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We develop some theory of spinal decompositions of discrete and contin-
uous fragmentation trees. Specifically, we consider a coarse and a fine spinal
integer partition derived from spinal tree decompositions. We prove that for
a two-parameter Poisson–Dirichlet family of continuous fragmentation trees,
including the stable trees of Duquesne and Le Gall, the fine partition is ob-
tained from the coarse one by shattering each of its parts independently, ac-
cording to the same law. As a second application of spinal decompositions,
we prove that among the continuous fragmentation trees, stable trees are the
only ones whose distribution is invariant under uniform re-rooting.

1. Introduction. Starting from a rooted combinatorial tree T[n] with n leaves
labeled by [n] = {1, . . . , n}, we call the path from the root to the leaf labeled 1
the spine of T[n]. Deleting each edge along the spine of T[n] defines a graph whose
connected components we call bushes. If, as well as cutting each edge on the spine,
we cut each edge connected to a spinal vertex, each bush is further decomposed
into subtrees. We thus obtain two nested partitions of {2, . . . , n}, which naturally
extend to partitions of [n] by adding the singleton {1}. We call these partitions
of [n] the coarse spinal partition and the fine spinal partition derived from T[n].
See, for example, Figure 2.

The aim of this paper is to develop some theory of spinal decompositions of
fragmentation trees that arise as genealogical trees of fragmentation processes.
We focus on Markovian partition-valued fragmentation processes of the following
two types. In a setting of discrete time and partitions of [n], we postulate that each
nonsingleton block splits at each time, which leads to Markov branching models
[4, 18, 26]. In a setting of continuous time and partitions of N we postulate a self-
similarity condition, which leads to self-similar continuum random trees [25, 26].

Before giving an overview of this paper in Section 1.3, we formally introduce
the discrete setting in Section 1.1 and the continuous setting in Section 1.2.
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1.1. Discrete fragmentations. We start by introducing a convenient formalism
for the kind of combinatorial trees arising naturally in the context of fragmentation
processes. Let B be a finite nonempty set, and write #B for the number of elements
of B . Following standard terminology, a partition of B is a collection

�B = {B1, . . . ,Bk}
of nonempty disjoint subsets of B whose union is B . To introduce a new termi-
nology convenient for our purpose, we make the following recursive definition.
A fragmentation of B (sometimes called a hierarchy or a total partition [35, 36])
is a collection TB of nonempty subsets of B such that:

(i) B ∈ TB ,
(ii) if #B ≥ 2 there is a partition �B of B into at least two parts B1, . . . ,Bk ,

called the children of B , with

TB = {B} ∪ TB1 ∪ · · · ∪ TBk
,(1)

where TBi
is a fragmentation of Bi for each 1 ≤ i ≤ k.

Necessarily Bi ∈ TB , each child Bi of B with #Bi > 1 has further children, and so
on, until the set B is broken down into singletons. We use the same notation TB

for both:

• such a collection of subsets of B , and
• for the tree whose vertices are these subsets of B , and whose edges are defined

by the parent/child relation implicitly determined by the collection of subsets
of B .

To emphasize the tree structure we may call TB a fragmentation tree. Thus B is
the first branch point of TB , and each singleton subset of B is a leaf of TB , see
Figure 1. It is often convenient to plant TB by adding a ROOT vertex and an edge
between the ROOT and the first branch point B . We denote by TB the collection of
all fragmentation trees labeled by B .

FIG. 1. Two fragmentations of [9] represented as trees with nodes labeled by subsets of [9].
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FIG. 2. A fragmentation tree T[9], with coarse spinal partition {{1}, {24569}, {378}}, coarse spinal
composition ({24569}, {378}, {1}) and fine spinal partition {{1}, {2}, {378}, {4}, {569}}.

For each nonempty subset A of B , the restriction to A of TB , denoted TA,B , is
the fragmentation tree whose first branch point is A, whose leaves are the singleton
subsets of A, and whose tree structure is defined by restriction of TB . That is, TA,B

is the fragmentation

TA,B = {C ∩ A :C ∩ A �= ∅,C ∈ TB} ∈ TA,

corresponding to a reduced subtree as discussed by Aldous [1].
Given a rooted combinatorial tree with no single-child vertices and whose leaves

are labeled by a finite set B , there is a corresponding fragmentation tree TB , where
each vertex of the combinatorial tree is associated with the set of leaves in the
subtree above that vertex. So the fragmentation trees defined here provide a conve-
nient way to both label the vertices of a combinatorial tree, and to encode the tree
structure in the labeling.

A random fragmentation model is an assignment of a probability distribution
on TB for a random fragmentation tree TB with first branch point B for each finite
subset B of N. We assume throughout this paper that the model is exchangeable,
meaning that the distribution of �B , the partition of B generated by the branching
of TB at its root, is of the form

P(�B = {B1, . . . ,Bk}) = p(#B1, . . . ,#Bk)(2)

for all partitions {B1, . . . ,Bk} with k ≥ 2 blocks, and some symmetric function p

of compositions of positive integers, called a splitting probability rule. The model
is called:

• Markovian (or a Markov branching model) if given �B = {B1, . . . ,Bk}, the k

subtrees of TB above B are independent and distributed as TB1, . . . , TBk
, for all

partitions {B1, . . . ,Bk} of B;
• consistent if for every A ⊂ B , the restriction to A of TB is distributed like TA;
• binary if every A ∈ TB has either 0 or 2 children with probability one, for all B .
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Now we take B = [n]. The collection of vertices at graph distance m ≥ 0 above
the first branch point form a partition of a subset of [n] that we extend to a partition
�

(n)
m of [n] by adding a singleton {j} for each leaf j at height below m. We refer

to (�
(n)
m ,m ≥ 0) as the partition-valued discrete fragmentation process associated

with T[n]. See also [4, 18, 26].

1.2. Continuous self-similar fragmentations. We denote by P the set of par-
titions of N and equip it with the distance d(π,π ′) = 2−n(π,π ′), where n(π,π ′)
is the largest integer such that the restrictions of partitions π , π ′ to [n] coincide.
Following Bertoin [9], a continuous-time P -valued Markov process (�(t), t ≥ 0)

is called a self-similar fragmentation process with index a ∈ R if it is càdlàg and:

• �(0) = {N}, that is, � starts from the trivial partition with a unique block;
• � is exchangeable, that is, its distribution is invariant under permutations of N;
• given �(t) = π , the post-t process (�(t + s), s ≥ 0) has the same law as the

process whose state at time s ≥ 0 is the partition of N whose blocks are those of

πi ∩ �(i)(|πi |as), i ≥ 1,

where (πi, i ≥ 1) is the sequence of blocks of π in order of least elements,
(|πi |, i ≥ 1) is the sequence of their asymptotic frequencies and (�(i), i ≥ 1) is
a sequence of i.i.d. copies of �.

We recall that Kingman’s theorem [27] on exchangeable partitions ensures that
for every t ≥ 0, the asymptotic frequencies |πi | = limn→∞ n−1#(πi ∩ [n]) of all
blocks πi of �(t) exist a.s. Bertoin [8] shows that actually a.s. for every t , these
asymptotic frequencies exist.

In [9], Bertoin proved that the distribution of a self-similar fragmentation is en-
tirely characterized by three parameters: the index of self-similarity a, a coefficient
c ≥ 0 that measures the rate of erosion and a dislocation measure on

S↓ =
{
(si)i≥1 : s1 ≥ s2 ≥ · · · ≥ 0,

∑
i≥1

si ≤ 1

}

with no atom at (1,0, . . .) and that integrates 1 − s1. This measure ν describes
the sudden dislocations of blocks, in the sense that a block B ⊂ N splits in some
blocks B1,B2, . . . with relative asymptotic frequencies s ∈ S↓ at rate |B|aν(ds).
When the index a = 0, this fragmentation rate does not depend on the size of the
blocks and the fragmentation processes is then said to be homogeneous. A crucial
point is that a self-similar fragmentation with parameters a, c and ν can always
be constructed measurably from a homogeneous fragmentation with same coeffi-
cient c and measure ν, using time-changes, and vice versa. We refer to Bertoin’s
book [10] and the above mentioned papers [8, 9] for details on these time-changes
and background on homogeneous and self-similar fragmentations.
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In this paper, we focus on self-similar fragmentations without erosion (c = 0),
which are nontrivial (ν(S↓) �= 0) and do not lose mass at sudden dislocations, that
is,

ν

(∑
i≥1

si < 1

)
= 0.

We call (a, ν) the characteristic pair of such a process.
A family of combinatorial trees with edge lengths R[n], n ≥ 1, with n ex-

changeably labeled leaves, is naturally associated to a self-similar fragmentation
process � by considering the evolution of � restricted to the first n integers.
Specifically, R[n] consists of all blocks B that occur in the evolution of �∩ [n]; an
edge between the root and the first branch point [n] has as its length the first dislo-
cation time of �∩[n], and similarly for subtrees with two or more leaves; the edge
below leaf j has as its length the time between the last relevant dislocation time of
� ∩ [n] and the time when {j} becomes a singleton for �, which may be infinite.
This gives a consistent family of trees, in the sense that the subtree of R[n] spanned
by [k] is R[k], for all k ≤ n, where superfluous (i.e., multiplicity 2) vertices are re-
moved and associated edges merged, their lengths summed up. By exchangeabil-
ity, the same is true in distribution for uniformly chosen k distinct leaves of R[n],
relabeled by [k]. The coupling of self-similar fragmentations using time-changes
entails that the distribution of the combinatorial shapes (say T[n]) of R[n], n ≥ 1,
depends only on the dislocation measure ν, and not on the index a. So without
loss of generality, we may focus on a = 0, the case of homogeneous fragmenta-
tions, when working with the shapes T[n], n ≥ 1. Furthermore, (T[n], n ≥ 1) defines
a consistent Markov branching model as in the previous subsection. Reciprocally,
each consistent Markov branching model can be constructed similarly from some
homogeneous fragmentation (possibly with erosion). See [26].

When the index a is negative, small fragments vanish quickly and it is well
known that the whole fragmentation � then reaches in finite time the trivial parti-
tion composed exclusively of singletons. See, for example, [10]. In terms of trees,
this implies that the height of R[n] is bounded uniformly in n. Using the consis-
tency property and Aldous’ results [3], it is then possible to define the projective
limit T of the family (R[n], n ≥ 1) and equip it with a probability measure μ,
the mass measure, that arises as limit of the empirical measures on the leaves
of R[n], n ≥ 1. Implicitly, the tree T is rooted. The pair (T ,μ) is a continuum
random tree (CRT) and was studied in [25] using Aldous’ formalism of trees as
compact metric subsets of l1; cf. [1–3]. An alternative formalism can be consid-
ered, via the set of equivalence classes of compact rooted R-trees endowed with
the Gromov–Hausdorff distance, as developed in [16, 17]. We will not go further
into details here and refer to the above-mentioned papers for rigorous definitions
and statements. We shall call the CRT (T ,μ) a self-similar fragmentation CRT
with parameters (a, ν).
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A fundamental property of (T ,μ) is that a version of (R[n], n ≥ 1) can be ob-
tained from a random sampling L1,L2, . . . picked independently according to μ,
conditional on (T ,μ), by considering for each n the subtree of T spanned by the
root and leaves L1, . . . ,Ln. Consider then the forest FT (t) obtained by removing
in T all vertices at distance less than t from the root and define the random parti-
tion �′(t) by letting i and j be in the same block of �′(t) if and only if Li and Lj

are in the same connected component of FT (t), t ≥ 0. Clearly the process �′ is
distributed as �. We shall often suppose in the following that the fragmentation
process we are working with is constructed in such a manner from some self-
similar fragmentation CRT.

Examples of self-similar fragmentation CRTs are the Brownian CRT of Aldous
[1–3] and, more generally, the stable Lévy trees with index β ∈ (1,2] of Duquesne
and Le Gall [14, 15]. For details on their fragmentation properties, see Bertoin [9]
for the Brownian case (i.e., when β = 2) and Miermont [29] for the other stable
cases. The parameters of these CRTs are recalled later in the paper.

1.3. Contents and organization of the paper. The structure and contents of this
paper are as follows. In Section 2, we study the coarse and fine spinal partitions of
some Markov branching model (T[n], n ≥ 1) constructed consistently from a self-
similar fragmentation process. These partitions of [n] are consistent as n varies,
which leads to a nested pair of partitions of N. Restricted to N \ {1}, they are
jointly exchangeable. In particular, they possess asymptotic frequencies a.s. The
decreasing rearrangements of these frequencies are called the coarse spinal mass
partitions and fine spinal mass partitions. By decomposing the trees along the
spine, we then show that when the parameters a and ν of the fragmentation are
known and ν is infinite, we can reconstruct the whole self-similar fragmentation
process from the sequence of shapes (T[n], n ≥ 1) (Proposition 2). Next, the main
result of this section (Theorem 6) states that under some factorization property of
the dislocation measure ν (Definition 2), the fine spinal mass partition derived from
the sequence of shapes (T[n], n ≥ 1) is obtained from the coarse one by shattering
each of its fragments in an i.i.d. manner.

In particular, this result applies to a family of fragmentations whose dislocation
measures are built from Poisson–Dirichlet partitions (Section 3). The stable frag-
mentations studied by Miermont [29], built from the stable trees of Duquesne and
Le Gall with index in (1,2), belong to this family. As a consequence, we obtain
an extensive description, in terms of Poisson–Dirichlet partitions (Corollary 10),
of spinal decompositions of stable trees.

The stable trees (T ,μ) are known to possess an interesting symmetry property
of invariance under uniform re-rooting (see [2, 13, 15]). Informally, this means that
taking a leaf at random according to μ and considering T rooted at this random
leaf, gives a CRT with the same distribution as the original CRT with its original
root. In Section 4, we give a new proof of this invariance, using combinatorial
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methods, and show that, up to a scaling factor, stable trees are the only self-similar
fragmentation CRTs that are invariant under uniform re-rooting (Theorem 11).

To finish this introduction, let us mention that studies on spinal decompositions
of various trees exist in the literature. See, for example, Aldous–Pitman [6] (for
Galton–Watson trees), Duquesne–Le Gall [15] (for stable and Lévy trees). In the
fragmentation context, decomposing the trees/processes along the spine is a useful
tool, which has been used to obtain results on large time asymptotics [11], small
time asymptotics [24] and discrete approximations [26].

2. Spinal partitions of fragmentation trees. Decompose a combinatorial
fragmentation tree T[n] with leaves labeled by [n] along the spine from the root
to leaf 1 into a collection of bushes by deleting each edge along the spine. By
adding a conventional root edge to its base, each bush is identified with an element
of TB for some B ⊆ [n], where TB is the collection of rooted combinatorial trees
with #B leaves labeled by B . Each such B is associated with a unique vertex on
the spine of T[n]. We list these sets of leaf labels B in order of the corresponding
spinal vertices to obtain an ordered exchangeable random partition of {2, . . . , n}.
The first set B in this list is the set of elements of [n] not in the block containing 1
after the first fragmentation event involving [n]. If after the first fragmentation
of [n] the block [n] − B containing 1 is of size 2 or more, the next set is what
remains of [n] − B after deleting the block containing 1 in the next fragmentation
of [n] − B , and so on, until the last set which is the singleton {1}. If as well as
cutting each edge on the spine, we cut each edge connected to a spinal vertex, each
bush is further decomposed into subtrees. We thus obtain two nested exchange-
able random partitions of {2, . . . , n}, which naturally extend to partitions of [n] by
adding the singleton {1}, the coarse and fine spinal partitions derived from T[n].
We can include the spinal order in the coarse spinal partition to form the coarse
spinal composition.

Assuming that the trees T[n], n ≥ 1, are constructed consistently from a homo-
geneous fragmentation process with values in the partitions of N, both partitions
of [n] are consistent as n varies. Thus the coarse and fine spinal partitions may be
regarded as a nested pair of random partitions of N. These partitions have natural
interpretations in terms of associated partition-valued self-similar fragmentations
processes (�(t), t ≥ 0), of any index a, in which the sequence (T[n], n ≥ 1) is em-
bedded. For each pair of integers i and j let the splitting time Di,j be the first time t

that i and j fall in distinct blocks of �(t). Let i, j ≥ 2. By construction, i and j fall
in the same block of the coarse spinal partition if and only if D1,i = D1,j , whereas
i and j fall in the same block of the fine spinal partition if and only if Di,j > D1,i

(this clearly implies D1,i = D1,j ). Assuming further that � is constructed by ran-
dom sampling of leaves L1,L2, . . . from some CRT (T ,μ) according to μ, i and j

fall in the same block of the coarse spinal partition if and only if the paths from Li

and Lj to the root first meet the spine of T , that is, the path from the root to L1, at
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the same point. Besides, i and j fall in the same block of the fine spinal partition
if and only if the path from Li to Lj does not intersect the spine.

The coarse spinal decomposition of T is the collection of equivalence classes
for the random equivalence relation x ∼ y if and only if the paths from x and y

to the root first meet the spine at the same point on the spine. Note that the whole
spine itself carries no μ-mass, and spinal nonbranchpoints (an uncountable set of
singletons in this decomposition of T ) will be excluded from further consideration.
The restriction of T to a typical equivalence class is a bush which can be further
decomposed into trees by deleting the point on the spine, and then giving each
connected component its own root where it used to be connected to the spine. The
resulting random partition of T into subtrees is the fine spinal decomposition of T .

We measure the size of each component of one of these partitions by its μ-mass,
to obtain coarse and fine spinal mass partitions of (T ,μ), which we may regard
as two random elements of S↓. The following proposition summarizes some basic
properties of these random partitions, which follow easily from the above discus-
sion.

PROPOSITION 1. The coarse and fine spinal partitions derived from the se-
quence of shapes (T[n], n ≥ 1) embedded in (T ,μ) have the following properties:

(i) The singleton block {1} belongs to both partitions of N, while the restric-
tions of these partitions to N \ {1} are jointly exchangeable.

(ii) The sequence of ranked limiting frequencies of each partition of N is the
sequence of ranked μ-masses of the corresponding mass partition of (T ,μ).

We now offer a more detailed study of these two partitions, first considering the
coarse spinal partition (and composition), then the fine one and its relation to the
coarse one. Obviously, the fine spinal partition is identical to the coarse one if and
only if the trees T[n] are binary for all n ≥ 1.

2.1. The coarse spinal partition. Assume throughout this section that the
trees T[n], n ≥ 1, are constructed consistently from a homogeneous fragmenta-
tion process, as when T[n] is derived from an associated continuum tree (T ,μ) as
the shape of the subtree spanned by Li, i ∈ [n], for L1,L2, . . . an exchangeable
sample of leaves with directing measure μ. To ease notation we work with T[n+1]
instead of T[n]. Let

Bn,1,Bn,2, . . . ,Bn,Kn, {1}
be the sets of leaves of the bushes derived from the coarse spinal decomposition of
T[n+1], in order of the corresponding spinal vertices. Then (Bn,1,Bn,2, . . . ,Bn,Kn)

is the restriction to {2, . . . , n + 1} of an exchangeable ordered random partition of
{2,3, . . .}, as studied in [12, 21]. Let

Cn := (#Bn,1,#Bn,2, . . . ,#Bn,Kn).(3)
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It follows easily from sampling consistency of the sequence (T[n], n ≥ 1) that
(Cn, n ≥ 1) is a regenerative composition structure, as defined in [19]. That is
to say, (Cn, n ≥ 1) is a sampling consistent sequence of random compositions Cn

of n, with the property that conditionally given the first part of Cn is of size i < n,
the remaining parts of Cn define a random composition of n − i with the same
distribution as Cn−i . Let

Sn,k := n −
k∑

j=1

#Bn,j ,

where Bn,j is empty for j > Kn. So (Sn,k + 1, k ≥ 0) is the sequence of sizes of
the fragment containing 1 as it undergoes successive fragmentations according to
T[n+1], starting with Sn,0 = n and terminating with Sn,k = 0 for k ≥ Kn, where Kn

is the total number of fragmentation events experienced by the block containing 1
in T[n+1]. According to Gnedin and Pitman [19], there is the following almost sure
convergence of random sets with respect to the Hausdorff metric on closed subsets
of [0,1]:

{Sn,k/n, k ≥ 0} a.s.−→
n→∞{exp(−ξt ), t ≥ 0}cl,(4)

where the left-hand side is the random discrete set of values Sn,k rescaled onto
[0,1], and the right-hand side is the closure of the range of the exponential of
some subordinator (ξt , t ≥ 0). The random interval partition of [0,1] defined by
interval components of the complement of the closed range of 1−e−ξ has a natural
interpretation in terms of the associated CRT (T ,μ): the lengths of these intervals
are the strictly positive masses of components in the coarse spinal decomposition
of (T ,μ), in the order they appear along the spine from the root to leaf 1. We will
therefore call this interval partition the coarse spinal interval partition of [0,1]
derived from (T ,μ). In terms of the associated homogeneous fragmentation, the
lengths of these intervals are the total masses of fragments thrown off by the mass
process of the fragment containing 1, put in the order they split away from this
tagged fragment. Otherwise said, exp(−ξ) is the mass process of the fragment
containing 1. Since the fragmentation process has zero erosion and no sudden loss
of mass, the subordinator ξ has no drift and no killing. Bertoin [8] proved that the
Lévy measure of ξ is then given by

�(dx) = exp(−x)
∑
i≥1

ν(− log si ∈ dx), x > 0.(5)

PROPOSITION 2. Let (�(t), t ≥ 0) be a self-similar fragmentation process,
with index a ∈ R and dislocation measure ν with infinite total mass. Then the entire
process (�(t), t ≥ 0) can be constructed from the consistent sequence (T[n], n ≥ 1)

of combinatorial shapes of trees derived from �.
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PROOF. In view of the time-change relation between fragmentations of dif-
ferent indices, it suffices to consider the homogeneous case. Given the consistent
family of trees (T[n], n ≥ 1), we first use (4) to recover the closure of the range
of exp(−ξ), hence also the closure of the range of ξ , the subordinator describing
the evolution of the mass fragment containing 1. Since the dislocation measure has
infinite mass, so does the Lévy measure of ξ . Then it is well known that the entire
sample path of ξ can be measurably reconstructed from its range, up to a constant
factor on the time scale (see, e.g., [22]). Since the distribution of ξ is determined
by that of (�(t), t ≥ 0), this constant is known. Let �n = (�n(t), t ≥ 0) be the
restriction of (�(t), t ≥ 0) to [n]. The path of ξ , and its construction (4) from
(T[n], n ≥ 1), determine almost surely for each n the sequence of random times t

when transitions of �n occur which change the block of �n containing 1, and at
each of these times t the block of �n(t) containing 1 can be read from T[n]. By ex-
changeability, the same reconstruction can evidently be done almost surely for the
block of �n(t) containing j , for each 1 ≤ j ≤ n. But this information determines
the entire path of (�n(t), t ≥ 0), for each n, hence that of (�(t), t ≥ 0). �

COROLLARY 3. If in the setting of Proposition 2 we have a < 0, then an asso-
ciated (a, ν)-fragmentation CRT (T ,μ) can also be constructed from (T[n], n ≥ 1)

on the same probability space.

PROOF. While the construction of a self-similar fragmentation CRT in [25]
from a self-similar partition-valued fragmentation process is carried out explicitly
only “in distribution,” it is not hard to give an almost sure construction, for exam-
ple, via Aldous’ sequential construction in l1 (see, e.g., [3], page 252). This yields
an increasing sequence of trees with edge lengths R[n] that converges in distribu-
tion, hence almost surely, with respect to the Hausdorff metric on closed subsets
of l1. The almost sure convergence of empirical measures on the leaves of R[n] to a
mass measure μ is then given by [3], Lemma 7 (convergence of measures is weak
convergence). �

We record now an explicit distributional result for the coarse spinal partition of
T[n+1], which can either be read from [19] or derived directly. Recall that n + 1 −
#Bn,1 is the size of the fragment containing 1 at the first branch point of T[n+1]. Let
�(ds) := ∑∞

j=1 ν(sj ∈ ds) and let � be the Lévy measure of (ξt , t ≥ 0), which,
according to (5), is the image of s�(ds) via s �→ − log s. Then by embedding in
the homogeneous fragmentation, we see that

P(#Bn,1 = m) = 	(n :m)/	(n) (1 ≤ m ≤ n),(6)

where 	(n) is the total rate of fragmentations with some effect on partitions of
[n+ 1], and 	(n :m) the rate of such fragmentations in which 1 ends up in a block
of size n + 1 − m. From standard results on the construction of the homogeneous
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fragmentation from its dislocation measure ν (cf. [10], Chapter 3), these rates are
easily evaluated as follows:

	(n :m) =
(

n

m

)∫ 1

0
sn+1−m(1 − s)m�(ds)

(7)

=
(

n

m

)∫ ∞
0

e−(n−m)x(1 − e−x)m�(dx)

and

	(n) =
n∑

m=1

	(n :m) =
∫ 1

0
(1 − sn)s�(ds) =

∫ ∞
0

(1 − e−nx)�(dx).(8)

From this and [19], we get the exchangeable partition probability function (EPPF)
of the coarse spinal partition {Bn,1,Bn,2, . . . ,Bn,Kn} restricted to {2, . . . , n +
1}, that is, the probabilities p(n1, . . . , nk) = P({Bn,1, . . . ,Bn,Kn} = π), for
each particular partition π of {2, . . . , n + 1} in sets of sizes n1, . . . , nk , ∀n ≥
1,∀(n1, . . . , nk) partition of n. For an explicit formula, see [19], especially formu-
lae (3), (4), (6) and (26). Various further properties of the coarse spinal partition
can also be read from [19].

2.2. The fine spinal partition. We start by observing some basic symmetry
properties of this partition.

PROPOSITION 4. (i) Consider the fine spinal partition derived from T[n+1],
restricted to {2, . . . , n + 1}. Then, conditionally given the sizes of its compo-
nents, say n1, . . . , nk with

∑k
i=1 ni = n, the corresponding collection of subtrees of

T[n+1], modulo relabeling by [n1], . . . , [nk], is a collection of independent copies
of T[n1], . . . , T[nk].

(ii) Conditionally given the fine spinal mass partition of a self-similar fragmen-
tation CRT (T ,μ) with parameters (a, ν), the corresponding collection of sub-
trees T of T , with each T of mass m equipped with m−1μ restricted to T , modulo
isomorphism and multiplication of edge lengths by ma , is a collection of indepen-
dent copies of (T ,μ).

PROOF. Part (i) follows easily from the defining Markov (fragmentation/
branching) property of T[n]. For part (ii), consider � a partition-valued (a, ν)-
fragmentation constructed from (T ,μ). Let �(i)(t) denote the block of �(t) con-
taining i, i ≥ 1, and recall that D1,i denotes the first time at which 1 and i belong
to distinct blocks. For all t ≥ 0, the collection of blocks (�(i)(D1,i + t), i ≥ 1)

induces a partition of N. In the terminology of Bertoin ([10], Definition 3.4), the
sequence (D1,i , i ≥ 1) is a stopping line, and as such, satisfies the extended branch-
ing property ([10], Lemma 3.14), which ensures that given (�(i)(D1,i ), i ≥ 1), the
processes (�(i)(D1,i + t), t ≥ 0), i ≥ 1, evolve, respectively, as (mi�

(i)(ma
i t), t ≥
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0), where mi is the asymptotic frequency of �(i)(D1,i), i ≥ 1, and the �(i)s are
i.i.d. copies of �. Now, coming back to the CRT (T ,μ), each component of its fine
spinal partition corresponds to a fragmentation (�(i)(D1,i + t), t ≥ 0) for some i

and obviously, can be measurably reconstructed from this fragmentation (see the
proof of Corollary 3). Conditionally given the masses mi, i ≥ 1, the subtrees of
the fine spinal partition are therefore independent, distributed (modulo isomor-
phisms), respectively, as (m−a

i T ,miμ
(m−a

i )), i ≥ 1, where m−a
i T means that the

edge lengths of T have been multiplied by m−a
i and μ(m−a

i ) is the image of μ by
this transformation. �

Part (ii) of the proposition is a natural generalization of the spinal decomposition
of the Brownian CRT described in [5]. When the Brownian CRT is encoded in a
Brownian excursion, this corresponds to a path decomposition whereby a single
excursion is decomposed into a countably infinite collection of independent copies
of itself.

In view of this symmetry property of the fine spinal partition, it is natural to look
for some more explicit description of this decomposition, such as its EPPF or the
distribution on S↓ of the corresponding mass partition. While such descriptions
are known for the Brownian CRT, and more generally for all binary self-similar
fragmentation CRTs according to the previous section, they appear to be difficult
to obtain in general. But searching for conditions which simplify the structure
of the fine spinal partition of (T ,μ) leads naturally to consideration of further
symmetry properties, and then to interesting examples with these properties for
which explicit computations can be made. Consider first the fine partition of the
set of leaves in some block of the coarse spinal partition of T[n+1] (restricted to
{2, . . . , n + 1}). By recursive arguments, it is enough to discuss the fine partition
of the first block of the coarse spinal partition.

For each s ∈ S↓ let Ps denote the probability measure governing an exchange-
able random partition � of N whose ranked frequencies are equal to s, and for a
measure ν on S↓ let

Pν(·) =
∫
S↓

Ps(·)ν(ds)

be the corresponding distribution of � as a mixture of Kingman’s paintbox parti-
tions. For each n the distribution of �n is determined by the formula

Pν(�n = {B1, . . . ,Bk}) = pν(#B1, . . . ,#Bk)

for every partition {B1, . . . ,Bk} of [n] into k ≥ 1 parts, for some function
pν(n1, . . . , nk) of compositions (n1, . . . , nk) of positive integers n. We refer here
to [32] or [10] for a specific formula for pν(n1, . . . , nk). In particular, pν(1,1) =∫
S↓(1 − ∑

i≥1 s2
i )ν(ds). Note that pν(n1, . . . , nk) < ∞ for all n1, . . . , nk ∈ N,

k ≥ 2, if and only if pν(1,1) < ∞, that is, if and only if
∫
S↓(1 − s1)ν(ds) < ∞.
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DEFINITION 1. The function pν is called the exchangeable partition rate
function (EPRF) associated with ν. If ν is a probability measure, then so is Pν ,
and pν is known as an exchangeable partition probability function (EPPF).

Note that we have the addition rule

pν(n1, . . . , nk) = pν(n1 + 1, n2, . . . , nk) + · · · + pν(n1, . . . , nk−1, nk + 1)

+ pν(n1, . . . , nk,1).

The following lemma presents a basic decomposition in some generality.

LEMMA 5. Let ν be a dislocation measure on S↓ with associated EPRF pν .
Then for every k ≥ 2 and every composition n1, . . . , nk of n ≥ 2 into at least two
parts,

pν(n1, . . . , nk) = g(n,n1)pν̂(n,n1)(n2, . . . , nk)(9)

for some function g(n,n1) and some family of probability measures ν̂(n, n1) on S↓
indexed by 1 ≤ n1 ≤ n − 1.

PROOF. Let � be a homogeneous fragmentation with dislocation measure ν.
The result is obtained by conditioning on the size of the block B1 containing 1. We
(have to) take g(n,n1) as the total rate associated with the formation of a particular
block B1 of n1 out of n elements. Then

( n−1
n1−1

)
g(n,n1) = 	(n−1 :n−n1) as in (7),

so that

	(n − 1) =
n−1∑
n1=1

(
n − 1
n1 − 1

)
g(n,n1) = Pν(�n �= {[n]})

(10)

=
∫
S↓

(
1 −

∞∑
j=1

sn
j

)
ν(ds),

as in (8), is the total rate of formation of partitions of [n] with at least 2 parts. Then
pν̂(n,n1)(n2, . . . , nk) is the conditional probability, given the particular set B1, that
the remaining n − n1 elements are partitioned as they must be to make a partic-
ular partition of [n] into blocks of sizes n1, . . . , nk . To be more precise, we can
take

ν̂(n, n1)(ds) = 1

g(n,n1)

∫
S↓

∑
i≥1

r
n1
i (1 − ri)

n−n1δr̂i/(1−ri )(ds)ν(dr),

where r̂i is the vector r with component ri omitted. By Kingman’s paint-
box representation and conditioning on the color i of the first block, we
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then get for all partitions with block sizes (n1, . . . , nk) in order of least ele-
ment

pν̂(n,n1)(n2, . . . , nk)

=
∫
S↓

ps(n2, . . . , nk)̂ν(n,n1)(ds)

= 1

g(n,n1)

∫
S↓

∑
i≥1

r
n1
i (1 − ri)

n−n1pr̂i/(1−ri )(n2, . . . , nk)ν(dr)

= 1

g(n,n1)
pν(n1, . . . , nk),

where by convention ps = pδs . �

This discussion simplifies greatly for measures ν with the special symmetry
property introduced in the following definition:

DEFINITION 2. Let ν be a measure on S↓, and let ν̂ be a probability measure
on S↓. Say that ν has ν̂ as its factor, if ν̂(n, n1) in (9) can be chosen identically
equal to ν̂ for every 1 ≤ n1 < n, that is,

pν(n1, . . . , nk) = g(n,n1)pν̂(n2, . . . , nk)(11)

for every composition n1, . . . , nk of n ≥ 2 into at least 2 parts, and some function
g(n,n1).

Note that ν may be sigma-finite, but that ν̂ is always assumed to be a proba-
bility measure. It is obvious that if ν has factor ν̂, then ν̂ is unique. A rich class
of measures ν which admit a factor ν̂ is the class of Poisson–Dirichlet measures
considered in the next section. It is an open problem [32], Problem 3.7, even for
probability measures, to describe all measures ν on S↓ which admit a factor ν̂.
Note that all binary dislocation measures trivially admit a factor, as well as or-
dered Dirichlet(a, . . . , a) including the Dirac mass at (1/m, . . . ,1/m). The latter
are just the remaining members of the Ewens–Pitman two-parameter family.

Following the formalism of [31], Corollary 13, given two random elements V

and V ′ of S↓, and a probability distribution ν̂ on S↓, say that V ′ is a ν̂-fragmenta-
tion of V if the joint distribution of V and V ′ is the same as if V ′ is derived from V

by shattering each fragment of V independently in proportions determined by ν̂.

THEOREM 6. Let ν be a dislocation measure on S↓, let (T ,μ) be some self-
similar CRT derived from fragmentation according to ν, and let ν̂ be a probability
distribution on S↓. Then the following two conditions are equivalent:

(i) the measure ν has ν̂ as a factor;
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(ii) the fine spinal mass partition of (T ,μ) is a ν̂-fragmentation of the coarse
spinal mass partition of (T ,μ).

PROOF. According to Pitman ([31], Lemma 35), the fine spinal partition is
a ν̂-fragmentation of the coarse spinal partition if and only if, for all n ≥ 1, in
passing from the coarse spinal partition of [n] generated by T[n] to the fine one,
within each block of the coarse partition the fine partition is distributed accord-
ing to Pν̂ , independently between blocks of the coarse partition. So fix some in-
teger n and let B1, . . . ,Bk be the blocks of the coarse spinal partition of T[n+1]
restricted to {2, . . . , n + 1}, with respective sizes n1, . . . , nk . Due to the fragmen-
tation property of the trees T[n], n ≥ 1, the corresponding fine spinal partition
of T[n+1] is obtained by splitting independently B1 according to Pν̂(n+1,n+1−n1),
B2 according to Pν̂(n+1−n1,n+1−n1−n2), . . . ,Bk according to Pν̂(nk+1,1), where
ν̂(n+1, n+1−n1), ν̂(n+1−n1, n+1−n1 −n2), . . . , ν̂(nk +1,1) are probabil-
ity measures satisfying (9). The fine spinal partition is therefore a ν̂-fragmentation
of the coarse spinal partition if and only if ν̂(n, n1) can be chosen equal to ν̂ for
all 1 ≤ n1 < n. �

3. Poisson–Dirichlet fragmentations. We now turn to a particular family of
fragmentation processes, namely the Poisson–Dirichlet fragmentations, character-
ized by dislocation measures of type PD∗(α, θ), 0 < α < 1, θ > −2α, as defined
below by (19). This family generalizes the family of previously studied stable
fragmentations [29, 30], constructed from the stable trees (Tβ,μβ) with index β ,
1 < β < 2. These stable CRTs were introduced and studied by Duquesne and Le
Gall [14, 15] to which we refer for a rigorous construction. Roughly, Tβ arises
as the limit in distribution as n → ∞ of rescaled critical Galton–Watson trees Tn,
conditioned to have n vertices, with edge-lengths n1/β−1, and an offspring distrib-
ution (ηk, k ≥ 0) such that ηk ∼ Ck−1−β as k → ∞. It is endowed with a (random)
probability measure μβ which is the limit as n → ∞ of the empirical measure on
the vertices of Tn. Miermont [29] shows that the partition-valued process con-
structed by random sampling of leaves L1,L2, . . . from (Tβ,μβ) according to μβ

(as explained at the end of Section 1.2) is a self-similar fragmentation with in-
dex 1/β − 1, and dislocation measure νβ defined for all nonnegative measurable
function f on S↓ by∫

S↓
f (s)νβ(ds) = β2�(2 − 1/β)

�(2 − β)
E

[
Tf

(
�1

T
,
�2

T
, . . .

)]
(12)

(and no erosion). Here T = ∑∞
i=1 �i where �1 > �2 > · · · are the points of

a Poisson process on (0,∞) with intensity (β�(1 − 1/β))−1x−1/β−1 dx. Besides,
cutting the stable tree Tβ at nodes (see [30]), Miermont obtained a self-similar
fragmentation with index 1/β and the same dislocation measure νβ .
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3.1. Definition and factorization property. For 0 ≤ α < 1, θ > −α, let PD(α,

θ) denote the two-parameter Poisson–Dirichlet distribution on S↓, defined as the
distribution of the decreasing rearrangement of its size-biased presentation, which
is

W1, (1 − W1)W2, (1 − W1)(1 − W2)W3, . . .(13)

for Wi , which are independent beta(1 − α, iα + θ) variables. The formula for the
corresponding EPPF is [32], Theorem 3.2,

pPD(α,θ)(n1, . . . , nk) = αk−1[1 + θ/α]k−1

[1 + θ ]n−1

k∏
i=1

[1 − α]ni−1(14)

for every composition (n1, . . . , nk) of n, where [x]n = �(x + n)/�(x) is a rising
factorial. It is evident by inspection of this formula and (11) that the probability
measure PD(α, θ) admits PD(α, θ +α) as a factor for every 0 < α < 1 and θ > −α.
Following Miermont [29] we now consider the rescaled measure

PD∗(α, θ) := �(1 + θ/α)

�(1 + θ)
PD(α, θ),(15)

which is defined in the first instance for 0 < α < 1 and −α < θ . It is known ([32],
Corollary 3.9) that for 0 < α < 1 there is the absolute continuity relation

PD∗(α, θ)(ds) = (Sα(s))θ/α PD(α,0)(ds),(16)

where Sα(s) is the α-diversity which is almost surely associated to a sequence
s = (s1, s2, . . .) with distribution PD(α,0) by the formula

Sα(s) := �(1 − α) lim
j→∞ jsα

j .(17)

The PD(α, θ) distribution is recovered from (16) for −α < θ by normalization
as in (15). The α-diversity Sα , which has a Mittag–Leffler distribution (see, e.g.,
[32], (0.43)), appears variously disguised in different contexts, for example, as
a local time variable ([32], page 10), or again as Sα = T −α for a positive sta-
ble variable T of index α. Indeed, if such a T is constructed as T = ∑∞

i=1 �i

where �1 > �2 > · · · are the points of a Poisson process on (0,∞) with intensity
α(�(1 − α))−1x−α−1 dx, then

(�1/T ,�2/T , . . .) =d PD(α,0)

and, according to [32], (4.45),

Sα(�1/T ,�2/T , . . .) = T −α a.s.,

so that for every nonnegative measurable function f of s = (s1, s2, . . .) ∈ S↓,∫
S↓

f (s)PD∗(α, θ)(ds) = E[T −θf (�1/T ,�2/T , . . .)].(18)
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LEMMA 7. For each 0 < α < 1, let PD∗(α, θ) be the measure defined on S↓
for each real θ by either (16) or (18). Then for −2α < θ , this measure PD∗(α, θ)

is also the unique measure with no mass at (1,0,0, . . .) whose EPRF is given for
k ≥ 2 by

pPD∗(α,θ)(n1, . . . , nk) = αk−1�(k + θ/α)

�(n + θ)

k∏
i=1

[1 − α]ni−1(19)

and for k = 1 by the same formula for −α < θ , and by ∞ for −2α < θ ≤ −α. Ba-
sic integrability properties of this extended family of Poisson–Dirichlet measures
are ∫

S↓
PD∗(α, θ)(ds) < ∞ ⇔ θ > −α;(20) ∫

S↓
(1 − s1)PD∗(α, θ)(ds) < ∞ ⇔ θ > −2α.(21)

For each choice of (α, θ) with θ > −2α the measure PD∗(α, θ) has the probability
distribution PD(α, θ + α) as its factor.

PROOF. Following Miermont ([29], Section 3.3) we observe from (14) and
(15) that the formula (19) holds in the first instance for all θ > −α, and that the
right-hand side of (19) is analytic in θ for Re(θ) > −2α, when k ≥ 2. To get (19)
for all θ > −2α, note that the left-hand side of (19) can be written as E[T −θY ]
where Y is some positive r.v. depending on n1, . . . , nk and then

E[T −θY ] = E
[
T −θY1{T <1}

] + E
[
T −θY1{T ≥1}

]
,

where the first term is finite for all θ ∈ R, hence an entire function of θ . So the
second term for θ > −α equals a function that is analytic for Re(θ) > −2α. We
claim that this equality of functions extends to θ > −2α. Indeed, consider some
nonnegative r.v. Z such that M(t) := E[etZ] < ∞ for t < r1 and M(t) = N(t)

for t < r1 where N is analytic for Re(t) < r2 with 0 < r1 < r2. Then the identity
for t < r1 gives the power series expansion N(t) = ∑∞

0 tnE[Zn]/n! for |t | < r1.

Since N is analytic for Re(t) < r2, this power series converges and this identity
holds also for |t | < r2. Hence for 0 ≤ t < r2 we can compute by monotone conver-
gence M(t) = ∑∞

0 tnE[Zn]/n! = N(t). Hence (19).
The fact (20) comes from formula (0.40) and the following line in [32]. As

for (21), we have seen in Section 2.2 that this integrability condition holds if and
only if the expressions in (19) are finite for every choice of n1, . . . , nk with k ≥ 2,
and this is clear by inspection of (19). �

The infinite measure PD∗(α,−α) was already used and studied by Basde-
vant [7] in the context of Ruelle’s probability cascades.
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REMARKS. I. For 0 < α < 1, θ > −α, the EPPF (14) gives

PPD(α,θ)(�n �= {[n]}) = 1 − [1 − α]n−1

[1 + θ ]n−1
(22)

and hence

PPD∗(α,θ)(�n �= {[n]}) = �(1 + θ/α)

�(1 + θ)

(
1 − [1 − α]n−1

[1 + θ ]n−1

)
(23)

in the first instance for 0 < α < 1, θ > −α, and then by analytic continuation for
0 < α < 1, θ > −2α, with values of the right-hand side defined by continuity for
θ = −α or θ = −1. To see that the left-hand side of (23) is analytic in this range,
observe that for each n this function of (α, θ) is just a finite sum of the functions
in (19) weighted by combinatorial coefficients.

II. From the fact (13) that a size-biased pick from PD(α, θ) has beta(1 − α,α +
θ) distribution for 0 < α < 1, θ > −α, we can write down

s

∞∑
j=1

PD(α, θ)(sj ∈ ds) = �(1 + θ)

�(1 − α)�(α + θ)
s−α(1 − s)α+θ−1 ds

(0 < s < 1)

and hence for −2α < θ by analytic continuation

s

∞∑
j=1

PD∗(α, θ)(sj ∈ ds) = α�(2 + θ/α)

�(1 − α)�(1 + α + θ)
s−α(1 − s)α+θ−1 ds

(24)
(0 < s < 1).

The image of this measure by the change of variable x = − log s is the correspond-
ing Lévy measure

�α,θ (dx) = α�(2 + θ/α)

�(1 − α)�(1 + α + θ)
e−x(1−α)(1 − e−x)α+θ−1 dx

(25)
(0 < x < ∞).

From Theorem 6 we now deduce:

COROLLARY 8. For each 0 < α < 1, θ > −2α, let (Tα,θ ,μ) be some CRT
derived from fragmentation process with dislocation measure PD∗(α, θ). The se-
quence of discrete fragmentation trees (T[n], n ≥ 1) embedded in (Tα,θ ,μ) is gov-
erned by fragmentations of [n] according the EPPF obtained by normalization
of formula (19) by formula (23). The fine spinal mass partition of (Tα,θ ,μ) is
a PD(α,α + θ)-fragmentation of the coarse spinal mass partition of (Tα,θ ,μ),
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which is derived from the range of 1 − e−ξ for the pure jump subordinator ξ with
Lévy measure (25) and Laplace exponent

	α,θ (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

α�(2 + θ/α)

(α + θ)�(1 − α)

(
(1 + θ)�(1 − α)

�(2 + θ)

− (z + 1 + θ)�(z + 1 − α)

�(z + 2 + θ)

)
, θ �= −α,

α

�(1 − α)

(
�′(z + 1 − α)

�(z + 1 − α)
− �′(1 − α)

�(1 − α)

)
, θ = −α.

(26)

Last, for θ ∈ (−2α,−α) we have an interesting regime where Proposition 4
applies along with the asymptotic theory of consistent Markov branching models
in [26]. Specifically,

COROLLARY 9. For θ ∈ (−2α,−α), let (T[n], n ≥ 1) be a Markov branch-
ing model derived from a self-similar fragmentation with dislocation measure
PD∗(α, θ). Adding unit edge lengths to T[n], there is the convergence in proba-
bility

|α + θ |�(1 − α)

α�(2 + θ/α)
× T[n]

n|θ+α| → T(θ+α,PD∗(α,θ))(27)

for the Gromov–Hausdorff topology, where the limit is a self-similar fragmentation
CRT of index θ + α and dislocation measure PD∗(α, θ).

PROOF. Note from (24) that

PD∗(α, θ)(s1 ≤ 1 − ε) ∼ α�(2 + θ/α)

|α + θ |�(1 − α)�(1 + α + θ)
εα+θ as ε ↓ 0.

Then Theorem 2 of [26] applies [�α,θ clearly also satisfies
∫ ∞

xρ�α,θ (ds) < ∞
for some ρ > 0], which gives (27). �

3.2. Stable fragmentations. The case 1/2 < α < 1 is of special interest. Then
−2α < −1 < −α, so we can take θ = −1 in (24), and then the Lévy measure (25)
is of the form

�(dx) = cb(1 − e−x)−b−1e−bx dx(28)

for some constant cb > 0 and b = 1 −α. It is known [19] that if ξ is a subordinator
with this Lévy measure, for any b ∈ (0,1), then the closure of the range of e−ξ is
reversible and identical in law with the zero set of a Bessel bridge of dimension 2−
2b. The corresponding distribution of ranked lengths of intervals is then known to
be PD(b, b) ([32], Corollary 4.9). Miermont ([29], page 444) found the same Lévy
measure, up to a scaling constant, for the subordinator associated with the self-
similar fragmentation of index α − 1 ∈ (−1/2,0) that he derived from the stable
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CRT Tβ of index β = 1/α ∈ (1,2). Here we have reversed this line of reasoning,
and constructed Tβ directly from combinatorial considerations, without relying on
the relation between the height process of Tβ and the stable process of index β ,
which was the basis of the work of Duquesne and Le Gall [14, 15]. As byproducts
of this argument, we have a number of refinements of earlier work on Tβ , which
we summarize in the following corollary of previous results.

COROLLARY 10. For each α ∈ (1/2,1), corresponding to β = 1/α ∈ (1,2)

the dislocation measure PD∗(α,−1) derived from the two-parameter Poisson–
Dirichlet family as in (19) has PD(α,α − 1) as a factor. Let (T[n], n = 1,2 . . .)

be a consistent family of combinatorial trees governed by fragmentation accord-
ing to PD∗(α,−1). Then:

1. The tree T[n] is identical in law to the combinatorial tree with n leaves derived
by sampling according the mass measure in the stable tree Tβ of index β , and
Tβ may be constructed from the sequence of combinatorial trees (T[n], n ≥ 1),
as indicated in [26], Theorem 2, or Corollary 3.

2. The distribution of the coarse spinal mass partition of Tβ is PD(1 − α,1 − α).
3. The coarse spinal interval partition of [0,1] derived from Tβ is exchangeable,

with the same distribution as the collection of excursion intervals of a Bessel
bridge of dimension 2α. The (1−α)-diversity of this interval partition—defined
in a way similar to (17)—is a multiple of the height of a leaf picked at random
from the mass measure of Tβ . This height has the same tilted Mittag–Leffler
distribution as a multiple of the local time at 0 of the Bessel bridge of dimen-
sion 2α.

4. The corresponding fine spinal mass partition of Tβ is a PD(α,α − 1)-
fragmentation of the coarse spinal mass partition.

5. The unconditional distribution of the fine spinal mass partition of Tβ is PD(α,
1 − α).

6. The conditional distribution of the coarse spinal mass partition of Tβ given the
fine one is provided by the operator of PD(γ, γ ) coagulation, as defined in [31],
for γ = (1 − α)/α.

7. Conditionally given the fine spinal mass partition of Tβ , the corresponding col-
lection of subtrees obtained by removing the spine, modulo isomorphism and
rescaling trees T of mass m to m−(1−α)T , is a collection of independent copies
of Tβ .

PROOF. All but items 3, 5 and 6 follow immediately from the previous de-
velopment. Items 5 and 6 are read from items 2 and 4 by the more general coag-
ulation/fragmentation duality relation for the PD family provided by [31], Theo-
rem 12.

The first assertion of item 3 is obvious from previous discussion. To get the
remaining assertions of item 3, denote by � the coarse spinal partition of N \
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{1} derived from Tβ and for each n by Kn the number of blocks of �n. On the
one hand, Theorem 3.8 and Lemma 3.13 of [32] ensure that nα−1Kn converges
a.s. to the (1 − α)-diversity, that moreover has a tilted Mittag–Leffler distribution,
given precisely by formula (3.27) of [32]. On the other hand, Kn + 1 is the height
of leaf 1 in T[n]. Hence by Corollary 9, nα−1Kn converges in probability to a
multiple of the height of a leaf taken at random from the mass measure of Tβ . This
gives the second assertion of item 3. For the last assertion of item 3, recall from
Theorem 5.3 in [33], that the decreasing sequence of excursion lengths of a Bessel
bridge of dimension 2α is absolutely continuous with respect to the distribution
of the decreasing sequence of excursion lengths until time 1 of a Bessel process
of dimension 2α. By [32], Section 4.4, the local time at level 0 until time 1 of
this Bessel process is proportional to the (1 − α)-diversity constructed from the
sequence of lengths of its excursions. Hence a similar result holds for the Bessel
bridge. �

For more information about the distribution of random partitions in the PD fam-
ily, see [20] and [34]. In the limiting case when β ↑ 2, the above results reduce to
the description of the interval partition derived from the spinal decomposition of
the Brownian CRT, which is well known to be distributed like the partition gener-
ated by excursions of a Brownian bridge. See [5] for applications of this decom-
position to the asymptotics of random mappings. The structure of the fine spinal
partition of Tβ for 1 < β < 2 has no analogue for β = 2, because in the Brownian
tree all splits are binary.

4. Invariance under uniform re-rooting. It is of particular interest to con-
sider fragmentation trees with additional symmetry properties. A well-known
property of the stable tree Tβ with index β ∈ (1,2], established by Aldous [2]
for the Brownian CRT with β = 2, and by Duquesne and Le Gall [15], Proposi-
tion 4.8, for β ∈ (1,2), is invariance under uniform re-rooting. See also [13]. Let
us first introduce the discrete analogue of this property.

For a tree T[n] with leaves labeled by [n], let T
(ROOT↔1)
[n] denote the tree with

leaves labeled by [n] obtained by re-rooting T[n] at 1 and relabeling the original
root by 1. See, for instance, Figure 3.

DEFINITION 3. Let (T[n], n ≥ 1) be a consistent Markov branching model.
We say that the Markov branching model is invariant under uniform re-rooting if
for all n ≥ 1

T[n] law= T
(ROOT↔1)
[n] .

Note that due to the exchangeability of leaf labels, leaf 1 is indeed a uniformly
picked leaf of the de-labeled combinatorial tree shape. Due to the exchangeabil-
ity of leaf labels, invariance under uniform re-rooting is in fact a property of de-
labeled combinatorial tree shapes.
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FIG. 3. A fragmentation tree T[9] and its re-rooted counterpart T
(ROOT↔1)
[9] .

DEFINITION 4. Let (T ,μ) be a CRT rooted at ρ and conditionally on (T ,μ),
let (L1,L2, . . .) be a sample of leaves i.i.d. with distribution μ. Let then T [L1]
denote the tree T re-rooted at L1. We say that (T ,μ) is invariant under uniform
re-rooting if for all n ≥ 1, the law of the reduced subtree R(T ,L1, . . . ,Ln) of T
spanned by the root ρ and L1, . . . ,Ln is invariant under re-rooting at L1, that is,

R
(
T [L1], ρ,L2, . . . ,Ln

) law= R(T ,L1,L2, . . . ,Ln)

as an identity in law of combinatorial tree shapes with assignment of edge lengths.

Clearly, the invariance under uniform re-rooting of (T ,μ) implies the invari-
ance under uniform re-rooting of the sequence (T[n], n ≥ 1) of combinatorial trees
associated with (T ,μ). We will see that the converse is false [see the arguments
after (36)].

REMARK. In [2, 13] a different formalism is used for the definition of in-
variance under uniform re-rooting, via height functions of ordered CRTs. Briefly,
assuming that the CRT (T ,μ) can be encoded into a continuous real-valued func-
tion H on [0,1], with H(0) = H(1) = 0, such that:

• T is isometric to the quotient space ([0,1], dH )/ ∼H , where

dH (x, y) := H(x) + H(y) − 2 min
z∈[x,y]H(z)

and

x ∼H y ⇔ dH (x, y) = 0

with the convention [x, y] = [y, x], when y < x,
• μ is the measure induced by the projection of the Lebesgue measure on this

quotient space,

then the invariance under uniform re-rooting is defined via H [U ] law= H where U if
uniformly distributed on [0,1] independently of H and

H [u](x) := H(u) + H(u + x) − 2 min
z∈[u,x+u]H(z), u, x ∈ [0,1](29)
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with the convention u + x = u + x − 1, when u + x > 1. It was proved in [25]
that the structures of the combinatorial subtrees R(T ,L1, . . . ,Ln), n ≥ 1, derived
from some self-similar fragmentation CRT (T ,μ) can be enriched with a consis-
tent “uniform” order so as to encode the fragmentation CRTs into a continuous
height function as described above, provided the dislocation measure is infinite. In
that context, it is not hard to check that the height function definition and Defini-
tion 4 above are equivalent. Details are left to the reader.

The goal of this section is twofold: first to give a combinatorial proof, different
from that given in [2, 13, 15], of the fact that the stable trees are invariant under uni-
form re-rooting; second to prove that among the self-similar fragmentation CRTs,
the stable trees are the only ones, up to a scaling factor, to satisfy this invariance
property.

For the Brownian CRT (T2,μ2), we recall that the partition-valued process
constructed by random sampling of leaves L1,L2, . . . according to μ2 is a self-
similar fragmentation with index a = −1/2 and dislocation measure ν2 defined by
ν2(s1 + s2 �= 1) = 0 and

ν2(s1 ∈ dx) = (2/π)1/2x−3/2(1 − x)−3/2 dx, 1/2 ≤ x < 1

(see [9]). The dislocation measure νβ associated to the stable tree Tβ , 1 < β < 2,
is given by (12) and its self-similar index is 1/β − 1.

THEOREM 11. (i) [2, 15]. For all β ∈ (1,2], the stable tree (Tβ,μβ) is invari-
ant under uniform re-rooting.

(ii) Let (T ,μ) be a self-similar fragmentation CRT with parameters (a, ν) and
suppose it is invariant under uniform re-rooting. Then there exists some β ∈ (1,2]
and some constant C > 0 such that ν = Cνβ and a = 1/β − 1.

REMARK. According to [13], a stronger invariance result is available for the
height functions H of stable trees (and more generally Lévy trees), which is
that H [u], as defined in (29), is distributed as H for each fixed u ∈ [0,1]. See
also [28] for the Brownian CRT.

The rest of this section is devoted to the proof of Theorem 11.

4.1. Spinal decomposition and proof of Theorem 11(i). The first step is to con-
sider the spinal decomposition of trees invariant under uniform re-rooting: one
consequence of this invariance is that the coarse spinal interval partition of [0,1]
derived from the tree is reversible (in fact an exchangeable interval partition of
[0,1]; see [19]). The class of trees with this property is significantly restricted by
the following proposition.
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PROPOSITION 12. Let (T[n], n ≥ 1) be a sequence of combinatorial trees as-
sociated with some self-similar fragmentation CRT (T ,μ) with dislocation mea-
sure ν, and let ξ be the subordinator describing the evolution of the mass frag-
ment containing 1 in an associated homogeneous fragmentation process (cf. Sec-
tion 2.1).

(i) The coarse spinal composition Cn of n derived from T[n+1] [as defined
in (3)] is reversible for each n if and only if ξ has a Lévy measure of the form

�(dx) = c(1 − e−x)−b−1e−bx dx(30)

for some 0 < b < 1 and some constant c > 0.
(ii) There cannot exist a self-similar fragmentation CRT with a Lévy measure

of this form when b > 1/2.

PROOF. Part (i) is read from [19], Theorem 10.1, just using that (Cn, n ≥ 1) is
a regenerative composition structure. For part (ii), from (5)

�(dx) = e−x
∑
i≥1

ν(− log si ∈ dx), x > 0,

and (30) we deduce by the transformation z = e−x , x = − log(z), dx = −dz/z∑
i≥1

ν(si ∈ dz) = c(1 − z)−b−1zb−2 dz, z ∈ (0,1).

Since ν is supported by decreasing sequences with
∑∞

i=1 si = 1, si ≤ 1/i for all
i ≥ 1. In particular,

ν(s1 ∈ dz) = c(1 − z)−b−1zb−2 dz, z ∈ (1/2,1).(31)

Using the fact that for z ∈ (0,1/2)

z−b(1 − z)b−2 > (1 − z)−b−1zb−1

⇐⇒ (1 − z)2b−1 > z2b−1

⇐⇒ b > 1/2,

we see that for b > 1/2∫
(0,1)

(1 − z)ν(s1 ∈ dz) ≥ c

∫
(1/2,1)

(1 − z)−bzb−2 dz

= c

∫
(0,1/2)

z−b(1 − z)b−2 dz

> c

∫
(0,1/2)

(1 − z)−b−1zb−1 dz

≥ ∑
i≥2

∫
(0,1)

zν(si ∈ dz)



SPINAL PARTITIONS AND INVARIANCE UNDER RE-ROOTING 1405

by (31). On the other hand, we have∫
(0,1)

(1 − z)ν(s1 ∈ dz) =
∫
(0,1)

zν

(∑
i≥2

si ∈ dz

)

=
∫
S↓

∑
i≥2

siν(ds)

= ∑
i≥2

∫
S↓

siν(ds)

= ∑
i≥2

∫
(0,1)

zν(si ∈ dz),

which contradicts the inequality obtained in the preceding calculation. �

The Lévy measure associated with some fragmentation tree invariant under uni-
form re-rooting is therefore of the form (30) for some 0 < b ≤ 1/2. We recall that
the Lévy measures associated to β-stable trees are of this form for b = 1 − 1/β

(see Section 3.2 for 1 < β < 2 and [9] for β = 2) which covers the range (0,1/2]
when β varies in (1,2].

PROOF OF THEOREM 11(i). Let (Tβ,μβ) be some stable CRT with index β ∈
(1,2]. According to the previous proposition, its coarse spinal interval partition of
[0,1] is reversible. Items 4 and 7 of Corollary 10 then give a construction of this
CRT from its coarse spinal interval partition, via its fine spinal mass partition, that
ensures the invariance under re-rooting property. �

4.2. Characterization of the dislocation measure and proof of Theorem 11(ii).
In general the Lévy measure does not characterize the dislocation measure of the
fragmentation tree, that is, two different dislocation measures may lead to the same
Lévy measure �; see Haas [23] for an example. However, this complication no
longer arises when the set of fragmentation trees is restricted to the ones invariant
under uniform re-rooting.

PROPOSITION 13. Let (T ,μ) be a self-similar fragmentation CRT with pa-
rameters (a, ν) and suppose it is invariant under uniform re-rooting. Then the
dislocation measure ν can be re-constructed from the Lévy measure � associated
to the tagged fragment.

Together with Proposition 12, this implies that:

COROLLARY 14. The dislocation measure of a self-similar fragmentation
CRT invariant under uniform re-rooting is proportional to νβ for some β ∈ (1,2].
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In order to prove Proposition 13, we first set up two lemmas. In the rest of this
section, the CRT (T ,μ) with parameters (a, ν) is fixed and supposed to be in-
variant under uniform re-rooting. A sample of leaves Li, i ≥ 1, is given and we
consider the associated partition-valued fragmentation �. We call pn the probabil-
ities

pn(n1, . . . , nk) = P
(
�n(tn) = {{1, . . . , n1}, {n1 + 1, . . . , n1 + n2}, . . . ,

{n1 + · · · + nk−1 + 1, . . . , n}})
= pν(n1, . . . , nk)

	(n − 1)
,

where tn is the first time when �n differs from [n] and (n1, . . . , nk) denotes any
composition of n with k ≥ 2 (in other words, the probabilities pn are the EPPFs
obtained by conditioning Pν on {�n �= {[n]}} in the proof of Lemma 5). Note in
particular that

n∑
k=2

∑
(n1,...,nk)

n!
n1! · · ·nk!

1

k!pn(n1, . . . , nk) = 1,(32)

where the sum is over all compositions of n; see [32], Exercise 2.1.3.

LEMMA 15. For all compositions (n1, . . . , nk) of n with k ≥ 2

pn(n1, . . . , nk)pn1(1, n1 − 1)
(33)

= pn(n2 + · · · + nk + 1, n1 − 1)pn−n1+1(1, n2, . . . , nk)

with the convention, when n1 = 1, that the probabilities involving expressions with
a term n1 − 1 = 0 are all equal to 1.

PROOF. Consider the following fragmentation scheme: the first time at which
the block {1, . . . , n} splits, it splits in blocks {1, . . . , n1}, {n1 + 1, . . . , n1 +
n2}, . . . , {n1 + · · · + nk−1 + 1, . . . , n}; then the first of these blocks splits in {1},
{2, . . . , n1}. We are not really interested in the further evolution of {2, . . . , n1},
{n1 + 1, . . . , n1 + n2}, . . . , {n1 + · · · + nk−1 + 1, . . . , n}; let us just say that it
is in a configuration which happens with a (strictly) positive probability, say
rn(n1, . . . , nk) (e.g., evolutions as in Figure 4). Consider then the discrete tree with
leaf labels obtained from this fragmentation scheme. The probability that the tree
with n leaves R(T ,L1,L2, . . . ,Ln) has this labeled shape is exactly

pn(n1, . . . , nk)pn1(1, n1 − 1)rn(n1, . . . , nk).(34)

Now, look at the same tree rooted at L1, that is, R(T L1, ρ,L2, . . . ,Ln); cf.
Figure 5. Starting from the root L1, the corresponding fragmentation scheme
evolves as follows: {ρ,2, . . . , n} first splits in {2, . . . , n1}, {ρ,n1 + 1, . . . , n}.
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FIG. 4. This configuration always happen with positive probability.

Then {ρ,n1 + 1, . . . , n} splits in {ρ}, {n1 + 1, . . . , n1 + n2}, . . . , {n1 + · · · +
nk−1 + 1, . . . , n}. And the blocks {2, . . . , n1}, {n1 + 1, . . . , n1 + n2}, . . . , {n1 +
· · · + nk−1 + 1, . . . , n} then all split according to the same configuration as
in the previous scheme. By invariance under uniform re-rooting, the subtree
R(T [L1], ρ,L2, . . . ,Ln) is distributed as R(T ,L1,L2, . . . ,Ln), and therefore,
the probability that R(T [L1], ρ,L2, . . . ,Ln) has this labeled shape is

pn(n1 − 1, n2 + · · · + nk + 1)pn−n1+1(1, n2, . . . , nk)rn(n1, . . . , nk).(35)

By invariance under re-rooting, the probabilities in (34) and (35) are equal. This
yields (33), since rn(n1, . . . , nk) �= 0. �

FIG. 5. By the invariance under re-rooting assumption, these two configurations are equally likely
to occur.
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REMARK. It is easy to check that the probabilities pn associated to the stable
trees, which are obtained by normalization of formula (19) by (23) with θ = −1,
satisfy relations (33).

LEMMA 16. The probabilities p3(2,1), p3(1,1,1) and pn(1, n − 1), ∀n ≥ 2,
are determined by the Lévy measure �.

PROOF. Consider �0, the homogeneous fragmentation constructed from � by
time-changes. The probabilities pn describe the ordered sizes of blocks of �0

n at
the first time when it differs from [n]. Let D0

1,i , 2 ≤ i ≤ n, be the first time in this
homogeneous fragmentation at which 1 and i belong to separate fragments. Let
(λ0(t), t ≥ 0) be the decreasing process of masses of fragments containing 1. The
law of λ0 = exp(−ξ) is determined by �, as well as that of (λ0,D0

1,2, . . . ,D
0
1,n)

since

P(D0
1,2 > s2, . . . ,D

0
1,n > sn | λ0) = λ0(s2) · · ·λ0(sn),

for all sequences of times (s2, . . . , sn). In particular, knowing �, we know the
probabilities P(D0

1,2 < min3≤i≤n D0
1,i ) = pn(1, n − 1). In the particular case

when n = 3, this gives p3(1,2) and then p3(1,1,1), since 3p3(1,2) + p3(1,1,

1) = 1. �

REMARK. It is not hard to see, with a specific example, that in general � does
not characterize the probabilities p4(n1, . . . , nk), n1 + · · · + nk = 4.

PROOF OF PROPOSITION 13. The dislocation measure is determined, up to a
scaling constant, by the probabilities pn(n1, . . . , nk), ∀n ≥ 2, ∀(n1, . . . , nk) com-
position of n with k ≥ 2. The scaling constant is then obtained from �, using (5).
The goal here is therefore to check that under the re-rooting assumption, all the
probabilities pn can be recovered from �. Suppose � is known. We proceed by
induction on n. For n = 2, p2(1,1) = 1. For n = 3, the probabilities p3 are known,
by Lemma 16. Suppose now that the pm’s are known, ∀m ≤ n − 1. By Lemma 16,
pn(1, n − 1) is also known. Then, by Lemma 15, ∀(n2, . . . , nk) composition of
n − 2,

pn(2, n2, . . . , nk)p2(1,1) = pn(1, n − 1)pn−1(1, n2, . . . , nk),

which gives pn(2, n2, . . . , nk). The probabilities pn(n1, . . . , nk), with n1 ≥ 3, are
obtained in the same manner, by induction on n1, thanks to Lemma 15 [note
that pn1(1, n1 − 1) �= 0, ∀n1]. Therefore, for all compositions (n1, . . . , nk) �=
(1, . . . ,1), k ≥ 2, of n, we have pn(n1, . . . , nk), since there is at least one ni �= 1
and, by symmetry, one can suppose it is n1. It remains to get pn(1, . . . ,1), which
can be done by using equality (32). �
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PROOF OF THEOREM 11(ii). By Corollary 14, since the law of the CRT
(T ,μ) is invariant under uniform re-rooting, there exists some β ∈ (1,2] and some
constant C such that ν = Cνβ . It remains to prove that the index of self-similarity
is a = 1/β − 1. Up to now, we only used the combinatorial properties of reduced
trees encoded in the dislocation measure ν, and not the further structure of the CRT
(T ,μ) that involves the edge lengths and depends on the scaling parameter a. To
conclude that a = 1/β − 1, we must consider edge lengths.

Given the CRT (T ,μ) rooted at ρ and the leaves L1,L2, the reduced tree
R(T ,L1,L2) can be described by the edge-lengths D1,2,D1 − D1,2,D2 − D1,2,
where D1,2 is the separation time of 1 and 2 in � and Di the first time at which
the block containing i is reduced to a singleton, i = 1,2. By invariance under re-
rooting, D1,2 must have the same law as D1 − D1,2. We already know that this is
true for the index 1/β − 1, from Duquesne–Le Gall’s Theorem 4.8 in [15].

Using time-changes relating � and its homogeneous counterpart �0 (these
time-changes are given specifically in [9]), we have

D1,2 =
∫ D0

1,2

0

∣∣�0
(1)(t)

∣∣−a
dt =

∫ ∞
0

∣∣�0
(1)(t)

∣∣−a
dt −

∫ ∞
D0

1,2

∣∣�0
(1)(t)

∣∣−a
dt

= D1 −
∫ ∞
D0

1,2

∣∣�0
(1)(t)

∣∣−a
dt

and

D1 − D1,2 =
∫ ∞
D0

1,2

∣∣�0
(1)(t)

∣∣−a
dt,(36)

where D0
1,2 is the first separation time of 1 and 2 in �0. By the strong Markov

property of � (see [9]), |�0
(1)(t + D0

1,2)| has same distribution as |�0
(1)(D

0
1,2)| ·

|�̃0
(1)(t)|, where �̃0 is an independent copy of �0. Therefore,∫ ∞
D0

1,2

∣∣�0
(1)(t)

∣∣−a
dt = ∣∣�0

(1)(D
0
1,2)

∣∣−a
∫ ∞

0

∣∣�̃0
(1)(t)

∣∣−a
dt = ∣∣�0

(1)(D
0
1,2)

∣∣−a
D̃1,

where D̃1 has same distribution as D1 and is independent of |�0
(1)(D

0
1,2)|−a . As-

suming that D1,2 has same distribution as D1 − D1,2 and taking expectations in
(36), we obtain

E
[∣∣�0

(1)(D
0
1,2)

∣∣−a]
E[D1] = E[D1 − D1,2]

= E[D1,2] = E[D1](1 − E
[∣∣�0

(1)(D
0
1,2)

∣∣−a])
.

For a < 0 we may cancel the common factor of E[D1] < ∞ (D1 is an ex-
ponential functional of a subordinator). It remains to notice that the function
f (a) = E[|�0

(1)(D
0
,12)|−a] is a strictly monotone function with limit 0 at −∞ and

1 at 0, so that the equation f (a) = 1 − f (a) has a unique solution a, which has to
be the index a = 1/β − 1. �
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