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Abstract

For fragmentations in which particles split even faster when their mass is smaller, it is pos-
sible to observe a decrease of the total mass of the system, due to the reduction into dust. We
investigate here this appearance of dust for a large class of deterministic and random fragmen-
tations.
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1 Introduction

In some particle fragmentation systems, one may observe a decrease of the total mass, although
no mass is lost during each individual splitting. This is due to an intensive fragmentation which
reduces positive-mass particles to an infinite number of zero-mass particles, or dust, in finite time.
The lost mass is then lost to dust. This phenomenon may be seen as the dual process of gelation in
coagulating systems, which corresponds to the appearance in finite time of an infinite-mass cluster
(see [1], [13], [16]).

Our purpose is to study the appearance of dust in some fragmentation models that we now
roughly describe. In these models, each particle is characterized by its mass, so that, starting from
a particle with mass one, the natural space for our study is

S↓ :=

{
s = (si)i∈N∗ , s1 ≥ s2 ≥ ... ≥ 0 :

∞∑
i=1

si ≤ 1

}
.

A sequence s of S↓ may be thought as the ranked rearrangement of masses of particles present
at time t and the difference 1 −

∑
i si therefore corresponds to the mass of dust at that time.

Informally, fragmentation systems are characterized by a family of break-up rates νx(ds), x > 0,
that measure the speed at which particles with mass x split in particles with masses xs, s ∈ S↓.
We consider here fragmentations with break-up rates that factorize as νx(ds) = τ(x)ν(ds) for some
positive and continuous function τ on ]0, 1] and some measure ν on S↓ such that ν (

∑
i si < 1) = 0.

This informal description will be made rigorous in Section 2 where both deterministic and random
(τ, ν)-fragmentations are introduced.

Intuitively, when τ(x) increases sufficiently fast as x→ 0, the fragmentation may run away and
create some dust. In Section 3, we characterize in terms of τ and ν when some mass is lost to dust
and when all the mass is reduced to dust in finite time, and we see that it is essentially the behavior
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of τ near 0 that determines the appearance of dust. The main idea of the proof consists in following
a specific particle in the fragmentation (a particle “tagged at random”). Section 4 is devoted to
the dust mass asymptotic behaviors (for small and large times) in the deterministic setting and to
the asymptotic behavior of the distribution tail of the first time of total disintegration to dust, in
the random setting.

Most of the results presented here are part of the paper [11] and we refer to it for technical
details. We also mention the papers [9], [8], [15], [6], [10], and [13] for discussions on the appearance
of dust for some different classes of deterministic and random fragmentations.

2 Fragmentation models

Let τ be a positive continuous function on ]0, 1] such that τ(1) = 1 and ν a non-negative measure
on S↓ \ {(1, 0, 0, ...)} such that ∫

S↓
(1− s1)ν(ds) <∞.

Such a measure ν is called a dislocation measure and may be seen as the break-up rate of a particle
with mass one. Here we assume moreover that ν (

∑
i si < 1) = 0, which means that no mass is

lost at each separate dislocation, and we exclude the trivial case ν = 0. We now introduce two
(τ, ν)-models - one deterministic and the other stochastic - to describe fragmentation systems in
which a particle with mass x breaks up in particles with masses xs, s ∈ S↓, at a rate τ(x)ν(ds).
Note that in such models, particles may split in an infinite number of fragments and that ν may
be infinite.

Deterministic model: it is described by a family of PDE’s depending on the rate τ(x)ν(ds).
These PDE’s modelize the evolution of (µt, t ≥ 0) , a family of non-negative measures on ]0, 1] ,
where µt(dx) represents the average number per unit volume of particles with mass in the interval
[x, x+ dx[ at time t : ∂t 〈µt, f〉 =

∫ 1

0
τ(x)

∫
S↓

[ ∞∑
i=1

f(xsi)− f(x)

]
ν(ds)µt(dx), t ≥ 0,

µ0 = δ1

(1)

the test-functions f being differentiable functions with compact support in ]0, 1] . This family of
equations admits a unique solution (see Theorem 1 below). The first term in the integral describes
the appearance of particles with masses xs, s ∈ S↓, as a consequence of the dislocation of particles
with mass x, and the second term corresponds to the disappearance of the particles with mass x
that have broken up. That µ0 = δ1 means that there are only particles with mass one at the initial
time.

Random model: this model is closely related to the homogeneous and self-similar fragmen-
tation processes introduced by Bertoin in [4] and [5]. For a S↓-valued Markov process X, let Pr

denotes the law of X starting from (r, 0, ...). A fragmentation process is a S↓-valued Markov process
X, such that for all t, t′ ≥ 0, conditionally on X(t) = (s1, s2, ...) ∈ S↓, X(t + t′) has the same law
as the decreasing rearrangement of components of sequences X(1)(t′), X(2)(t′), ... where the X(i)’s
are independent processes with respective law Ps1 , Ps2 , ... . A fragmentation process is said homo-
geneous if for all r ∈ ]0, 1] , the law of X under Pr is the same as that of rX under P1. Bertoin [4]
and Berestycki [2] show that the laws of homogeneous fragmentation processes are characterized
by a pair (c, v) , where c is a nonnegative real number and ν a dislocation measure. The coefficient
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c corresponds to a deterministic erosion phenomenon, that we do not consider here, that is we
focus on fragmentation processes with erosion coefficient c = 0. For dislocation measure such that
ν (
∑

i si < 1) = 0, the (0, ν)-homogeneous fragmentation process will be our (1, ν)-random model
(i.e. τ(x) = 1, x > 0) and we denote it by X1,ν . Note that the fragmentations rates of such models
do not depend on the masses of the particles.

For functions τ 6= 1, the expected (τ, ν) random model is a fragmentation process, that we
denote Xτ,ν , constructed from X1,ν by using time-changes depending on τ . Let us present this
construction. As proved in [5], there exists a family

(
F 1,ν(t), t ≥ 0

)
of nested random open sets

of ]0, 1[ such that X1,ν(t) is the decreasing sequence of the lengths of the interval components of
F τ,ν(t), for all t ≥ 0. For x ∈ F 1,ν(t), let I1,ν

x (t) denote the interval of F 1,ν(t) that contains x. If
x /∈ F 1,ν(t), set I1,ν

x (t) := ∅. Writing |I| for the length of an interval I, consider then for every
x ∈ ]0, 1[ and t ≥ 0 the time-change

T τ,ν
x (t) := inf

u ≥ 0 :
∫ u

0

dr

τ
(∣∣∣I1,ν

x (r)
∣∣∣) > t

 ,

with the convention τ(0) = ∞ and inf {∅} = ∞. Define next for every t ≥ 0 the open set

F τ,ν(t) :=
⋃

x∈]0,1[

I1,ν
x (T τ,ν

x (t))

and remark that for x, y ∈ ]0, 1[ , the intervals I1,ν
x (T τ,ν

x (t)) and I1,ν
y (T τ,ν

y (t)) are either equal
or disjoint and that F τ,ν(t′) ⊂ F τ,ν(t) for t ≤ t′. The wanted Xτ,ν(t) is then the decreasing
rearrangement of the lengths of the intervals components of F τ,ν(t), t ≥ 0. To prove that Xτ,ν

is effectively a fragmentation process, one just has to adapts the proof of Theorem 2 in [5]. For
τ(x) = xα, Xτ,ν is usually called a self-similar fragmentation process with index α, since the law
of (X(t), t ≥ 0) under Pr is then the same as that of (rX(rαt), t ≥ 0) under P1. We refer to [5] for
background on these processes.

The deterministic and random (τ, ν)-fragmentations are related by the following theorem (cf.
Th. 3 in [11])

Theorem 1 The fragmentation equation (1) has a unique solution (µτ,ν
t , t ≥ 0), which is given for

all t ≥ 0 by:

〈µτ,ν
t , f〉 = E

[ ∞∑
i=1

f(Xτ,ν
i (t))

]
for differentiable functions f with compact support in ]0, 1] .

The linearity of the fragmentation systems allows then us to express this solution µτ,ν
t as the

hydrodynamic limit of some fragmentation processes. Indeed, consider Xτ,ν,1, ..., Xτ,ν,n n inde-
pendent (τ, ν)-fragmentation processes and let Y τ,ν,n be the process obtained by reordering in the
decreasing order, at each time t, the components of X(1)(t), ..., X(n)(t). This process has the law of
a fragmentation process starting from the sequence (1, 1, ..., 1︸ ︷︷ ︸

n terms

, 0, ...). Then, combining the previous

result with the strong law of large number, we obtain that for each t ≥ 0, with probability one,

1
n

∞∑
i=1

δY τ,ν,n
i (t)(dx)

vaguely on ]0,1]→
n→∞

µτ,ν
t .
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3 Appearance of dust

The appearance of dust was first noted by Filippov for (τ, ν)-fragmentation equations with finite ν.
In Corollary 3 below we recover his results in that special case. In particular, when τ(x) = xα, some
dust appears if and only if α < 0. This last result was found independently and for some particular
functions ν by some physicists [8], [15] in the 80’s (they called the loss of mass to dust phenomenon
“shattering”). More recently, Jeon [14] and Fournier and Giet [10] investigated the problem for
fragmentation equations, which, restricted to our context, correspond to the case where ν is binary
(i.e. ν(s3 > 0) = 0) and ν(s1 ∈ dx) has a Lebesgue density. They also obtained that some mass
is reduced to dust when τ(x) = xα with α < 0 and Fournier and Giet proved that this still occurs
in systems where particles may moreover coagulate, provided that the coagulation rate is not too
large. Both papers give some sufficient conditions for the appearance of dust in a somewhat more
general setting, since their fragmentation rates are not assumed to factorize as here. Concerning
(τ, ν)-fragmentation processes with τ(x) = xα, Bertoin [6] showed that when α ≥ 0, almost surely
no mass is reduced to dust, and that when α < 0, a.s. all the initial mass is disintegrated to dust
in finite time.

Here, our purpose is to characterize the appearance of dust in terms of τ and ν in both deter-
ministic and random models. In the random models, we also investigate the total disintegration to
dust in finite time. We use an example to prove that in general, contrary to what occurs in the
self-similar case (τ(x) = xα), appearance of dust does not imply total disintegration to dust.

3.1 Necessary and sufficient conditions for appearance of dust

In the deterministic setting, the total mass of positive-mass particles present at time t is given by

mτ,ν(t) =
∫ 1

0
xµτ,ν

t (dx)

and in the random setting by
M τ,ν(t) =

∑
i

Xτ,ν
i (t).

At time 0, both masses are equal to 1 and some mass is lost to dust in the deterministic (resp.
random) model if for some time t, mτ,ν(t) < 1 (resp. M τ,ν(t) < 1). By Theorem 1, mτ,ν(t) =
E [M τ,ν(t)] , which shows that mτ,ν(t) < 1 if and only if M τ,ν(t) < 1 with a positive probability.
Actually, one may show that P (∃t : M τ,ν(t) < 1) is either 0 or 1 and then that some dust appears
in the deterministic fragmentation if and only if some dust appears a.s. in the random one (see Th.
2 below).

To study this appearance of dust, we follow in the random model Xτ,ν a particle tagged at
random as follows. Consider F τ,ν , the “interval representation” of Xτ,ν introduced in Section 2,
and let U be a random variable uniformly distributed on ]0, 1[ and independent of F τ,ν . For every
time t ≥ 0, call λτ,ν(t) the length of the interval components of F τ,ν(t) containing U, if such an
interval exists, and set λτ,ν(t) := 0 otherwise. The family of lengths (λτ,ν(t), t ≥ 0) represents then
the masses of the tagged particle as time passes. The process λτ,ν is obviously decreasing and may
reach 0 in finite time. This first time at which λτ,ν reaches 0 is the first time at which the tagged
particle is reduced to dust. We denote that time by T τ,ν , that is

T τ,ν := inf {t ≥ 0 : λτ,ν(t) = 0} .
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This time can be infinite and that T τ,ν <∞ is intuitively connected to the appearance of dust. We
now specify this. The process λτ,ν has been constructed so that

P (λτ,ν(t) > 0) = P (U ∈ F τ,ν(t)) = E

[∑
i

Xτ,ν
i (t)

]
= mτ,ν(t),

since the open set F τ,ν(t) has total length
∑

iX
τ,ν
i (t). Hence, mτ,ν(t) = P (T τ,ν > t) and the

existence of a time t such that mτ,ν(t) < 1 is equivalent to P (T τ,ν <∞) > 0. To see when the
latter happens, we use the following result, which is an easy consequence of Theorem 3 in [4]:

λτ,ν law= exp(−ξν
ρτ,ν(.))

where ξν is a subordinator with Laplace exponent φν given for all q ≥ 0 by

φν(q) :=
∫
S↓

(
1−

∞∑
i=1

sq+1
i

)
ν(ds), (2)

and ρτ,ν the time-change

ρτ,ν(t) = inf
{
u ≥ 0 :

∫ u

0
dr/τ(exp(−ξν

r )) > t

}
, t ≥ 0.

We recall that a subordinator is a non-decreasing process starting from 0 with independent and sta-
tionary increments, that it is characterized by its Laplace exponent and that E

[
e−qξν

r
]

= e−rφν(q),

for all r, q ≥ 0. We refer to [3] for background on the subject. All this shows that T τ,ν law=∫∞
0 dr/τ(exp(−ξν

r )) and then that

mτ,ν(t) = P

(∫ ∞

0
dr/τ(exp(−ξν

r )) > t

)
. (3)

One has then:

Theorem 2 (i) The probability that some dust appears in the random (τ, ν)-fragmentation is either
0 or 1 and it is 1 if and only if some dust appears in the deterministic (τ, ν)-fragmentation.

(ii) For functions τ non-increasing near 0, some dust appears in the (τ, ν)-fragmentations if
and only if ∫

0+

(φν)′ (x)
τ(exp(−1/x)) (φν)2 (x)

dx <∞. (4)

Proof. By (3) , the existence of a time t such that mτ,ν(t) < 1 is equivalent to
P
(∫∞

0 dr/τ(exp(−ξr)) <∞
)
> 0. Lemma 3.6 in [3] states some results on the convergence of

such integrals depending on a subordinator and one point is that the previous probability is either
0 or 1 when τ is non-increasing. This extends to general functions τ (see Prop. 10 in [11]) and
then, since mτ,ν(t) = E[

∑
iX

τ,ν
i (t)] = P

(∫∞
0 dr/τ(exp(−ξr)) > t

)
, the existence of a time t such

that mτ,ν(t) < 1 is equivalent to the a.s. existence of time t′ such that M τ,ν(t′) < 1, which proves
(i). The second part of the proof relies also on Lemma 3.6 in [3] and we refer to the proof of Prop.
6 in [11] for details.

Some comments on this result. First, in order to simplify the statement we have considered
functions τ non-increasing near 0. But it is easy to see that if τ1 ≤ τ2, then M τ2,ν ≤ M τ1,ν (or
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equivalentlymτ2,ν ≤ mτ1,ν), so that some dust appears in the (τ2, ν)-fragmentation as soon as it does
in the (τ1, ν)’s one. Consequently, Theorem 2 gives sufficient (resp. necessary) conditions for the
appearance of dust in a general (τ, ν)-fragmentation by considering some functions non-increasing
near 0 smaller (resp. larger) than τ.

As a Laplace exponent of a subordinator, φν is infinitely differentiable on ]0,∞[ and concave.
The derivative (φν)′ (0+) ∈ ]0,∞] (since the trivial case ν = 0 has been excluded) and we have then
that (φν)2 (x) ≥ cx2 (φν)′ (x) for some positive constant c and x small enough. This gives with the
previous theorem that for non-increasing near 0 functions τ,∫

0+

dx/xτ(x) <∞⇒ appearance of dust

and we recover then that τ(x) = xα, α < 0, (and more generally τ(x) ≥ C |lnx|β , β > 1) is
sufficient for the appearance of dust. Theorem 2 and an integration by parts show moreover that
no mass is reduced to dust as soon as τ(x) ≤ Cxα, α ≥ 0. When (φν)′ (0+) < ∞, we have
(φν)2 (x) ∼

x→0
x2 (φν)′ (0+) (φν)′ (x) and Theorem 2 yields

Corollary 3 For (τ, ν)-fragmentations such that τ is non-increasing near 0 and (φν)′ (0+) < ∞,
the appearance of dust is equivalent to ∫

0+

dx/xτ(x) <∞.

This result was obtained by Filippov [9] in the special case where ν(S↓) <∞.

3.2 Total disintegration to dust in finite time

As shown in [6], self-similar fragmentation processes with a negative index α are a.s. entirely dis-
integrated to dust in finite time. The question that arises then is whether this equivalence between
appearance of dust and total disintegration to dust is still valid for general (τ, ν)-fragmentations.
Note that this concerns only the random fragmentations, since the probability (3) is (strictly) pos-
itive for all t ≥ 01. So let ζτ,ν be the first time at which the mass of the random fragmentation is
entirely reduced to dust, i.e.

ζτ,ν := inf {t ≥ 0 : Xτ,ν
1 (t) = 0} .

By Prop. 12 in [11], one has

Proposition 4 For functions τ non-increasing near 0
(i)
∫
0+ dx/xτ(x) <∞⇒ P (ζτ,ν <∞) = 1

(ii) if ν integrates |log(s1)|, the probability P (ζτ,ν < ∞) is either 0 or 1 and the following
equivalence holds ∫

0+

dx/xτ(x) <∞⇔ P (ζτ,ν <∞) = 1.

1If
∫∞
0

dr/τ(exp(−ξν
r ))

a.s.

≤ t for some deterministic t, then T1 := inf {r : ξν
r ≥ 1} would be bounded by some

deterministic constant, and then, for times r large enough, ξν
r

a.s.

≥ 1. For such times r, we would have then
exp(−rφν(q)) = E [exp(−qξν

r )] ≤ exp(−q) for all q ≥ 0 and then, since φν(q)/q →
q→∞

0 by dominated convergence,

0 = limq→∞
φν(q)

q
≥ 1

r
. The contradiction follows.
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As above, we point out that for general functions τ, this result leads to sufficient (resp. nec-
essary) conditions for total disintegration to dust by comparing τ with smaller (resp. larger)
functions that are non-increasing near 0. Let us also mention that the assumption on ν in (ii) is
not so restrictive: for instance it is satisfied for measures ν such that ν(sn+1 > 0) = 0 for some
integer n (which means that when a particle splits it splits in at most n fragments). Indeed, for
such measures, ns1 ≥ 1 ν-a.s. and therefore there exists a constant Cn depending on n such that∫
S↓ |log(s1)| (ds) ≤ Cn

∫
S↓ (1− s1) ν(ds), which is finite.

Using Proposition 4 (i) and Corollary 3, we obtain that when (φν)′ (0+) <∞ and the function
τ is non-increasing near 0, there are only two alternatives for random fragmentations: either a.s.
no mass is disintegrated to dust or a.s. all the mass is disintegrated to dust in finite time. However,
there are some (τ, ν)-fragmentations for which this equivalence between appearance of dust and total
disintegration to dust does not hold, in the sense that P (∃t : M τ,ν(t) < 1) = 1 and P (ζτ,ν <∞) = 0.
See e.g. the example given in Section 5.2 of [11].

4 Asymptotic behaviors

In this section, we consider functions τ such that

Cβx
−β ≤ τ(x) ≤ Cαx

−α, x ∈ ]0, 1[ ,

for some fixed α ≥ β > 0, Cβ, Cα > 0. For such functions, we know that (τ, ν)-fragmentations lose
mass to dust and that in the random models, all the mass is a.s. lost in finite time. The mass
of dust at time t is 1 −mτ,ν(t) in the deterministic case and 1 −M τ,ν(t) in the random case. In
this section, we investigate the asymptotic behavior of these dust masses as t → 0. We also study
the asymptotic behavior of mτ,ν(t) and P (ζτ,ν > t) as t → ∞, ζτ,ν being the first time at which
M τ,ν(t) reaches 0.

4.1 Deterministic behaviors

The study of mτ,ν(t) as t→ 0 and t→∞ relies on formula (3) and a first remark is that

mα,ν(Cαt) ≤ mτ,ν(t) ≤ mβ,ν(Cβt), t ≥ 0,

where mα,ν(t) = P
(∫∞

0 exp(−αξν
r )dr > t

)
(mβ,ν being defined similarly, by replacing α by β). As

the asymptotic behaviors of mτ,ν can be infered from mα,ν and mβ,ν , we shall now work with the
mα,ν , α > 0.

For all t > 0, mα,ν(t) < 1, which means that some mass is reduced to dust at arbitrary small
time. To see this, suppose that mα,ν(t) = 1 for near-0 times t and let t be such that mα,ν(t) = 1
and mα,ν(2t) < 1. Since mα,ν(t) = 1, one gets

exp(−αξν
t/2)

∫ ∞

0
exp(−α

(
ξν
r+t/2 − ξν

t/2

)
)dr ≥ t/2 a.s.

and by the independence and stationarity of ξν ’s increments, the integral above is independent of ξν

and has the same law as
∫∞
0 exp(−αξν

r )dr.Using also thatmα,ν(2t) < 1 and P
(
exp(−αξν

t/2) < 1/4
)
>

0 (the latter holds since the jump process of ξν is a Poisson Point Process with a non-trivial
intensity), we obtain

0 < P

(
exp(−αξν

t/2) < 1/4,
∫ ∞

0
exp(−α

(
ξν
r+t/2 − ξν

t/2

)
)dr ≤ 2t

)
≤ P

(
exp(−αξν

t/2)
∫ ∞

0
exp(−α

(
ξν
r+t/2 − ξν

t/2

)
)dr < t/2

)
= 0.

7



The contradiction follows and so mα,ν(t) < 1 for all t > 0. One result in Section 4.2.1 of [11]
specifies the decrease of mα,ν near 0: for all ε > 0, there exists a finite constant Cε such that
1−mα,ν(t) ≤ Cεt

1−ε+p/α for t > 0. The parameter p depends on ν and is defined as

p = sup

{
q > 0 :

∫
S↓

(
1−

∞∑
i=1

s1−q
i 1{si>0}

)
ν(ds) > −∞

}
. (5)

Concerning the behavior of mα,ν(t) as t→∞, a first remark is that the exponential functional∫∞
0 exp(−αξν

r )dr has exponential moments (see [7]) and so there exist positive finite constants A
and B such that mα,ν(t) ≤ A exp(−Bt) for t ≥ 0. This behavior can be specified when the Laplace
exponent φν “varies nearly regularly with a positive index a”. This means that there exist a function
f and two positive constants C1 and C2 such that C1f ≤ φν ≤ C2f and

f(λx)
f(x)

→
x→∞

λa for all λ > 0.

By the concavity of φν , x ∈ ]0,∞[ 7→ x/φν(x) is an increasing function, and by dominated conver-
gence, it tends to ∞ as x→∞. Let ψ be its inverse. We have then,

Proposition 5 For dislocations measures ν such that φν varies nearly regularly with a positive
index, there exist two positive constant C and D such that

exp(−Dψ(t)) ≤ mα,ν(t) ≤ exp(−Cψ(t)) for t large enough.

For the proof, we refer to Proposition 11 in [11].

4.2 Stochastic behaviors

The first point we are interested in is to know if, as in the deterministic case, some dust ap-
pears immediately. It depends whether ν is finite or not. Indeed, by results on homogeneous
fragmentations (see [4]), we know that for finite ν the first split occurs after an exponential time,
whereas for infinite ν, the “splitting times” are dense in R+. Consequently, M τ,ν(t) = 1 near 0
when ν is finite and one may show (see e.g. [12]) that M τ,ν decreases strictly when ν is infinite.
By Fatou’s lemma and the deterministic results, this decrease can be specified: for all ε > 0,
lim inft→0 (1−M τ,ν(t)) /t1−ε+p/α = 0, p being defined by (5) .

Secondly, we are interested in the behavior of P (ζτ,ν > t) as t → ∞. We recall that ζτ,ν is
the time at which M τ,ν reaches 0 and that it is a.s. finite. Combining properties of self-similar
fragmentation processes with the behavior of mα,ν(t) as t → ∞, we obtain (see Prop. 14 in [11])
that the probability P (ζτ,ν > t) has the same type of behavior as mτ,ν(t) as t→∞, that is

Proposition 6 (i) There exist two positive constants, A′, B′ such that P (ζτ,ν > t) ≤ A′ exp(−B′t)
for t ≥ 0.

(ii) If φν varies nearly regularly with a positive index, there are two positive constants C ′ and
D′ such that for t large enough

exp(−D′ψ(t)) ≤ P (ζτ,ν > t) ≤ exp(−C ′ψ(t))

where ψ is the inverse of the bijection t ∈ [1,∞) 7→ t/φ(t) ∈ [1/φ(1),∞) .

At last, let us mention that this result can be used to prove that for all t > 0, P (ζτ,ν ≤ t) > 0
(see Lemma 3 in [12]).
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[7] Carmona P., Petit F., Yor M., 1997. On the distribution and asymptotic results for exponential
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