
ζ > sα

j y
)

as j → ∞, we see that the above product is null if and only if the sum
∑

j �=i P(ζ >

sα
j y) is infinite. But this never happens when

∑
j �=i sj ≤ 1, since

P
(
ζ > sα

j y
) ≤ E

[
ζ−1/α]

sjy
−1/α

and ζ has exponential moments.
Now, choose fζ so that

fζ (x) = exp(−x)

∫ x

0
exp(y)fξ (y)dy for all x > 0.(2.2)

Then, fζ is continuous and fζ (x) ≤ P(ξ ≤ x) → 0 as x → 0. In particular, we get
(i) and the first assertion of (iii). Note also that if fζ (x) = 0 for some x > 0, then
fξ equals 0 a.e. on [0, x]. Hence, using (2.1) and the remark following it, we see
that fζ equals 0 on [0, x′] for some x′ > x. This easily entails that fζ equals 0
on R+, which is impossible. Hence, fζ (x) > 0 for all x > 0.

Next, to prove (ii), note that for all 0 ≤ a ≤ 1,

exp(ax)fζ (x) ≤
∫ x

0
exp(ay)fξ (y)dy ≤ E

[
exp(aξ)

] ≤ E
[
exp(aζ )

]
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since ζ = T1 + ξ . The last expectation is finite for all positive a sufficiently small,
and so exp(cx)fζ (x) → 0 as x → ∞ for all c < a.

It remains to prove the second assertion of (iii). Let � := {γ ≥ 0 s.t. ∃Cγ <

∞ :Fζ (x) ≤ Cγ xγ ,∀x ≥ 0}. Since Fζ is smaller than 1, � is an interval whose
left endpoint is 0. Moreover, since fζ (x) ≤ 1 for all x > 0, we have [0,1] ⊆ �. In
particular, we have checked the assertion for β ≤ 0. Now consider γ ∈ �. We have

fζ (x) ≤ P(ξ ≤ x) ≤
∫
S1

Fζ

(
sα

1 x
)
ν(ds)

[
since ξ ≥ F−α

1 (T1)ζ
(1)]

≤ Cγ xγ
∫
S1

s
αγ
1 ν(ds),

which implies that γ + 1 is in � provided that
∫
S1

s
αγ
1 ν(ds) < ∞. The second

assertion of (iii) is then straightforward. �

2.2. Building the last fragment. For all t ≥ 0 and all i ∈ N, denote by F (i,t)

the fragmentation process starting from (Fi(t),0, . . . .) which tracks the evolution
of the masses emanating from Fi(t). Let Z(i,t) := inf{s ≥ 0 :F (i,t)(s) = 0} be the
first time at which this process is reduced to dust.

LEMMA 2.3. Almost surely, for all 0 ≤ t < ζ , there exists a unique index i(t)

such that Z(i(t),t) = supj∈N Z(j,t) = ζ − t .

PROOF. Fix t > 0. By Proposition 2.1, Z(i,t) = Fi(t)
−αζ (i,t), where (ζ (i,t),

i ≥ 1) is a collection of i.i.d. random variables, with the same distribution as ζ ,
independent of F(t). Hence

E

[∑
i≥1

(
Z(i,t))−1/α

]
= E

[∑
i≥1

Fi(t)
(
ζ (i,t))−1/α

]
≤ E

[
ζ−1/α]

< ∞.

In particular, the sum
∑

i≥1(Z
(i,t))−1/α is almost surely finite, which implies that

Z(i,t) → 0 a.s. as i → ∞. Hence, the supremum supj∈N Z(j,t) is attained for some
i ∈N. Conditional on t < ζ , this index i is necessarily a.s. unique, since

P
(∃k, j :F−α

k (t)ζ (k,t) = F−α
j (t)ζ (j,t), Fk(t) �= 0,Fj (t) �= 0

) = 0

⇔ ∀k, j, P
(
F−α

k (t)ζ (k,t) = F−α
j (t)ζ (j,t), Fk(t) �= 0,Fj (t) �= 0

) = 0,

which is clearly satisfied, since ζ (k,t) and ζ (j,t) are absolutely continuous (by
Lemma 2.2) and independent of F(t). Hence, conditionally on t < ζ , there almost
surely exists a unique index i(t) such that Z(i(t),t) = supj∈N Z(j,t). To conclude,
note that when i(t) exists and is unique, then, for all s ≤ t , i(s) is automatically
defined as the index of the ancestor at time s of Fi(t). Therefore, with probability
one, the indices i(t) are well defined for all 0 ≤ t < ζ . �

Let (�,F) denote the measurable space on which we work.
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DEFINITION 2.4. Let E := {ω ∈ � :∀t < ζ(ω),∃! i(t)(ω) s.t. Z(i(t)(ω),t)(ω) =
supj∈N Z(j,t)(ω)}, and define for all t ≥ 0,

F∗(t)(ω) =
{

Fi(t)(ω)(t)(ω), if ω ∈ E and t < ζ(ω),
0, otherwise.

The process F∗ is called the last fragment process. It is nonincreasing, càdlàg and
ζ = inf{t ≥ 0 :F∗(t) = 0} a.s. (by Lemma 2.3).

REMARK 2.5. Almost surely, for all t ≥ 0, F∗(t) > 0 implies that the number
of jumps of F∗ in [0, t] is finite. This is obvious if ν(s1 ≤ a) = 1 for some a < 1.
Otherwise, it can be easily seen via the Poissonian construction of the fragmenta-
tion in [8, 9].

In the sequel, we will use the last fragment as a “spine” for the fragmentation
process: when blocks separate from the last fragment, they evolve essentially as
independent fragmentation processes which are conditioned to die before the last
fragment. We emphasize that it is not measurable with respect to the natural filtra-
tion of the fragmentation process.

3. Asymptotics along a subsequence. We now derive a convergent Markov
chain from the last fragment process F∗, which demonstrates that F∗ restricted to
its jump times behaves as expected near ζ . We prove the Markov property of the
chain in Section 3.1 and show that it converges exponentially fast to its stationary
distribution in Section 3.2. In Section 3.3, we consider an eternal stationary version
of the Markov chain. We also introduce a biased version of this eternal chain,
which is an essential building-block for the process C∞.

3.1. A Markov chain. Let T1 < T2 < · · · < Tn < · · · be the increasing sequence
of times at which F∗ splits, that is, T1 = inf {t ≥ 0 :F∗(t) < 1} and, for n ≥ 2,

Tn = inf
{
t ≥ Tn−1 :F∗(t) < F∗(Tn−1)

}
.

For convenience, set T0 = 0. We note that only T0 and T1 are stopping times with
respect to the natural filtration of the fragmentation process. From Remark 2.5 and
since ζ = inf{t ≥ 0 :F∗(t) = 0}, we clearly have that

Tn → ζ a.s. as n → ∞.

Define, for n ≥ 0,

Zn := (
F∗(Tn)

)α
(ζ − Tn),(3.1)

and note that Z
1/α
n is the value of the process ε1/αF∗(ζ − ε) at ε = ζ − Tn. Intu-

itively, Zn is a version of the extinction time updated according to what we know
about the last fragment at time Tn.
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FIG. 1. The spine decomposition. Time runs up the page. The size of the last fragment, F∗, which
is constant on the intervals [Ti, Ti+1−) is shaded. The blocks which split off from F∗ start their own
fragmentation processes, each conditioned to become extinct before ζ .

Note also that Z0 = ζ , and set �0 = 1, �0 = (0,0, . . .). For n ≥ 1, let �n =
F∗(Tn)/F∗(Tn−1), and let �n = (�n,1,�n,2, . . .) be the relative sizes of the other
sub-blocks resulting from the split of F∗ which occurs at time Tn, ordered so that
�n,1 ≥ �n,2 ≥ · · · ≥ 0. Then(

F∗(Tn−1)�n,1,F∗(Tn−1)�n,2, . . .
)

are the sizes of the blocks which split off from the last fragment at time Tn. As a
consequence of the fact that ν is conservative, we have �n +∑∞

i=1 �n,i = 1 almost
surely. See Figure 1 for an illustration.

PROPOSITION 3.1. (a) The process (Zn,�n,�n)n≥0 is a time-homogeneous
Markov chain. Moreover, conditional on σ(Zm,�m,�m,m ≤ n), the law of
(Zn+1,�n+1,�n+1) depends only on the value of Zn.

(b) The transition densities P(x,dy), x > 0, of (Zn)n≥0 are given by

P(x,dy)
(3.2)

= e−x

fζ (x)
fζ (y)

(∫
S1

∑
i : si>0

es−α
i y

∏
j �=i

Fζ

(
sα
j s−α

i y
)
1{0<y<sα

i x}ν(ds)
)

dy,
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where Fζ is the cumulative distribution function of ζ .

We refer to (Zn)n≥0 as the driving chain of (Zn,�n,�n)n≥0.

REMARK 3.2. The density in (3.2) is strictly positive for all x, y > 0. This is
a consequence of the positivity of fζ on (0,∞) (Lemma 2.2) and of the fact that∏

j �=i Fζ (s
α
j s−α

i y) > 0 when s−α
i y > 0 (as explained in the proof of Lemma 2.2).

Let Y0 := ζ 1/α , and for n ≥ 1, let

Yn :=
(

ζ − Tn

ζ − Tn−1

)1/α

= Z
1/α
n

Z
1/α
n−1�n

.

Later on it will turn out to be convenient to work with Yn, essentially because
the times to extinction ζ − Tn can then be expressed in the multiplicative form
ζ

∏n
i=1 Yα

i . To this end, we need the following simple corollary of Proposition 3.1.

COROLLARY 3.3. The process (Zn,Yn,�n)n≥0 is a time-homogeneous
Markov chain with driving chain (Zn,n ≥ 0).

The rest of this section is devoted to the proof of Proposition 3.1. Recall from
Proposition 2.1 that for t ≥ 0, F(T1 + t) is the decreasing rearrangement of the
terms of the sequences

F1(T1)G
(1)(tF1(T1)

α)
,F2(T1)G

(2)(tF2(T1)
α)

, . . . ,

where the processes G(i) are independent fragmentations, all having the same dis-
tribution as F . They are also independent of T1 and F(T1). Now let ζ (i) = inf{t ≥
0 :G(i)(t) = 0}, so that

ζ = T1 + sup
i≥1

{
Fi(T1)

−αζ (i)}.(3.3)

By Lemma 2.3, this supremum is a maximum. Let I := argmaxi≥1{Fi(T1)
−αζ (i)},

and note that F∗(T1) = FI (T1) and Z1 = ζ (I). Let

H(i,j) = G(j+1{j≥i}) =
{

G(j), if j < i,
G(j+1), if j ≥ i.

(3.4)

Finally, for x > 0 and suitable test functions φ and ψ , we write

A(φ,x) = E
[
φ(F )|ζ = x

]
and B(ψ,x) = E

[
ψ(F)|ζ < x

]
.

REMARK 3.4. The function A(φ, ·) is well defined only up to a Borel set
of Lebesgue measure 0, and is Borel-measurable. However, when applied to a
positive and absolutely continuous random variable, say X, this is enough to define
the random variable A(φ,X) properly up to a set of probability 0. This remark is
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also valid for any forthcoming functions defined as expectations conditional on
ζ = x.

The following lemma is the key result needed to prove the Markov property of
(Zn,�n,�n)n≥0.

LEMMA 3.5. For all suitable test functions φ and ψj , j ≥ 1,

E

[
φ

(
G(I)) ∞∏

j=1

ψj

(
H(I,j))∣∣∣∣ζ, ζ (I),FI (T1),

(
Fk(T1), k �= I

)]

= A
(
φ, ζ (I)) ∞∏

j=1

B
(
ψj ,F

−α
I (T1)F

α
j+1{j≥I }(T1)ζ

(I )).

In particular, conditional on ζ (I), G(I) is independent of ζ , F(T1) and FI (T1),
and is distributed as a fragmentation process conditioned to die at time ζ (I).

PROOF OF LEMMA 3.5. We will, in fact, prove that

E

[
φ

(
G(I)) ∞∏

j=1

ψj

(
H(I,j))∣∣∣∣ζ, ζ (I),F (T1), I

]

= A
(
φ, ζ (I)) ∞∏

j=1

B
(
ψj ,F

−α
I (T1)F

α
j+1{j≥I }(T1)ζ

(I )),
which implies the statement of the lemma. Let χ be another test function.

For i �= j , set Si,j = {F−α
i (T1)ζ

(i) ≥ F−α
j (T1)

−αζ (j)} and note that {I = i} =⋂
j≥1 Si,j+1{j≥i} . We have

E

[
φ

(
G(I)) ∞∏

j=1

ψj

(
H(I,j))χ(

ζ, ζ (I),F (T1)
)
1{I=i}

]

= E

[
φ

(
G(i)) ∞∏

j=1

ψj

(
H(i,j))χ(

T1 + F−α
i (T1)ζ

(i), ζ (i),F (T1)
)
1{I=i}

]

= E

[
χ

(
T1 + F−α

i (T1)ζ
(i), ζ (i),F (T1)

)

×E

[
φ

(
G(i)) ∞∏

j=1

ψj

(
G(j+1{j≥i}))1Si,j+1{j≥i}

∣∣∣∣T1,F (T1), ζ
(i)

]]
.
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Since G(j), j ≥ 1 are independent fragmentations, independent of T1 and F(T1),
we see that

E

[
φ

(
G(i)) ∞∏

j=1

ψj

(
G(j+1{j≥i}))1Si,j+1{j≥i}

∣∣∣∣T1,F (T1), ζ
(i)

]

= E
[
φ

(
G(i))|ζ (i)] ∞∏

j=1

E
[
ψj

(
G(j+1{j≥i}))1Si,j+1{j≥i} |F(T1), ζ

(i)]

= A
(
φ, ζ (i)) ∞∏

j=1

B
(
ψj ,F

−α
i (T1)F

α
j+1{j≥i}(T1)ζ

(i))

× P
(
ζ (j+1{j≥i}) < F−α

i (T1)F
α
j+1{j≥i}(T1)ζ

(i)|F(T1), ζ
(i))

= A
(
φ, ζ (i))[ ∞∏

j=1

B
(
ψj ,F

−α
i (T1)F

α
j+1{j≥i}(T1)ζ

(i))]P(
I = i|F(T1), ζ

(i)).
Then

E

[
φ

(
G(I)) ∞∏

j=1

ψj

(
H(I,j))χ(

ζ, ζ (I),F (T1)
)
1{I=i}

]

= E

[
A

(
φ, ζ (I)) ∞∏

j=1

B
(
ψj ,F

−α
I (T1)F

α
j+1{j≥I }(T1)ζ

(I ))

× χ
(
ζ, ζ (I),F (T1)

)
1{I=i}

]
,

and the result follows. �

PROOF OF PROPOSITION 3.1. (a) We start by proving that (Z,�,�) is a
time-homogeneous Markov chain with driving chain Z. To see this, we will show
that for all suitable test functions f,gi and all n ≥ 1,

E

[
f (Zn,�n,�n)

n−1∏
i=0

gi(Zi,�i,�i )

]

(Rn)

= E

[
Ff (Zn−1)

n−1∏
i=0

gi(Zi,�i,�i )

]
,

where Ff (x) = E[f (Z1,�1,�1)|Z0 = x]. Note that Ff (x) is well defined for
Lebesgue a.e. x > 0, since Z0 = ζ is absolutely continuous. We will prove by
induction on n that (Rn) is valid and that Zn is absolutely continuous, so that
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Ff (Zn−1) is almost surely well defined. In fact, once (Rn) is proved, the absolute
continuity of Zn is a direct consequence of the absolute continuity of Zn−1 and of
(Rn), taking test functions f of the form f = 1A for Borel sets A with Lebesgue
measure 0. So it is enough to focus in the following on the proof of (Rn) for
n ≥ 1.

(R1) is an immediate consequence of the fact that �0 and �0 are deterministic.
Now assume that (Rn) holds, and recall that the last fragment process F∗ can be
written as

F∗(T1 + t) = FI (T1)G
(I)(tF α

I (T1)
)
, t ≥ 0.(3.5)

As for the standard fragmentation process, the last fragment process of G(I) is
well-defined since G(I) is a randomized version of the fragmentation. We denote
it by (G

(I)∗ (t), t ≥ 0). Then for k ≥ 1, let T
(I)
k be the kth time at which G

(I)∗ splits,
let

�
(I)
k := G(I)∗

(
T

(I)
k

)
/G(I)∗

(
T

(I)
k−1

)
and let �

(I )
k be the relative sizes of the other sub-blocks resulting from the split of

G
(I)∗ at time T

(I)
k . From (3.5), we get that Tk+1 = T1 +F−α

I (T1)T
(I)
k , �k+1 = �

(I)
k ,

�k+1 = �
(I )
k and

Zk+1 = (
G(I)(T (I)

k

))α(
Z1 − T

(I)
k

) := Z
(I)
k .

Therefore,

E

[
f (Zn+1,�n+1,�n+1)

n∏
i=0

gi(Zi,�i,�i )

]

= E

[
f

(
Z(I)

n ,�(I)
n ,�(I )

n

)
g0(Z0,�0,�0)g1(Z1,�1,�1)

×
n−1∏
i=1

gi+1
(
Z

(I)
i ,�

(I)
i ,�

(I )
i

)]

= E

[
g0(Z0,�0,�0)g(Z1,�1,�1)

×E

[
f

(
Z(I)

n ,�(I)
n ,�(I )

n

)

×
n−1∏
i=1

gi+1
(
Z

(I)
i ,�

(I)
i ,�

(I )
i

)∣∣∣∣Z0,Z1,F (T1),FI (T1)

]]
.
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Similarly,

E

[
Ff (Zn)

n∏
i=0

gi(Zi,�i,�i )

]

= E

[
g0(Z0,�0,�0)g(Z1,�1,�1)

×E

[
Ff

(
Z

(I)
n−1

) n−1∏
i=1

gi+1
(
Z

(I)
i ,�

(I)
i ,�

(I )
i

)∣∣∣∣Z0,Z1,F (T1),FI (T1)

]]
.

Then by Lemma 3.5 (recall that Z0 = ζ , Z1 = ζ (I)) applied to the functions ψj ≡
1,∀j ∈N and φ(G(I)) = f (Z

(I)
n ,�

(I)
n ,�(I )

n )
∏n−1

i=1 gi+1(Z
(I)
i ,�

(I)
i ,�

(I )
i ),

E

[
f

(
Z(I)

n ,�(I)
n ,�(I )

n

) n−1∏
i=1

gi+1
(
Z

(I)
i ,�

(I)
i ,�

(I )
i

)∣∣∣∣Z0,Z1,F (T1),FI (T1)

]

= u(Z1),

where

u(x) = E

[
f (Zn,�n,�n)

n−1∏
i=1

gi+1(Zi,�i,�i )

∣∣∣∣ζ = x

]
,

and similarly

E

[
Ff

(
Z

(I)
n−1

) n−1∏
i=1

gi+1
(
Z

(I)
i ,�

(I)
i ,�

(I )
i

)∣∣∣∣Z0,Z1,F (T1),FI (T1)

]
= v(Z1),

where

v(x) = E

[
Ff (Zn−1)

n−1∏
i=1

gi+1(Zi,�i,�i )

∣∣∣∣ζ = x

]
.

To get (Rn+1), it remains to prove that u(x) = v(x) for Lebesgue-a.e. x > 0. For
this we use the induction hypothesis (Rn) which implies that the random variables

f (Zn,�n,�n)

n−1∏
i=1

gi+1(Zi,�i,�i ) and Ff (Zn−1)

n−1∏
i=1

gi+1(Zi,�i,�i )

have the same expectation conditional on ζ since

E

[
h(ζ )f (Zn,�n,�n)

n−1∏
i=1

gi+1(Zi,�i,�i )

]

= E

[
h(ζ )Ff (Zn−1)

n−1∏
i=1

gi+1(Zi,�i,�i )

]
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for all bounded measurable functions h. The result follows by induction.
(b) It remains to prove that the transition densities of the chain (Zn)n≥0 are given

by identity (3.2). To get this, we compute the joint density of (Z0,Z1). The first
step is to use the independence of T1,F (T1) and (ζ (j), j ≥ 1) [defined in (3.3)] and
the fact that F(T1) is distributed according to ν, to get that, for any test function χ ,

E
[
χ

(
FI (T1), ζ, T1

)]
=

∞∑
i=1

E
[
χ

(
Fi(T1), T1 + Fi(T1)

−αζ (i), T1
)
1{I=i}

]

=
∫
S1

∑
i : si>0

∫ ∞
0

E
[
χ

(
si, t + s−α

i ζ (i), t
)
1{s−α

i ζ (i)≥maxj �=i s−α
j ζ (j)}

]
e−t dt ν(ds)

=
∫
S1

∑
i : si>0

∫ ∞
0

∫ ∞
0

χ
(
si, t + s−α

i z, t
)
fζ (z)

∏
j �=i

Fζ

(
sα
j s−α

i z
)
e−t dt dz ν(ds).

In the inner integral, let x = t + s−α
i z [then z = sα

i (x − t)] to get that this last is
equal to∫

S1

∑
i : si>0

∫ ∞
0

∫ x

0
sα
i χ(si, x, t)fζ

(
sα
i (x − t)

) ∏
j �=i

Fζ

(
sα
j (x − t)

)
e−t dt dx ν(ds).

Taking χ(FI (T1), ζ, T1) = φ(ζ,FI (T1)
α(ζ − T1)), we obtain

E
[
φ(Z0,Z1)

]
= E

[
φ

(
ζ,FI (T1)

α(ζ − T1)
)]

=
∫
S1

∑
i : si>0

∫ ∞
0

∫ x

0
sα
i φ

(
x, sα

i (x − t)
)
fζ

(
sα
i (x − t)

)

× ∏
j �=i

Fζ

(
sα
j (x − t)

)
e−t dt dx ν(ds)

=
∫
S1

∑
i : si>0

∫ ∞
0

∫ sα
i x

0
es−α

i y−xφ(x, y)fζ (y)
∏
j �=i

Fζ

(
sα
j s−α

i y
)

dy dx ν(ds),

where we have used the change of variable y = sα
i (x − t) in the inner integral, so

that t = x − s−α
i y. It follows that the joint density of (Z0,Z1) is given by

fZ0,Z1(x, y) = e−xfζ (y)

∫
S1

∑
i : si>0

es−α
i y1{y<sα

i x}
∏
j �=i

Fζ

(
sα
j s−α

i y
)
ν(ds),

x, y > 0.

In particular, the density of Z1 conditioned on Z0 = x is given by fZ0,Z1(x, y)/

fζ (x), as desired. �
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3.2. Geometric ergodicity of the driving chain. In view of the role of (Zn)n≥0
as driving chain, it will suffice to study its ergodic properties in order to deduce
those of (Zn,�n,�n)n≥0. This section is devoted to the proof of the following
result.

THEOREM 3.6. Suppose that
∫
S1

s−1
1 ν(ds) < ∞. Then the Markov chain

(Zn)n≥0 is positive Harris recurrent and possesses a unique stationary distribu-
tion on (0,∞), πstat. This stationary distribution is absolutely continuous (with
respect to Lebesgue measure) and its density, which (with a slight abuse of nota-
tion) we also denote by πstat, is the unique solution to the equation

π(x) = fζ (x)

∫
S1

( ∞∑
i=1

es−α
i x

∏
j �=i

Fζ

(
sα
j s−α

i x
)(∫ ∞

s−α
i x

e−yπ(y)

fζ (y)
dy

))
ν(ds).(3.6)

Moreover, the distribution L(Zn) of Zn converges to πstat exponentially fast; more
precisely, there exists a constant r > 1 such that∑

n≥1

rn
∥∥L(Zn) − πstat

∥∥
TV < ∞,(3.7)

where ‖ · ‖TV denotes the total variation norm.

We have not been able to extract an explicit expression for πstat from (3.6).
(However, Lemmas A.7 and A.8 in the Appendix give some qualitative information
about it.) Note also that (3.6) implies that πstat(x) > 0 for x > 0.

To prove Theorem 3.6, we use the geometric ergodic theorem of Meyn and
Tweedie [23], Theorem 15.0.1, which is based on a Foster–Lyapounov drift crite-
rion; see (3.10) below. To understand the meaning of this criterion, we first need to
introduce the concept of a small set. With this in hand, all we will require in order
to obtain Theorem 3.6 from the geometric ergodic theorem are the forthcoming
Lemmas 3.7 and 3.8. In the following, for each integer n, P n denotes the n-step
transition probability kernel of the chain (Zn)n≥0.

Following page 109 of Meyn and Tweedie [23], a small set C is a Borel subset
of R∗+, for which there exist an integer mC > 0 and a nontrivial measure μC such
that

P mC(x,B) ≥ μC(B) for all Borel sets B ⊆ (0,∞) and all x ∈ C.(3.8)

In our case, subsets of a compact subset of (0,∞) are clearly small sets. Indeed,
let C ⊆ [a, b], 0 < a < b, and recall from Lemma 2.2 that fζ (x) ≤ 1 for all x > 0.
It is then easy to see that for all Borel sets B ⊆ (0,∞) and all x ∈ C,

P(x,B) ≥ e−bμC(B),

where the measure μC is defined for all B by

μC(B) =
∫
B

fζ (y)

(∫
S1

∑
i : si>0

es−α
i y

∏
j �=i

Fζ

(
sα
j s−α

i y
)
1{0<y<sα

i a}ν(ds)
)

dy.(3.9)



756 C. GOLDSCHMIDT AND B. HAAS

The Markov chain (Zn,n ≥ 0) is Lebesgue-irreducible if, for all Borel sets B ⊆
(0,∞) with strictly positive Lebesgue measure and all x > 0, there exists an inte-
ger n with P n(x,B) > 0. It is said to be strong aperiodic if there exists a small set
C with mC = 1 and μC(C) > 0.

LEMMA 3.7. (Zn,n ≥ 0) is both Lebesgue-irreducible and strong aperiodic.

(In fact, the geometric ergodic theorem is valid if we replace strong aperiodicity
by aperiodicity, but the definition of strong aperiodicity is easier to write down and
easy to check in our context.)

PROOF OF LEMMA 3.7. By (3.2) and Remark 3.2 we have P(x,B) > 0 for
all x > 0 and all Borel sets B with strictly positive Lebesgue measure; Lebesgue-
irreducibility follows. Strong aperiodicity follows directly from the above proof
that subsets of compact subsets of (0,∞) are small. �

LEMMA 3.8 (Foster–Lyapounov drift criterion). Assume that
∫
S1

s−1
1 ν(ds) <

∞. Then there exists a small set C, a function V : (0,∞) → [1,∞) and constants
b < ∞ and β > 0 satisfying

PV (x) − V (x) ≤ −βV (x) + b1C(x) ∀x > 0,(3.10)

where PV (x) := ∫ ∞
0 V (y)P (x,dy). Moreover,

∫ ∞
0 V (x)fζ (x)dx < ∞.

Note that in Theorem 15.0.1 of [23], the words small sets are replaced by pe-
tite sets. However, small implies petite, and so we lose nothing here by using the
former notion.

PROOF OF LEMMA 3.8. Let

V (x) := exp(−cx)

fζ (x)
, x > 0,

where c ∈ (0,1/2) is such that exp(cx)fζ (x) → 0 as x → ∞; such a c exists by
Lemma 2.2. Hence, V (x) → ∞ as x → ∞ and, still by Lemma 2.2, it is con-
tinuous and V (x) → ∞ as x → 0. In particular, it possesses a strictly positive
minimum on (0,∞), which, up to normalization, may be supposed to be 1.

For the remainder of the proof, we proceed in three steps. The goal of the first
two steps is to check that PV (x) < ∞ for all x > 0 and that

PV (x)

V (x)
= fζ (x) exp(cx)PV (x) → 0 as x → 0 or x → ∞.
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To this end, write PV (x) = P1V (x) + P2V (x) where

P1V (x)

:= e−x

fζ (x)

×
∫ ∞

0
V (y)fζ (y)

(∫
S1

∑
i : si>c1

es−α
i y

∏
j �=i

Fζ

(
sα
j s−α

i y
)
1{0<y<sα

i x}ν(ds)
)

dy,

with c1 ∈ (0, c−1/α).

Step 1. We prove that the quantity fζ (x) exp(cx)P1V (x) is finite for all x > 0
and converges to 0 as x tends to 0 or ∞. To see this, note first that si ≤ i−1,
∀i ≥ 1, for ν-a.e. sequence s, and, therefore, that the sum involved in P1V (x) only
concerns indices i < c−1

1 . Since this set of indices is finite, it is sufficient to check
that for all i < c−1

1 ,

e(c−1)x
∫
S1

1{si>c1}
(∫ sα

i x

0
V (y)fζ (y)es−α

i y
∏
j �=i

Fζ

(
sα
j s−α

i y
)

dy

)
ν(ds)

is finite and converges to 0 as x tends to 0 or to ∞. This term is bounded above by

e(c−1)x
∫
S1

1{si>c1}
(∫ sα

i x

0
e−cy+s−α

i y dy

)
ν(ds)(3.11)

which is clearly finite and converges to 0 as x → 0. To get a similar result when
x → ∞, recall that c < 1/2, and note that

e(c−1)x
∫ sα

i x

0
e−cy+s−α

i y dy

≤

⎧⎪⎪⎨
⎪⎪⎩

e(c−1)xsα
i x, if c−α

1 < s−α
i ≤ c,

e(1−sα
i )cxsα

i x, if c < s−α
i ≤ 1

2 ,(
e(1−sα

i )cx − e(c−1)x
)(

s−α
i − c

)−1
, if s−α

i > 1
2 .

In all three cases, the upper bound converges to 0 (since si < 1) ν-a.e. as x → ∞
and is bounded above by a finite constant independent both of x ≥ 1 and of si in
the interval under consideration. Hence, by dominated convergence, term (3.11)
tends to 0 as x → ∞.

Step 2. We now prove a similar result to the one proved in step 1, but for P2V .
Here we use the hypothesis

∫
S1

s−1
1 ν(ds) < ∞. It will be sufficient to show that∫

S1

∑
i : si≤c1

(∫ ∞
0

e(s−α
i −c)y

∏
j �=i

Fζ

(
sα
j s−α

i y
)

dy

)
ν(ds) < ∞,(3.12)

using the fact that exp (c − 1)x → 0 as x → ∞ and monotone convergence near 0.
To get (3.12), we use the existence of some finite constant m [see Lemma 2.2,
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and note that
∫
S1

s−α−1
1 ν(ds) ≤ ∫

S1
s−1

1 ν(ds) < ∞] such that Fζ (s
α
1 s−α

i y) ≤
ms−1

1 siy
−1/α , for all y > 0. Hence, the double integral in (3.12) is bounded above

by ∫
S1

1{s1≤c1}
(∫ ∞

0
e(c−α

1 −c)y
∏
j≥2

Fζ

(
sα
j s−α

1 y
)

dy

)
ν(ds)

+ m

∫
S1

∑
i≥2 : si≤c1

s−1
1 si

(∫ ∞
0

e(c−α
1 −c)yy−1/α dy

)
ν(ds)

≤ (
c − c−α

1

)−1
∫
S1

1{s1≤c1}ν(ds) + m′
∫
S1

s−1
1 ν(ds) < ∞.

Step 3. From expression (3.2) for the transition density and from the fact that
fζ is continuous, we see that the function x �→ PV (x) is continuous on (0,∞).
Let 0 < β < 1, and introduce the set C := {x > 0 :PV (x) − (1 − β)V (x) ≥ 0}.
The continuity of PV/V on (0,∞), together with steps 1 and 2, imply that C is a
compact subset of (0,∞), and so it is a small set. Moreover b := supx∈C(PV (x)−
(1 − β)V (x)) < ∞, since PV − (1 − β)V is continuous on (0,∞). Finally, for all
x > 0,

PV (x) ≤ (1 − β)V (x) + b1C(x),

which is the required drift criterion.
Finally, note that

∫ ∞
0 V (x)fζ (x)dx < ∞ since V (x)fζ (x) = exp(−cx), x > 0

for some c > 0. �

Theorem 3.6 now follows from the geometric ergodic theorem.

3.3. The stationary and biased Markov chains. In order to construct the limit
process C∞ appearing in Theorem 1.1, we need to introduce an eternal stationary
version of (Zn,Yn,�n)n≥1 and then a biased version of this stationary version; see
the forthcoming Definition 5.3 of C∞. This biased version will appear in the limit
when using the techniques of Markov renewal theory to pass from the convergence
of (Zn) to the asymptotic behavior of the continuous-time processes F∗ and F near
their extinction time.

First, we can construct a stationary version of (Zn,Yn,�n)n≥1 from a fragmen-
tation process conditioned to have an extinction time distributed according to πstat.
Formally, the Markov chain ((Zstat

n , Y stat
n ,�stat

n )n≥1,Z
stat
0 ) is defined by

E
[
f

((
Zstat

n , Y stat
n ,�stat

n

)
n≥1,Z

stat
0

)]
=

∫ ∞
0

E
[
f

(
(Zn,Yn,�n)n≥1,Z0

)|ζ = x
]
πstat(dx)
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for suitable test functions f . Since Z0 = ζ , the chain is then stationary: Zstat
n is

distributed according to πstat for all n ≥ 0 and

(
Zstat

n , Y stat
n ,�stat

n

) law= (
Zstat

1 , Y stat
1 ,�stat

1
)

for n ≥ 1,

since (Zstat
n , n ≥ 0) is the driving chain of the Markov chain (Zstat

n , Y stat
n ,�stat

n )n≥1.
Now let (

Zstat
n , Y stat

n ,�stat
n

)
n∈Z(3.13)

be an eternal stationary version of (Zn,Yn,�n)n≥1. Recall that such pro-
cess always exists: for all positive integers k, the distribution of the chain
(Zstat

n , Y stat
n ,�stat

n )n≥−k is defined to be that of (Zstat
n , Y stat

n ,�stat
n )n≥1 and so, by

Kolmogorov’s consistency theorem, the full process (Zstat
n , Y stat

n ,�stat
n )n∈Z is well

defined.
Observe that ∫ ∞

0
P(Y1 ≤ 1|Z0 = x)fζ (x)dx = P(Y1 ≤ 1) = 0

and that, by Lemma 2.2, fζ (x) > 0 for all x. It follows that P(Y1 > 1|Z0 = x) = 1
for Lebesgue-a.e. x, and so we also have P(Y stat

1 > 1) = 1. The following lemma
is a consequence of Lemma A.9 in the Appendix.

LEMMA 3.9. Suppose that
∫
S1

s−1
1 ν(ds) < ∞. Let

μ = E
[
log

(
Y stat

1
)]

.

Then μ ∈ (0,∞).

The biased version (Zbias, Y bias,�bias) of the eternal stationary Markov chain
constructed just above is then defined by

E
[
g
((

Zbias
n , Y bias

n ,�bias
n

)
n∈Z

)] = 1

μ
E

[
log

(
Y stat

1
)
g
((

Zstat
n , Y stat

n ,�stat
n

)
n∈Z

)]
.

Note that the eternal process (Zbias
n , Y bias

n ,�bias
n )n∈Z is a time-inhomogeneous

Markov chain. However, if we restrict to times n ≥ 1, it is time-homogeneous,
with the same transition kernel as the stationary and standard versions (although a
different initial distribution). As in the standard case, we set

�bias
n := (Zbias

n )1/α

(Zbias
n−1)

1/αY bias
n

for n ∈ Z.

In Appendix A.2 we will prove various technical results about the stationary
and biased Markov chains, which will be used in the main body of the paper.
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4. Asymptotics of the last fragment. We will now determine the asymptotics
of ε1/αF∗(ζ − ε) as ε → 0, and then of the whole process t ∈ R+ �→ ε1/αF∗(ζ −
εt). The key point in our approach is the ergodicity of the driving chain proved in
the previous section.

From the biased Markov chain introduced in Section 3.3, we can now define
what will be the limit process, which is denoted by (C∞,∗(t), t ≥ 0). Let U be
uniformly distributed on [0,1], independently of (Zbias, Y bias,�bias). Let

R(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Y bias

1
)−αU

k∏
i=1

(
Y bias

i

)α
, if k ≥ 1,

(
Y bias

1
)−αU

, if k = 0,

(
Y bias

1
)−αU

0∏
i=k+1

(
Y bias

i

)−α
, if k ≤ −1,

so that R(k) is a decreasing function of k ∈ Z. Note the multiplicative relation
R(k + 1) = R(k)(Y bias

k+1)
α,∀k ∈ Z. The following result follows from Lemma A.11

in the Appendix.

LEMMA 4.1. We have R(k) → 0 as k → ∞ and R(k) → ∞ as k → −∞
almost surely.

The process C∞,∗ is then a nondecreasing piecewise constant right-continuous
process, which is defined by C∞,∗(0) = 0 and, for t > 0,

C∞,∗(t) = (
Zbias

k

)1/α(
R(k)

)−1/α if t ∈ [
R(k + 1),R(k)

)
.

See Figure 2 for an illustration. The monotonicity of C∞,∗ comes from the identity

(
Zbias

k

)1/α
k∏

i=1

(
Y bias

i

)−1 = (
Zbias

0
)1/α

k∏
i=1

�bias
i , k ≥ 1

and from the fact that the random variables �bias
i lie in (0,1) a.s. A similar

equality holds for negative k. Note that R(1) < 1 < R(0) a.s. and so C∞,∗(1) =
(Y bias

1 )U (Zbias
0 )1/α .

THEOREM 4.2. Suppose that
∫
S1

s−1
1 ν(ds) < ∞ and that ν is nongeometric.

Then, as ε → 0,((
ε1/αF∗

(
(ζ − εt)−)

, t ≥ 0
)
, ζ

) law→ ((
C∞,∗(t), t ≥ 0

)
, ζ

)
,

where ζ and C∞,∗ are independent in the limit. In particular,

ε1/αF∗(ζ − ε)
law→ (

Y bias
1

)U (
Zbias

0
)1/α

.
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FIG. 2. The limit (C∞,∗(t), t ≥ 0) of the last fragment. The process is piecewise constant between
the jumps which are indicated. Compare to Figure 1: here time has been reversed.

The proof of this result is based on the convergence in distribution of the driv-
ing chain (Zn)n≥0, proved in the previous section, and uses results from Markov
renewal theory, which are gathered in Section 4.1 below. In Section 4.2, we prove
the convergence of the one-dimensional marginal distributions of the rescaled last
fragment process. The full functional convergence is then proved in Section 4.3.

4.1. Background on Markov renewal theory. Let S0 = 0, and for n ≥ 1,

Sn :=
n∑

i=1

logYi.

As a consequence of Corollary 3.3, (Zn,Sn)n≥0 is a Markov renewal process in
the terminology of [3, 4, 6, 21, 22, 25, 28]. We refer to Alsmeyer’s paper [4] for
background on this topic and results about asymptotic behaviors. As in standard re-
newal theory, these results depend on hypotheses of nonarithmeticity/arithmeticity
for the support of the process. In our context, this is formulated as follows: the
process is called d-arithmetic if d ≥ 0 is the largest number for which there exists
a measurable function γ : (0,∞) → [0, d) such that

P
(
logY1 ∈ γ (Z0) − γ (Z1) + dZ

) = 1.(4.1)

The process is nonarithmetic if no such d exists. The condition for nonarithmetic-
ity in our setting is unsurprising.
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LEMMA 4.3. The process (Zn,Sn)n≥0 is nonarithmetic if and only if the dis-
location measure ν is nongeometric.

PROOF. Recall that Y1 = ((ζ − T1)/ζ )1/α and ζ = T1 + �−α
1 Z1, with T1 in-

dependent of (�1,Z1), and Z0 = ζ . If ν is r-geometric for some r ∈ (0,1), then
�1 ∈ rN a.s. and, consequently, logY1 ∈ α−1(logZ1 − logZ0) + (− log r)N a.s.
The arithmeticity of (Zn,Sn)n≥0 follows.

Conversely, assume that (4.1) holds for some d ≥ 0 and some measurable func-
tion γ . This is equivalent to

P
(
log�1 ∈ γ

(
T1 + �−α

1 Z1
) − γ (Z1) + dZ

) = 1

for some suitable function γ . Since �−α
1 Z1 has a strictly positive density on

(0,∞) [see the discussion around (2.1)], and since T1 is independent of (�1,Z1),
this implies that for Lebesgue a.e. a > 0, there exists a real number ba such
that P(γ (T1 + a) ∈ ba + dZ) = 1. But T1 is exponentially distributed, and so
γ (u + a) ∈ ba + dZ for Lebesgue-a.e. u > 0. This implies that

P
(
γ (Z0) − γ (Z1) ∈ dZ|Z0 > a,Z1 > a

) = 1 for Lebesgue a.e. a > 0.

Hence, P(γ (Z0) − γ (Z1) ∈ dZ) = 1, and so P(log�1 ∈ dZ) = 1. Note that this
implies that d > 0. To conclude, assume that ν is nongeometric; that is, that for all
r ∈ (0,1), there exists some ir ∈ N such that ν(sir /∈ rN, sir > 0) > 0. Then

P
(
log�1 /∈ (log r)N

) ≥ P
(
�1 = Fi(T1),Fi(T1) /∈ rN

) ∀i ∈ N.

Since P(�1 = Fi(T1)|Fi(T1)) > 0 when Fi(T1) > 0 [this is due to the fact
that

∏
j �=i Fζ (s

α
j x) > 0, for s ∈ S1, when x > 0, as explained in the proof

of Lemma 2.2] and, since P(Fir (T1) /∈ rN ∪ {0}) > 0 by assumption, we have
that P(log�1 /∈ (log r)N) > 0 for all r ∈ (0,1), which contradicts the fact that
P(log�1 ∈ dZ) = 1 for some d > 0. Hence, ν is geometric when (4.1) holds. �

Theorem 1 of Alsmeyer [4] applied to (Zn,Sn)n≥0 yields the following result,
with μ = E[log(Y stat

1 )] ∈ (0,∞); see Lemma 3.9.

THEOREM 4.4. Suppose that the dislocation measure ν is nongeometric and
such that

∫
S1

s−1
1 ν(ds) < ∞. Suppose that g :R+ × R+ → R is a measurable

function which is such that (a) g(x, ·) is Lebesgue-almost everywhere continuous
for Lebesgue-almost all x ∈ R+ and (b)

∫ ∞
0

∑
n∈Z+ supnρ≤y<(n+1)ρ |g(x, y)| ×

πstat(dx) < ∞ for some ρ > 0. Then as r → ∞,

E

[∑
n≥0

g(Zn, r − Sn)
∣∣∣Z0 = z

]
→ 1

μ

∫
R+

∫
R+

g(x, y)dy πstat(dx),

for Lebesgue-almost all z ∈ R+.
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In terms of the biased process introduced in Section 3.3, Corollary 1 of [4] reads
as follows.

COROLLARY 4.5. Suppose that the dislocation measure ν is nongeometric
and such that

∫
S1

s−1
1 ν(ds) < ∞. Let h :R+ ×R+ → R be a measurable function

such that g :R+ × R+ → R defined by g(x, y) = h(x, y)P(log(Y1) > y|Z0 = x)

satisfies conditions (a) and (b) of Theorem 4.4. Let

J (r) = sup{n ≥ 0 :Sn ≤ r},
and assume that J (r) < ∞ for all r ∈ R+. Then for Lebesgue-almost all z ∈ R+,
as r → ∞,

E
[
h(ZJ(r), r − SJ(r))|Z0 = z

] → E
[
h
(
Zbias

0 ,U log
(
Y bias

1
))]

,

where U is uniformly distributed on [0,1] and independent of (Zbias
0 , log(Y bias

1 )).

REMARK 4.6. We have replaced all the “for πstat-almost all x” in Alsmeyer’s
results by “for Lebesgue-almost all x” since πstat is equivalent to Lebesgue mea-
sure on R+. Note also that a bounded measurable function h :R+×R+ →R which
is such that h(x, ·) is Lebesgue-almost everywhere continuous for Lebesgue-
almost all x ∈ R+, satisfies the conditions of Corollary 4.5. Indeed, the measur-
ability and condition (a) are obvious. For condition (b), take ρ = 1, set ‖h‖∞ =
supx≥0 |h(x)| and note that∫

R+

∑
n∈Z+

sup
n≤y<n+1

∣∣h(x, y)
∣∣P(

log(Y1) > y|Z0 = x
)
πstat(dx)

≤ ‖h‖∞
∫
R+

∑
n∈Z+

P
(
log(Y1) > n|Z0 = x

)
πstat(dx)

≤ ‖h‖∞(1 + μ) < ∞,

since E[Z] + 1 ≥ ∑
n∈Z+ P(Z > n) for any positive random variable Z.

4.2. One-dimensional convergence. We use Corollary 4.5 to obtain the con-
vergence in distribution of the rescaled last fragment at time ζ − ε as ε → 0,

(
ε1/αF∗(ζ − ε), ζ

) law→ ((
Zbias

0
)1/α(

Y bias
1

)U
, ζ

)
,(4.2)

with ζ independent of (Zbias
0 )1/α(Y bias

1 )U in the limit. In fact, this result will be an
immediate consequence of the proof of Theorem 4.2 in the next section. However,
its proof is instructive and so, by way of a brief warm-up, we give the details here.
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Let

Nε = sup{n ≥ 0 : ζ − ε ≥ Tn} = sup

{
n ≥ 0 :

n∏
i=0

Yα
i ≥ ε

}

(4.3)

= sup

{
n ≥ 0 :

n∑
i=0

logYi ≤ 1

α
log ε

}
,

with the convention that sup∅ = −∞. Note that for all ε > 0, since Tn → ζ almost
surely, Nε < ∞ almost surely. Also,

P(Nε �= −∞) = P(ζ ≥ ε) → 1 as ε → 0.

Therefore,

F∗(ζ − ε) = F∗(TNε)1{Nε �=−∞} + 1{Nε=−∞} =
Nε∏
i=0

�i1{Nε �=−∞} + 1{Nε=−∞}.

Hence, since
∏Nε

i=0 �i = Z
1/α
Nε

∏Nε

i=0 Y−1
i ,

ε1/αF∗(ζ − ε)

= Z
1/α
Nε

exp
(

1

α
log ε − SNε − 1

α
log ζ

)
1{Nε �=−∞} + ε1/α1{Nε=−∞}.

Next, let f :R+ → R be a bounded continuous test function. To obtain (4.2), it
is sufficient to prove that for Lebesgue-almost all z > 0,

E
[
f

(
ε1/αF∗(ζ − ε)

)|ζ = z
] → E

[
f

((
Zbias

0
)1/α(

Y bias
1

)U )]
.

So let z > 0 and note that, conditional on ζ = z, Nε �= −∞ for all ε ≤ z. Hence,
for ε ≤ z, since Z0 = ζ ,

E
[
f

(
ε1/αF∗(ζ − ε)

)|ζ = z
]

= E

[
f

(
Z

1/α
Nε

exp
(

1

α
log ε − SNε − 1

α
log z

))∣∣∣Z0 = z

]

= E

[
f

(
Z

1/α

J (α−1 log(ε/z))
exp

(
1

α
log(ε/z) − SJ(α−1 log(ε/z))

))∣∣∣Z0 = z

]
,

where J is defined in Corollary 4.5. The last expectation converges to
E[f ((Zbias

0 )1/α(Y bias
1 )U )] as ε → 0, by Corollary 4.5, since the function h defined

on (0,∞) × [0,∞) by

h(x, y) = f
(
x1/α exp(y)

)
and by, say, h(0, y) = 0 for y ∈ R+, satisfies the conditions of Corollary 4.5; see
Remark 4.6.
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4.3. Functional convergence. We take as a convention (for the standard ver-
sion of our Markov chain, started from Z0 = ζ ) that Zi = Yi = 0 and �i = 0 for
i < 0.

LEMMA 4.7. Endow (R2+ × S1)
Z × R+ with the product topology. Then for

Lebesgue a.e. z > 0, conditional on ζ = z, we have(
(ZNε+n, YNε+n,�Nε+n)n∈Z,

1

α
log(ε/ζ ) − SNε

)
law→ ((

Zbias
n , Y bias

n ,�bias
n

)
n∈Z,U log

(
Y bias

1
))

as ε → 0, where U is independent of the process (Zbias
n , Y bias

n ,�bias
n )n∈Z.

PROOF. It is sufficient to prove that for all k ≥ 1 and Lebesgue a.e. z > 0,
conditional on ζ = z,(

(ZNε+n, YNε+n,�Nε+n)n≥−k,
1

α
log(ε/ζ ) − SNε

)
law→ ((

Zbias
n , Y bias

n ,�bias
n

)
n≥−k,U log

(
Y bias

1
))

.

So, in the following, we fix k ≥ 1.
Recall that, conditionally on ζ = Z0 = z, Nε �= −∞ for all ε ≤ z. More-

over, Nε → ∞ as ε → 0 almost surely. It is therefore sufficient to show that
for Lebesgue a.e. z > 0 and all bounded continuous functions f : (R2+ × S1)

Z ×
R+ → R,

E

[
f

(
(ZNε+n, YNε+n,�Nε+n)n≥−k,

1

α
log(ε/z) − SNε

)
1{Nε≥k+1}

∣∣∣Z0 = z

]

→ E
[
f

((
Zbias

n , Y bias
n ,�bias

n

)
n≥−k,U log

(
Y bias

1
))]

.

To show this, note that for ε ≤ z,

E

[
f

(
(ZNε+n, YNε+n,�Nε+n)n≥−k,

1

α
log(ε/z) − SNε

)
1{Nε≥k+1}

∣∣∣Z0 = z

]

=
∞∑
i=1

E

[
f

(
(Zi+k+n, Yi+k+n,�i+k+n)n≥−k,

1

α
log(ε/z) − Si+k

)

× 1{Si+k≤1/α log(ε/z)<Si+k+1}
∣∣∣Z0 = z

]

=
∞∑
i=0

E

[
g

(
Zi,

1

α
log(ε/z) − Si

)∣∣∣Z0 = z

]
,
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where

g(x, y) = E

[
f

(
(Zk+n+1, Yk+n+1,�k+n+1)n≥−k, y −

k+1∑
j=1

logYj

)

× 1{∑k+1
j=1 logYj≤y<

∑k+2
j=1 logYj }

∣∣∣∣Z0 = x

]
,

the first equality being a consequence of the definition of Nε and the second of
the Markov property of the process. Note that g satisfies the assumptions of Theo-
rem 4.4; see Remark 4.6. Consequently, as ε → 0, for Lebesgue a.e. z > 0,

E

[
f

(
(ZNε+n, YNε+n,�Nε+n)n≥−k,

1

α
log(ε/z) − SNε

)
1{Nε≥k+1}

∣∣∣Z0 = z

]

→ 1

μ

∫
R+

∫
R+

g(x, y)dy πstat(dx).

Using the change of variables u = (y − ∑k+1
j=1 logYj )/ log(Yk+2), we get, for U

uniform on [0,1] and independent of the process (X,Y,�), that this limit can be
written as

1

μ

∫
R+

E
[
log(Yk+2)f

(
(Zk+n+1, Yk+n+1,�k+n+1)n≥−k,U logYk+2

)|Z0 = x
]

× πstat(dx)

= 1

μ
E

[
log

(
Y stat

k+2
)
f

((
Zstat

k+n+1, Y
stat
k+n+1,�

stat
k+n+1

)
n≥−k,U logY stat

k+2
)]

= 1

μ
E

[
log

(
Y stat

1
)
f

((
Zstat

n , Y stat
n ,�stat

n

)
n≥−k,U logY stat

1
)]

,

by stationarity of the process (Zstat, Y stat,�stat). �

PROOF OF THEOREM 4.2. Let ε ≤ ζ . Recall that for 0 < t ≤ ζ/ε,

Nεt = sup

{
n ≥ 0 :

n∏
i=0

Yα
i ≥ εt

}
�= −∞

and

ε1/αF∗(ζ − εt) = ε1/αZ
1/α
Nεt

Nεt∏
i=0

Y−1
i .

We will want to re-center all times around Nε (which is �= −∞ since ε ≤ ζ ). To
this end, let

Rε(k) = ε−1
Nε+k∏
i=0

Yα
i , k ≥ −Nε
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so that Rε(k) is strictly decreasing in k ≥ −Nε and

Nεt = Nε + sup
{
k ≥ −Nε :Rε(k) ≥ t

}
.

Note that Rε(k) = ε−1(ζ − TNε+k) and therefore that (Rε(k), k ≥ −Nε + 1) is
the (decreasing) sequence of jump times of the process (ε1/αF∗(ζ − εt), t ≥ 0).
Re-centering times around Nε , we obtain that Rε(k) may be written as

Rε(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

exp
(
αSNε − log(ε/ζ )

) k∏
i=1

Yα
Nε+i , if k ≥ 1,

exp
(
αSNε − log(ε/ζ )

)
, if k = 0,

exp
(
αSNε − log(ε/ζ )

) 0∏
i=k+1

Y−α
Nε+i , if −Nε ≤ k ≤ −1.

(4.4)

Similar to the construction of C∞,∗, the process (ε1/αF∗(ζ − εt), t ≥ 0) is piece-
wise constant and may be constructed from (Zn,Yn)n≥0 as follows: for 0 < t ≤
ζ/ε,

ε1/αF∗(ζ − εt) = (ZNε+k)
1/α(

Rε(k)
)−1/α

when t ∈ (
Rε(k + 1),Rε(k)

] ∀k ≥ −Nε.

Next, by Lemma 4.7 and the Skorokhod representation theorem [the space
(R2+ × S1)

Z × R+ is Polish], for Lebesgue a.e. z > 0, there exists for all ε > 0
a version of (

(ZNε+n, YNε+n,�Nε+n)n∈Z,
1

α
log(ε/ζ ) − SNε

)∣∣∣ζ = z

that converges almost surely as ε → 0 to a version of ((Zbias, Y bias,�bias),

U log(Y bias
1 )). Then for all t > 0 and all ε ≤ z, construct from this new version

a process ε1/α(F̃∗(ζ̃ − εt), t ≥ 0) (with ζ̃ = z), exactly as ε1/α(F∗(ζ − εt), t ≥ 0)

is constructed above from(
(ZNε+n, YNε+n,�Nε+n)n∈Z,

1

α
log(ε/ζ ) − SNε

)
.

By Lemma A.4 in the Appendix, the càdlàg process ε1/α(F̃∗((ζ̃ − εt)−), t ≥ 0)

then converges almost surely as ε → 0 to a process which is distributed as C∞,∗.
�

5. The spine decomposition for the fragmentation. We are now ready to
introduce our spine decomposition for a fragmentation process. It may help the
reader to refer to Figure 1. We need a little notation. Write F̄ (x) to denote the (left-
continuous) time-reversal of a fragmentation process F conditioned to become
extinct before time x, that is, F̄ (x)(0) = 0, F̄ (x)(x) = 1, F̄ (x) is làdcàg on R+, and
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for any suitable test function f ,

E
[
f

(
F̄ (x)(t), t ≥ 0

)] = E
[
f

(
F(x − t)

)
1{0≤t≤x} + f (0)1{t>x}|ζ < x

]
.

[We emphasize that F̄ (x)(t) = 0 for t > x.] Note that since F̄ (x) is làdcàg, the
process (F̄ (x)(t+), t ≥ 0) is càdlàg. Moreover, the probability that a fragmenta-
tion process jumps at a fixed deterministic time t is 0. (This can be seen as a
consequence of its Poissonian construction [8, 9]. Equivalently, and in a more ele-
mentary way since the dislocation measure is finite here, this can be seen using the
genealogical description of the fragmentation developed in Chapter 1.2 of [11].) It
is clear from its definition that F̄ (x) inherits this property on (0, x).

Recall the definitions of Nε and Rε(k) from (4.3) and (4.4), respectively.

PROPOSITION 5.1 (Spine decomposition). On the event {Nε �= −∞} = {ε ≤
ζ }, the process (F (ζ − εt),0 < t ≤ ζ/ε) can be rewritten in the form({

Nε+Kε(t)∏
j=0

�j,

(
Nε+i−1∏

j=0

�j

)
�Nε+i,mF̄

(�α
Nε+i,m�−α

Nε+iZNε+i )

i,m

(
εt

(
Nε+i−1∏

j=0

�j

)α

�α
Nε+i,m

)
:

m ≥ 1,−Nε + 1 ≤ i ≤ Kε(t)

}↓
,0 < t ≤ ζ/ε

)
,

where Kε(t) is the unique integer k ≥ −Nε such that Rε(k) ≥ t > Rε(k + 1),

and F̄
(�α

Nε+i,m�−α
Nε+iZNε+i )

i,m , i ∈ Z,m ≥ 1 is a collection of conditioned fragmen-
tation processes which are independent for distinct i and m, conditionally on
(Zn,�n,�n)n≥0.

Although this expression may seem a little intimidating, the idea behind it is
simple: the decreasing sequence F(ζ − εt) is composed of F∗(ζ − εt) (the spine
term) and the masses of fragments coming from the fragmentation of all blocks
that detached from the spine F∗ before time ζ − εt .

PROOF OF PROPOSITION 5.1. Consider the state of the fragmentation at some
time ζ − εt . Each block present is either the last fragment, or descends from a
block which split off from the last fragment at time Tn for some 1 ≤ n ≤ Nεt (this
ensures that Tn ≤ ζ − εt). In other words, the current state may be written as the
decreasing rearrangement of the blocks of(

F∗(ζ − εt), F̃n,m(ζ − εt − Tn),m ≥ 1,1 ≤ n ≤ Nεt

)
,(5.1)

where F̃n,m(s) represents the collection of blocks present at time Tn + s which are
descended from the mth-largest block to split off from F∗ at time Tn. Note that
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the process F̃n,m must itself have extinction time at most ζ − Tn (since it must die
before the last fragment), that is, F̃n,m(s) = 0 for some s < ζ − Tn.

By construction,

F∗(Tn) =
n∏

j=0

�j .

For Kε(t) defined to be the unique integer k ≥ −Nε such that Rε(k) ≥ t > Rε(k +
1), we have Nεt = Nε + Kε(t) and so

F∗(ζ − εt) = F∗(TNεt ) =
Nεt∏
j=0

�j =
Nε+Kε(t)∏

j=0

�j .

For 1 ≤ n ≤ Nε +Kε(t), the blocks descending from the last fragment at time Tn−1
which split off from the last fragment at time Tn have sizes {F∗(Tn−1)�n,m,m ≥
1}, that is, F̃n,m(0) = F∗(Tn−1)�n,m. Note that

F∗(Tn−1)�n,m =
(

n−1∏
j=0

�j

)
�n,m.

Let us write Hn,m(s) = (F̃n,m(0))−1F̃n,m(F̃n,m(0)−αs) for F̃n,m with its natural
time- and space-rescaling, in order that we may later exploit the scaling property.
We can then rewrite (5.1) as(

Nε+Kε(t)∏
j=0

�j,

(
n−1∏
j=0

�j

)
�n,mHn,m

(
(ζ − εt − Tn)

(
n−1∏
j=0

�j�n,m

)α)
,

m ≥ 1,1 ≤ n ≤ Nε + Kε(t)

)
.

Now observe that

(ζ − Tn)

(
n−1∏
j=0

�j�n,m

)α

= Zn�
−α
n �α

n,m,

so that we in fact have(
Nε+Kε(t)∏

j=0

�j,

(
n−1∏
j=0

�j

)
�n,mHn,m

(
Zn�

−α
n �α

n,m − εt

(
n−1∏
j=0

�j

)α

�α
n,m

)
,

(5.2)

m ≥ 1,1 ≤ n ≤ Nε + Kε(t)

)
.

So far, we know that Hn,m is some sort of fragmentation process which is started
from Hn,m(0) = 1 and becomes extinct before time Zn�

−α
n �α

n,m.
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Suppose, temporarily, that we are on the event {Nε +Kε(t) = 1}; in other words,
by time ζ − εt , the last fragment has split exactly once. Then, in the notation
introduced just before Lemma 3.5, H1,m = H(I,m), and Lemma 3.5 entails that,
conditionally on (�0,�1,Z1,�1,m,m ≥ 1), H1,m is distributed as a standard frag-
mentation process conditioned to become extinct before time �α

1,m�−α
1 Z1, inde-

pendently for different m ≥ 1. It follows that, in this case, (5.2) is distributed as

(
�0�1,�0�1,mF̄

(�α
1,m�−α

1 Z1)

1,m

(
εt�α

0 �α
1,m

))
.

To get to the result for general Nε and Kε(t), note that Lemma 3.5 also tells
us that, conditionally on (�0,�1,Z1,�1,m,m ≥ 1), the evolution of the last frag-
ment after its first split (suitably rescaled) is independent of the evolution of H1,m

for m ≥ 1. So we may apply Lemma 3.5 inductively, just as we did in the proof of
Proposition 3.1, to obtain that (5.2) has the same distribution as(

Nε+Kε(t)∏
j=0

�j,

(
n−1∏
j=0

�j

)
�n,mF̄

(�α
n,m�−α

n Zn)
n,m

(
εt

(
n−1∏
j=0

�j

)α

�α
n,m

)
,

m ≥ 1,1 ≤ n ≤ Nε + Kε(t)

)
.

Finally, we will find it convenient to index the split times in such a way that index
Nε becomes 0. So we simply shift the indices down by Nε (i.e., set n = Nε + i).
Now notice that everything we have done here is consistent as we vary t in R+,
and so we obtain the desired result. �

So far, we have mainly thought of the spine decomposition in terms of the for-
ward direction of time for the fragmentation (F (t),0 ≤ t ≤ ζ ), with blocks gradu-
ally detaching from the spine and then further fragmenting until such a time as they
are reduced to dust. We now adopt the opposite perspective and view ε1/αF (ζ −ε·)
as being composed of a spine plus other blocks which immigrate into the system
and gradually coalesce with one another, before eventually coalescing with the
spine. We group the nonspine blocks together into sub-collections formed of those
which will attach to the spine at the same time. To this end, for i ≥ −Nε +1, m ≥ 1
and t ≥ 0, define

Hε
i,m(t) = �Nε+i,mZ

1/α
Nεn+i−1

(Rε(i − 1))1/α

× F̄
(ZNε+i−1Y

α
Nε+i�

α
Nε+i,m)

i,m

(
t�α

Nε+i,mZNε+i−1
(
Rε(i − 1)

)−1+)
,

where F̄
(ZNε+i−1Y

α
Nε+i�

α
Nε+i,m)

i,m , i ∈ Z,m ≥ 1 is a collection of conditioned time-
reversed fragmentation processes which are independent for distinct i and m, con-
ditionally on (Zn,Yn,�n)n≥0. Let H

ε,↓
i (t) be the decreasing rearrangement of
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all terms involved in the sequences Hε
i,m(t), m ≥ 1. [Note that H

ε,↓
i (t) ∈ S since∑

m≥1 �Nε+i,m ≤ 1.] Thus, H
ε,↓
i tracks the evolution of the collection of blocks

which attach to the spine at time Rε(i). The spine coalesces with other blocks only
at times Rε(k), k ≥ −Nε + 1.

Using this new notation, we can rewrite the expression for the spine decompo-
sition in Proposition 5.1 in a form more adapted to our purposes.

COROLLARY 5.2. Suppose that t ∈ [Rε(k + 1),Rε(k)) for some k ≥ −Nε .
Then ε1/αF ((ζ −εt)−) is the decreasing rearrangement of the masses which make
up:

• Z
1/α
Nε+k(Rε(k))−1/α ;

• H
ε,↓
i (t), −Nε + 1 ≤ i ≤ k.

By Lemma 4.7, it is then, more or less, clear what the limit process should
be. Recall that (Zbias

n ,�bias
n ,�bias

n )n∈Z is the biased Markov chain introduced in
Section 3.3. Let

Hi,m(t) = �bias
i,m (Zbias

i−1)
1/α

(R(i − 1))1/α
F̄

(Zbias
i−1(Y

bias
i )α(�bias

i,m )α)

i,m

(
t
(
�bias

i,m

)α
Zbias

i−1
(
R(i − 1)

)−1+)
,

where F̄
(Zbias

i−1(Y
bias
i )α(�bias

i,m )α)

i,m , i ∈ Z,m ≥ 1 is a collection of conditioned time-
reversed fragmentation processes which are independent for distinct i and m,
conditionally on the chain (Zbias

n , Y bias
n ,�bias

n )n∈Z. Let H
↓
i (t) be the decreasing

rearrangement of all terms involved in the sequences Hi,m(t), m ≥ 1.

DEFINITION 5.3. Let C∞(0) = 0. For all k ∈ Z and all t ∈ [R(k + 1),R(k)),
let C∞(t) be the decreasing rearrangement of the masses which make up:

• (Zbias
k )1/α(R(k))−1/α ;

• H
↓
i (t), i ≤ k.

See Figure 3 for an illustration. In a rough sense, the process C∞ models the
evolution of masses that coalesce, with a regular immigration of infinitesimally
small masses. It turns out that reversing time, the distribution of C∞ can be related
to the distribution of a transformed biased fragmentation process in the following
way. For all a, recall that C∞,∗(a) denotes the mass at time a of the spine. For
0 ≤ t ≤ a, let Ca∞(t) denote the subsequence of C∞(t) composed of all of the
blocks which will contribute to the mass C∞,∗(a) at time a. In other words, we are
looking at the coagulation history of C∞,∗(a). Note that, for a fixed time t , each
block of C∞(t) belongs to a sequence Ca∞(t) for some a sufficiently large. We are
interested in the distribution of the (Ca∞(t),0 ≤ t ≤ a) process. By self-similarity
it has the same distribution as (a1/αC1∞(at),0 ≤ t ≤ 1), so we can focus on the C1∞
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FIG. 3. The process C∞. The mass of the spine, which is piecewise constant, is shaded in gray.
For each k, the mass of the spine at time R(k) is the coagulation of the mass of the spine at time

R(k)− together with the masses H
↓
k (R(k)−) of some other fragments present at time R(k)−. The

collections of patterned triangles represent, from left to right, the processes H
↓
3 , H

↓
2 , H

↓
1 , H

↓
0 and

H
↓
−1 respectively.

process. The proposition below connects the distribution of this process to that of
a biased fragmentation process. We need the following elements:

• Let Zstat
0 be distributed according to πstat, and independently, let F be a frag-

mentation process.
• Let Fstat be distributed as the process (Zstat

0 )1/αF (Zstat
0 ·) conditioned to die at

time 1. Let Tstat,1 be the first jump time of Fstat.
• Independently, let U be uniformly distributed on [0,1].

PROPOSITION 5.4. For all test functions φ,

E
[
φ

(
C1∞(t),0 ≤ t ≤ 1

)]
= E

[
log(1 − Tstat,1)

(5.3)
× φ

(
(1 − Tstat,1)

U/αFstat
(
1 − (1 − Tstat,1)

U t
)
,0 ≤ t ≤ 1

)]
× (

E
[
log(1 − Tstat,1)

])−1
.

PROOF. First note that

E
[
φ(Fstat)

] =
∫
R+

E
[
φ

(
x1/αF (x·))|ζ = x

]
πstat(dx).(5.4)
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Recall that the fragmentation F can be constructed from the Markov chain
(Zn,Yn,�n)n≥0 and a collection of conditioned fragmentation processes F̄i,m:
roughly, F is then composed of a spine (F∗(Tn), n ≥ 1), where for n ≥ 1

Tn = Z0 − Z0

n∏
i=1

Yα
i , F∗(Tn) =

n∏
i=1

�i = Z
1/α
n

Z
1/α
0

∏n
i=1 Yi

,

from which, at each time Tn+1, blocks split off to give rise to conditioned frag-
mentation processes

Z
1/α
n �n+1,m

Z
1/α
0

∏n
i=1 Yi

F̄
(�α

n+1,mZnYα
n+1)

n+1,m

(
�α

n+1,mZn

(
Yα

n+1 − (· − Tn+1)

Z0
∏n

i=1 Yα
i

))
.

These conditioned processes are independent given (Zn,Yn,�n)n≥0. From (5.4),
we see that Fstat is constructed similarly from (Zstat

n , Y stat
n ,�stat

n )n≥0, a stationary
version of (Zn,Yn,�n)n≥0, and a collection of conditioned fragmentation pro-
cesses as follows: Fstat is composed of a spine (Fstat,∗(Tstat,n), n ≥ 1), where for
n ≥ 1

Tstat,n = 1 −
n∏

i=1

(
Y stat

i

)α
, F∗(Tstat,n) = (Zstat

n )1/α∏n
i=1 Y stat

i

,

and from this spine, blocks split off at times Tstat,n+1 to give rise to conditioned
fragmentation processes

(Zstat
n )1/α�stat

n+1,m∏n
i=1 Y stat

i

× F̄
((�stat

n+1,m)αZstat
n (Y stat

n+1)
α)

n+1,m

((
�stat

n+1,m

)α
Zstat

n

((
Y stat

n+1
)α − (· − Tstat,n+1)∏n

i=1(Y
stat
i )α

))
.

To finish, multiply Fstat by (1 − Tstat,1)
U/α , perform the time change t �→ 1 −

(1 − Tstat,1)
U t and note that 1 − Tstat,1 = (Y stat

1 )α . In order to obtain the expres-
sion in (5.3), we must now take a biased version of this stationary construction.
It suffices to compare this biased, scaled and time-changed version of Fstat with
Definition 5.3 to conclude the argument. �

6. Convergence of the full fragmentation. The aim of this section is to
prove Theorem 1.1. Throughout, we will assume that ν is nongeometric and that∫
S s

−1−ρ
1 ν(ds) < ∞ for some ρ > 0. We start by establishing several preliminary

lemmas.

6.1. Preliminary lemmas. We first deal with an important redundancy in our
expression for (C∞(t), t ≥ 0): for each time t , most of the Hi,m(t) do not con-
tribute.
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LEMMA 6.1. Consider the expression for (C∞(t), t ≥ 0) given in Defini-
tion 5.3. Then almost surely for all t > 0, t /∈ {R(k), k ∈ Z}, only finitely many
indices i and m contribute nonzero blocks to C∞(t).

PROOF. We start by proving that only finitely many indices i and m contribute
nonzero blocks to the state a.s. for a fixed t > 0. By the self-similarity of C∞, it
suffices to prove that this holds for t = 1. Recall, moreover, that R(1) < 1 < R(0)

a.s. By the first Borel–Cantelli lemma, it suffices to check that the following sum
is almost surely finite:

∑
i≤0

∞∑
m=1

P
(
Hi,m(1) �= 0|Zbias, Y bias,�bias)

= ∑
i≤0

∞∑
m=1

P
(
F̄

(Zbias
i−1(Y

bias
i )α(�bias

i,m )α)

i,m

((
�bias

i,m

)α
Zbias

i−1
(
R(i − 1)

)−1+) �= 0|(6.1)

Zbias, Y bias,�bias).
For any x > 0 and any 0 ≤ u ≤ x,

P
(
F̄ (x)(u) �= 0

) = P(ζ > x − u|ζ < x) = Fζ (x) − Fζ (x − u)

Fζ (x)
.

Using Lemma 2.2(ii), we see that

P
(
F̄ (x)(u) �= 0

) ≤ d
u exp(−c(x − u))

Fζ (x)

for some constants c, d > 0. Hence (6.1) is bounded above by

d
∑
i≤0

∞∑
m=1

Zbias
i−1

(
�bias

i,m

)α(
R(i − 1)

)−1 exp(−cZbias
i−1(Y

bias
i )α(�bias

i,m )α(1 − (R(i))−1))

Fζ (Z
bias
i−1(Y

bias
i )α(�bias

i,m )α)

[note that R(i) > 1 for all i ≤ 0]. Using the monotonicity of Fζ , we see that we
only require the finiteness of

∑
i≤0

(R(i))−1

Fζ (Z
bias
i−1(Y

bias
i )α)

∞∑
m=1

Zbias
i−1

(
Y bias

i

)α(
�bias

i,m

)α
(6.2)

× exp
(−cZbias

i−1
(
Y bias

i

)α(
�bias

i,m

)α(
1 − (

R(i)
)−1))

.

Since
∑∞

m=1 �bias
i,m < 1, we have �bias

i,m ≤ m−1, and so the inner sum in m is bounded
above by

C
(
1 − (

R(i)
)−1)−1

∞∑
m=1

exp
(−c′Zbias

i−1
(
Y bias

i

)α
m−α(

1 − (
R(i)

)−1))
,(6.3)
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for some constants C > 0 and 0 < c′ < c. Now observe that for θ > 0,
∞∑

m=1

exp
(−θm−α) ≤

∫ ∞
0

exp
(−θx−α)

dx = �

(
1 − 1

α

)
θ1/α,

and so (6.3) is bounded above by

C′(Zbias
i−1

)1/α
Y bias

i

(
1 − (

R(i)
)−1)−1+1/α

for some constant C′ > 0. Since by Lemma 4.1 we have that R(i) → ∞ as i →
−∞ almost surely, there exists i0 < 0 such that for all i ≤ i0, (1−(R(i))−1)−1+1/α

is bounded above, say by 2. For i ≤ i0, let

Bi = 2(R(i))−1

Fζ (Z
bias
i−1(Y

bias
i )α)

(
Zbias

i−1
)1/α

Y bias
i .

Then by Lemma A.11,

lim
n→∞

1

n
log(B−n) = lim

n→∞
α

n

0∑
j=−n+1

log
(
Y bias

j

) − lim
n→∞

1

n
log

(
Fζ

(
Zbias−n−1

(
Y bias−n

)α))

+ lim
n→∞

1

αn
log

(
Zbias−n−1

) + lim
n→∞

1

n
log

(
Y bias−n

)
= αμ < 0.

Hence, by Cauchy’s root test, (6.2) is almost surely finite.
The statement of the lemma now follows easily: we know that almost surely

for all rational numbers q ∈ Q ∩ (0,∞), only finitely many indices i and m con-
tribute nonzero blocks to the state C∞(q). On this event of probability one, for
each positive time t /∈ {R(k), k ∈ Z}, say t ∈ (R(k + 1),R(k)), consider a rational
number q ∈ (t,R(k)). Since all indices i,m that contribute to the state C∞(t) also
contribute to the state C∞(q), the statement follows. �

LEMMA 6.2. C∞ is almost surely a càdlàg process taking values in (S, d).

PROOF. We first prove that, with probability one, C∞(t) ∈ S for all t ≥ 0. By
Lemma 6.1, with probability one, for all t /∈ {R(k), k ∈ Z}, t > 0, ‖C∞(t)‖1 < ∞.
If t = 0, C∞(t) = 0. Finally, for t = R(k) for some k, we can argue via monotonic-
ity. Let u ∈ (R(k),R(k − 1)). Then ‖C∞(t)‖1 ≤ ‖C∞(u)‖1 < ∞ on the event of
probability one we just considered.

We now turn to the continuity properties. We first show that ‖C∞(t)‖1 → 0 as
t ↓ 0. First, recall that C∞,∗(t) → 0 as t ↓ 0 (this was noted at the beginning of
Section 4, as a consequence of Lemma 4.1). Now fix ε > 0. Then we can find
tε > 0 such that C∞,∗(tε) < ε/2. Moreover, we can always assume that tε is not
one of the R(k) and, therefore, that there are only finitely many indices i and
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m which contribute to the state of C∞(tε). Since the total mass in each of these
fragmentations is decreasing to 0, it follows that there exists some time t ′ε ∈ (0, tε)

such that ‖C∞(t ′ε)‖1 < ε.
Now consider a fixed time t ∈ (0,∞), and suppose that t ∈ [R(k +1),R(k)) for

some k ∈ Z. Take (tn)n∈N to be such that t1 < R(k) and tn ↓ t . Then C∞(tn) is the
decreasing rearrangement of C∞,∗(R(k + 1)) together with the blocks of Hi,m(tn)

for m ≥ 1, i ≤ k. There are only finitely many indices i and m which contribute
to the nonzero blocks of C∞(t1), and blocks can only disappear as tn decreases in
(R(k + 1),R(k)). Hence

k∑
i=−∞

∞∑
m=1

∥∥Hi,m(tn) − Hi,m(t∞)
∥∥

1

is a sum with only finitely many nonzero terms. Since F̄
(Zbias

i−1(Y
bias
i )α(�bias

i,m )α)

i,m (·+) is
càdlàg for each i,m, each term converges to 0, and so the whole sum converges
to 0. Using Lemma A.1, we deduce that ‖C∞(tn) − C∞(t)‖1 → 0.

The existence of a left limit at time t ∈ (0,∞) such that t ∈ (R(k + 1),R(k))

follows similarly, because again the same finite collection of indices i,m are in-
volved for all t ′ ∈ (t − ε, t) for sufficiently small ε > 0. Finally, for times t such
that t = R(k) for some k ∈ Z, there is a slight difference since the number of in-
dices in the set {(k,m),m ≥ 1} that are involved may be infinite. However, the
result still holds by Lemma A.1, since∑

m≥mη

�bias
k,m

(
Zbias

k−1
)1/α(

R(k − 1)
)−1/α ≤ η

for some finite mη and all η > 0. �

We now turn to an important tightness result, which will allow us to ignore,
in the proof of Theorem 1.1, the possibility that there exist blocks in the system
at time Rε(k) which persist for a very long time before coalescing with the spine.
From now on, we use its spine decomposition, as discussed in the previous section.
For each ε > 0 and each k ∈ Z, let Iε(k) be the largest positive integer i such that
at least one nonspine block present at time Rε(k) attaches to the spine at time
Rε(k − i). Formally, when k ≥ −Nε + 1,

Iε(k) = sup
{
1 ≤ i ≤ k + Nε − 1 :Hε,↓

k−i

(
Rε(k)

) �= 0
}
,

with the convention that Iε(k) = 0 if this is the supremum of an empty set. We also
set Iε(k) = 0 when k < −Nε + 1. Our goal is prove that with a high probability
Iε(k) is not too large, simultaneously for all ε small enough.

LEMMA 6.3 (Tightness). Let z > 0 be fixed and such that the convergence in
distribution of Lemma 4.7 holds. Consider a sequence (εn)n∈N of strictly positive
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real numbers converging to 0. Then there exists a family of positive integers (jη(k))

indexed by k ∈ Z, η > 0 such that

P
(
Iεn(k) ≥ jη(k)|Z0 = z

) ≤ η ∀n ∈ N.

Consequently, ∀n ∈ N,

P
({

Iεn(0) ≥ jη(0)
} ∪ {∃k ∈ Z \ {0} : Iεn(k) ≥ jη/k2(k)

}|Z0 = z
)

≤ (
1 + 2π2/6

)
η.

Having in mind the construction of C∞, we define similarly I (k), k ∈ Z to be
the largest integer i ≥ 1 such at least one nonspine block present at time R(k)

attaches to the spine at time R(k − i) [and I (k) = 0 if no such i ≥ 1 exists]. As a
direct consequence of Lemmas 6.1 and 6.3, we have the following result, which is
in the form we will use later for the proof of Theorem 1.1.

LEMMA 6.4. Let z > 0 be fixed and such that the convergence of Lemma 4.7
holds. Consider a sequence (εn)n∈N of strictly positive real numbers converging
to 0. Then there exists a family of positive integers (iη(k)) indexed by k ∈ Z, η > 0
such that

P
(∃k ∈ Z : Iεn(k) ≥ iη(k)|Z0 = z

) ≤ η ∀n ∈ N

and

P
(∃k ∈ Z : I (k) ≥ iη(k)

) ≤ η.

In order to prove Lemma 6.3, we gather together some technical results in the
following lemma. They follow from Lemmas A.8, A.9, A.10 and A.12 in the Ap-
pendix.

LEMMA 6.5. We have that for p > 0 and δ > 0 sufficiently small,

E
[∣∣log

(
Zstat

0
)∣∣p]

< ∞, E
[(

log
(
Y stat

1
))p]

< ∞
and

E
[∣∣log

(
Fζ

(
Zstat

0
(
Y stat

1
)α))∣∣1+δ]

< ∞.

Moreover, there exist constants A < ∞ and cY ∈ (0,1) such that

E

[
n∏

i=2

(
Y stat

i

)α]
≤ Acn

Y .
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PROOF OF LEMMA 6.3. The proof is similar for all k ∈ Z, and so, in order to
ease the notation, we will only write it out in the case where k = 0. In the following
lines, η > 0 is fixed, and C denotes a finite positive constant that may vary from
line to line.

Our main goal is to prove the existence of Nη ∈ Z and εη > 0 such that

P
(
Iε(0) ≥ Nη|Z0 = z

) ≤ η ∀0 ≤ ε ≤ εη.(6.4)

Since (εn)n∈N is a sequence of strictly positive real numbers converging to 0, this
will imply the existence of a positive integer jη(0) such that

P
(
Iεn(0) ≥ jη(0)|Z0 = z

) ≤ η ∀n ∈ N,

as expected.
Now, in order prove (6.4), note that for all integers N ≥ 1, following the main

lines of the proof of Lemma 6.1, we obtain that

P
(
Iε(0) ≥ N |(Z,Y,�)

)

≤ C

Nε−1∑
i=N

Rε(0)Rε(−i)−1

(1 − Rε(0)Rε(−i)−1)1−1/α

Z
1/α
Nε−i−1YNε−i

Fζ (ZNε−i−1Y
α
Nε−i )

≤ CAεBε(N),

where

Aε = Rε(0) exp(−αSNε + log(ε/Z0))

(1 − Rε(0)Rε(−1)−1)1−1/α
,

Bε(N) =
Nε−1∑
i=N

( 0∏
k=−i+1

Yα
Nε+k

)
Z

1/α
Nε−i−1YNε−i

Fζ (ZNε−i−1Y
α
Nε−i )

.

Consequently, for every A > 0,

P
(
Iε(0) ≥ N |Z0 = z

) ≤ η

3
P

(
AεBε(N) ≤ η/3C|Z0 = z

)
+ P(Aε ≥ A/3C|Z0 = z) + P

(
Bε(N) ≥ η/A|Z0 = z

)
.

But we know from Lemma 4.7 that when ε → 0, conditional on Z0 = z,

Aε
law→ R(0)(Y bias

1 )αU

(1 − R(0)R(−1)−1)1−1/α,

and the limit is almost surely finite. Hence if we fix A sufficiently large, then for
all ε sufficiently small, say ε ≤ ε0, and all N ≥ 1,

P
(
Iε(0) ≥ N |Z0 = z

) ≤ 2η

3
+ P

(
Bε(N) ≥ η/A|Z0 = z

)
.
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Let us now deal with this last probability (A is now fixed). We have

P
(
Bε(N) ≥ η/A|Z0 = z

)

≤
∞∑

i=N

P

(( 0∏
k=−i+1

Yα
Nε+k

)
Z

1/α
Nε−i−1YNε−i

Fζ (ZNε−i−1Y
α
Nε−i )

1{i≤Nε−1} ≥ 6η

Aπ2i2

∣∣∣∣Z0 = z

)

(since
∑

i≥N i−2 ≤ π2/6). Recall that, on the event {Z0 = z}, we have {Nε = j} =
{Sj ≤ α−1 log(ε/z) < Sj+1}. Hence

P

(( 0∏
k=−i+1

Yα
Nε+k

)
Z

1/α
Nε−i−1YNε−i

Fζ (ZNε−i−1Y
α
Nε−i )

1{i≤Nε−1} ≥ 6η

Aπ2i2

∣∣∣∣Z0 = z

)

=
∞∑

j=i+1

P

(( 0∏
k=−i+1

Yα
j+k

)
Z

1/α
j−i−1Yj−i

Fζ (Zj−i−1Y
α
j−i )

≥ 6η

Aπ2i2 ,

Sj ≤ log(ε/z)

α
< Sj+1

∣∣∣∣Z0 = z

)

=
∞∑

j=0

P

(( 0∏
k=−i+1

Yα
j+i+1+k

)
Z

1/α
j Yj+1

Fζ (ZjY
α
j+1)

≥ 6η

Aπ2i2 ,

Sj+i+1 ≤ log(ε/z)

α
< Sj+i+2

∣∣∣∣Z0 = z

)

=
∞∑

j=0

E

[
gi

(
Zj ,

log(ε/z)

α
− Sj

)∣∣∣Z0 = z

]
,

where for x > 0, y ∈ R and i ≥ 1,

gi(x, y) = 1{y≥0}P
((

i+1∏
k=2

Yα
k

)
x1/αY1

Fζ (xY α
1 )

≥ 6η

Aπ2i2 , Si+1 ≤ y < Si+2

∣∣∣∣ζ = x

)
.

So, finally,

P
(
Bε(N) ≥ η/A|Z0 = z

) ≤
∞∑

j=0

E
[
g
(
Zj ,α

−1 log(ε/z) − Sj

)|Z0 = z
]
,

where g(x, y) = ∑
i≥N gi(x, y). Assume for the moment that this function g satis-

fies conditions (a) and (b) of Theorem 4.4. Then, as a consequence of that theorem,

lim sup
ε→0

P
(
Bε(N) ≥ η/A|Z0 = z

) ≤ 1

μ

∫
R+

∫
R+

∑
i≥N

gi(x, y)πstat(dx) < ∞.
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We then use the monotone convergence theorem to conclude that there exists some
Nη and then some εη (≤ ε0) such that

P
(
Bε(Nη) ≥ η/A|Z0 = z

) ≤ η

3
∀ε ≤ εη,

which was the missing piece we needed to get (6.4).
It remains to check that g satisfies conditions (a) and (b) of Theorem 4.4. Note

that we do not even know yet that g(x, y) < ∞ for Lebesgue a.e. x, y. We start
with (b). For this, note that if y ∈ [n,n + 1) and y ∈ [Si+1, Si+2), then Si+2 > n

and Si+1 < n+1. Moreover, the number of integers n ∈ (Si+1 −1, Si+2) is smaller
than Si+2 − (Si+1 − 1) + 1 = log(Yi+2) + 2. Thus∫ ∞

0

∑
n∈Z+

sup
y∈[n,n+1)

g(x, y)πstat(dx)

≤ ∑
i≥N

E
[(

log
(
Y stat

i+2
) + 2

)

× 1{(∏i+1
k=2(Y

stat
k )α)(Zstat

0 )1/αY stat
1 /(Fζ (Zstat

0 (Y stat
1 )α))≥6η/(Aπ2i2)}

]
.

Fix δ ∈ (0,1). By Hölder’s inequality, and for any c ∈ (0,1),

E
[(

log
(
Y stat

i+2
) + 2

)
1{(∏i+1

k=2(Y
stat
k )α)(Zstat

0 )1/αY stat
1 /(Fζ (Zstat

0 (Y stat
1 )α))≥6η/(Aπ2i2)}

]

≤ E
[(

log
(
Y stat

1
) + 2

)1/δ]δ
P

((
i+1∏
k=2

(
Y stat

k

)α)
(Zstat

0 )1/αY stat
1

Fζ (Z
stat
0 (Y stat

1 )α)
≥ 6η

Aπ2i2

)1−δ

≤ C

(
P

(
c−i

(
i+1∏
k=2

(
Y stat

k

)α)
≥ 6η

Aπ2i2

)1−δ

+ P

(
ci (Zstat

0 )1/αY stat
1

Fζ (Z
stat
0 (Y stat

1 )α)
≥ 1

)1−δ
)
,

where, in the last inequality, we have used the finiteness of the expectation
E[(log(Y stat

1 ))1/δ]; see Lemma 6.5. By Markov’s inequality, the first probability
on the right-hand side above is smaller than Ci2(cY /c)i , where cY is defined in
Lemma 6.5. For the second term on the right-hand side, first take the logarithm
inside the probability, and then use Markov’s inequality to bound it from above by

Ci−(1+2δ)(E[∣∣log
(
Zstat

0
)∣∣1+2δ] +E

[∣∣log
(
Y stat

1
)∣∣1+2δ]

+E
[∣∣log

(
Fζ

(
Zstat

0
(
Y stat

1
)α))∣∣1+2δ])

.

By Lemma 6.5, this sum of three expectations is finite for δ > 0 small enough.
Consequently, for c ∈ (cY ,1),∫ ∞

0

∑
n∈Z+

sup
y∈[n,n+1)

g(x, y)πstat(dx) ≤ ∑
i≥N

C

(
i2

(
cY

c

)i(1−δ)

+ i−(1+2δ)(1−δ)

)
,
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and this sum on i ≥ N is finite as soon as (1 + 2δ)(1 − δ) > 1, that is, as soon as
δ < 1/2. Hence, condition (b) of Theorem 4.4 is satisfied.

To get condition (a), note that we have shown in the last paragraph that for all
c ∈ (0,1) and all δ > 0 small enough,

P

((
i+1∏
k=2

(
Y stat

k

)α)
(Zstat

0 )1/αY stat
1

Fζ (Z
stat
0 (Y stat

1 )α)
≥ 6η

Aπ2i2

)
≤ C

(
i2(cY /c)i + i−1−2δ),

where C depends both on c and δ, but not on i ≥ N . Consequently, considering
c ∈ (cY ,1), we get∫ ∞

0

∑
i≥N

P

((
i+1∏
k=2

Yα
k

)
x1/αY1

Fζ (xY α
1 )

≥ 6η

Aπ2i2

∣∣∣∣ζ = x

)
πstat(dx) < ∞,

hence for Lebesgue a.e. x > 0,
∑

i≥N P((
∏i+1

k=2 Yα
k ) x1/αY1

Fζ (xYα
1 )

≥ 6η

Aπ2i2 |ζ = x) is fi-
nite. For those x, g(x, y) < ∞ for all y ≥ 0 and we can apply the dominated
convergence theorem to deduce that g(x, ·) is continuous at each point which is
not an atom of one of the Si, i ≥ 1. The Lebesgue measure of this set of atoms is 0;
hence condition (a) is also satisfied. �

6.2. Proof of Theorem 1.1. Consider a sequence (εn) of strictly positive real
numbers converging to 0, and recall from Corollary 5.2 the spine construction of(

ε1/α
n F

(
(ζ − εnt)−)

,0 ≤ t ≤ ζ/εn

)
in terms of the Markov chain (Zk,Yk,�k)k≥0 and the time-reversed fragmenta-
tions

F̄
(ZNεn+i−1Y

α
Nεn+i�

α
Nεn+i,m)

i,m , i ∈ Z,m ≥ 1,

where these fragmentations are conditionally independent given (Zk,Yk,�k)k≥0.
For the rest of this proof, we fix z > 0 such that the conditional convergence of
Lemma 4.7 holds.

Step 1. As we have already mentioned, an important technical issue is the pos-
sibility that, among the blocks present at time t , there are some which will persist
in the system for a very long time before coalescing with spine. In other words,
we would like to be able to say that H

εn,↓
i does not contribute to the state for large

negative i (uniformly in n). For this reason, we introduce, for all η > 0 and n ∈ N,
the modified process (

ε1/α
n F (η)((ζ − εnt)−)

,0 ≤ t ≤ ζ/εn

)
whose spine decomposition is constructed from (Zk,Yk,�k)k≥0 in a way very
similar to (ε

1/α
n F ((ζ − εn·)−)) except that some terms are omitted: for t ∈

[Rεn(k + 1),Rεn(k)), k ≥ −Nεn , we take ε
1/α
n F (η)((ζ − εnt)−) to be the decreas-

ing rearrangement of the terms involved in:



782 C. GOLDSCHMIDT AND B. HAAS

• Z
1/α
Nεn+k(Rεn(k))−1/α ,

• H
εn,↓
i (t), k − iη(k) ≤ i ≤ k,

where the (deterministic) integers iη(k) are those introduced in Lemma 6.4. If t >

ζ/εn, we set F (η)((ζ −εnt)−) = 1. By Lemma 6.4, the processes F (η)((ζ −εn·)−)

and F((ζ −εn·)−) are identical with a high probability independently of n, namely

P
((

ε1/α
n F (η)((ζ − εnt)−)

, t ≥ 0
) �= (

ε1/α
n F

(
(ζ − εnt)−)

, t ≥ 0
)|ζ = z

) ≤ η.

Consequently, for every bounded continuous test function f :S →R,∣∣E[
f

(
ε1/α
n F

(
(ζ − εn·)−))|ζ = z

] −E
[
f

(
ε1/α
n F (η)((ζ − εn·)−))|ζ = z

]∣∣ ≤ Cη,

where C is independent of n and η. Similarly, again by Lemma 6.4, |E[f (C∞)] −
E[f (C

(η)∞ )]| ≤ Cη, where C
(η)∞ (t) is defined for t ∈ [R(k + 1),R(k)) to be the

decreasing rearrangement of the terms involved in:

• (Zbias
k )1/α(R(k))−1/α ,

• H
↓
i (t), k − iη(k) ≤ i ≤ k.

Therefore, the expected convergence in distribution will be proved if we show
that the process (ε

1/α
n F (η)((ζ − εn·)−)) converges in distribution (conditional on

ζ = z) to C
(η)∞ , for each η > 0.

Step 2. Fix η > 0. Our goal is to prove that conditionally on ζ = z, there exist
versions of (ε

1/α
n F (η)((ζ − εnt)−),0 ≤ t ≤ ζ/εn), n ∈ N, that converge to a ver-

sion of C
(η)∞ , almost surely as εn → 0. With step 1 above, this will clearly entail

Theorem 1.1.
By Lemma 4.7 and the Skorokhod representation theorem, conditionally on

ζ = z, there exist versions of(
(ZNεn+k, YNεn+k,�Nεn+k)k∈Z,

1

α
log(εn/ζ ) − SNεn

)
(6.5)

that converge almost surely as εn → 0 to a version of ((Zbias, Y bias,�bias),

U log(Y bias
1 )). From now on, we always consider these versions. Using

Lemma A.5, we get the joint Skorokhod convergence in distribution, conditional
on ζ = z, of the càdlàg processes

H
εn

i,m → Hi,m as εn → 0, i ∈ Z,m ≥ 1.

By the Skorokhod representation theorem, we may again assume that these conver-
gences hold almost surely. Without changing notation, we work with these versions
for the rest of this proof. In fact, we will implicitly work on the event of probability
one where the convergence of (6.5) to ((Zbias, Y bias,�bias),U log(Y bias

1 )) holds, as
well as all convergences of processes H

εn

i,m to Hi,m, i ∈ Z,m ≥ 1.
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Step 2(a). We then claim that for each i ∈ Z,

H
εn,↓
i → H

↓
i as εn → 0,

in the Skorokhod sense (for the distance d on S). To see this, we use Proposi-
tion A.3 and Lemma A.6 from the Appendix. For this, fix a time t ≥ 0 and a
sequence (tεn) converging to t . The integer i being fixed, our goal is to check that
the functions H

εn,↓
i and H

↓
i satisfy assertions (a), (b) and (c) of Proposition A.3

for the sequence of times (tεn). In order to do this, we distinguish three cases:
t ∈ [0,∞) \ {R(i),0}, t = 0 and t = R(i).

First assume that t �= R(i) and t > 0. Since a reversed fragmentation process
F̄ (x) almost surely does not jump at any given fixed time except x, the processes
Hi,m,m ≥ 1 cannot jump simultaneously on R+ \ {R(i)}. So at most one process
among Hi,m,m ≥ 1 jumps at time t (almost surely). Let mt be the index of this
process if it exists. For m �= mt , H

εn

i,m(tεn) → Hi,m(t) and this leads to the conver-
gence in S of the decreasing rearrangement of all terms involved in at least one
sequence H

εn

i,m(tεn) for some m �= mt , to the decreasing rearrangement of all terms
involved in at least one sequence Hi,m(t) for some m �= mt , although the number
of m involved may be infinite. Indeed, this is due to the continuity property for
finite decreasing rearrangements (Lemma A.2) and to the fact that∑

m≥M

∥∥Hεn

i,m(tεn)
∥∥

1 ≤ Z
1/α
Nεn+i−1

(
Rεn(i − 1)

)−1/α
∑

m≥M

�Nεn+i,m

→
εn→0

(
Zbias

i−1
)1/α(

R(i − 1)
)−1/α

∑
m≥M

�bias
i,m ,

which implies that for all δ > 0 there exists Mδ ∈ N such that for all εn small
enough, ∑

m≥Mδ

∥∥Hεn

i,m(tεn)
∥∥

1 ≤ δ and
∑

m≥Mδ

∥∥Hi,m(t)
∥∥

1 ≤ δ.(6.6)

Hence,
∑

m≥1,m�=mt
d(H

εn

i,m(tεn),Hi,m(t)) → 0, and so, by Lemma A.1, the de-
creasing rearrangement {Hεn

i,m(tεn),m �= mt }↓ converges in S to {Hi,m(t),m �=
mt }↓. Now, we also have that H

εn

i,mt
converges in the Skorokhod sense to Hi,mt .

It follows, using Lemma A.6(i), that H
εn,↓
i and H

↓
i satisfy assertions (a), (b) and

(c) of Proposition A.3 for the sequence of times (tεn).
Next assume that t = 0. Let (sk)k∈N be a decreasing sequence of strictly positive

times that are not jump times of H
↓
i , and that converge to 0. Then, since sk �= R(i)

and sk > 0, as we have just seen,∥∥Hεn,↓
i (sk)

∥∥
1 →

n→∞
∥∥H↓

i (sk)
∥∥

1 ∀k ∈ N.

We conclude by using a monotonicity argument: for all k and then all εn suffi-
ciently small, we have tεn ≤ sk , and so∥∥Hεn,↓

i (tεn)
∥∥

1 ≤ ∥∥Hεn,↓
i (sk)

∥∥
1,
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and then

lim sup
εn→0

∥∥Hεn,↓
i (tεn)

∥∥
1 ≤ ∥∥H↓

i (sk)
∥∥

1 ≤ ∥∥C∞(sk)
∥∥

1 ∀k ∈ N.

Now let k → ∞, so that ‖C∞(sk)‖1 → 0, by the right-continuity of C∞ at 0.
Hence, H

εn,↓
i (tεn) → 0 = H

↓
i (0) as εn → 0.

Finally, for t = R(i), consider the subsequences (tεφ(n)
) and (tεψ(n)

) of (tεn) char-
acterized by

Rεφ(n)
(i) ≤ tεφ(n)

< Rεφ(n)
(i − 1),

Rεψ(n)
(i + 1) ≤ tεψ(n)

< Rεψ(n)
(i).

For N large enough, there always exists a n such that either N = φ(n) or N =
ψ(n). Since H

εn,↓
i (s) = 0 for all s ≥ Rεn(i), we clearly have that

H
εn,↓
i (tεφ(n)

) → 0 = H
↓
i (t).

Next, note that H
εn

i,m(tεψ(n)
) → Hi,m(t−) for all m ≥ 1. Moreover, similar to (6.6),

for all δ > 0, there exists an integer Mδ such that for all εn small enough,∑
m≥Mδ

∥∥Hεn

i,m(tεψ(n)
)
∥∥ ≤ δ and

∑
m≥Mδ

∥∥Hi,m(t−)
∥∥ ≤ δ.

From this and Lemma A.1 we deduce that

H
εn,↓
i (tεψ(n)

) → H
↓
i (t−).

Assertion (a) of Proposition A.3 follows. To get assertion (b), note that if

H
εn,↓
i (tεn) → 0 = H

↓
i (t),

then necessarily Rεn(i) ≤ tεn < Rεn(i − 1) for n large enough [since H
↓
i (t−) �=

0]. Hence if (sεn) is a sequence converging to t with sεn ≥ tεn , one has Rεn(i) ≤
sεn < Rεn(i − 1) for n large enough and then H

εn,↓
i (sεn) = 0 = H

↓
i (t). We obtain

assertion (c) similarly.
Step 2(b). Conditionally on ζ = z, we consider for all n the version of(

ε1/α
n F (η)((ζ − εnt)−)

,0 ≤ t ≤ ζ/εn

)
(6.7)

built from the chain (ZNεn+k, YNεn+k,�Nεn+k)k∈Z, the real number 1
α

log(εn/ζ )−
SNεn

and the processes H
εn,↓
i , i ∈ Z. We know that (almost surely) these quanti-

ties converge, respectively, to (Zbias, Y bias,�bias), U log(Y bias
1 ) and H

↓
i , i ∈ Z. To

prove that this version of (6.7) converges for the Skorokhod topology as εn → 0
to a version of C

(η)∞ [indeed, the version constructed from (Zbias, Y bias,�bias),

U log(Y bias
1 ) and H

↓
i , i ∈ Z], we will again use Proposition A.3 and Lemma A.6.

We start by proving the Skorokhod convergence on any compact set [a, b] ⊆
(0,∞). Let R(ka) be the largest R(k) strictly smaller than a and similarly R(kb)
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be the smallest R(k) strictly larger than b. For all εn small enough, Rεn(ka) < a

and Rεn(kb) > b. This implies that the processes (ε
1/α
n F (η)((ζ −εnt)−), t ∈ [a, b])

and (C
(η)∞ (t), t ∈ [a, b]) are constructed from the sequences H

εn,↓
i and H

↓
i , respec-

tively, with kb − iη(kb) ≤ i ≤ ka −1 [together with the terms Z
1/α
Nεn+k(Rεn(k))−1/α ,

(Zbias
k )1/α(R(k))−1/α , for kb ≤ k ≤ ka − 1]. Crucially, the number of processes

H
εn,↓
i ,H

↓
i involved in these constructions is finite, independently of n. More-

over, the processes H
↓
i , i ∈ Z do not jump simultaneously (almost surely). We

can therefore apply Lemma A.6(ii) to obtain the Skorokhod convergence of
ε

1/α
n F (η)((ζ − εn·)−) to C

(η)∞ on any compact set [a, b] ⊆ (0,∞).
It remains to check that for any sequence (tεn) converging to 0, ε

1/α
n F (η)((ζ −

εntεn)−) converges to 0 = C
(η)∞ (0). This can be done via a monotonicity argument,

exactly as in the case t = 0 of step 2(a).

7. An invariant measure for the fragmentation process. This section is
devoted to the proof of Theorem 1.2. Throughout, we will assume that the as-
sumptions of Theorem 1.1 are satisfied. Recall that the occupation measure λ on
(S,B(S)) is defined by

λ(A) =
∫ ∞

0
P

(
C∞(t) ∈ A

)
dt for all A ∈ B(S).

By definition of the process C∞, it is clear that λ({0}) = 0 and also, using its
self-similarity, that

λ
({s ∈ S : si ≤ aix,∀i ≥ 1}) = x−αλ

({s ∈ S : si ≤ ai,∀i ≥ 1})
for all ai ≥ 0 and all x > 0.

Recall the notation ‖s‖1 = ∑
i≥1 si for s ∈ S . Our goal in this section is to prove

first that

λ
({

s ∈ S :‖s‖1 ≤ x
})

< ∞ ∀x > 0

(which implies that λ is σ -finite) and second that∫
S

f (s)λ(ds) =
∫
S
Es

[
f

(
F(u)

)]
λ(ds)

for all u > 0 and all continuous functions f :S →R+ such that f (s) ≤ 1{0<‖s‖1≤c}
for some c > 0.

LEMMA 7.1. For all continuous functions f :S → R+ such that f (s) ≤
1{‖s‖1≤c} for some c > 0,∫ ∞

0
E

[
f

(
ε1/αF (ζ − εt)

)]
dt →

ε→0

∫
S

f (s)λ(ds) ∈ [0,∞).
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PROOF. To simplify the notation, we assume that c = 1; a similar argument
works for a general c > 0. By Theorem 1.1, for all t > 0, E[f (ε1/αF (ζ − εt))] →
E[f (C∞(t))]. It remains to check that we can apply the dominated conver-
gence theorem. For this, we introduce for every a > 0 the stopping time τa =
inf {u ≥ 0 :‖F(u)‖1 ≤ a}. By Proposition 2.1, we may write

ζ − τa = sup
i≥1

{
Fi(τa)

−αζ (i)},
where the ζ (i)s are i.i.d. distributed as ζ and independent of F(τa). Hence, for all
β ≥ 1,

E
[
f

(
ε1/αF (ζ − εt)

)] ≤ P(ζ − εt ≥ τε−1/α )

≤ P
(
(ζ − τε−1/α )

−β/α ≥ (εt)−β/α)
≤ P

(∑
i≥1

Fi(τε−1/α )
β(

ζ (i))−β/α ≥ (εt)−β/α

)

≤ E[ζ−β/α]E[∑i≥1 Fi(τε−1/α )β]
(εt)−β/α

≤ E[ζ−β/α]
t−β/α

,

by definition of τε−1/α and the fact that β ≥ 1. Taking β larger if necessary so that
−β/α > 1 and recalling that E[ζ−β/α] < ∞, we obtain

E
[
f

(
ε1/αF (ζ − εt)

)] ≤ min
(
1,Ctβ/α) ∀t ≥ 0

for some finite constant C, independently of ε. The result follows. �

PROOF OF THEOREM 1.2. Consider the potential measure

λε(A) :=
∫ ∞

0
Pε1/α1

(
F(t) ∈ A

)
dt.

Equivalently, λε(A) is the expected time spent in A by a fragmentation process
started from ε1/α1. Suppose now that f :S → R+ is continuous and such that
f (s) ≤ 1{0<‖s‖1≤c} for some c > 0. By the self-similarity of the fragmentation
process, ∫

S
f (s)λε(ds) =

∫ ∞
0

E
[
f

(
ε1/αF (εt)

)]
dt

(7.1)
=

(if ε1/α>c)

∫ ∞
0

E
[
f

(
ε1/αF (ζ − εt)

)]
dt →

∫
S

f (s)λ(ds)

as ε → 0, by Lemma 7.1.
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From now on, fix u > 0, c > 0 and a continuous function f :S →R+ such that
f (s) ≤ 1{0<‖s‖1≤c}. Our goal is to check, on the one hand, that∫

S
Es

[
f

(
F(u)

)]
λε(ds) →

∫
S

f (s)λ(ds)(7.2)

and, on the other, that∫
S
Es

[
f

(
F(u)

)]
λε(ds) →

∫
S
Es

[
f

(
F(u)

)]
λ(ds).(7.3)

Together, these will yield the invariance of λ.
We start with (7.2). By the definition of λε ,∫

S
Es

[
f

(
F(u)

)]
λε(ds)

=
∫ ∞

0
E

[
f

(
ε1/αF

(
ε(u + t)

))]
dt

=
∫ ∞

0
E

[
f

(
ε1/αF (εt)

)]
dt −

∫ u

0
E

[
f

(
ε1/αF (εt)

)]
dt.

The first integral in the last line converges to
∫
S f (s)λ(ds), by (7.1). The second

converges to 0, since E[f (ε1/αF (εt))] → 0 for all t > 0 [as ε1/α‖F(εt)‖1 > c for
ε small enough, a.s.]. The convergence in (7.2) follows.

To get (7.3), set g(s) = Es[f (F (u))]. The function g is continuous, bounded
and R+-valued, but is not supported by a set of the form 0 < ‖s‖1 ≤ c′ for some c′,
so we cannot conclude the desired result directly from the convergence of λε to λ.
Note that, for all c′ > 0,∫

S
g(s)1{‖s‖1>c′}λε(ds)

=
∫ ∞

0
E

[
f

(
ε1/αF

(
ε(u + t)

))
1{‖ε1/αF (εt)‖1>c′}

]
dt

≤
∫ ∞

0
P

(∥∥ε1/αF (εt)
∥∥

1 > c′,0 <
∥∥ε1/αF

(
ε(t + u)

)∥∥
1 ≤ c

)
dt

≤
∫ ∞

0
P

(∥∥ε1/αF (ζ − εt − εu)
∥∥

1 > c′,0 <
∥∥ε1/αF (ζ − εt)

∥∥
1 ≤ c

)
dt.

Using the dominated convergence theorem (and the same argument as in the
proof of Lemma 7.1), we see that the right-hand side converges to

∫ ∞
0 P(‖C∞(t +

u)‖1 > c′,‖C∞(t)‖1 ≤ c)dt , which is finite. Hence, for all η > 0 and then all
c′ > 0 large enough, say c′ ≥ c′

η,

lim sup
ε→0

∫
S

g(s)1{‖s‖1>c′}λε(ds) ≤ η.
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Now, ∫
S

g(s)1{‖s‖1>c′}λε(ds)

=
∫ ∞

0
E

[
g
(
ε1/αF (εt)

)
1{‖ε1/αF (εt)‖1>c′}

]
dt

=
∫ ∞

0
E

[
g
(
ε1/αF (ζ − εt)

)
1{‖ε1/αF (ζ−εt)‖1>c′}1{ζ≥εt}

]
dt.

Since the function s �→ g(s)1{‖s‖1>c′} is lower semi-continuous, by the Portman-
teau theorem,

lim inf
ε→0

E
[
g
(
ε1/αF (ζ − εt)

)
1{‖ε1/αF (ζ−εt)‖1>c′}1{ζ≥εt}

]
≥ E

[
g
(
C∞(t)

)
1{‖C∞(t)‖1>c′}

]
.

Hence, by Fatou’s lemma,∫ ∞
0

g(s)1{‖s‖1>c′}λ(ds) ≤ lim inf
ε→0

∫
S

g(s)1{‖s‖1>c′}λε(ds) ≤ η

for all c′ ≥ c′
η. Finally, fix η > 0 and then c′ ≥ c′

η. Consider then c′′ ∈ (c′,∞), and
let h :S → [0,1] be a continuous function such that h(s) = 1 when ‖s‖1 ≤ c′ and
h(s) = 0 when ‖s‖1 ≥ c′′. Then∣∣∣∣

∫
S

g(s)(λε − λ)(ds)
∣∣∣∣

≤
∣∣∣∣
∫
S

g(s)h(s)(λε − λ)(ds)
∣∣∣∣ +

∣∣∣∣
∫
S

g(s)
(
1 − h(s)

)
λε(ds)

∣∣∣∣
+

∣∣∣∣
∫
S

g(s)
(
1 − h(s)

)
λ(ds)

∣∣∣∣.
We have chosen c′ and h so that the second and third terms are each smaller than
η for small enough ε. By (7.1), the first term converges to 0 as ε → 0. The conver-
gence in (7.3) follows. �

8. Discussion of geometric fragmentations. In this section, we consider ge-
ometric fragmentations; that is, we assume that the set of r ∈ (0,1) such that

ν
(
si ∈ rN ∪ {0}, i ≥ 1

) = 1(8.1)

is nonempty, and we let rmin denote its unique minimal element. It is easy to see
that rmin exists and is characterized by the fact that ν-a.e. si = r

ni

min,∀i where the
nonzero integers ni have 1 as highest common factor. Moreover, for every r ∈
(0,1) satisfying (8.1), there is a q ∈ N such that rmin = rq .

This case has some interesting connections to other parts of the probability lit-
erature, which we will briefly describe below. We will then see that ε1/αF (ζ − ε)
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cannot converge in distribution in this case. However, it does converge along ap-
propriate subsequences. Finally, we will restrict attention to the simple case of
k-ary fragmentations, when each fragmentation of a block produces k blocks with
identical masses, and describe all possible limit distributions of the rescaled last
fragment ε1/αF∗(ζ − ε) in these simple k-ary fragmentations.

8.1. Related models. Specialize, for the moment, to the case where the frag-
mentation has dislocation measure

ν(ds) = δ(1/k,1/k,...,1/k,0,...)(ds), s ∈ S1.

This fragmentation process has been studied in various different guises in the prob-
ability literature.

In [5], Athreya considers a model which he calls the discounted branching ran-
dom walk. Start with a single particle situated at a distance to the right of the origin
which is distributed as Exp(1). At each epoch, every particle present gives birth to
two particles. At epoch n, these new particles have a displacement rightwards from
the parent with distribution Exp(2−nα), independently for different particles. It is
easy to see that the positions of the 2n particles at generation n correspond to the
times at which the blocks of size 2−n appear in the simple binary fragmentation
(when k = 2). Athreya concerns himself particularly with a recursive equation for
the distribution of the right-hand end of the support of the particle distribution at
time ∞. This, of course, has the same distribution as ζ , and the recursive distri-
butional equation is ζ = T1 + 2nα max{ζ (1), ζ (2)} in our notation. This equation
and others like it are discussed in more detail in Aldous and Bandyopadhyay [2].
The convergence of the last fragment in Theorem 3.6 (which is valid for geometric
fragmentations) entails that the distance between the ancestor of generation n of
the winning particle and the winning particle itself, rescaled by 2−nα converges in
distribution as n → ∞. Of course, this construction is easily extended to the case
where each individual gives birth to k offspring.

Barlow, Pemantle and Perkins [7] consider a model of randomly-growing k-ary
trees which has also been studied, in various versions, in [1, 12, 13, 26]. Suppose
we grow the complete k-ary tree as follows. [For definiteness, label vertices in the
tree by k-ary strings, so that the root is ∅, its neighbors are 0,1, . . . , k − 1 and, in
general, the descendants of a vertex labeled x are x0, x1, . . . , x(k − 1).] We start
with the empty tree and wait an Exp(1) amount of time; then the root gets filled in.
Let A(0) = {∅}. In general, let A(t) be the set of vertices in the k-ary tree which
have not yet been filled in themselves, but whose parents in the tree have been filled
in. A vertex in A(t) at height n (where the root has height 0) becomes filled in at a
rate k−αn. The vertices in A(t) correspond exactly to blocks in our fragmentation
at time t . In particular, a vertex at height n corresponds to a block of size k−n.
This model can be thought of as a sort of first-passage percolation or as diffusion-
limited aggregation on a tree. In particular, Barlow, Pemantle and Perkins study
the structure of the cluster at the first time that it hits the boundary of the tree. This
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corresponds to the time at which mass first disappears in the fragmentation. They
show that at that time the cluster consists of a unique infinite backbone with small
finite trees hanging off it. We are instead interested in what happens near the time
at which the last point on the boundary of the tree is reached. Theorem 3.6 tells
us that the time taken to reach this last point on the boundary from its ancestor in
generation n, suitably rescaled, has a limit in distribution as n → ∞.

We now turn to a more general context and prove some results which apply to
these special cases.

8.2. Absence of limit in distribution. We return to the general case of a geo-
metric fragmentation F , assuming solely that

∫
S1

s−1
1 ν(ds) is finite. Recall that Tn

is the nth jump time of the last fragment process F∗. From Theorem 3.6, we know
that

Z1/α
n = (ζ − Tn)

1/αF∗(Tn)

converges in distribution to a law which is fully supported by (0,∞). However,
we do not have convergence in distribution of the rescaled sequence ε1/αF (ζ − ε)

as ε → 0.

PROPOSITION 8.1. In the geometric cases, ε1/αF (ζ − ε) and ε1/αF∗(ζ −
ε) do not converge in distribution as ε → 0. However, for each x ∈ [0,1), the
sequence r−n−x

min F∗(ζ − r
−α(n+x)
min ) has a nonzero limit in distribution as n → ∞,

which depends on x.

In the next section, we specify this limit and its dependence on x for the simple
k-ary fragmentations.

PROOF OF PROPOSITION 8.1. Suppose (for a contradiction) that ε1/αF (ζ −ε)

converges in distribution in S . Then ε1/αF1(ζ − ε) has a limit in distribution,
say L ∈ [0,∞). Consider the sequence εn = ar−αn

min , n ≥ 1, where a ∈ (0,∞) is

fixed. Then the random variables ε
1/α
n F1(ζ − εn) almost surely all belong to the

set a1/αrZmin, and so L ∈ a1/αrZmin ∪ {0} a.s. But this assertion holds for all a ∈
(0,∞), hence L = 0 a.s. In particular, this implies that ε1/αF∗(ζ − ε) converges
in distribution to 0. Similarly, supposing first that ε1/αF∗(ζ − ε) has a limit in
distribution, we conclude that this limit is necessarily 0.

But a zero limit is not possible, because r−n
minF∗(ζ − r−αn

min ) has a nonzero limit
in distribution as n → ∞, provided that

∫
S1

s−1
1 ν(ds) < ∞. To see this, we use

Corollary 2.2(b) of Alsmeyer [3], on Markov renewal theory in the geometric
cases. Given this corollary, it is possible to check that the rescaled sequence
r−n

minF∗(ζ − r−αn
min ) has a nontrivial limit in distribution as n → ∞, in exactly the

same way as we proved the one-dimensional convergence in Section 4.2. Using
arguments from Section 4.3 giving an expression for Nεt in terms of Nε , it is then



BEHAVIOR NEAR THE EXTINCTION TIME IN FRAGMENTATIONS 791

easy to deduce the convergence in distribution of r−n−x
min F∗(ζ − r−αn+αx

min ) to a non-
trivial limit. We leave these extensions to the reader. �

REMARK 8.2. This result then certainly leads to the convergence of
r−n−x

min F(ζ − r
−α(n+x)
min ) to a nontrivial limit and more generally of the whole pro-

cess r−n−x
min (F ((ζ − r

−α(n+x)
min t)−), t ≥ 0), at least when

∫
S1

s
−1−ρ
1 ν(ds) < ∞ for

some ρ > 0. In order to see this, one should mimic the proofs of Sections 4 and 6.
However, for ease and brevity of exposition, we omit this part and leave it to the
motivated reader. We emphasize that the limit process depends on x and cannot
be self-similar. Moreover, the proofs of Lemma 7.1 and Theorem 1.2 in Section 7
are still valid when replacing ε by εn(x) = r

−α(n+x)
min and letting n → 0. Hence,

we may deduce the existence of invariant measures for these geometric fragmen-
tations. Note that the invariant measure constructed from the sequence (εn(x))n≥0

is supported by elements s of S such that si ∈ r−x+Z
min for all i. We have, therefore,

a continuum set of distinct invariant measures, indexed by x ∈ [0,1).

8.3. Simple k-ary fragmentations. From now on, we assume that the fragmen-
tation has dislocation measure

ν(ds) = δ(1/k,1/k,...,1/k,0,...)(ds), s ∈ S1.

By adapting the method of proof of Theorems 5.1 and 5.2 of [7], we can obtain a
stronger version of Theorem 3.6. Note that here Tn = inf{t ≥ 0 :F∗(t) = k−n} and
Zn = k−nα(ζ − Tn).

PROPOSITION 8.3. The sequence (Zn)n≥0 is stochastically increasing. As a
consequence,

Zn
law→ Z∞

as n → ∞, where Z∞ ∼ πstat and Z∞ ≥st ζ .

PROOF. We argue by induction, using the notation of Section 3. Recall that
Z0 = ζ and that Z1 = ζ (I) = max1≤i≤k ζ (i). It follows that Z0 ≤st Z1. Let next

p(t, x) = P
(
ζ (I) ≥ t |ζ = x

)
in the sense of a regular conditional probability. Since (Zn)n≥0 is a Markov chain,

P(Zn+1 ≥ t) = E
[
p(t,Zn)

]
.

Suppose for the moment that, for fixed t , p(t, x) is increasing in x. Our induction
hypothesis is that Zn−1 ≤st Zn. Then

P(Zn+1 ≥ t) = E
[
p(t,Zn)

] ≥ E
[
p(t,Zn−1)

] = P(Zn ≥ t).
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So it remains to show that p(t, x) is increasing in x.
We have ζ = T1 + kα max1≤i≤k ζ (i) = T1 + kαζ (I) with T1 independent of ζ (I).

From this, it is easy to see that (ζ, ζ (I )) has a density which may be written as

(x, y) ∈ R2+ �→ fζ (I)(y)ekαy−x1{x≥kαy}.

Then for t ≤ k−αx,

p(t, x) =
∫ k−αx
t fζ (I)(y)ekαy−x dy∫ k−αx
0 fζ (I)(y)ekαy−x dy

= 1 −
∫ t

0 fζ (I)(y)ekαy dy∫ k−αx
0 fζ (I)(y)ekαy dy

and so p(t, x) is, indeed, increasing in x. �

Now, for t ≥ 0, let

x(t) = 1

α
logk t −

[
1

α
logk t

]
.

We will now specify the asymptotics of the last fragment F∗(ζ − εn), according to
the behavior of the sequence (εn) under the action of the function x.

PROPOSITION 8.4. Let (εn)n≥0 be any sequence of times converging to 0 such
that x(εn) → x for some fixed x ∈ [0,1). Then we have as n → ∞

ε1/α
n F∗(ζ − εn)

law→ kx−N(x),

where N(x) = sup{n ∈ Z :Zstat
n ≥ k(x−n)α}.

We note that N(x) > −∞ almost surely, a statement which we will justify dur-
ing the course of the proof. It is also the case that N(x) < ∞. As an example of an
application of this proposition, for all x ∈ [0,1), we have

kx+nF∗
(
ζ − kα(x+n)) law→ kx−N(x) as n → ∞.

PROOF OF PROPOSITION 8.4. For any ε ≥ 0, let Nε = sup{n ≥ 0 : ζ − ε ≥
Tn} = sup{n ≥ 0 : ε ≤ ζ − Tn}. Then,

ε1/αF∗(ζ − ε) = ε1/αF∗(TNε) = ε1/αk−Nε .

Using Zn = k−nα(ζ − Tn), we have

Nε = sup
{
n ≥ 0 :Zn ≥ k−nαε

}
.

Write m(ε) = [(logk ε)/α] so that m(ε) + x(ε) = (logk ε)/α. Then

Nε − m(ε) = sup
{
n ≥ −m(ε) :Zm(ε)+n ≥ k−(m(ε)+n)αε

}
= sup

{
n ≥ −m(ε) :Zm(ε)+n ≥ k−nα · kαx(ε)}.
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Now take ε = εn so that εn → 0 and x(εn) → x as n → ∞. Then for all p ∈ Z and
all n such that p > −m(εn),

P
(
Nεn − m(εn) ≥ p

) = P
(
Zm(εn)+p ≥ k−pα · kαx(εn))

since the sequence (Znk
nα) is nonincreasing in n a.s. (indeed, Znk

nα = ζ − Tn).
Similarly,

P
(
N(x) ≥ p

) = P
(
Zstat

p ≥ k−pαkαx) = πstat
([

k−pαkαx,∞))
.

Then, since x(εn) → x, Zm(εn)+p converges in law to πstat as n → ∞ and as πstat
is nonatomic, we get that

P
(
Nεn − m(εn) ≥ p

) → P
(
N(x) ≥ p

)
,

for all p ∈ Z. In other words, Nεn − m(εn) converges in law to N(x) as n → ∞.
So Nεn − (logk εn)/α converges in law to N(x) − x, which entails that

ε1/α
n k−Nεn

law→ kx−N(x),

as n → ∞, as required. �

APPENDIX

A.1. Convergence criteria. In this section, we record various technical lem-
mas concerning criteria for convergence in (S, d) and in the Skorohod topology
on càdlàg processes taking values in (S, d). The proofs of the first two lemmas are
straightforward, and so we omit them.

LEMMA A.1. Let (s(n), n ≥ 1) be a sequence of nonnegative elements of �1
converging to s(∞) ∈ �1 for the �1-topology. For every integer n ∈ N ∪ {∞}, let
s(n),↓ denote the decreasing rearrangement of the terms of s(n). Then s(n),↓ →
s(∞),↓ in (S, d).

LEMMA A.2. Let n ∈ N. The two following functions are continuous:

(i) (s(1), . . . , s(n)) ∈ Sn �→ {s(i)
j ,1 ≤ i ≤ n, j ≥ 1}↓ ∈ S , where Sn is endowed

with the product topology;
(ii) (x, s) ∈ R+ × S �→ {xsj , j ≥ 1} ∈ S .

We next recall a classical result on Skorokhod convergence (see Proposi-
tion 3.6.5 of Ethier and Kurtz [16]) which we will use repeatedly.

PROPOSITION A.3. Consider a metric space (E,dE), and let fn,f be càdlàg
paths with values in E. Then fn → f with respect to the Skorokhod topology if
and only if the three following assertions are satisfied for all sequences tn → t ,
tn, t ≥ 0:
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(a) min(dE(fn(tn), f (t)), dE(fn(tn), f (t−))) → 0;
(b) dE(fn(tn), f (t)) → 0 ⇒ dE(fn(sn), f (t)) → 0 for all sequences sn → t ,

sn ≥ tn;
(c) dE(fn(tn), f (t−)) → 0 ⇒ dE(fn(sn), f (t−)) → 0 for all sequences sn →

t , sn ≤ tn.

Of course, if t is not a jump time of f , then (a), (b), (c) are equivalent to
dE(fn(tn), f (t)) → 0.

We now establish three lemmas on Skorokhod convergence, which are used in
the main body of the paper.

LEMMA A.4. Consider (cn)n∈Z+∪{∞}, a sequence of real-valued nondecreas-
ing piecewise constant càdlàg functions defined on R+ by cn(0) = 0 and, for t > 0,

cn(t) = bn(k) if rn(k) > t ≥ rn(k + 1),

where (rn(k))k∈Z is strictly decreasing in k and such that rn(k) → 0 as k → ∞
and rn(k) → ∞ as k → −∞. Suppose that for all k ∈ Z, rn(k) → r∞(k) and
bn(k) → b∞(k) as n → ∞. Then cn → c∞ for the Skorokhod topology on the set
of real-valued càdlàg functions on R+.

PROOF. This is nearly obvious from the definition of the Skorokhod topology.
To prove it carefully, we use Proposition A.3. It is easy to see that for a fixed t > 0
and all sequences tn → t , conditions (a), (b) and (c) of this proposition are satisfied
for the sequence (cn)n∈Z+ , with c∞ at the limit. It remains to check them for t = 0,
which consists then in checking that cn(tn) → c∞(0) = 0. This is immediate, using
monotonicity. Indeed, let ε > 0; for large n, tn ≤ ε, and so cn(tn) ≤ cn(ε). The
sequence (cn(ε)) might not converge, but clearly lim supn cn(ε) ≤ c∞(ε). Since
c∞ is right-continuous, we get, letting ε → 0, that lim supn cn(ε) = 0. �

The next lemma concerns the time-reversed conditioned fragmentation process
F̄ (x) introduced in Section 5.

LEMMA A.5. Let (an), (bn), (cn), a∞, b∞, c∞ be nonnegative numbers such
that an → a∞, bn → b∞ and cn → c∞. Then(

cnF̄
(an)(bnt+), t ≥ 0

) law→ (
c∞F̄ (a∞)(b∞t+), t ≥ 0

)
in sense of the Skorokhod topology on càdlàg processes taking values in (S, d).

PROOF. Let F be a fragmentation process and, for all n ∈ N ∪ {∞}, let G(n)

be defined by

G(n)(t) =
{

cnF (an − bnt), if 0 ≤ bnt ≤ an,
0, if bnt > an.

Then observe that for all u ≥ 0:
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• if (un) is a sequence converging to u, with un > u for all n, then F(un−) →
F(u);

• if (un) is a sequence converging to u, with un ≤ u for all n, then F(un−) →
F(u−).

We can deduce from this [together with Lemma A.2(ii)] that for all t ≥ 0:

• G(n)(tn+) → G(∞)(t) when tn → t and an − bntn > a∞ − b∞t for all n large
enough;

• G(n)(tn+) → G(∞)(t+) when tn → t and an − bntn ≤ a∞ − b∞t for all n large
enough.

From these observations and Proposition A.3, we get that (G(n)(t+), t ≥ 0) con-
verges to (G(∞)(t+), t ≥ 0) as n → ∞ for the Skorokhod topology on S , almost
surely. Since the extinction time ζ of F has a continuous cumulative distribution
function, we also have 1{ζ<an} → 1{ζ<a∞}, almost surely. Hence, for all bounded
continuous test functions f :S →R,

E
[
f

((
cnF̄

(an)(bnt+), t ≥ 0
))] = E[f ((G(n)(t+), t ≥ 0))1{ζ<an}]

P(ζ < an)

→
n→∞

E[f ((G(∞)(t+), t ≥ 0))1{ζ<a∞}]
P(ζ < a∞)

= E
[
f

((
c∞F̄ (a∞)(b∞t+), t ≥ 0

))]
. �

Finally, the following lemma is an easy consequence of Proposition A.3 and
the continuity property for the decreasing rearrangement of a finite number of
elements of S [Lemma A.2(i)]. Its proof is omitted.

LEMMA A.6. (i) Consider càdlàg functions u(n), u : [0,∞) → S such that
u(n) → u as n → ∞ with respect to the Skorokhod topology. Let (tn) be a se-
quence of nonnegative numbers converging to t ≥ 0, and consider another family
of càdlàg functions v(n), v : [0,∞) → S such that v(n)(tn) → v(t). For s ≥ 0, set
fn(s) = {u(n)

j (s), v
(n)
k (s), j ≥ 1, k ≥ 1}↓ and similarly f (s) = {uj (s), vk(s), j ≥

1, k ≥ 1}↓. Then the functions fn,f are càdlàg and satisfy assertions (a), (b)
and (c) of Proposition A.3 for the sequence (tn).

(ii) Let u(n,i), u(i), n ∈ N, i ∈ I be càdlàg functions from [0,∞) to S , with I a
finite set. For t ≥ 0, set gn(t) = {u(n,i)

j (t), j ≥ 1, i ∈ I }↓ and g(t) = {u(n,i)
j (t), j ≥

1, i ∈ I }↓. These functions are càdlàg. Moreover, if u(n,i) → u(i) as n → ∞ in the
Skorokhod sense for all i ∈ I and if the functions u(i), i ∈ I do not jump simulta-
neously on [0,∞), then gn converges in the Skorokhod sense to g as n → ∞.
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A.2. Properties of the stationary and biased Markov chains. We collect
here various technical results about the stationary and biased Markov chains (in-
troduced in Section 3.3) which are used in the body of the paper.

LEMMA A.7. If
∫
S1

s−1
1 ν(ds) < ∞, then for all c > 0,∫ ∞

0

exp (−cx)

fζ (x)
πstat(dx) < ∞.

PROOF. It suffices to prove the result for small values of c > 0. As in the proof
of Lemma 3.8, let V (x) = exp(−cx)/fζ (x), x > 0, with c ∈ (0,1/2) small enough
so that exp(cx)fζ (x) → 0 as x → ∞. Then, as a direct consequence of (3.10) and
Theorem 14.0.1 of [23], we have that

∫ ∞
0 V (x)πstat(dx) < ∞. The result follows.

�

LEMMA A.8. If
∫
S1

s−1
1 ν(ds) < ∞, then for a > 0 sufficiently small and all

b < 1 + 1/|α|,∫ ∞
1

exp(ax)πstat(dx) < ∞ and
∫ 1

0
x−bπstat(dx) < ∞.

In particular, for all p > 0,

E
[∣∣log

(
Zstat

0
)∣∣p]

< ∞.

PROOF. To see the first assertion, note that by Lemma 2.2, there exist con-
stants C1 > 0 and c > 0 such that

fζ (x) ≤ C1 exp(−cx)

for all x > 0. Hence, for all a < c, by Lemma A.7,∫ ∞
0

exp(ax)πstat(dx) ≤ C1

∫ ∞
0

exp(−(c − a)x)

fζ (x)
πstat(dx) < ∞.

Next, from (3.6), we have that

πstat(x)

fζ (x)
=

∫
S1

( ∞∑
i=1

es−α
i x

∏
j �=i

Fζ

(
sα
j s−α

i x
)(∫ ∞

s−α
i x

e−yπstat(y)

fζ (y)
dy

))
ν(ds).

Recall the definition of ζ (I) from just below equation (3.3). Since
∫ ∞

0
exp(−x)
fζ (x)

×
πstat(dx) < ∞ and es−α

i x ≤ ex , there exists a constant C such that

πstat(x)

fζ (x)
≤ Cex

1 − Fζ (x)

∫
S1

( ∞∑
i=1

(
1 − Fζ (x)

) ∏
j �=i

Fζ

(
sα
j s−α

i x
))

ν(ds)

≤ Cex

1 − Fζ (x)
P

(
ζ (I) > x

) ≤ Cex

1 − Fζ (x)
.
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Then, for x ∈ (0,1], πstat(x)/fζ (x) is bounded by some constant C2. It follows
that ∫ 1

0
x−bπstat(dx) ≤ C2

∫ 1

0
x−bfζ (x)dx,

and this upper bound is finite by Lemma 2.2(iii) when b < 1 + 1/|α|. �

LEMMA A.9. If
∫
S1

s−1
1 ν(ds) < ∞, then E[(log(Y stat

1 ))p] < ∞ for all p > 0.

PROOF. Fix p > 0. By definition,

E
[(

log
(
Y stat

1
))p]

= 1

|α|p
∫ ∞

0
E

[(
log

(
ζ

ζ − T1

))p∣∣∣ζ = x

]
πstat(dx)

≤ Cp

|α|p
∫ ∞

0

(∣∣log(x)
∣∣p +E

[∣∣log(ζ − T1)
∣∣p1{ζ−T1≤1}|ζ = x

])
πstat(dx),

for some constant Cp . By Lemma A.8,
∫ ∞

0 | log(x)|pπstat(dx) < ∞. Next,
using the notation introduced in Lemma 2.2, we write ζ = T1 + ξ where
ξ = maxi≥1{F−α

i (T1)ζ
(i)}. Since T1 is independent of ξ and is exponentially

distributed with mean 1, the joint distribution of (ξ, ζ ) is exp(−x + y) ×
10≤y≤xfξ (y)dy dx, where we recall that fξ denotes the density of ξ . Hence∫ ∞

0
E

[∣∣log(ζ − T1)
∣∣p1{ζ−T1≤1}|ζ = x

]
πstat(dx)

=
∫ ∞

0

exp(−x)

fζ (x)

(∫ min(x,1)

0
exp(y)| logy|pfξ (y)dy

)
πstat(dx)

≤ e

∫ 1

0
| logy|pfξ (y)dy

∫ ∞
0

exp(−x)

fζ (x)
πstat(dx).

The integral
∫ ∞

0 exp(−x)/fζ (x)πstat(dx) is finite, by Lemma A.7. Finally, note
that ξ ≥ F1(T1)

−αζ (1) and so

E
[∣∣log(ξ)

∣∣p1{ξ≤1}
] ≤ Cp

(|α|pE[∣∣log
(
F1(T1)

)∣∣p] +E
[∣∣log

(
ζ (1))∣∣p])

.

The first expectation on the right-hand side is equal to
∫
S1

| log(s1)|pν(ds) and is

finite since
∫
S1

s−1
1 ν(ds) < ∞. The second expectation is also finite, by assertions

(i) and (ii) of Lemma 2.2. �

The following result is the only place that we need the extra condition∫
S1

s
−1−ρ
1 ν(ds) < ∞ for some ρ > 0.
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LEMMA A.10. Assume that
∫
S1

s
−1−ρ
1 ν(ds) < ∞ for some ρ > 0. Then there

exits δρ > 0 such that for all δ ∈ [0, δρ),

E
[∣∣log

(
Fζ

(
Zstat

0
(
Y stat

1
)α))∣∣1+δ]

< ∞.

PROOF. Again we let ξ = supi≥1{Fi(T1)
−αζ (i)}. The first step of our proof is

to show that, for 0 < x ≤ 1,∣∣log
(
Fζ (x)

)∣∣ ≤ C
(
x1/α| logx| + x1/α

∣∣log
(
Fξ (x)

)∣∣).(A.1)

For x > 0, let K(x) = sup{k ≥ 1 :Fk(T1) > x−1/α}, and let C1 > 1 be such that
1 − t ≥ exp(−C1t) for all t ∈ [0,P(ζ > 1)). Then

∏
i≥K(x)+1

Fζ

(
xFi(T1)

α) ≥ exp
(
−C1

∑
i≥K(x)+1

P
(
ζ > xFi(T1)

α))

≥ exp
(
−C1E

[
ζ−1/α]

x1/α
∑

i≥K(x)+1

Fi(T1)

)

≥ exp
(−C2x

1/α)
,

where we have used Markov’s inequality to get the second inequality and the
fact that

∑
i≥K(x)+1 Fi(T1) ≤ 1 to get the third. Now note that K(x) ≤ x1/α since

Fk(T1) ≤ 1/k for all k ≥ 1. So, for c ∈ (0,1) such that ν(s1 ≤ c) > 0,

Fξ (x) = E

[∏
i≥1

Fζ

(
xFi(T1)

α)]

≥ E

[
K(x)∏
i=1

Fζ

(
xF1(Ti)

α)]
exp

(−C2x
1/α)

(A.2)
≥ E

[
Fζ

(
xcα)K(x)1{F1(T1)≤c}

]
exp

(−C2x
1/α)

≥ ν(s1 ≤ c)Fζ

(
xcα)x1/α

exp
(−C2x

1/α)
.

Next, since Fζ (x) = exp(−x)
∫ x

0 exp(y)Fξ (y)dy, we have that for all 0 < x ≤ 1,

Fζ (x) ≥ exp(−1)
(
1 − c−α/2)

xFξ

(
c−α/2x

)
.(A.3)

Using (A.2), we get

Fζ (x) ≥ C3xFζ

(
c−α/2xcα)c−1/2x1/α

exp
(−C2c

−1/2x1/α)
,

and another application of (A.3) yields

Fζ (x) ≥ C3x
(
C4xFξ

(
c−αxcα))c−1/2x1/α

exp
(−C2c

−1/2x1/α)
.

All of the constants here are strictly positive, and so (A.1) follows.
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From (A.1) and Hölder’s inequality, we deduce that for all δ > 0,

E
[∣∣log

(
Fζ (ξ)

)
1{ξ≤1}

∣∣1+δ]
≤ C′(E[

ξ (1+δ)2/α] +E
[
ξ (1+δ)2/α]1/(1+δ)

E
[∣∣log

(
Fξ (ξ)

)∣∣(1+δ)2/δ]δ/(1+δ))
.

Since Fξ (ξ) has a uniform distribution, | log(Fξ (ξ))| ∼ Exp(1) and so has finite
positive moments of all orders. Moreover, since ξ ≥ F1(T1)

−αζ (1), we have

E
[
ξ (1+δ)2/α] ≤ E

[
ζ (1+δ)2/α] ∫

S1

s
−(1+δ)2

1 ν(ds).

Let ρ > 0 be such that
∫
S1

s
−1−ρ
1 ν(ds) < ∞. By Lemma 2.2(iii), E[ζ−a] < ∞ for

all a < 1+ (1+ρ)/|α|. So for all δ ≥ 0 such that (1+ δ)2 ≤ 1+ρ, the expectation
E[ξ (1+δ)2/α] is finite and thus

E
[∣∣log

(
Fζ (ξ)

)∣∣1+δ]
< ∞

[since | log(Fζ (ξ))| ≤ | log(Fζ (1))| when ξ ≥ 1].
In particular, we can deduce that E[| log(Fζ (ξ))|1+δ|ζ = x0] < ∞ for some

x0 > 0. Our goal now is to check that

E
[∣∣log

(
Fζ

(
Zstat

0
(
Y stat

1
)α))∣∣1+δ]

< ∞.

Recall that ξ = ζ − T1 and so Z0Y
α
1 = Z1�

−α
1 = ξ . Hence,

E
[∣∣log

(
Fζ

(
Zstat

0
(
Y stat

1
)α))∣∣1+δ] =

∫ ∞
0

E
[∣∣log

(
Fζ (ξ)

)∣∣1+δ|ζ = x
]
πstat(dx).

Write
∫ ∞

0 = ∫ x0
0 + ∫ ∞

x0
, where x0 is chosen so that E[| log(Fζ (ξ))|1+δ|ζ = x0] <

∞. As seen in the proof of Lemma A.8, πstat(x) ≤ Cx0fζ (x) on (0, x0). Hence,∫ x0

0
E

[∣∣log
(
Fζ (ξ)

)∣∣1+δ|ζ = x
]
πstat(dx) ≤ Cx0E

[∣∣log
(
Fζ (ξ)

)∣∣1+δ]
< ∞.

Next, for x > x0, we use the fact that the joint distribution of (ξ, ζ ) is exp(−z +
y)10≤y≤zfξ (y)dy dz, to obtain that

E
[∣∣log

(
Fζ (ξ)

)∣∣1+δ|ζ = x
]

= e−x

fζ (x)

∫ x

0
ey

∣∣log
(
Fζ (y)

)∣∣1+δ
fξ (y)dy

≤ e−x

fζ (x)

∫ x0

0
ey

∣∣log
(
Fζ (y)

)∣∣1+δ
fξ (y)dy

+ ∣∣log
(
Fζ (x0)

)∣∣1+δ e−x

fζ (x)

∫ x

x0

eyfξ (y)dy

≤ e−xfζ (x0)

fζ (x)e−x0
E

[∣∣log
(
Fζ (ξ)

)∣∣1+δ|ζ = x0
] + ∣∣log

(
Fζ (x0)

)∣∣1+δ
.
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The integral of this upper bound with respect to πstat(dx) on (x0,∞) is finite, by
Lemma A.7. �

We now prove some almost sure limits for the biased chain.

LEMMA A.11. As n → ∞, the following limits hold almost surely:

1

n

n∑
j=1

log
(
Y bias

j

) → μ,
1

n

0∑
j=−n+1

log
(
Y bias

j

) → μ,

1

n
log

(
Y bias−n

) → 0,
1

n
log

(
Zbias−n

) → 0,

1

n
log

(
Fζ

(
Zbias−n−1

(
Y bias−n

)α)) → 0.

PROOF. Suppose that (Xk)k≥0 is any positive Harris chain possessing an in-
variant distribution. Then Theorem 17.0.1 of Meyn and Tweedie [23] gives the
following law of large numbers: for any function g such that E[|g(Xstat

0 )|] < ∞,

1

n

n∑
j=1

g(Xj ) → E
[
g
(
Xstat

0
)]

almost surely, as n → ∞, irrespective of the distribution of X0. Moreover, it fol-
lows straightforwardly from this that n−1g(Xn) → 0 almost surely, as n → ∞.

Now note that (Zbias
k , Y bias

k )k≥1 is a realization of the Markov chain (Zk,Yk)k≥1
with initial state (Z1, Y1) having the distribution specified (for suitable test func-
tions φ) by

E
[
φ(Z1, Y1)

] = 1

μ
E

[
log

(
Y stat

1
)
φ

(
Zstat

1 , Y stat
1

)]
.

Since E[log(Y stat
1 )] = μ < ∞, we get that a.s.

1

n

n∑
j=1

log
(
Y bias

j

) → μ.

Observe next that (Zbias−k , Y bias−k )k≥0 is a realization of the (backward) Markov chain
(Z−k, Y−k)k≥0 with initial distribution for (Z0, Y0) specified (for suitable test func-
tions φ) by

E
[
φ(Z0, Y0)

] = 1

μ
E

[
log

(
Y stat

1
)
φ

(
Zstat

0 , Y stat
0

)]
.

The chain (Z−k, Y−k)k≥0 is also a positive Harris chain possessing the same in-
variant distribution as (Zk,Yk)k≥1. Hence,

1

n

0∑
j=−n+1

log
(
Y bias

j

) → μ and
1

n
log

(
Y bias−n

) → 0
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almost surely, as before. By Lemma A.8, E[| log(Zstat
1 )|] < ∞ and, by the δ = 0

case of Lemma A.10, E[| log(Fζ (Z
stat
0 (Y stat

1 )α))|] < ∞, and so we also have the
almost sure convergences

1

n
log

(
Zbias−n

) → 0 and
1

n

∣∣log
(
Fζ

(
Zbias−n−1

(
Y stat−n

)α))∣∣ → 0. �

Finally, we show that E[∏n
i=1(Y

stat
i )α] decays exponentially in n.

LEMMA A.12. For any x > 0, we have

lim sup
n→∞

1

n
logE

[
n∏

i=1

(
Y stat

i

)α]
< 0.

In order to prove Lemma A.12, we use a renewal process derived from the
biased Markov chain (Zbias

n )n∈Z. We therefore begin with a result about general
renewal processes.

Suppose that (N(n))n≥0 is a delayed renewal process. Write τ0 for the delay
and τ1, τ2, . . . for the subsequent arrival times, so that τk+1 − τk are i.i.d. random
variables for k ≥ 0, independent of τ0, and N(n) = #{k ≥ 1 : τk ≤ n}. We will
say that a random variable X has exponential tails if there exists r > 1 such that
E[rX] < ∞.

LEMMA A.13. Suppose that τ0 and τ1 − τ0 both have exponential tails. Then
for any s ∈ (0,1),

lim sup
n→∞

1

n
logE

[
sN(n)] < 0.

PROOF. The proof is elementary, and so we sketch it. Let χ = E[τ1 − τ0] be
the mean of the standard inter-arrival distribution and take ε > 0. Then

E
[
sN(n)] ≤ P

(
N(n) <

(
χ−1 − ε

)
n
) + s(χ−1−ε)n

≤ P(τkn ≥ n) + s(χ−1−ε)n,

where kn = �(χ−1 − ε)n�. But a simple application of the Gärtner–Ellis theorem
then implies that

P(τkn ≥ n) ≤ P
(
τkn ≥ knχ/(1 − χε)

)
is exponentially small in n. The result follows. �

Suppose now that we mark the kth inter-arrival interval with some probability
which depends, in general, on its length τk − τk−1, but independently for different
inter-arrival intervals. Let Ik be the indicator that the kth inter-arrival interval is
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marked, so that I1, I2, . . . are independent Bernoulli random variables such that Ik

depends on τi, i ≥ 0 only through τk − τk−1. Let

M(n) = #{k ≥ 1 : τk ≤ n, Ik = 1}.(A.4)

(M(n))n≥0 is again a delayed renewal process.

LEMMA A.14. Suppose that τ0 and τ1 − τ0 have exponential tails and that
q := P(I1 = 1) > 0. Then the delay and inter-arrival distributions of (M(n))n≥0
have exponential tails. Hence, for any s ∈ (0,1),

lim sup
n→∞

1

n
logE

[
sM(n)] < 0.

PROOF. The case q = 1 follows immediately from Lemma A.13, and so we
henceforth assume that q < 1. Let σ1, σ2, . . . , σ̃ and G be mutually independent
random variables, independent of τ0. Let σ1, σ2, . . . have common distribution
given by P(σ1 = i) = P(τ1 − τ0 = i|I1 = 0), i ≥ 1. Let σ̃ have distribution P(σ̃ =
i) = P(τ1 − τ0 = i|I1 = 1), i ≥ 1. Finally, let G be such that P(G = i) = q(1 − q)i

for i ≥ 0. Then the delay has the same distribution as

τ0 +
G∑

i=1

σi + σ̃

and the inter-arrival intervals have the same distribution as
G∑

i=1

σi + σ̃ .

By Lemma A.13, it will be sufficient to prove that
∑G

i=1 σi and σ̃ are random
variables with exponential tails. For r ≥ 0,

E
[
rσ1

] = E
[
rτ1−τ0 |I1 = 0

] ≤ E[rτ1−τ0]
1 − q

and, similarly,

E
[
rσ̃ ] = E

[
rτ1−τ0 |I1 = 1

] ≤ E[rτ1−τ0]
q

.

By assumption, there exists r > 1 such that E[rτ1−τ0] < ∞. Hence, there exists
r > 1 such that E[rσ1] < ∞ and E[rσ̃ ] < ∞. Moreover,

E
[
r

∑G
i=1 σi

] = rq

1 − (1 − q)E[rσ1] .
Now E[rσ1] → 1 as r ↓ 1, and so we can find r > 1 sufficiently small that E[rσ1] <

(1 − q)−1. Hence, for such a value of r ,

E
[
r

∑G
i=1 σi

]
< ∞.

The result follows. �
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Recall from Lemma 3.8 the Foster–Lyapunov criterion for the Markov chain
(Zk)k≥0: there exist a function V : (0,∞) → [1,∞), a small set C and constants
β ∈ (0,1) and b > 0 such that

E
[
V (Z1)|Z0 = x

] ≤ (1 − β)V (x) + b1{x∈C}.

Since C is small, there exist p ∈ (0,1) and a probability measure μ̃C [which is a
version of the measure μC given explicitly at (3.9) normalized to have total mass 1]
such that

P(x,B) = P(Z1 ∈ B|Z0 ∈ x) ≥ pμ̃C(B)

for all x ∈ C and any B any Borel subset of (0,∞). Consider now constructing
the process (Zk)k≥0 via the standard split chain construction: whenever Zk ∈ C,
we flip a coin with probability p ∈ (0,1). If the coin comes up heads, we sample
Zk+1 from the measure μ̃C . Otherwise, sample Zk+1 from the probability measure
(P (Zk, ·)−pμ̃C(·))/(1−p). If Zk /∈ C, we simply sample Zk+1 from P(Zk, ·). If
Zk ∈ C and the coin comes up heads, we say that there is a regeneration at time k.
(In particular, a regeneration can only occur at k if Zk ∈ C.) Let

τ0 = inf{i ≥ 0 : there is a regeneration at i}
and for k ≥ 0,

τk+1 = inf{i > τk : there is a regeneration at i}.
Then τ0 and {τk+1 − τk :k ≥ 0} are all independent, and {τk+1 − τk :k ≥ 0} are
identically distributed. Hence, N(n) := #{k ≥ 1 : τk ≤ n} is a delayed renewal pro-
cess.

The following lemma is a standard consequence of geometric ergodicity; see,
for example, equation (22) of Roberts and Rosenthal [27] for the precise formula-
tion given here.

LEMMA A.15. There exists θ > 1 such that∫ ∞
0

E
[
θτ0 |Z0 = x

]
πstat(dx) < ∞ and E

[
θτ1−τ0

]
< ∞.

Hence, if the chain is begun in stationarity, (N(n))n≥0 is a delayed renewal
process such that both delay and inter-arrival distributions have exponential tails.

PROOF OF LEMMA A.12. Let f : (0,∞)2 → (0,1) be defined by

f (x, y) = E
[
Yα

1 |Z0 = x,Z1 = y
]
.

Using the fact that (Zn)n≥0 acts a driving chain for (Zn,Yn)n≥0, we have that
Y1, Y2, . . . , Yn are conditionally independent given Z0,Z1, . . . ,Zn and, for 1 ≤
i ≤ n, the distribution of Yi depends only on the values of Zi−1 and Zi . Hence, for



804 C. GOLDSCHMIDT AND B. HAAS

all x > 0,

E

[
n∏

i=1

Yα
i

∣∣∣∣Z0 = x

]
= E

[
n∏

i=1

f (Zi−1,Zi)

∣∣∣∣Z0 = x

]

and, therefore,

E

[
n∏

i=1

(
Y stat

i

)α]
= E

[
n∏

i=1

f
(
Zstat

i−1,Z
stat
i

)]
.

The function f takes values in (0,1) and is continuous, so for any compact set K ⊆
(0,∞)2 we can find a constant γ ∈ (0,1) such that f (x, y) ≤ γ on K . Take K =
K1 ×K2, where K1,K2 ⊆ (0,∞) are compact and have strictly positive Lebesgue
measure. Let Ñ(n) = #{1 ≤ i ≤ n : (Zstat

i−1,Z
stat
i ) ∈ K}. Then

E

[
n∏

i=1

(
Y stat

i

)α]
≤ E

[
γ Ñ(n)].

We will bound Ñ(n) below by the number of renewals between which there is a
visit to K , that is,

M(n) = #
{
k ≥ 1 : τk ≤ n,

(
Zstat

i−1,Z
stat
i

) ∈ K for some τk−1 + 1 < i ≤ τk

}
.

This clearly has the effect of independently marking the renewal intervals, as
at (A.4). Note that since P(x,B) > 0 for any x ∈ (0,∞) and any Borel set
B ⊆ (0,∞) of positive Lebesgue measure, there is positive probability of visit-
ing K between any two renewals. The result then follows from Lemmas A.14
and A.15. �
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