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Abstract

Motivated by various applications, we describe the scaling limits of bivariate Markov chains (X, J ) on
Z+ × {1, . . . , κ} where X can be viewed as a position marginal and {1, . . . , κ} is a set of κ types. The
chain starts from an initial value (n, i) ∈ Z+ × {1, . . . , κ}, with i fixed and n → ∞, and typically we will
assume that the macroscopic jumps of the marginal X are rare, i.e. arrive with a probability proportional to
a negative power of the current state. We also assume that X is non-increasing. We then observe different
asymptotic regimes according to whether the rate of type change is proportional to, faster than, or slower
than the macroscopic jump rate. In these different situations, we obtain in the scaling limit Lamperti
transforms of Markov additive processes, that sometimes reduce to standard positive self-similar Markov
processes. As first examples of applications, we study the number of collisions in coalescents in varying
environment and the scaling limits of Markov random walks with a barrier. This completes previous results
obtained by Haas and Miermont (2011) and Bertoin and Kortchemski (2016) in the monotype setting. In
a companion paper, we will use these results as a building block to study the scaling limits of multi-type
Markov branching trees, with applications to growing models of random trees and multi-type Galton–
Watson trees.
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Introduction

Let ((X (k), J (k)), k ≥ 0) be a Markov chain on Z+ ×{1, . . . , κ} for some integer κ ≥ 1, with
transition probabilities pn,i (m, j) such that the first component (X (k), k ≥ 0) is non-increasing,
i.e.

pn,i (m, j) = 0, when m > n.

We view the marginal X as the position component of the chain, and J as its type. When the
process starts from (n, i) ∈ Z+ × {1, . . . , κ}, we will refer to it as (X (i)

n , J (i)
n ). Since the process

X (i)
n is non-increasing and Z+-valued, it is absorbed after a finite (random) time, denoted by A(i)

n .
Our goal is to give conditions on the transition probabilities under which a suitable rescaling of
the process((

X (i)
n (⌊t⌋), t ≥ 0

)
, A(i)

n

)
(1)

has a non-trivial limit as n → ∞ (for all i).
This question has already been studied in the monotype setting (κ = 1), see [19] for the

non-increasing case and [10] for more general cases. Several applications to random walks with
a barrier, Bessel-type random walks, exchangeable coalescence or fragmentation-coalescence
processes, random trees and random planar maps have since then been developed [19,10,20,9].
Still in the monotype setting, there is also a series of papers describing the behavior of the
absorption time only, under various assumptions on the transition probabilities, see e.g. [25]
and [4] and the references therein.

Our goal is to extend the results of [19] to the multi-type setting. With this, we aim at
developing new applications. One important application will concern the description of the
scaling limits of multi-type Markov branching trees, with in turn applications to growing models
of random trees and multi-type Galton–Watson trees, see the upcoming work [23]. Roughly, a
family of random trees is said to satisfy the Markov branching property if, for each tree of the
family, the subtrees above a given height are independent, with distributions that depend only on
their sizes. This property arises in several natural situations, see e.g. [1,8,12,21,20,22] and the
survey [18]. It turns out that multi-type versions of such families also arise naturally, with strong
connections with multi-type fragmentation processes and trees as developed in [7,32]. This will
be developed in the forthcoming work [23]. At the end of the present paper, we develop other
applications of the asymptotic study of (1), to models of coalescents in varying environment and
to multi-type random walks with a barrier.

Let us now briefly recall the results of [19]. In that case we remove any notation referring to
the type and denote (pn(k)) the transitions probabilities of the chain (Xn). When (Xn) is non-
increasing, it has been shown that if for all continuous functions f : [0, 1] → R

nγ ×

∑
k≥0

f
(

k
n

)(
1 −

k
n

)
pn(k) −→

n→∞

∫
[0,1]

f (x)µ(dx) (2)

for some γ > 0 and some non-zero, finite, non-negative measure µ on [0, 1], then(
Xn(⌊nγ t⌋)

n
, t ≥ 0

)
(d)

−→
n→∞

X∞

for the Skorokhod topology on the space of càdlàg functions from [0,∞) to [0,∞), where X∞

is a positive γ -self-similar Markov process which is absorbed at 0 in finite time. Note that (2)
means that starting from n, the probability to do a jump larger than εn is of order cεn−γ , where
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cε increases as ε decreases, and possibly tends to +∞ as ε tends to 0. Background on positive
self-similar Markov process will be recalled in Section 1.2, in particular their connection to Lévy
processes via the Lamperti transformation. Roughly, the point is that any positive self-similar
Markov process can be written as the exponential of a time-changed Lévy process. For our
process X∞ the time-change is guided by the parameter γ and the Lévy process is the opposite
of a subordinator whose Laplace transform is defined for λ ≥ 0 by

ψ(λ) = µ({0}) + µ({1})λ+

∫
(0,1)

(
1 − xλ

)µ(dx)
1 − x

.

It is also known from [19], that jointly with the previous convergence, the absorption time

An = inf
{
k : Xn( j) = Xn(k),∀ j ≥ k

}
satisfies

An

nγ
(d)

−→
n→∞

inf{t ≥ 0 : X∞(t) = 0},

and that this limit is distributed as∫
∞

0
exp(−γ ξr )dr,

where ξ is a subordinator with the above Laplace transform ψ . Bertoin and Kortchemski have
in [10] extended these results to non-monotone chains. They obtain similarly positive (non-
monotone) self-similar Markov processes in the scaling limit.

Coming back to the multi-type setting, we focus here on non-increasing chains X . This
is to simplify our approach, but we believe that similar results may hold in a non-monotone
framework. In order to describe the scaling limits of (1), we will need Lamperti transform
Markov additive processes (MAP), as a generalization of Lamperti transform Lévy processes.
In general, a MAP is a Markov process ((ξt , Kt ), t ≥ 0) taking values in R×{1, . . . , κ} for some
integer κ ≥ 1 such that for all t ∈ R+ and all (x, i) ∈ R × {1, . . . , κ}(

((ξt+s − ξt , Kt+s), s ≥ 0) | (ξu, Ku), u ≤ t
)

under P(x,i) has distribution P(0,Kt ).

Later we will more generally consider MAPs that may possibly be killed (with ξ reaching then
+∞). See Section 1 for background, references and the notion of Lamperti transform. Of course,
when κ = 1, the first marginal ξ reduces to a standard Lévy process and its Lamperti transform
to a positive self-similar Markov process.

In the multi-type setting, we will observe three different regimes in the limit. Let us explain
this very roughly here and postpone precise statements to the core of the paper. As in the
monotype setting, we will always assume that macroscopic jumps of the X -marginal are rare,
with a rate of order n−γ , γ > 0 when (X, J ) is in the state (n, i), for all types i . We will further
assume that the rate of type change is of order n−β, β ≥ 0 when (X, J ) is in the state (n, i), for
all types i . We will then have to accelerate time by a factor nγ in the process (1) to observe a
non-trivial limit. The nature of the limit will depend on the relative positions of β and γ :

• If β = γ (critical regime), the limiting process is a Lamperti transform MAP involving at
most κ types.

• If β < γ (mixing regime), the limiting process is a positive self-similar Markov process,
whose distribution is a mixture of the contributions of the different types, depending on
the stationary distribution of the types.
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• If β > γ (solo regime), the limiting process is a positive self-similar Markov process,
whose distribution depends only on the initial type.

The third case, when the changes of types occur at rates slower than the macroscopic jumps is
the most simple one: in that case the chain will not change type at all in the scaling limit, and we
are left with the standard monotype case. In the critical regime, the rescaled chain will locally
behave as if it was monotype, until the type changes (after a strictly positive time). Our study
in that situation will consist in studying monotype processes on the type-constancy intervals of
the chain and then “gluing” all these processes together. In the mixing regime, the types will
change quickly and will give rise in the scaling limit to a stationary distribution, which is used
to combine contributions from each type. This is the most technically heavy part of paper. The
formal assumptions corresponding to each of those three cases are given in Hypotheses (Hcr)
(Section 3, for the critical regime), (Hmix) (Section 4, for the mixing regime) and (Hsol) (Section 5,
for the solo regime). In each of these three situations, we will also describe the scaling limit of
the absorption time of the marginal Xn .

In the critical regime, our results give explicit Markov chain approximations of Lamperti
transforms of MAPs. As examples of applications, beyond positive self-similar Markov pro-
cesses, this gives approximations of real-valued self-similar Markov processes, which are known
to be in one-to-one correspondence with a family of Lamperti transform MAPs with two types
[13,26]. These approximations should be generalizable to self-similar Markov processes taking
valued in cones of Rd , which have recently be shown to be Lamperti transform MAPs with
multiple types (possibly infinitely, even uncountably many) [2].

1. Markov additive processes and their Lamperti transforms

This section concerns the continuous-time processes that will arise in the scaling limits of the
bivariate Markov chains under consideration.

1.1. Generalities on Markov additive processes

We give here some background on Markov additive processes and refer to Asmussen
[5, Chapter XI] for details and applications.

Definition 1.1. Let ((ξt , Kt ), t ≥ 0) be a Markov process on R × {1, . . . , κ} ∪ ({+∞} × {0}),
where κ ∈ N, and write P(x,i) for its distribution when starting at a point (x, i). It is called a
Markov additive process (MAP) if for all t ∈ R+ and all (x, i) ∈ R × {1, . . . , κ},

(((ξt+s − ξt , Kt+s), s ≥ 0) | (ξu, Ku), u ≤ t, ξt < ∞) under P(x,i) has distribution P(0,Kt ),

and {+∞} × {0} is an absorbing state.

Note that MAPs are closely related to Lévy processes. When κ = 1, ξ is clearly a standard
Lévy process. In the general case, the chain (Kt , t ≥ 0) is a continuous-time Markov chain, and
on its constancy intervals, the process ξ behaves as a Lévy process, whose dynamics depend
only on the value of the chain K . Jumps of K may also induce jumps of ξ . As in the discrete
setting, we will sometimes refer to ξ as the position marginal, and K as the type marginal. In this
paper, unless otherwise stated, we always consider MAPs such that ξ is non-decreasing. The
distribution of such a process is then characterized by three families of parameters:
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• the jump rates (λi, j )(i, j)∈{1,...,κ}2,i ̸= j of the chain (Kt , t ≥ 0)
• a family (Bi, j )(i, j)∈{1,...,κ}2,i ̸= j of distributions on [0,+∞) : Bi, j is the distribution of the

jump of ξ when K jumps from i to j
• triplets (k(i), c(i),Π (i)), where k(i), c(i)

≥ 0 and Π (i) are σ -finite measures on (0,∞) such
that

∫
(0,∞)(1 ∧ x)Π (i)(dx) < ∞, 1 ≤ i ≤ κ . The triplet (k(i), c(i),Π (i)) corresponds to

the standard parameters (killing rate, drift and Lévy measure) of the subordinator which ξ
follows on the time intervals where K = i . We call (ψi )i∈{1,...,κ} the corresponding Laplace
exponent, that is, for i ∈ {1, . . . , κ}, q ≥ 0

ψi (q) = k(i)
+ c(i)q +

∫
∞

0
(1 − e−qx )Π (i)(dx).

If ξ is killed at a time t , then by convention ξs = +∞ and Ks = 0 for s ≥ t.
Asymptotics. In most circumstances, we will exclude the cases where the process (ξt , t ≥ 0) may
be absorbed in a constant state after a certain time. Typically this cannot happen, with probability
one, as soon as for each type i ∈ {1, . . . , κ}:

(a) either one of the parameters k(i), c(i),Π (i) is not trivial or ∃ j ̸= i

such that λi, j > 0 and Bi, j ̸= δ0 (the type i may induce a jump)
(b) or ∃ j ̸= i satisfying a) and a path i1 = i, i2, . . . , i p = j

for some integer p ≥ 2 such that λik ,ik+1 > 0 for all 1 ≤ k ≤ p − 1
(in all irreducible components of types, there is at least one type satisfying (a)).

(3)

We then note the following simple law of large numbers-type lemma which we will need in what
follows. We point out that the limit is not deterministic in general, specifically it depends on
which irreducible component the Markov chain of types lands into.

Lemma 1.2. Assume (3) for each type i ∈ {1, . . . , κ}. Then, as t → ∞, the random variable
t−1ξt has a P(x,i0)-almost-sure limit, which is strictly positive (and possibly infinite), for all
(x, i0) ∈ R × {1, . . . , κ}.

Proof. If the process is killed, then of course the wanted limit is +∞. Thus in the following we
condition K on arriving into the irreducible component of a type i , such that k( j)

= 0 for all j in
this component. By (3) we can assume that i satisfies (a). If i is the sole element of its irreducible
component, then ξ behaves as a subordinator starting from the time at which K hits i , and the law
of large numbers of Lévy processes gives us what we want. If the irreducible component is not a
singleton, then let (Tn, n ∈ N) be the successive return times to i . By the law of large numbers,
both Tn/n and ξTn/n have strictly positive limits a.s. as n tends to infinity (possibly an infinite
limit for ξTn/n). For t ≥ 0, we then let n(t) be the unique integer such that Tn(t) ≤ t < Tn(t)+1,

and if we write
ξTn(t)

Tn(t)+1
≤
ξt

t
≤
ξTn(t)+1

Tn(t)
,

both bounds converge to the same limit, ending the proof. □

1.2. Lamperti transform MAPs

The Lamperti transformation is a time-change used by Lamperti [27,28] to give a one-to-one
correspondence between Lévy processes and non-negative self-similar Markov processes with a
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fixed index of self-similarity. We give here a generalization to multi-type self-similar processes.
Let ((ξt , Kt ), t ≥ 0) be a MAP (exceptionally here ξ is not supposed monotone) and γ > 0 be
a number we call the index of self-similarity. Let also Z t = e−ξt for t ≥ 0. We let ρ be the
time-change associated to Z and γ by:

ρ(t) = inf
{

u ≥ 0,
∫ u

0
(Zr )γ dr > t

}
,

and call Lamperti transform of ((ξt , Kt ), t ≥ 0) the process ((X t , Jt ), t ≥ 0) defined by

X t = Zρ(t), Jt = Kρ(t). (4)

Here, by convention, ρ(t) = ∞ if t ≥
∫

∞

0 (Zr )γ dr and we let X t = 0 and Jt = 0 for such times
t . Note that, while J is càdlàg on [0,

∫
∞

0 (Zr )γ dr ), it does not have a left limit at
∫

∞

0 (Zr )γ dr
(whether this integral is finite, or not) in general.

When κ = 1, ξ is a standard Lévy process, and the marginal X is a non-negative self-similar
Markov process. Conversely, any such Markov process can be written in this form, see [28].
In general, for any κ , one readily checks that the process ((X t , Jt ), t ≥ 0) is Markovian and
γ -self-similar, in the sense that ((X t , Jt ), t ≥ 0), started from (x, i), has the same distribution as(
(x X ′

x−γ t , J ′

x−γ t ), t ≥ 0
)
, where

(
(X ′

t , J ′
t ), t ≥ 0

)
is a version of the same process which starts

at (1, i). We point out that recently, [13,26] gave a one-to-one correspondence via Lamperti
transformation between a family of MAPs with two types and real-valued self-similar Markov
processes with initial condition different from zero, generalizing the initial result of Lamperti
[28]. This was later extended to self-similar Markov processes in a cone of Rd [2], which can be
interpreted as Lamperti transforms of MAPs with a non-necessarily finite set of types, namely
subsets of Sd−1, the sphere of Rd .

1.2.1. Some properties of the time-change
We give here a few properties of the Lamperti-type time-change introduced above which we

will need at various places in the paper. We place ourselves in a more general framework and
let f be a non-increasing and càdlàg function from [0,∞) to [0,∞) such that f (0) = 1. We
introduce the notation

T0( f ) = inf
{
t ≥ 0, f (t) = 0

}
.

Let also α ∈ R. We then call the Lamperti time-change (associated to f and α) the function τ
defined for t ≥ 0 by

τ (t) = inf
{

u ≥ 0,
∫ u

0
f (r )αdr > t

}
,

and then call the function g defined by g(t) = f (τ (t)) the Lamperti transform of f , where by
convention inf{∅} = ∞ and f (∞) = 0. Note that

T0(g) =

∫ T0( f )

0
f (r )αdr

and that τ induces a bijection between [0, T0( f )) and [0, T0(g)). For t ≥ T0(g), τ (t) is constantly
equal to T0( f ), whereas for t ≤ T0(g),∫ τ (t)

0
f (r )αdr = t,
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which implies that τ is left and right-differentiable everywhere on [0, T0(g)), with τ ′(t±) =

f (τ (t)±)−α . This means informally that τ corresponds to a local rescaling of time by a factor
f (τ (t))−α . This also explains why, if we let ρ be the Lamperti time-change associated to g and
−α, then ρ is the inverse bijection of τ from [0, T0(g)) to [0, T0( f )).

We will need the following lemma which shows that the Lamperti transformation, when
α < 0, behaves well with the J1-Skorokhod topology:

Lemma 1.3. Let ( fn)n∈N be a sequence of non-increasing and càdlàg functions from [0,∞)
to [0,∞) and assume that fn → f in the Skorokhod sense. Let α < 0 and τn, τ, gn, g be the
respective Lamperti time-changes and Lamperti transforms of fn, f (with respect to α). Then

(i) τn converges uniformly to τ on compact sets.
(ii) gn converges to g in the Skorokhod sense.

We leave the proof of this lemma to Appendix A.1.

1.2.2. Absorption time
Consider (ξ (i), K (i)) a MAP starting from (0, i) (with ξ non-decreasing) and satisfying (3) for

all types. Let (X (i), J (i)) be its Lamperti transform defined as in (4) and

I (i)
:=

∫
∞

0
e−γ ξ

(i)
r dr

denote the time at which X (i) is absorbed at 0. By Lemma 1.2, I (i) < ∞ a.s.
Continuity of X (i) at time I (i). When X (i) is a standard self-similar Markov process (κ = 1), it
is well-known and simple to check that it is absorbed continuously at 0 if and only if ξ (i) is not
killed. We will use this on several occasions. Note that this generalizes easily to the multi-type
setting. In particular, when there is no killing in the MAP (ξ (i), K (i)), the process X (i) is absorbed
continuously at 0. This leads to the following fact, which we will use later on: let (T (i)(p), p ≥ 1)
be the successive jump times of the type marginal J (i), with the convention that T (i)(p) = I (i) if
there is strictly less than p type changes. Hence either there is some killing in the MAP or the
type is asymptotically constant, in which cases T (i)(p) = I (i) for p large enough, or there is no
killing and no type is absorbed and the type changes infinitely often. In this last case, ρ(T (i)(p))
is the pth jump time of a Markov chain and thus tends to infinity as p tends to infinity, hence
T (i)(p) tends to I (i), and X (i) is absorbed continuously at I (i). So finally in all cases,

X (i)(T (i)(p)
)

−→
p→∞

0. (5)

2. Details on the bivariate Markov chain (X, J)

We fix here some conventions and notations on the Z+ × {1, . . . , κ}-valued Markov chain
(X, J ) introduced in the Introduction. First we assume from now on that

κ ≥ 2

since the monotype case has already been well-studied. We also recall that the (pn,i (m, j)) denote
the transition probabilities of the chain and that (X (i)

n , J (i)
n ) refers to the chain starting from (n, i).

Absorption time. For all types i and all integers n, let A(i)
n be the first time when the chain X (i)

n
is absorbed, i.e.

A(i)
n := inf

{
k ≥ 0 : X (i)

n (k ′) = X (i)
n (k) for all k ′

≥ k
}
. (6)
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Since the chain is Z+-valued and non-increasing, A(i)
n is finite. We decide in the following that

once absorbed the chain cannot change its type. This implies that the chain can be absorbed in a
state a (for some initial configuration (n, i)) if and only if there exists a type j ∈ {1, . . . , κ} such
that

pa, j (a, j) = 1.

We call such a state a an absorbing state. Note that clearly 0 is absorbing, and our convention
implies that p0, j (0, j) = 1 for all types j .
Type transition matrix. We let Pn(i, j) be the probability to move from type i to type j when
the position X is in n, i.e.

Pn(i, j) =

n∑
m=0

pn,i (m, j), ∀i, j ∈ {1, . . . , κ}. (7)

Position transition probabilities. On the other hand, we let p(i)
n (m) be the probability to switch

from position n to position m when the type J is in i , i.e.

p(i)
n (m) =

∑
j∈{1,...,κ}

pn,i (m, j), ∀n,m ∈ Z+. (8)

3. Critical regime

This section is devoted to the case where the macroscopic jump rate and the type change rate
of the chain (X, J ) are of the same order. This, in general, will give in the scaling limit a Lamperti
transform MAP with several types. To simplify, we restrict ourselves to cases where the limiting
MAP is not eventually constant (hence (ii) in the following hypothesis). Formally, we assume
throughout the following

Hypothesis (Hcr). (i) For all i, j ∈ {1, . . . , κ}, there exists finite measures µ(i, j) on (0, 1] such
that for all continuous functions f : [0, 1] → R,

nγ
n∑

m=0

f
(m

n

) (
1 −

m
n
1{ j=i}

)
pn,i (m, j) −→

n→∞

∫
(0,1]

f (x)µ(i, j)(dx).

(ii) Moreover, for all i ∈ {1, . . . , κ}:

(a) either µ(i,i)(0, 1] +
∑

j∈{1,...,κ}\{i} µ
(i, j)(0, 1) > 0

(b) or there exists a type ℓ ̸= i satisfying (a) and a path from i to ℓ, i1 = i, i2, . . . , i p = ℓ

such that µ(ik ,ik+1)(0, 1] > 0 for all 1 ≤ k ≤ p − 1.

Let us first comment on this hypothesis. Point (i) is similar to (2) in the monotype setting,
and comes naturally. Note that it implies that the probability Pn(i, j) (defined in (7)) gives
asymptotically

nγ Pn(i, j) → µ(i, j)((0, 1]), j ̸= i,

in particular, starting from the position n and type i , the probability of changing type is
asymptotically

n−γ
∑

j∈{1,...,κ}\{i}

µ(i, j)((0, 1]) > 0
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(the strict positivity comes from Point (ii)). Concerning large jumps, the probability, starting
from position n and type i , to do a jump larger than nε is asymptotically, for a.e. ε > 0,

n−γ

⎛⎝ ∑
j∈{1,...,κ}\{i}

µ(i, j)((0, 1 − ε]) +

∫
(0,1−ε]

µ(i,i)(dx)
1 − x

⎞⎠ ,
hence of the same order of the type change rate for at least one type and ε large enough. Note
that the later quantity is finite but may tends to ∞ when ε → 0 and

∫
(0,1)(1 − x)−1µ(i,i)(dx) is

infinite.
Point (ii) ensures that the MAP that will arise in the scaling limit of our bivariate Markov chain
satisfies (3)-hence that the position marginal is not eventually constant and that the position
marginal of the Lamperti transform MAP is absorbed at 0 in finite time a.s. This is not very
restrictive and facilitates the proof. We will discuss this in a little more detail after having
introduced the characteristics of the MAP from the limiting quantities arising in (Hcr).
The limiting process. From the measures µ(i, j) appearing in (Hcr), we construct the following
characteristics of a MAP:

◦ for all i ∈ {1, . . . , κ}, ψi (q) = µ(i,i)({1})q +
∫

(0,1)(1 − xq )µ
(i,i)(dx)
1−x , q ≥ 0,

◦ for all i, j ∈ {1, . . . , κ}, i ̸= j , λi, j Bi, j = µ(i, j)
◦ (− log)−1.

Clearly, with these notations, assumption (ii) (a) means that either the function ψi is not
constantly null or that there exists j ̸= i such that Bi, j > 0, while (ii) (b) means that there
exists a path from i to a type ℓ ̸= i satisfying (a), i1 = 1, i2, . . . , i p = ℓ, such that λik ,ik+1 > 0
for all 1 ≤ k ≤ p − 1. Hence (3).
Changing time. In order to slow down time in (X (i)

n , J (i)
n ) and observe in the scaling limit a

regular MAP, we introduce the following time-change:

τ (i)
n (t) := inf

{
u ≥ 0 :

∫ u

0

(
Xn(⌊nγ r⌋)

n

)−γ

dr > t

}
. (9)

We then define a new càdlàg process (Z (i)
n ) by

Z (i)
n (t) :=

X (i)
n (⌊nγ τ (i)

n (t)⌋)
n

, t ≥ 0. (10)

We can now state the main result of this section.

Theorem 3.1. Under assumption (Hcr), for all types i ,((
X (i)

n (⌊nγ t⌋)
n

, Z (i)
n (t)

)
, t ≥ 0

)
(d)

−→
n→∞

(
X (i), Z (i)),

where − log(Z (i)) is the position component of a MAP starting from (0, i) with the characteristics
ψ j , λ j,l , B j,l defined above, and X (i)

= Z (i)(ρ(i)(·)) with

ρ(i)(t) = inf
{

u ≥ 0 :

∫ u

0

(
Z (i)(r )

)γ dr > t
}
.

The topology is the product topology on D ([0,∞), [0,∞))2, where D ([0,∞), [0,∞)) is the set
of non-negative càdlàg functions defined on [0,∞), endowed with the Skorokhod topology.

Remark on the convergence of types. It is possible to incorporate types in the above
convergence, however this point involves some subtleties (in the limit, the type process is
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not càdlàg in general). We refer to the forthcoming Lemma 3.3 and Corollary 3.4, where the
convergence of types is proved on time-intervals involving a finite number of type-changes.

Next, we want to compare the absorption times. This will be essential for the applications. We
emphasize that it is not a direct consequence of the previous theorem. Let I (i) be the absorption
time at 0 of X (i) and recall that it is finite a.s.

Theorem 3.2. Additionally to (Hcr), assume that for all types i , there exists a type j such that
µ(i, j)((0, 1)) > 0. Then, jointly with the previous convergence,

A(i)
n

nγ
(d)

−→
n→∞

I (i),

and for all a ≥ 0, E
[(

I (i)
)a]

< ∞ and

E

[(
A(i)

n

nγ

)a
]

−→
n→∞

E
[(

I (i))a]
.

Remark (Possible Extensions). 1. The additional assumption of Theorem 3.2 is not necessary.
Note that it means that the position marginal of the limiting process may jump whatever the type
marginal. Together with (Hcr) (i) this implies the existence of r ∈ (0, 1) such that the probability
that X (i)

n (1) ≤ ⌊rn⌋ is asymptotically larger than cn−γ for some c > 0, whatever i ∈ {1, . . . , κ}.
With this in hand we can couple the bivariate Markov chain with a monotype chain to prove that
for all a ≥ 0 the moments E[(n−γ A(i)

n )a] are uniformly bounded in n (Lemma 3.5), which is
enough to conclude. Other variants of Theorem 3.2 are possible but we will not treat them here.
2. We believe that the two theorems above remain valid if we more generally assume that the
measures µ(i, j) are supported by [0, 1], instead of (0, 1]. This more general setting includes cases
where the limiting MAP may be killed. However, in this situation, the proofs require more work
than the unkilled cases. Since we will not really need this generalization in applications, this fact
is left as a remark and we focus here on cases where the measures µ(i, j) are supported by (0, 1].

Before entering the proofs of Theorems 3.1 and 3.2, we start by noticing in Section 3.1 that we
can do additional assumptions on the model, without loss of generality. Incorporating them, we
show in Section 3.2 that for all positive integers p, the rescaled version of the process (X (i)

n , J (i)
n )

killed at its pth type-change time converges to the process (X (i), J (i)) killed at its pth type-change
time, as well as related quantities. To see this, we use the results of [19] to study the monotype
processes on the type-constancy intervals and then “glue” these processes together. Section 3.3
is devoted to the proof of Theorem 3.1 and Section 3.4 to that of Theorem 3.2.

3.1. Foreword: additional assumptions

To simplify the proofs, we will do some additional assumptions on the model, without loss of
generality.
On absorbing states. The marginal X of the process (X, J ) may have different absorbing states.
Note however that under (Hcr) its set of absorbing states is finite, otherwise there would exist a
type i such that µ(i, j)((0, 1]) = 0 for all j ∈ {1, . . . , κ}. Now, consider the process defined by

X (i),q
n (k) = X (i)

n (k)1
{k≤A(i)

n }
, ∀k ∈ N.

Then (X (i),q
n , J (i)

n ) is a Markov chain with transition probabilities defined by qk,i (m, j) =

pk,i (m, j) for each integer k that is not absorbing, and then all types i, j and all integers m,
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and qa,i (0, i) = pa,i (a, i) for all absorbing states a and all types i (recall that by convention,
a is absorbing if there exists a type i such that pa,i (a, i) = 1). Clearly, X (i),q

n is absorbed at 0
at time A(i)

n or A(i)
n + 1, and supk≥0|X

(i),q
n (k) − X (i)

n (k)| ≤ max{a : a is absorbing}. Moreover,
(Hcr) is clearly satisfied for the transition probabilities (qn,i (m, j)) if it holds for the transition
probabilities (pn,i (m, j)). Consequently, if Theorem 3.1 and Theorem 3.2 are proved for the
process (X (i),q

n , J (i)
n ), they will also hold for (X (i)

n , J (i)
n ).

Hence, in the forthcoming proofs, we can and will assume that X (i)
n is always absorbed at

0, with no loss of generality.
On absorbing types in the limit. Let

Atype
:=

⎧⎨⎩i ∈ {1, . . . , κ} :

∑
j∈{1,...,κ}\{i}

µ(i, j)((0, 1]) = 0

⎫⎬⎭
be the set of types that are absorbing in the limiting MAP with characteristics ψi , λi, j , Bi, j . If
Atype is not empty, then the upcoming Lemma 3.3 will fail. In order to overcome this difficulty,
we can create phantom types in that case. We detail the idea when Atype is reduced to one type
and note that it generalizes immediately to the cases where Atype contains more types. So assume
that Atype

= {i0}, create a new type κ + 1 and set for all integers n,m:

◦ p∗

n,i0
(m, i0) = (1 − n−γ )pn,i0 (m, i0)

◦ p∗

n,i0
(m, κ + 1) = n−γ pn,i0 (m, i0)

◦ p∗

n,i0
(m, j) = pn,i0 (m, j) for j ̸= i0, κ + 1

◦ p∗

n,κ+1(m, κ + 1) = (1 − n−γ )pn,i0 (m, i0)
◦ p∗

n,κ+1(m, i0) = n−γ pn,i0 (m, i0)
◦ p∗

n,κ+1(m, j) = pn,i0 (m, j) for j ̸= i0, κ + 1
◦ p∗

n,i (m, j) = pn,i (m, j) for i ̸= i0, κ + 1 and all types j ∈ {1, . . . , κ}.

Note that these new transition probabilities are very similar to the original ones, except that now
the type, instead of remaining constant upon reaching i0, may jump to the new type κ + 1 with a
probability roughly of order n−γ when in position n, and after reaching κ+1, it will in turn either
remain constant or jump back to i0, also with a probability roughly of order n−γ when in position
n. One can clearly couple the construction of (X (i)

n , J (i)
n ) with that of a Z+×{1, . . . , κ+1}-valued

Markov chain (X∗,(i)
n , J ∗,(i)

n ) with transition probabilities (p∗

n,i (m, j)) and such that X (i)
n = X∗,(i)

n .
These new transition probabilities satisfy (Hcr) with µ∗,(i, j)

= µ(i, j) for all i ̸= i0, κ + 1, j ≤ κ ,
µ∗,(i0, j)

= µ∗,(κ+1, j)
= µ(i0, j)

= 0 for all j ̸= i0, κ + 1, µ∗,(i0,i0)
= µ∗,(κ+1,κ+1)

= µ(i0,i0) and
finally µ∗,(i0,κ+1)

= µ∗,(κ+1,i0)
= δ1. Hence the set of absorbing types in the limiting MAP is

here empty, and clearly, if Theorem 3.1 and Theorem 3.2 hold for the ∗-model, they also hold
for the initial model.

Hence, in the forthcoming proofs, we can and will always assume that Atype is empty,
with no loss of generality.

3.2. Truncation

Before proving, strictly speaking, Theorem 3.1, we first study the asymptotic behavior of the
process (n−1 X (i)

n (⌊nγ ·⌋)) killed at the first time when it changes type, then killed at the second
time when it changes type, and so on (we do here a slight abuse of language by saying that the
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X -marginal, instead of the process (X, J ), changes type; we will reiterate this several times to
lighten notation.) To this end, recall the definition of the absorption time A(i)

n in (6) and consider

T (i)
n (1) := inf{k ≥ 0 : J (i)

n (k) ̸= i} ∧ A(i)
n

the first time where either the process X (i)
n changes type or is absorbed at 0, and let X (i)

n |1 be X (i)
n

killed at time T (i)
n (1), i.e.:

X (i)
n |1(k) = X (i)

n (k)1
{k<T (i)

n (1)}, k ≥ 0.

We then define recursively T (i)
n (p) the pth time at which X (i)

n changes its type (with the
convention that it is equal to A(i)

n if it reaches 0 before a pth type change) and

X (i)
n |p(k) = X (i)

n (k)1
{k<T (i)

n (p)}, k ≥ 0.

Lastly, we define similarly the quantities T (i)(p), X (i)
|p for the limiting process X (i). Note in

particular that X (i)
|1 is the Lamperti transform of a standard subordinator with Laplace exponent

ψi |1(q) =

∑
j∈{1,...,κ}, j ̸=i

µ(i, j)((0, 1]) + µ(i,i)({1})q +

∫
(0,1)

(1 − xq )
µ(i,i)(dx)

1 − x
.

The goal of this section is to prove the following lemma. We recall that we have assumed that
the set Atype of absorbing types in the limit is empty.

Lemma 3.3. For all types i ∈ {1, . . . , κ} and all integers p ≥ 1(
X (i)

n |p(⌊nγ ·⌋)
n

,
X (i)

n

(
T (i)

n (p) − 1
)

n
,

X (i)
n

(
T (i)

n (p)
)

n
,

(
T (i)

n (k)
nγ

, k ≤ p
)
,

(
J (i)

n

(
T (i)

n (k)
)
, k ≤ p

) )
(d)

−→
n→∞

(
X (i)

|p, X (i)(T (i)(p)−
)
, X (i)(T (i)(p)

)
,
(
T (i)(k), k ≤ p

)
,(

J (i)(T (i)(k)
)
, k ≤ p

))
.

Moreover,

E

[(
T (i)

n (p)
nγ

)a
]

→ E
[(

T (i)(p)
)a
]

for all a ≥ 0.

Before proving this lemma, we note that it implies the convergence of our rescaled process,
including the types, on compact intervals providing that the type-component jumps a finite
number of times on these intervals. Specifically:

Corollary 3.4. For all types i ∈ {1, . . . , κ}, all integers p ≥ 1 and all reals t > 0 which are not
atoms of (the distribution of) T (i)(p),(

X (i)
n (⌊nγ ·⌋)

n
, J (i)

n (⌊nγ ·⌋)
)

given
{

t ≤
T (i)

n (p)
nγ

}
converges in distribution for the Skorokhod topology on D([0,∞), [0,∞)) towards(

X (i), J (i)) given {t ≤ T (i)(p)}.
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Proof. This is a direct consequence of the above lemma and the two following observations on
Skorokhod convergence:

(1) If fn, f : [0,∞) → [0,∞) are càdlàg, piecewise constant functions jumping exactly p
times, with tn(1) < tn(2) < · · · < tn(p) the jump times of fn and similarly t(1) < t(2) < · · · <

t(p) the jump times of f , then fn → f on D([0,∞), [0,∞)) if and only if tn(k) → t(k) and
fn(tn(k)) → f (t(k)) for all k.

(2) If gn → g on D([0,∞), [0,∞)) then gn → g on D([0, t], [0,∞)) for each continuity
point t of g ([11, Theorem 16.2]). □

Proof of Lemma 3.3. We proceed by induction on p. For p = 1, the proof relies essentially on
Theorems 1 and 2 in [19]. The induction then uses the Markov property of the process (X (i)

n , J (i)
n ).

• First, let p = 1 and note that (for all types i) the transition probabilities of the chain X (i)
|1 are

q (i)
n (m) := pn,i (m, i) for m ̸= 0

and

q (i)
n (0) := pn,i (0, i) +

∑
j ̸=i

∑
m≥0

pn,i (m, j).

By (Hcr),

nγ
∑
k≥0

f
(

k
n

)(
1 −

k
n

)
q (i)

n (k) −→
n→∞

∫
(0,1]

f (x)µ(i,i)(dx) + f (0)
∑
j ̸=i

µ(i, j)((0, 1]).

Consequently, X (i)
n |1 is a monotype Markov chain whose transition probabilities satisfy the

hypothesis of Theorem 1 and Theorem 2 in [19] and we get that((
X (i)

n |1(⌊nγ t⌋)
n

, t ≥ 0
)
,

T (i)
n (1)
nγ

)
(d)

−→
n→∞

(
X (i)

|1, T (i)(1)
)

together with the convergence of all positive moments of n−γ T (i)
n (1) towards those of T (i)(1).

• Second, we would like to apply Lemma A.2 to get that((
X (i)

n |1(⌊nγ t⌋)
n

, t ≥ 0
)
,

T (i)
n (1)
nγ

,
X (i)

n

(
T (i)

n (1) − 1
)

n

)
×

(d)
−→
n→∞

(
X (i)

|1, T (i)(1), X (i)(T (i)(1)−
))
. (11)

The proof is not immediate because it is not clear that we are always in situations (i) or
(ii) of Lemma A.2. We need to introduce another Markov chain

(
X̃ (i)

n

)
on Z+ with transition

probabilities

p̃n(m) := pn,i (m, i) for m ̸=

⌊n
2

⌋
and

p̃n

(⌊n
2

⌋)
:= pn,i

(⌊n
2

⌋
, i
)

+

∑
j ̸=i

∑
m≥0

pn,i (m, j).

Roughly, this chain behaves as X when in type i and jumps from n to ⌊n/2⌋ with the probability
that X , when in position n and type i , changes its type. Let Ã(i)

n denote its absorption time. By
(Hcr) and Theorem 1 and Theorem 2 in [19],

(
X̃ (i)

n (⌊nγ ·⌋) /n, Ã(i)
n /nγ

)
converges to (X̃ (i), Ĩ (i))
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where X̃ (i) is a self-similar Markov process with characteristics

ψ̃i (q) = µ(i,i)({1})q +

∫
(0,1)

1 − xq

1 − x

⎛⎝µ(i,i)(dx) +
1
2

∑
j ̸=i

µ(i, j)((0, 1])δ 1
2
(dx)

⎞⎠ ,
and Ĩ (i) is the time at which it is absorbed at 0. In fact, clearly, one can construct a joint version
of the pair

(
X (i)

n |1, X̃ (i)
n

)
such that

X (i)
n |1(k) = X̃ (i)

n (k)1
{k<T (i)

n (1)}.

Together with the convergence of the rescaled process X (1)
n |1 settled above, this implies that((

X (i)
n |1(⌊nγ t⌋)

n
, t ≥ 0

)
,

T (i)
n (1)
nγ

,

(
X̃ (i)

n (⌊nγ t⌋)
n

, t ≥ 0

)
,

Ã(i)
n

nγ

)
converges in distribution towards a quadruplet

(
X, I, X̃ , Ĩ

)
, where (X, X̃ ) is a coupling of

γ -self-similar Markov processes such that X (t) = X̃ (t)1{t<I } for all t ≥ 0, and I < Ĩ a.s. To see
that I < Ĩ a.s., note that if (ξ (t)1{t<T } +∞1{t≥T }, t ≥ 0) denotes the underlying subordinator of
X , which is killed at rate

∑
j ̸=iµ

(i, j)((0, 1]) > 0, then the underlying subordinator of X̃ is ξ + ξ̃

where ξ̃ is a subordinator independent of ξ whose first jump arises at time T . Next, assume,
using Skorokhod’s representation theorem, that the convergence of the quadruplet holds a.s. We
then get that, a.s.,

lim inf
n→∞

X (i)
n

(
T (i)

n (1) − 1
)

n
= lim inf

n→∞

X̃ (i)
n

(
T (i)

n (1) − 1
)

n
≥ X̃ (I ) > 0. (12)

This, together with Lemma A.2 indeed gives (11).
• Third, we immediately have by the Markov property of (X, J ), together with (Hcr), that
conditionally on

(
T (i)

n (1), X (i)
n (k), k ≤ T (i)

n (1) − 1
)
, and since X (i)

n (T (i)
n (1) − 1)

P
→ ∞ (by (12)),

that (
X (i)

n (T (i)
n (1))

X (i)
n (T (i)

n (1) − 1)
, J (i)

n

(
T (i)

n (1)
)) (d)

−→
n→∞

(
S∞, J (i)(T (i)(1)

))
,

where the law of the limit is given by

E
[

f
(
S∞, J (i)(T (i)(1)

))]
=

∑
j ̸=i

∫
(0,1] f (x, j)µ(i, j)(dx)∑
j ̸=i µ

(i, j)((0, 1])
.

Together with (11), and the convergence of all positive moments of n−γ T (i)
n (1) already

mentioned, this finally proves the lemma for p = 1.
• Now assume that the lemma is proved for all q ≤ p and fix a type i . In particular, we have that

Cn :=

((
X (i)

n |p(⌊nγ t⌋)
n

, t ≥ 0
)
,

X (i)
n

(
T (i)

n (p) − 1
)

n
,

X (i)
n

(
T (i)

n (p)
)

n
,

(
T (i)

n (k)
nγ

, k ≤ p
)
,(

J (i)
n

(
T (i)

n (k)
)
, k ≤ p

))
converges in distribution towards

C :=
(
X (i)

|p, X (i)(T (i)(p)−
)
, X (i)(T (i)(p)

)
,
(
T (i)(k), k ≤ p

)
,
(
J (i)(T (i)(k)

)
, k ≤ p

))
.
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Set also

Dn :=

((
X (i)

n |p+1(⌊T (i)
n (p) + nγ t⌋)
n

, t ≥ 0
)
,

T (i)
n (p + 1) − T (i)

n (p)
nγ

,

X (i)
n (T (i)

n (p + 1) − 1)
n

X (i)
n (T (i)

n (p + 1))
n

, J (i)
n

(
T (i)

n (p + 1)
))
,

and for all types j

D( j)
:=

((
X (i)(T (i)(p))X

( j)
|1

(
X (i) ((T (i)(p))

)−γ
t
)
, t ≥ 0

)
,
(
X (i)(T (i)(p))

)γ T
( j)

(1),

X (i)(T (i)(p)
)
X

( j)(
T ( j)(1)−

)
, X (i)(T (i)(p)

)
X

( j)(
T ( j)(1)

)
, J

( j)(
T

( j)
(1)
))

with
(
X

( j)
, J

( j))
independent of

(
X (i), J (i)

)
and distributed as

(
X ( j), J ( j)

)
.

Then apply the strong Markov property at the stopping time T (i)
n (p) together with the fact that

the lemma holds for q = 1 and that Cn converges in distribution towards C , to get that

(Cn, Dn)
(d)

−→
n→∞

(
C, D(J (i)(T (i)(p)))).

Here we have used the fact that X (i)
n (T (i)

n (p))
P

→ ∞, which is due to the convergence in
distribution of this quantity divided by n to X (i)(T (i)(p)), which is a.s. strictly positive, since
the limiting MAP changes its type infinitely often since Atype

= ∅ and there is no killing. Lastly,
gluing the pieces thanks to Lemma A.1 leads to the statement of the first part of the lemma for
p + 1.

It remains to prove the convergence of all positive moments of n−γ
(
T (i)

n (p + 1)
)
. Since we

already know that this r.v. converges in distribution to T (i)(p + 1), the convergence of moments
will be proved if we check that

sup
n≥1

E

[(
T (i)

n (p + 1)
nγ

)a
]
< ∞, ∀a ≥ 0.

This is a direct consequence of the induction hypothesis and the fact that

sup
n≥1

E

[(
T (i)

n (p + 1)
nγ

)a
]

≤ ca

(
sup
n≥1

E

[(
T (i)

n (p)
nγ

)a
]

+ sup
n≥1

E

[(
T (i)

n (p + 1) − T (i)
n (p)

nγ

)a
])

for some finite ca . Indeed, on the right-hand side the first supremum is finite, applying the
induction hypothesis at p. And the second supremum is also finite, by the Markov property
and the induction hypothesis applied at the initial rank 1. □

3.3. Proof of Theorem 3.1: scaling limits of the position marginal

Let

Y (i)
n (t) :=

X (i)
n (⌊nγ t⌋)

n
and Y (i)

n |p(t) :=
X (i)

n |p(⌊nγ t⌋)
n

and note that the second process can be interpreted as Y (i)
n killed at its pth type change, which is

denoted by T Y,(i)
n (p) (and equal to T (i)

n (p)/nγ ).
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Proof of Theorem 3.1. • Consider any Lipschitz function f : D([0,∞), [0,∞)) → [0,∞),
say with Lipschitz constant c f , where for distance on D([0,∞), [0,∞)) we consider the classical
distance metrizing the Skorokhod topology, see formula (16.4) in Billingsley [11] for a precise
definition. We denote this distance by dSko and recall that it is smaller than the uniform distance
on [0,∞). Our goal is to show that

E[ f (Y (i)
n )] →

n→∞
E[ f (X (i))].

If proved for any Lipschitz function f , this will ensure that

Y (i)
n

(d)
−→
n→∞

X (i).

So fix f , let ε > 0 and take an integer p so that E[X (i)(T (i)(p))] ≤ ε (such a p exists, by
dominated convergence and since X (i)(T (i)(p)) converges to 0-see (5)). Then by Lemma 3.3, we
have that E[Yn(T Y,(i)

n (p))] ≤ 2ε for all n large enough, say for n ≥ nε,p. Thus,⏐⏐E [ f (Y (i)
n ) − f (Y (i)

n |p)
]⏐⏐ ≤ c f E

[
dSko(Y (i)

n , Y (i)
n |p)

]
≤ c f E

[
Y (i)

n (T Y,(i)
n (p))

]
≤ 2c f ε, for n ≥ nε,p.

(The second inequality is due to the fact that dSko is smaller than the uniform distance on
[0,∞) and the fact that Y (i)

n , Y (i)
n |p coincide on [0, T Y,(i)

n (p)), together with Y (i)
n |p is null on

[T Y,(i)
n (p),∞) and Y (i)

n is non-increasing.) Similarly, we get that⏐⏐E [ f (X (i)) − f (X (i)
|p)
]⏐⏐ ≤ c f ε.

This entails that⏐⏐E [ f (Y (i)
n ) − f (X (i))

]⏐⏐ ≤ 3c f ε +
⏐⏐E [ f (Y (i)

n |p) − f (X (i)
|p)
]⏐⏐ .

Besides, by Lemma 3.3, Y (i)
n |p → X (i)

|p in distribution, so finally, we have proven that for all
ε > 0 and then all n large enough,⏐⏐E [ f (Y (i)

n ) − f (X (i))
]⏐⏐ ≤ (3c f + 1)ε.

• The convergence of the pair
(
Y (i)

n , Z (i)
n

)
to
(
X (i), Z (i)

)
is then a consequence of Lemma 1.3. □

3.4. Proof of Theorem 3.2: scaling limit of the absorption time

We start by proving the following lemma, using a coupling with a monotype Markov chain,
and then turn to the proof of Theorem 3.2.

Lemma 3.5. Assume (Hcr) and that for all types i ∈ {1, . . . , κ}, there exists a type j such that
µ(i, j)((0, 1)) > 0. Then for all types i ∈ {1, . . . , κ} and all a ≥ 0,

sup
n∈N

E

[(
A(i)

n

nγ

)a
]
< ∞.

In particular, the sequence
(
n−γ A(i)

n

)
is tight, ∀i ∈ {1, . . . , κ}.

Proof. Since the number of types is finite, our additional assumption implies the existence of
r ∈ (0, 1) such that∑

j∈{1,...,κ}

µ(i, j)((0, r )) > 0, for all types i ∈ {1, . . . , κ}.
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By (Hcr), this in turn implies the existence of c ∈ (0, 1) and n0 ∈ N such that
⌊rn⌋∑
k=0

p(i)
n (k) ≥

c
nγ
, ∀n ≥ n0, ∀i ∈ {1, . . . , κ} (13)

(we recall that p(i)
n (k) =

∑
j∈{1,...,κ} pn,i (k, j) is the transition probability of the position marginal

X when its type is i). Besides, the chain X is assumed to be always absorbed at 0. Hence, for all
ℓ ∈ {1, . . . , n0 − 1} and all types i ∈ {1, . . . , κ}, there exists a non-negative integer kℓ,i ≤ ℓ− 1
such that p(i)

ℓ (kℓ,i ) > 0. We let

d := min
(ℓ,i)∈{1,...,n0−1}×{1,...,κ}

p(i)
ℓ (kℓ,i ) > 0. (14)

Consider now a Z+-valued Markov chain Y with transition probabilities

◦ qn(⌊rn⌋) = cn−γ
∀ n ≥ ⌈

n0

r
⌉

◦ qn(n) = 1 − cn−γ
∀ n ≥ ⌈

n0

r
⌉

◦ qn(n − 1) = d ∀ 1 ≤ n < ⌈
n0

r
⌉

◦ qn(n) = 1 − d ∀ 1 ≤ n < ⌈
n0

r
⌉

(and q0(0) = 1) and let Yn denote a version of the chain Y starting from n. Fix a type i . Using
(13), (14) and the fact that n ↦→ cn−γ is decreasing, it is easy to see that one can couple the
construction of the chains (X (i)

n , J (i)
n ) and Yn such that

X (i)
n (k) ≤ Yn(k), for all k ∈ Z+.

Note that the chain Yn is necessarily absorbed at 0, so we also have that

A(i)
n ≤ AY,n

where AY,n is the absorption time of Yn . Moreover, clearly,

nγ
n∑

m=0

f
(m

n

) (
1 −

m
n

)
qn(m) −→

n→∞
c(1 − r ) f (r)

for all continuous functions f : [0, 1] → R. So we are exactly in the conditions of the monotype
setting studied in [19, Theorems 1 and 2]. In particular, we know that there is a positive r.v. IY
with all positive moments finite (IY is the absorption time of the self-similar process arising as
scaling limit of Yn) such that

AY,n

nγ
(d)

−→
n→∞

IY and E
[(

AY,n

nγ

)a]
−→
n→∞

E
[
(IY )a] .

Since A(i)
n ≤ AY,n for all n, this leads to the statement of the lemma. □

Proof of Theorem 3.2. The initial type i is fixed. Theorem 3.1 together with Lemma 3.5 imply
the tightness of(

X (i)
n (⌊nγ ·⌋)

n
, Z (i)

n ,
A(i)

n

nγ

)
, n ≥ 1. (15)

Consider then a converging subsequence, indexed, say, by (ψ(n)), that converges to a limit
denoted by (X (i), Z (i), σ (i)). Since Theorem 3.1 is already proven, the only thing we have to
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check is that σ (i)
= I (i) a.s., with I (i) the extinction time of X (i). Indeed, if this holds for all

converging subsequences, this will

(1) imply the convergence in distribution of (15) to (X (i), Z (i), I (i))
(2) imply the convergence of all positive moments of n−γ A(i)

n to those of I (i) (which are then
necessarily finite), by using the convergence of n−γ A(i)

n to I (i) together with the bounds of
Lemma 3.5.

So, now, consider the converging subsequence indexed by (ψ(n)). By the Skorokhod representa-
tion theorem, we may assume that the convergence holds almost surely. Then, note that

A(i)
ψ(n)

ψ(n)γ
=

∫
∞

0

(
Z (i)
ψ(n)

)γ
(r )dr.

Hence we have in the limit, by Fatou’s lemma, that σ (i)
≥ I (i)

=
∫

∞

0

(
Z (i)

)γ (r )dr a.s.
To prove that σ (i)

= I (i) a.s., it is now sufficient to show that E[σ (i)] ≤ E[I (i)]. Note that, by
Fatou’s lemma again,

E[σ (i)] ≤ lim inf
n

E

[
A(i)
ψ(n)

ψ(n)γ

]
≤ lim sup

n
E
[

A(i)
n

nγ

]
so it is actually enough to show that the latter lim sup is smaller than E[I (i)]. Recall that we have
assumed that the set of absorbing types Atype is empty. Fix ε > 0 and then p large enough so that

E
[(

X (i)(T (i)(p)
))γ ]

≤ ε

(recall that T (i)(p) is the pth time of type change in X (i) and recall (5)). By Lemma 3.3, we know
that n−1 X (i)

n

(
T (i)

n (p)
)

converges in distribution to X (i)
(
T (i)(p)

)
, which implies

lim sup
n

E

[(
X (i)

n

(
T (i)

n (p)
)

n

)γ]
≤ 2ε. (16)

By Lemma 3.3 again, the expectation of n−γ T (i)
n (p) converges to that of T (i)(p) which

implies

E
[

T (i)
n (p)
nγ

]
≤ ε + E[T (i)(p)] ≤ ε + E[I (i)], for all n large enough. (17)

Then, the Markov property at (the stopping time) T (i)
n (p) implies that

A(i)
n − T (i)

n (p) = ÃJ (i)
n (T (i)

n (p))

X (i)
n (T (i)

n (p))
,

where given (X (i)
n (T (i)

n (p)), J (i)
n (T (i)

n (p))) = (m, j), the r.v. in the right-hand side is distributed as
A( j)

m . Note that

E

⎡⎢⎣ ÃJ (i)
n (T (i)

n (p))

X (i)
n (T (i)

n (p))

nγ

⎤⎥⎦ = E

⎡⎢⎣ ÃJ (i)
n (T (i)

n (p))

X (i)
n (T (i)

n (p))(
X (i)

n (T (i)
n (p))

)γ ×

(
X (i)

n (T (i)
n (p))

)γ
nγ

⎤⎥⎦ ≤ c2ε
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for all n large enough, where c = supm∈N, j∈{1,...,κ}E
[
m−γ A( j)

m
]

is finite, by Lemma 3.5. Then,
writing A(i)

n = A(i)
n − T (i)

n (p) + T (i)
n (p) and recalling (17), we get

E
[

A(i)
n

nγ

]
≤ 2cε + E

[
T (i)

n (p)
nγ

]
≤ (2c + 1)ε + E[I (i)]

for n large enough, which leads to the expected lim supE[n−γ A(i)
n ] ≤ E[I (i)]. □

4. Mixing regime

In this section, we assume that the rate of type change is much larger than that of macroscopic
jumps. We recall the notations Pn and p(i)

n (m) introduced in Section 2 for the type transition
matrix and for the position transition probabilities of the chain (X, J ). We recall also that a
Q-matrix on {1, . . . , κ} is a κ × κ matrix Q such that the diagonal coefficients are nonpositive,
the coefficients outside the diagonal are nonnegative and the sum of each line is 0. These matrices
serve as generators for continuous time Markov chains on {1, . . . , κ}. A Q-matrix is said to be
irreducible if the associated Markov chain is irreducible.

Hypothesis (Hmix). Assume that there exists 0 ≤ β < γ such that:

(i) There exist finite measures (µ(i), i ∈ {1, . . . , κ}) on [0, 1], at least one of which is
nontrivial, such that, for all continuous functions f : [0, 1] → R,

nγ
n∑

m=0

f
(m

n

) (
1 −

m
n

)
p(i)

n (m) −→
n→∞

∫
[0,1]

f (x)µ(i)(dx).

(ii) Moreover, there exists an irreducible Q-matrix Q = (qi, j )i, j∈{1,...,κ} such that

nβ(Pn − I ) −→
n→∞

Q.

In this regime, we will observe that the types asymptotically “mix”. Precisely, Point (i) means
again that we have to accelerate time by nγ in the bivariate Markov chain to obtain a non-
trivial limit for the position marginal. Point (ii) implies that, at the nγ scale, the type of the
chain changes instantly since β < γ . The chain will then act in the limit as if its type was
a weighted combination of all types, given by the invariant measure of the matrix Q. We let
π = (πi , i ∈ {1, . . . , κ}) be the unique invariant probability measure for Q, which exists by
irreducibility. We let also for i ∈ {1, . . . , κ}, ψi be the Laplace exponent corresponding to the
measure µ(i), that is

ψi (λ) = µ(i)({0}) + λµ(i)({1}) +

∫
(0,1)

(1 − xλ)
µ(i)(dx)
1 − x

,

and ψ the mixed Laplace exponent:

ψ(λ) =

κ∑
i=1

πiψi (λ). (18)

We define

Y (i)
n (t) :=

X (i)
n (⌊nγ t⌋)

n
and Z (i)

n (t) := Y (i)
n (τ (i)

n (t)), t ≥ 0,

where τ (i)
n (t) = inf

{
u ≥ 0 :

∫ u
0(Y (i)

n (r ))−γ dr > t
}
.
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Theorem 4.1. Under assumption (Hmix),((
X (i)

n (⌊nγ t⌋)
n

, Z (i)
n (t)

)
, t ≥ 0

)
(d)

−→
n→∞

(X, Z) ,

where (− log(Z )) is a subordinator with Laplace exponent ψ =
∑κ

j=1π jψ j , X = Z (ρ(·)) and

ρ(t) = inf
{

u ≥ 0 :

∫ u

0
(Z (r ))γ dr > t

}
.

The topology is the product topology on D ([0,∞), [0,∞))2.

Recall that A(i)
n is the absorption time of X (i)

n and let I be the absorption time of X (which has
positive moments of all orders since the Laplace exponent ψ is not trivial).

Theorem 4.2. Assume, in addition to (Hmix), that the measures (µ(i), i ∈ {1, . . . , κ}) are all
nontrivial. In this case, jointly with the previous convergence, we have

A(i)
n

nγ
(d)

−→
n→∞

I,

and for all a ≥ 0,

E

[(
A(i)

n

nγ

)a
]

−→
n→∞

E
[
I a] .

Remark (Possible Extensions). 1. As for Theorem 3.2, we believe that the convergences stated
in Theorem 4.2 are still true without the additional assumption that the (µ(i), i ∈ {1, . . . , κ})
are all nontrivial. This assumption means that in any type, the position marginal of the limiting
process cannot a.s. remain constant when in this type. This leads to the control (25) for generating
functions associated to the probability transitions of the bivariate Markov chain, which in turn
leads to a fairly simple proof of Theorem 4.2. Therefore we will keep this assumption in the
following.
2. It is probably possible to write versions of Theorems 4.1 and 4.2 for matrices Q which are
not irreducible, and in fact one could also have intermediate results between the mixing and
critical regimes, where we have several groups of types, inside of which the rate of type change
is of order n−β , but the rate of changing group is of order n−γ . We will not consider such
generalizations, the current subject matter already being quite complex.

The proofs of Theorems 4.1 and 4.2 are partly inspired by the ones of [19] in the monotype
setting. The differences come from the multiplicity of types and their mixing, which significantly
complicates the proofs. We start below by implementing a series of preliminaries in Section 4.1,
and then turn to the proofs of Theorems 4.1 and 4.2 in Sections 4.2 and 4.3 respectively. The
proof of a key point on the mixing of types, Proposition 4.6, stated in Section 4.1.4, is postponed
to Section 4.4.

4.1. Preliminaries

We set up in this section key steps to prove the statements of Theorems 4.1 and 4.2. In all
the statements below, it is implicit that we work under (Hmix) (although this hypothesis is not
necessary at every step).
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4.1.1. Generating functions and bounds
Here are a few simple results on some generating functions which we will need later on. For

n ∈ N and i ∈ {1, . . . , κ}, we let G(i)
n be the function defined by for λ > 0 by

G(i)
n (λ) = E

[(
X (i)

n (1)
n

)λ]
. (19)

By assumption, we know that, for all λ > 0,

nγ
(
1 − G(i)

n (λ)
)

→ ψi (λ). (20)

We then have the existence of a finite constant c(λ) such that, for all n ∈ N and i ∈

{1, . . . , κ},

1 − G(i)
n (λ) ≤ n−γ c(λ). (21)

4.1.2. Tightness and different time scales

Proposition 4.3. The sequence of processes (Y (i)
n , n ∈ N) is tight in D ([0,∞), [0,∞)) .

Proof. Our proof is essentially the same as that of Lemma 1 in [19], adapted to the multi-
type case. We use Aldous’ tightness criterion for the Skorokhod topology. Namely, since Y (i)

n is
bounded, we need to prove

lim
θ0→0

lim sup
n→∞

sup
T ∈J (Gn ),T ≤t

sup
0≤θ≤θ0

P
[
|Y (i)

n (T ) − Y (i)
n (T + θ )| > ε

]
= 0 (22)

for all t > 0 and ε > 0, where J (Gn) is the set of stopping times for the filtration Gn which is
the natural filtration of the process (Y (i)

n ).
To do this, we make use of the martingale Mn = (Mn(k), k ≥ 0) defined for k ≥ 0 by

Mn(k) =

(
X (i)

n (k)
n

)λ
+

k−1∑
l=0

(
X (i)

n (l)
n

)λ (
1 − G(J (i)

n (l))

X (i)
n (l)

(λ)
)
,

where λ is any real number greater than 1 ∨ γ . To be precise, Mn is a martingale for the natural
filtration of the process (X (i)

n , J (i)
n ), as is easily deduced from the relation

Mn(k + 1) − Mn(k) = n−λ
((

X (i)
n (k + 1)

)λ
−
(
X (i)

n (k)
)λG(J (i)

n (k))

X (i)
n (k)

(λ)
)

for all k ≥ 0, and the definition (19).
Given that Y (i)

n is non-increasing and λ ≥ 1, we have |Y (i)
n (T ) − Y (i)

n (T + θ )|λ ≤ (Y (i)
n (T ))λ −

(Y (i)
n (T + θ ))λ for θ ≥ 0 and T a bounded stopping time. Using the optional stopping theorem

and the fact that λ ≥ γ , we obtain

E
[(

Y (i)
n (T )

)λ
−
(
Y (i)

n (T + θ )
)λ]

= n−λE

⎡⎣⌊nγ (T +θ )⌋−1∑
l=⌊nγ T ⌋

(
X (i)

n (l)
)λ(1 − G(J (i)

n (l))

X (i)
n (l)

(λ)
)⎤⎦

≤ c(λ)n−λE

⎡⎣⌊nγ (T +θ )⌋−1∑
l=⌊nγ T ⌋

(
X (i)

n (l)
)λ−γ⎤⎦
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≤ c(λ)n−λE

⎡⎣⌊nγ (T +θ )⌋−1∑
l=⌊nγ T ⌋

nλ−γ

⎤⎦
≤ c(λ)(θ + n−γ ),

and (22) is then a consequence of the Markov inequality. □

One may expect from this tightness that the natural scale of time to see macroscopic changes
in X (i)

n is the scale nγ . The following lemma reinforces this, and shows that the scale of time to
see a change of J (i)

n is much smaller.

Lemma 4.4.

(i) Let (Tn, n ∈ N) be any sequence of random times such that n−γ Tn converges in probability
to 0. Then n−1 X (i)

n (Tn) converges in probability to 1.
(ii) For n ∈ N and ε > 0, let

Tn,ε = inf{k ≥ 0 : X (i)
n (k) ≤ nε}.

Then, for any α < γ , n−αTn,ε tends to infinity in probability, in the sense that, for all u > 0,
P(Tn,ε > unα) converges to 1.

(iii) For n ∈ N, let Sn = inf{k ∈ N, J (i)
n (k) ̸= i}. Then n−γ Sn converges in probability to 0.

Proof. For point (i), let ε > 0, and take η > 0 and n ∈ N such that P(Tn > ηnγ ) ≤ ε. We then
have, for all ρ > 0,

P
(

X (i)
n (Tn) ≤ (1 − ρ)n

)
≤ ε + P

(
X (i)

n (⌊ηnγ ⌋) ≤ (1 − ρ)n
)
.

By Proposition 4.3,1 if η is small enough, then this will be smaller than 2ε for n large enough.
Point (ii) is a consequence of point (i), since P(Tn,ε ≤ unα) = P(Xn(⌊unα)⌋ ≤ nε) tends to 0.
For point (iii), let α ∈ (β, γ ), and choose any ε ∈ (0, 1). Write

P(Sn > nα) = P(Sn > nα, Tn,ε > nα) + P(Sn > nα, Tn,ε ≤ nα).

Noticing that the second term tends to 0 by (ii), showing that the first also does will be enough
to prove (iii). By (Hmix), we know that there exists some constant C > 0 and n0 ∈ N such that,
for all n ≥ n0, nβ(1 − pn(i, i)) ≥ C. Now taking n ≥ ε−1n0, we have for all k,

P
(
J (i)

n (k + 1) ̸= i | X (i)
n (k) > nε, J (i)

n (k) = i
)

≥ Cn−β .

One then deduces by induction that

P(Sn > k, Tn,ε ≥ k) ≤ (1 − Cn−β)k,

and thus

P(Sn > nα, Tn,ε > nα) ≤ (1 − Cn−β)nα ,

which tends to 0 because α > β. The proof is then ended since γ > α. Note that this argument
in fact shows that n−αSn tends in probability to 0 for all α > β, but we will not need this
improvement. □

From now on, to free up some notational space, we will also drop all references to the original
type in the notation, and thus refer to the processes as Xn, Jn and so on.

1 Specifically, there is a compact subset K of D ([0,∞), [0,∞)) which, with probability greater than 1 − ε, contains
Y (i)

n for all n, and using Theorem 12.3 from [11], f (η) − f (0) converges to 0 as η tends to 0, uniformly in f ∈ K .
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4.1.3. Moving to continuous time
Inspired by [10], we introduce a transformation which embeds our processes in continuous

time, making them easier to manipulate. We do this by considering a standard Poisson process
(N (t), t ≥ 0) which is independent of all the Xn and Jn , and letting for all n ∈ N and t ≥ 0,

X c
n(t) = Xn(N (t)) and J c

n (t) = Jn(N (t)).

The process
((

X c
n(t), J c

n (t)
)
, t ≥ 0

)
is thus a Markov process with transition rates given by the

(p(n,i)(m, j)). The functional law of large numbers ensures us that limit results for (Xn, Jn) are
equivalent to the same for (X c

n, J c
n ). Specifically, we have the following:

Lemma 4.5.

(i) Let fn be the function which maps t ≥ 0 to n−γN (nγ t), and gn a generalized inverse
defined this way:

gn(t) = inf{s ≥ 0 : fn(s) = n−γ
⌊nγ t⌋}.

Then both fn and gn converge a.s. uniformly on compact sets to the identity function.
(ii) For all integers k, there exists a constant ck such that E

[
(N (t))k

]
≤ ck(tk

∨ t), for all t ≥ 0.

Proof. For point (i) we use classical arguments: since the considered functions are monotone and
the limit we are looking for is continuous, we only need to prove a.s. pointwise convergence for,
say, rational t . First for fn , n−γN (nγ t) a.s. converges to t by the law of large numbers. The same
then becomes true for the inverse: if any subsequence of (gn(t), n ∈ N) converges to s ∈ [0,+∞]
then, given that fn(gn(t)) = n−γ

⌊nγ t⌋, and that fn is non-decreasing and converges uniformly
on compacts to the identity function, we get that s = t . Point (ii) is a standard result on moments
of the Poisson distribution. □

Now, since we have Xn(⌊nγ t⌋) = X c
n(nγ gn(t)), Lemma 4.5 implies that

• Theorem 4.1 (and 4.2) can be proven by showing that X c
n (and its absorption time, as well

as its moments) has the wanted scaling limit.
• Proposition 4.3 and Lemma 4.4 also apply to X c

n and J c
n , with obvious modifications.

We adapt all the previous notation, defining

Y c
n (t) :=

X c
n(nγ t)

n
, Z c

n(t) := Y c
n (τ c

n (t)), and K c
n (t) := J c

n (nγ τ c
n (t)) t ≥ 0,

where τ c
n (t) = inf

{
u ≥ 0 :

∫ u
0(Y c

n (r ))−γ dr > t
}
. We now aim at proving Theorems 4.1 and 4.2

for the continuous-time process (X c
n, J c

n ).
The tightness from Proposition 4.3 implies that (Y c

n ) will converge to X in distribution
if every converging subsequence of (Y c

n ) has X as limiting distribution. We consider such
a converging subsequence, and using Skorokhod’s embedding theorem, suppose that this
subsequence converges almost surely to a process Y ′. We will only work on this subsequence
from now on, omitting sometimes to mention it. By Lemma 1.3, this implies in fact that the
pair (Y c

n , Z c
n) converges a.s. to (Y ′, Z ′), where Z ′ is the Lamperti transform of Y ′: for t ≥ 0,

Z ′(t) = Y ′(τ (t)) where τ (t) = inf{s ≥ 0,
∫ s

0(Y ′(r ))−γ dr > t}. What we want to do is to show
that

(
− log(Z ′)

)
is necessarily a subordinator with Laplace exponent ψ defined in (18), which

will be done by proving that (Z ′(t)λetψ(λ), t ≥ 0) is a martingale for all λ > 0.
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We introduce some more notation: if f ∈ D([0,∞), [0,∞)) satisfies f (0) = 1 and ε > 0,
then we let

Tε( f ) = inf
{
t ≥ 0, f (t) ≤ ε

}
.

Note then that, by Skorokhod convergence, for all ε > 0 except a countable set, Tε(Y c
n ) and

Tε(Z c
n) converge a.s. to Tε(Y ′) and Tε(Z ′), and the stopped processes (Y c

n (t ∧ Tε(Y c
n )), t ≥ 0)

and (Z c
n(t ∧ Tε(Z c

n)), t ≥ 0) converge in the Skorokhod sense to (Y ′(t ∧ Tε(Y ′)), t ≥ 0) and
(Z ′(t ∧ Tε(Z ′)), t ≥ 0). This is explained in the proof of Lemma 3 of [19]. We will now only
work with such ε.

4.1.4. About the mixing of types
The following proposition formalizes how the types mix in (X c

n, J c
n ).

Proposition 4.6. For all i ∈ {1, . . . , κ} and ε > 0, we have the following convergence in
probability of measures:

1{s≤Tε(Zc
n )}1{K c

n (s)=i}ds
(P)

−→
n→∞

1{s≤Tε(Z ′)}πi ds.

The meaning of Proposition 4.6 is that the types spread themselves out evenly, and that we
have each type i a proportion πi of the time. As the proof will show, we must stop at time Tε(Z c

n)
in order to use (Hmix).

Remark. Convergence in probability implicitly refers to the Prokhorov metric for measures.
Some of its elementary properties are provided in Appendix A.2.

Since the proof of Proposition 4.6 is very involved and contains most of the difficulty, we
postpone it to Section 4.4, and first use it to prove Theorems 4.1 and 4.2.

4.1.5. Some martingales

Lemma 4.7. Let λ > 0 and n ∈ N, and define a process M (λ)
n by

M (λ)
n (t) =

( X c
n(t)
n

)λ
exp

(∫ t

0

(
1 − G(J c

n (s))
Xc

n (s) (λ)
)

ds
)

if X c
n(t) ̸= 0, while M (λ)

n (t) = 0 if X c
n(t) = 0. Then M (λ)

n is a martingale in the natural filtration
of (X c

n, J c
n ). As a consequence, the time-changed process M(λ)

n defined by

M(λ)
n (t) = M (λ)

n (nγ τ c
n (t)) =

(
Z c

n(t)
)λ exp

(∫ nγ τ c
n (t)

0

(
1 − G(J c

n (s))
Xc

n (s) (λ)
)

ds
)

(23)

is also a martingale.

Proof. The martingale property of M(λ)
n is a direct consequence of that of M (λ)

n and that the
stopping time τ c

n (t) is smaller than t for all t ≥ 0. We thus focus on M (λ)
n . Notice first that, for

s ≤ t , if X c
n(s) > 0, then

M (λ)
n (t) = M (λ)

n (s)
( X c

n(t)
X c

n(s)

)λ
exp

(∫ t

s

(
1 − G(J c

n (u))
Xc

n (u) (λ)
)

du
)
. (24)

By the Markov property, conditionally on the past up to time s, the last two terms form a copy
of
(
M (λ)

Xc
n (s)

)′(t − s), where
(
M (λ)

Xc
n (s)

)′ is an independent version of the same martingale when the
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process starts at (X c
n(s), J c

n (s)). Thus we are reduced to showing that E[M (λ)
n (t)] = 1 for all

t ≥ 0, and we will do this by showing that the right derivative of this function is 0 at all points.
Let t ≥ 0 and h ≥ 0, we have

E
[
M (λ)

n (t + h)
]

=

∞∑
k=0

e−hhk

k!
E
[

M (λ)
n (t)

( X c
n(t + h)
X c

n(t)

)λ
× exp

(∫ t+h

t

(
1 − G(J c

n (s))
Xc

n (s) (λ)
)

ds
)

| N (t + h) − N (t) = k
]

where, by convention, the term inside the expectation is 0 if X c
n(t) = 0. Since we have

G( j)
k (λ) ≥ 0 for all j and k, M (λ)

n (t) ≤ et and Xn is nonincreasing, we have
∞∑

k=2

e−hhk

k!
E
[

M (λ)
n (t)

( X c
n(t + h)
X c

n(t)

)λ
exp

(∫ t+h

t

(
1 − G(J c

n (s))
Xc

n (s) (λ)
)

ds
)

| N (t + h)

− N (t) = k
]

≤

∞∑
k=2

e−hhk

k!
et+h

= O
h→0

(h2).

Since, for the k = 0 term, (X c
n, J c

n ) does not jump between t and t +h, while, for the k = 1 term,
it jumps exactly once, at a time uniformly distributed between t and t + h, we now have

E
[
M (λ)

n (t + h)
]

= e−hE

[
M (λ)

n (t)e
h
(

1−G
(Jc

n (t))
Xc

n (t)
(λ)
)]

+ he−hE
[

M (λ)
n (t)

( Xn(N (t) + 1)
X c

n(t)

)λ 1
h

∫ h

0
exp

(
s
(

1 − G(J c
n (t))

Xc
n (t) (λ)

)
+ (h − s)

(
1 − G Jn (N (t)+1)

Xn (N (t)+1)(λ)
))

ds
]

+ O(h2).

For the same reasons as explained earlier, we can write out the asymptotic expansion of the
involved exponential functions and safely integrate the O terms and take them out of expected
values, and thus

E
[
M (λ)

n (t + h)
]

= (1 − h)E
[

M (λ)
n (t)

(
1 + h

(
1 − G(J c

n (t))
Xc

n (t) (λ)
))]

+ hE
[

M (λ)
n (t)

( Xn(N (t) + 1)
X c

n(t)

)λ ∫ h

0
(1 + O(s))

(
1 + O(h − s)

)
ds
]

+ O(h2)

= E
[

M (λ)
n (t)

(
1 − hG(J c

n (t))
Xc

n (t) (λ)
)]

+ hE
[

M (λ)
n (t)

( Xn(N (t) + 1)
X c

n(t)

)λ]
+ O(h2).

Since the conditional expectation of
(

Xn (N (t)+1)
Xc

n (t)

)λ
given

(
Xn(N (t)), Jn(N (t))

)
=
(
X c

n(t), J c
n (t)

)
is equal to G(J c

n (t))
Xc

n (t) (λ) by definition, we end up with no term of order h, and a derivative equal to
0 at t . □
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4.2. End of the proof of Theorem 4.1: scaling limit of the position marginal

From Section 4.1.3, it is sufficient to prove a version of Theorem 4.1 for the continuous-time
process (X c

n, J c
n ). Moreover, relying on the tightness established in Section 4.1.2, it was noticed,

still in Section 4.1.3, that such a version of Theorem 4.1 will be proved if for any possible limit
Y ′ of a subsequence of (Y c

n ), the process
(
(Z ′(t))λetψ(λ), t ≥ 0

)
is a martingale, where Z ′ denotes

the (−γ )-Lamperti transform of Y ′. It was also noticed that there is not loss of generality in
assuming that the convergences are almost sure. To simplify the notation below, we let (Y c

n , Z c
n)

denote a subsequence that converges (almost surely) to (Y ′, Z ′), with a slight abuse in the indices
notation.

Our aim is therefore to show that the martingale M(λ)
n introduced in (23) converges to the

process
(
(Z ′(t))λetψ(λ), t ≥ 0

)
in a strong enough sense for the latter to also be a martingale. To

do so, we first fix an ε > 0 with the properties required at the end of Section 4.1.3, and stop M(λ)
n

at time Tε(Z c
n), and show that the process

(
M(λ)

n (t ∧ Tε(Z c
n)), t ≥ 0

)
converges in probability for

the Skorokhod metric to
(
Z ′(t ∧ Tε(Z ′))λ exp(ψ(λ)(t ∧ Tε(Z ′))), t ≥ 0

)
. Recalling the definition

(23) of the martingale M(λ)
n and that (Z c

n) converges a.s. in the Skorokhod sense to Z ′, it only
remains to check that the term

exp
(∫ nγ (τ c

n (t∧Tε(Y c
n )))

0

(
1 − G(J c

n (s))
Xc

n (s) (λ)
)
ds
)

converges in probability uniformly on all compact sets to exp
(
ψ(λ)(t ∧ Tε(Z ′))

)
. By a variation

of a classical argument (using subsequences to bring ourselves back to almost-sure convergence,
see the proof of Lemma A.6 for a similar reasoning), since these functions are nondecreasing
and the limit is continuous, we only need to show pointwise convergence in probability.

Write, for n ≥ ε−1,∫ nγ (τ c
n (t∧Tε(Y c

n )))

0

(
1 − G(J c

n (s))
Xc

n (s) (λ)
)
ds =

∫ t∧Tε(Zc
n )

0

(
1 − G(K c

n (r ))
nZc

n (r ) (λ)
)(

nZ c
n(r )

)γ dr.

We split the integrand according to the different types. For all j ∈ {1, . . . , κ}, we have by (20)(
1 − G( j)

nZc
n (r )(λ)

)
(nZ c

n(r ))γ →
n→∞

ψ j (λ)

almost surely, and this is uniform in r as long as we stay before time Tε(Z c
n), since we then have

nZ c
n(r ) ≥ nε. This lets us write∫ t∧Tε(Zc

n )

0

(
1 − G( j)

nZc
n (r )(λ)

)
(nZ c

n(r ))γ1{K c
n (r )= j}dr =

∫ t∧Tε(Zc
n )

0
ψ j (λ)1{K c

n (r )= j}dr

+

∫ t∧Tε(Zn )

0

((
1 − G( j)

nZc
n (r )(λ)

)
(nZ c

n(r ))γ − ψ j (λ)
)
1{K c

n (r )= j}dr.

The first term of the right-hand side converges in probability to ψ j (λ)π j (t ∧ Tε(Z ′)) by
Proposition 4.6 and the second to 0 by the aforementioned uniform convergence.

Uniform integrability arguments will then transfer the martingale property of M(λ)
n to

(Z ′(t)λ exp(ψ(λ)t), t ≥ 0). Specifically, note first that, for n ≥ ε−1, using (21), we have

M(λ)
n (t ∧ Tε(Z c

n)) ≤ exp
(∫ t∧Tε(Zc

n )

0
(nZ c

n(r ))γ
(
1 − G(K c

n (r ))
nZc

n (r ) (λ)
)
dr
)

≤ ec(λ)t ,
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and thus, for fixed t ,
(
M(λ)

n (t ∧ Tε(Z c
n)), n ≥ ε−1

)
is uniformly integrable, implying by

[14, Example 7, p. 362], that the limit process
(
Z ′(t ∧ Tε(Z ′))λ exp

(
ψ(λ)(t ∧ Tε(Z ′))

)
, t ≥ 0

)
is a

martingale. Similarly, for fixed t and for all ε > 0, Z ′(t ∧Tε(Z ′))λ exp
(
ψ(λ)(t ∧Tε(Z ′))

)
≤ eψ(λ)t ,

and we therefore have uniform integrability as ε tends to 0, preserving the martingale property
for the limit. □

4.3. Proof of Theorem 4.2: scaling limit of the absorption time

We assume here that for all i ∈ {1, . . . , κ}, the measure µ(i) of hypothesis (Hmix) is nontrivial.
As a consequence, for all λ > 0, there exists c′(λ) > 0 such that, for n which is not an absorbing
state,

1 − G(i)
n (λ) ≥ n−γ c′(λ), ∀i ∈ {1, . . . , κ}. (25)

Also, as in Section 3, we now make the extra assumption that the only absorbing state for X is
0. Just as in that section, proving Theorem 4.2 under this assumption is enough to deduce the
general case. Thus inequality (25) becomes true for all n ∈ N.

Our goal is to show that jointly with the convergence of (Y c
n , Z c

n) towards (X, Z ) proved in the
previous section, the absorption time Ac

n of Y c
n (or X c

n) at 0 satisfies Ac
n/nγ → I in distribution,

and that there is also convergence of all positive moments. We recall that I denotes the absorption
time at 0 of the process X . We start with a preliminary lemma.

Lemma 4.8. For all n ∈ N, λ > 0, and t ≥ 0, we have

E
[
(Z c

n(t))λ
]

≤ e−c′(λ)t ,

where c′(λ) was introduced in (25).

Proof. Recall that when Z c
n(t) > 0

(Z c
n(t))λ = M(λ)

n (t) exp
(∫ nγ τ c

n (t)

0

(
G(J c

n (s))
Xc

n (s) (λ) − 1
)
ds
)
,

where
(
M(λ)

n (t), t ≥ 0
)

is a martingale. Using (25), we have, still when Z c
n(t) > 0,∫ nγ τ c

n (t)

0

(
G(J c

n (s))
Xc

n (s) (λ) − 1
)
ds ≤ −c′(λ)

∫ nγ τ c
n (t)

0
X c

n(s)−γ ds ≤ −c′(λ)
∫ t

0
ds.

Hence (Z c
n(t))λ ≤ M(λ)

n (t) exp(−c′(λ)t) in any case. We can then take the expectation. □

The rest of the proof of Theorem 4.2 goes as the one of Theorem 2 in [19], so we only sketch
it: since the only absorbing state is 0, we have

Ac
n

nγ
=

∫
∞

0
(Z c

n(r ))γ dr, (26)

and thus the expectations of n−γ Ac
n are uniformly bounded (using Lemma 4.8), and thus

(n−γ Ac
n, n ∈ N) is tight. Up to using the Skorokhod representation theorem and extracting,

we can assume that the triplet (Y c
n , Z c

n, n−γ Ac
n) converges a.s. to (X, Z , I ′), and we only need

to check that I ′
= I , where I =

∫
∞

0 Z (t)γ dt is the extinction time of X . The Skorokhod
convergence first shows that Y c

n (n−γ Ac
n), which is equal to 0, converges to X (I ′), implying
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I ′
≥ I . On the other hand, dominated convergence and Fatou’s lemma give us

E[I ′] = E
[
lim

∫
∞

0
(Z c

n(r ))γ dr
]

≤ lim infE
[∫ ∞

0
(Z c

n(r ))γ dr
]

=
by Lemma 4.8

E
[∫ ∞

0
Z (r )γ dr

]
= E[I ],

hence n−γ Ac
n converges in distribution to I . To get the convergence of all positive moments, it

remains to show that supnE[(n−γ Ac
n)a] < ∞ for all a ≥ 0 which is easy to see by using (26)

together with Hölder’s inequality and Lemma 4.8. □

4.4. Proof of Proposition 4.6: mixing of types

It remains to prove Proposition 4.6. We recall that it is assumed that (Y c
n , Z c

n) converges almost
surely to (Y ′, Z ′). The main idea will be to couple the bivariate chain (X c

n, J c
n ) with a standard

{1, . . . , κ}-valued continuous-time Markov chain with Q-matrix Q, so that, after an appropriate
time-change, J c

n behaves asymptotically as this standard Markov chain. In order to do so, we
first notice in Section 4.4.1 that we can do additional assumptions on the model, without loss of
generality. Section 4.4.2 then introduces Lamperti transform of (X c

n, J c
n ) in the nβ-time scale. The

idea is that in this scale, the type-component resembles asymptotically to the above mentioned
Markov chain with Q-matrix Q. This approximation is studied in Section 4.4.3 and the end of
the proof of Proposition 4.6 is given in Section 4.4.4.

4.4.1. Foreword: a few changes
As in the critical case, we change the transition probabilities (pn,i (m, j)) slightly in a way

which does not change the scaling limit. Here, the aim is to make some waiting times we will
consider in the following sections, and their moments, finite. First, as already noticed several
times, we can assume with no loss of generality that the only absorbing state for the position
component is 0. Then we define, for m ≤ n and i, j ∈ {1, . . . , κ}, p′

n,i (m, j) this way:

◦ p′

n,i (m, j) = pn,i (m, j) if m > 2
◦ p′

n,i (2, j) = pn,i (0, j) + pn,i (1, j) + pn,i (2, j)
◦ p′

2,i (1, 1) = 1
◦ p′

1,i (1, i + 1) = 1 for i ≤ κ − 1
◦ p′

1,κ (0, 1) = 1
◦ p′

0,1(0, 1) = 1.

Note that (p′

n,i (m, j)) then also satisfies (Hmix) and that proving Proposition 4.6 for a Markov
chain with transitions (p′

n,i (m, j)) will also prove it for the general case. As such we will
now assume that the (pn,i (m, j)) have been replaced by the (p′

n,i (m, j)). Hence the following
consequences:

Lemma 4.9. For all n ≥ 2, there is always at least one change of type before Xn reaches 0.
Moreover this absorption time at 0, denoted by Ac

n , has finite positive moments of all orders:

E[(Ac
n)a] < ∞, for all a ≥ 0 and all n ∈ N.

Proof. The first assertion is obvious by definition of (p′

n,i (m, j)). Next, (X c
n, J c

n ) is a continuous
time Markov chain on a finite state space with unique absorbing point (0, 1). If we add a
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small transition rate from (0, 1) to all the other states, then it becomes irreducible, at which
point standard results imply that the time taken to go from one state to another has some
finite exponential moments, and so in particular the time to reach (0, 1) has finite ath moment
for all a ≥ 0. Note that the finiteness of these moments was already checked in the proof
of Theorem 4.2, under the extra condition that the measures µ(i) of hypothesis (Hmix) are all
nontrivial. □

In the following we assume that the conclusions of this lemma are valid, with no loss of
generality.

4.4.2. Preparation: using the nβ timescale
The nβ scale. In order to prove Proposition 4.6, we will use another Lamperti-type time-

change, this time using the index β and the time scale of nβ , which are more appropriate for the
study of the types. We let, for n ∈ N and t ≥ 0,

Y (β)
n (t) =

X c
n(nβ t)

n
and τ (β)

n (t) = inf
{

u ≥ 0,
∫ u

0
(Y (β)

n (r ))−βdr > t
}
.

In particular, we have dτ (β)
n (t) =

(
Y (β)

n
(
τ

(β)
n (t)

))βdt . We then let

Z (β)
n (t) = Y (β)

n (τ (β)
n (t)) and K (β)

n (t) = J c
n

(
nβτ (β)

n (t)
)
.

Note that, once again by Lemma 1.3, the process
(
Y (β)

n (τ (β)
n (nγ−β t)), t ≥ 0

)
then converges to

the process
(
Y ′(τ (β)(t)), t ≥ 0

)
, where

τ (β)(t) = inf
{

u ≥ 0,
∫ u

0
(Y ′(r ))−βdr > t

}
,

and the maps t → nβ−γ τ
(β)
n (nγ−β t) converge uniformly on compact sets to τ (β). In particular,

letting

Sn,ε = inf{t ≥ 0 : Y (β)
n (τ (β)

n (nγ−β t)) ≤ ε},

then Sn,ε converges to Sε = (τ (β))−1(Tε(Y ′)). All these convergences are almost sure.
We will later need the following observation. Let T0(Z (β)

n ) denote the absorption time at 0
of Z (β)

n . For t < T0(Z (β)
n ), we have nβτ (β)

n (t) ≥ t , i.e. the time-change speeds time up. Thus
T0(Z (β)

n ) ≤ Ac
n , implying by Lemma 4.9 that, for all a ≥ 0 and all n ∈ N,

E
[(

T0(Z (β)
n )
)a
]
< ∞. (27)

Mixing in the nβ scale. By the upcoming Lemma 4.10, proving Proposition 4.6 can be done by
instead proving that the types in K (β)

n mix after a time of order nγ−β :

1{s≤Sn,ε}1{K (β)
n (nγ−β s)=i}

ds
(P)

−→
n→∞

πi1{s≤Sε}ds. (28)

Lemma 4.10. For all n ∈ N, let an and bn be positive random variables, fn be a random
càdlàg function from [0, an] to {0, 1} (extended to be constantly 0 after an), and Fn a random
increasing bijection from [0, an] to [0, bn] (extended to be constantly bn after an). We call F ′

n the
right-derivative of Fn , which we assume to exist everywhere and be càdlàg. Assume that, as n
tends to infinity:
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(a) an converges a.s. to a > 0, bn converges a.s. to b > 0.
(b) Fn converges uniformly a.s. to a continuous function F of which the right-derivative F ′

exists everywhere and is càdlàg, and F ′
n converges in the Skorokhod sense to F ′.

(c) the measure 1{x≤an}1{ fn (x)=1}dx converges weakly in probability to λ1{x≤a}dx, for some
λ ≥ 0.

Then we also have the following weak convergence of measures in probability:

1{x≤bn}1{ fn (F−1
n (x))=1}

dx
(P)

−→
n→∞

λ1{x≤b}dx . (29)

Proof. Our first step is showing that, if the convergence of (c) is almost-sure, then (29) is
also in fact an a.s. convergence. In this case we can drop the probabilistic notation and assume
everything is deterministic. Let g be any continuous and bounded function on R+, we have∫ bn

0
g(x)1

{ fn (F−1
n (x))=1}

dx =

∫ an

0
g(Fn(x))1{ fn (x)=1}F ′

n(x)dx

=

∫ an

0

(
g(Fn(x))F ′

n(x) − g(F(x))F ′(x)
)
1{ fn (x)=1}dx

+

∫ an

0
g(F(x))F ′(x)1{ fn (x)=1}dx .

The first term tends to 0 because the Skorokhod convergence of g(Fn(x))F ′
n(x) to g(F(x))F ′(x)

implies L1 convergence, see Lemma A.3. The second term converges to λ
∫ a

0 g(F(x))F ′(x)dx =

λ
∫ b

0 g(x)dx . We can use the convergence (c) despite F ′ being càdlàg and not necessarily
continuous, because we are only using absolutely continuous measures.

For the general case, we use Lemma A.4. Thus we take a subsequence of 1{x≤bn}1{ fn (F−1
n (x))=1}

dx , and we look to extract a sub-subsequence which converges a.s. to λ1{x≤b}dx . This is
immediate: we just extract a subsequence such that (c) is a.s., and we are then back to the
deterministic case, ending the proof. □

To be precise, Proposition 4.6 follows from (28) and Lemma 4.10 by taking an = Sn,ε, a = Sε,
fn(t) = 1

{K (β)
n (nγ−β t)=i}

, Fn(t) = (τ c
n )−1

(
nβ−γ (τ (β)

n (nγ−β t))
)

and F = τ−1
◦τ (β). Note that (τ c

n )−1

converges uniformly to τ−1 on [0, Tε(Y ′)], by a similar argument to the proof of the uniform
convergence of gn in Lemma 4.5.

Finally, in order to prove (28), we can use Lemma A.6 and restrict ourselves to showing the
convergence of the masses assigned to intervals of the form [0, t] with t > 0. Thus we want to
prove this convergence in probability:∫ t∧Sn,ε

0
1

{K (β)
n (nγ−β s)=i}

ds
(P)

−→
n→∞

(t ∧ Sε)πi ,

which can then be written in a more concise way by including all the types:∫ t∧Sn,ε

0
δ

K (β)
n (nγ−β s)ds

(P)
−→
n→∞

(t ∧ Sε)π, (30)

seeing each side as a finite measure on {1, . . . , κ}. Our aim is now to prove (30).

4.4.3. A special coupling
Recall that, conditionally on X c

n(t) = k, the infinitesimal jump rates of J c
n just after time t ≥ 0

are given by the matrix Pk . Letting Qk = Pk − I be the corresponding Q-matrix, we have by
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assumption

Qk = k−βQ + o(k−β).

Consider what happens when we use τ (β)
n . Given that dτ (β)

n (t) = (Z (β)
n (t))βdt , we have that,

conditionally on Xn(nβτ (β)
n (t)) = k, the jump rates of K (β)

n are given by the Q-matrix kβQk ,
which is close to Q. By using a coupling argument, we will show that K (β)

n is close enough to
a continuous time Markov chain with Q-matrix Q, and Eq. (30) will follow from the ergodic
theorem. Specifically, let (L(t), t ≥ 0) be a Markov chain in continuous time with Q-matrix Q,
the following almost-sure limit is classical:

1
t

∫ t

0
δL(s)ds −→

t→∞
π

and it follows that, since Sn,ε converges a.s. to Sε,∫ t∧Sn,ε

0
δL(nγ−β s)ds

a.s.
−→
n→∞

(t ∧ Sε)π. (31)

We will now build a coupling of all the
(
K (β)

n (s), s ≤ nγ−β(t ∧ Sn,ε)
)

with L such that∫ t∧Sn,ε
0 δ

K (β)
n (nγ−β s)ds is close enough to

∫ t∧Sn,ε
0 δL(nγ−β s)ds.

Comparison of the first jumps. For all n ∈ N, let

ηn = sup
k≥n

|kβQk − Q|,

where |.| denotes the supremum norm of a matrix.

Lemma 4.11. Let i ∈ {1, . . . , κ} be the initial type and σ1(K (β)
n ) denote the first jump time of

K (β)
n (with the convention that this time is infinite when there is no jump). Then:

(i) σ1(K (β)
n ) converges in distribution to an exponential time with parameter |qi,i |, and there is

convergence of all the positive moments, that is, for a > 0,

E
[(
σ1(K (β)

n )
)a]

−→
n→∞

Γ (a + 1)
|qi,i |

a ,

where Γ denotes the standard Gamma function.
(ii) K (β)

n
(
σ1(K (β)

n )
)

converges in distribution to the first jump of L, that is P
(
K (β)

n (σ1(K (β)
n )) =

j
)

converges to q(i, j)
|q(i,i)| for all j ̸= i .

Proof. At the heart of both proofs lies the fact that, by (iii) and (i) of Lemma 4.4, Z (β)
n (σ1(K (β)

n ))
converges to 1 almost surely.
• This proves point (ii) almost immediately: notice that, conditionally on Z (β)

n
(
σ1((K (β)

n )−)
)

=

x > 0, the distribution of the jump is then given by Pnx (i, j)
1−Pnx (i,i) for j ̸= i , which is seen by (Hmix)

(ii) to converge a.s. to q(i, j)
|q(i,i)| . To remove the conditioning, note that, if we take any y ∈ (0, 1), we

have

P
(

K (β)
n

(
σ1(K (β)

n )
)

= j
)

= P
(

K (β)
n

(
σ1(K (β)

n )
)

= j, Z (β)
n (σ1((K (β)

n )−)) < y
)

+

∑
x≥y,nx∈Z+

P
(
Z (β)

n

(
σ1((K (β)

n )−)
)

= x
) Pnx (i, j)

1 − Pnx (i, i)
.
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The first term of the right-hand side tends to 0, while for the second term, the uniform
convergence of the various Pnx (i, j)

1−Pnx (i,i) to q(i, j)
|q(i,i)| as n tends to infinity for x ≥ y gives us the wanted

conclusion.
• For the convergence in distribution stated in (i), we use the structure of our time-changed
process. When the position component is at x > 0, then the waiting time until the next
jump of the position component is an exponential variable with parameter (nx)β , and this
jump has probability 1 − Pnx (i, i) of inducing a change of type. Thus, still conditionally on
Z (β)

n
(
σ1((K (β)

n )−)
)

= x , we can write the following stochastic domination:

G∑
i=1

Ei ⪯ σ1(K (β)
n ) ⪯

G′∑
i=1

E ′

i ,

where ⪯ indicates stochastic domination, the (Ei ) (resp. (E ′

i )) form an i.i.d. sequence of
exponential variables with parameter nβ (resp (nx)β ), G (resp G ′) is an independent geometric
variable with parameter (nx)−β(|q(i, i)| + ηnx ) (resp n−β(|q(i, i)| − ηnx )). One readily checks
that both the upper and lower bound have the appropriate convergence in distribution. We show
it for the lower bound, using the moment generating function, and leave the upper bound to the
reader: for t > 0, we have

E

[
exp

(
−t

G∑
i=1

Ei

)]
= E

[(
1 + tn−β

)−G
]

=
(nx)−β

(
|q(i, i)| + ηnx

)(
1 + tn−β

)−1

1 −
(
1 − (nx)−β(|q(i, i)| + ηnx )

) (
1 + tn−β

)−1 .

As (n, x) tends to (∞, 1), this converges to |q(i,i)|
|q(i,i)|+t , which is the moment generating function

of the wanted exponential distribution. The same argument by uniform convergence as in the
proof of (ii) shows then that we can remove the conditioning, and E[e−tσ1(K (β)

n )] also converges
to |q(i,i)|

|q(i,i)|+t .
• To deduce from this convergence in distribution the convergence of all positive moments, we
will prove that, for all k ∈ N, E[

(
σ1(K (β)

n )
)k] is uniformly bounded in n. This is enough to

conclude since the r.v.
(
σ1(K (β)

n )
)a are then uniformly integrable for all a > 0. For n ∈ N and

k ∈ Z+, let

un,k = E[σ1(K (β)
n )k], vn,k = sup

m≤n
l≤k

um,l , and wk = sup
n∈N

vn,k .

Note that un,k is finite for all n and k, by (27), and thus vn,k also is. Our aim is to show that
wk is finite for all k. To that purpose, let n0 be large enough such that, for n ≥ n0, we have
nβ(1 − Pn(i, i)) ≥ |qi,i |/2. We will prove that, for all k ∈ N,

wk ≤ vn0,k ∨
2wk−1k!e

|qi,i |
. (32)

Since w0 = 1, an induction then finishes the proof.
Let therefore k ∈ N, we prove Eq. (32) by showing that, for n > n0, vn,k ≤ vn−1,k ∨

2wk−1k!e
|qi,i |

.
Assume that vn,k > vn−1,k (otherwise there is nothing to do), implying vn,k = un,k . Use the
structure of the process to write

σ1(K (β)
n ) = En + 1{Jn (1)=i}σ1(K ′

Xn (1))
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where En is an independent exponential variable with parameter nβ and given Xn(1) = ℓ, K ′

Xn (1)

is independent of (En, Jn(1)) and distributed as K (β)
ℓ . We can then bound the kth moment thus:

un,k ≤
k!

nkβ
+ Pn(i, i)

(
k−1∑
l=1

(
k
l

)
l!

nlβ
vn,k−l + vn,k

)
.

Bounding all instances of vn,k−l by wk−1, and n−l by n−1, we get

vn,k ≤ Pn(i, i)vn,k +
1

nβ

(
k! + wk−1

k−1∑
l=1

(
k
l

)
l!

)
.

It follows that

vn,k(1 − Pn(i, i))nβ ≤ k!

(
1 + wk−1

k−1∑
l=1

1
(k − l)!

)
≤ k!wk−1e.

Since n > n0, we have (1 − Pn(i, i))nβ ≥
|qi,i |

2 , and thus vn,k ≤
2wk−1k!e

|qi,i |
, ending the proof. □

Standard coupling results then imply that there exists a deterministic non-increasing sequence
(ρn)n∈N which converges to 0 and such that we can couple (X c

n, J c
n ) with L in such a way that,

calling σ1(L) the first jump time of L , we have

σ1(K (β)
n )

a.s.
−→
n→∞

σ1(L)

and

P
(
K (β)

n (σ1(K (β)
n )) ̸= L(σ1(L))

)
≤ ρn,∀n ∈ N

for any initial type i . Note that the a.s. convergence is in fact also an L1 convergence, by a stan-
dard variation of Scheffé’s lemma: separating the positive and negative parts, (σ1(L)−σ1(K (β)

n ))+
is nonnegative and dominated by σ1(L) and thus its expectation converges to 0, and then we write
the negative part as E[(σ1(L) − σ1(K (β)

n ))−] = E[(σ1(L) − σ1(K (β)
n ))+] − E[σ1(L) − σ1(K (β)

n )]
and see that its limit is also 0. Thus, up to changing our sequence (ρn)n∈N, we now also have

E
[
|σ1(K (β)

n ) − σ1(L)|
]

≤ ρn.

Next jumps. The processes K (β)
n and L are now in a sense coupled until their first respective

jumps. To continue the coupling, if they make the same first jump then we continue as above,
and if they do not, we have to make them equal again, which we do by running L for some more
time until it reaches the same value as K (β)

n . Let us formalize this. Let (σi (K (β)
n ), i ∈ Z+) and

(σi (L), i ∈ Z+) be the lists of jump times of K (β)
n (these jump times are infinite by convention

after the last jump) and L , with the extra convention that σ0(K (β)
n ) = σ0(L) = 0. We also let

Wi (K (β)
n ) = σi (K (β)

n ) − σi−1(K (β)
n ) be the i th waiting time of K (β)

n for i ∈ Z+, and Wi (L) be the
same for L . We build an auxiliary process L ′, its jump times (σi (L ′), i ∈ Z+) and waiting times
(Wi (L ′), i ∈ Z+) and an increasing sequence of random integers (ik, k ∈ Z+), such that L ′ has
the same list of jumps as K (β)

n , and Wk+1(L ′) = Wik+1(L) for all k ∈ Z+. We do it by induction:

• i0 = 0, L ′(0) = L(0) = K (β)
n (0) and σ0(L ′) = 0;

• for all k ≥ 0, knowing ik and σk(L ′), let

σk+1(L ′) = σk(L ′) + Wik+1(L),
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with L ′(t) = K (β)
n
(
σk(K (β)

n )
)

for t ∈ [σk(L ′), σk+1(L ′)), and let

ik+1 = inf
{

i ≥ ik + 1 : L(σi (L)) = K (β)
n (σk+1(K (β)

n ))
}
.

This defines L ′ uniquely. Now, let An(k) be the sigma-field generated by the σi (L ′), σi (K (β)
n )

for i ≤ k, the values of L ′ and K (β)
n at these respective jump times, as well as the

X c
n(nβτ (β)

n (σi (K (β)
n ))), i ≤ k. By repeating the previous coupling at each jump, the processes

L , L ′, X c
n, J c

n can be built such that

E
[⏐⏐Wk+1(K (β)

n ) − Wk+1(L ′)
⏐⏐ | An(k), X c

n

(
nβτ (β)

n (σk(K (β)
n ))

)
≥ nε

]
≤ ρ⌊nε⌋ (33)

P
(
ik+1 ̸= ik + 1 | An(k), X c

n

(
nβτ (β)

n (σk(K (β)
n ))

)
≥ nε

)
≤ ρ⌊nε⌋. (34)

In this coupling we can, and will, moreover assume that the jump times of L that are not involved
in L ′ are independent of L ′, X c

n, J c
n .

From now on, let t > 0 be a fixed time. We run the coupling until k reaches the value kmax(n)
defined by

kmax(n) = inf
{

k ∈ N : σk(K (β)
n ) > nγ−β t or X c

n

(
nβτ (β)

n (σk(K (β)
n ))

)
< nε

}
.

We will need a few properties concerning kmax(n) and σkmax(n)(K β
n ).

Lemma 4.12. We have the following:

(i) For all δ > 0, there exists Cδ such that E
[
Wkmax(n)(K (β)

n )
]

≤ Cδnδ for all n large enough.
(ii) There exists C > 0 such that E[kmax(n)] ≤ Cnγ−β for all n large enough.

(iii) nβ−γ σkmax(n)(K β
n ) − t ∧ Sn,ε tends to 0 in L1, as does nβ−γ σkmax(n)(L ′) − t ∧ Sn,ε.

Proof. Before proving (i), we first establish a weaker version of (ii). Note that, by (33), there
exists a > 0 such that, for n ∈ N large enough and all k ∈ N

E
[
Wk(K (β)

n ) | An(k − 1), k ≤ kmax(n)
]

≥ a.

As such, by Wald’s formula (Lemma A.7), we have

aE[kmax(n)] ≤ E
[kmax(n)∑

k=1

Wk(K (β)
n )
]

= E[σkmax(n)(K (β)
n )] = E[σkmax(n)−1(K (β)

n )]

+ E[Wkmax(n)(K (β)
n )]

≤ tnγ−β
+ E[Wkmax(n)(K (β)

n )]. (35)

This will be needed in the proof of (i).
• Point (i) takes more work. As a first step, let us first show that, for all b > 0, there exists cb > 0
such that

E
[(

Wkmax(n)(K (β)
n )
)b
]

≤ cb

(
nγ−β

+ E
[
Wkmax(n)(K (β)

n )
])
. (36)
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Write

E
[(

Wkmax(n)(K (β)
n )
)b
]

=

∞∑
k=1

E
[(

Wk
(
K (β)

n

))b
1{k=kmax(n)}

]
≤

∞∑
k=1

E
[(

Wk
(
K (β)

n

))b
1{k≤kmax(n)}

]
≤

∞∑
k=1

E
[(

Wk(K (β)
n )
)b

| k ≤ kmax(n)
]
P
(
k ≤ kmax(n)

)
.

As before, we can apply the Markov property at time k − 1 and Lemma 4.11 to get a constant c
not depending on n or k such that

E
[(

Wk(K (β)
n )
)b

| k ≤ kmax(n)
]

≤ c.

We can now write

E
[(

Wkmax(n)(K (β)
n )
)b
]

≤ c
∞∑

k=1

P(k ≤ kmax(n))

≤ cE[kmax(n)]

≤ ca−1(nγ−β t + E[Wkmax(n)(K (β)
n )]

)
,

where the last line comes from (35). This gives (36). Now to prove (i), let δ > 0, and b > 1, and
write

E
[
Wkmax(n)(K (β)

n )
]

≤ nδ + E
[
Wkmax(n)(K (β)

n )1
{Wkmax(n)(K (β)

n )>nδ}

]
≤ nδ + n−(b−1)δE

[(
Wkmax(n)(K (β)

n )
)b]

≤ nδ + n−(b−1)δcb

(
nγ−β

+ E
[
Wkmax(n)(K (β)

n )
])
.

Notice that E
[
Wkmax(n)(K (β)

n )
]

is finite for n > 2ε−1 because, with the changes made in
Section 4.4.1, there is at least one change of type after σkmax(n)−1(K (β)

n ), implying Wkmax(n)(K (β)
n ) ≤

T0(Z (β)
n ) which has finite expectation by (27). We can then write

E
[
Wkmax(n)(K (β)

n )
]
(1 − n−(b−1)δcb) ≤ nδ + nγ−β−(b−1)δcb,

which yields (i) if b > max(1, (γ − β)/δ).
• Point (ii) is obtained by combining (35) with point (i).
• For the first part of point (iii), notice that σkmax(n)−1(K (β)

n ) ≤ nγ−β(t ∧ Sn,ε) ≤ σkmax(n)(K (β)
n )

and thus E
[
|nβ−γ σkmax(n)(K (β)

n ) − t ∧ Sn,ε|
]

≤ nβ−γE
[
σkmax(n)(K (β)

n ) − σkmax(n)−1(K (β)
n )
]
. By (i)

and the hypothesis γ > β, we get that E
[
|nβ−γ σkmax(n)(K (β)

n ) − t ∧ Sn,ε|
]

tends to 0. The second
part of (iii) is then reduced to showing that nβ−γ (σkmax(n)(L ′) − σkmax(n)(K (β)

n )) tends to 0 in L1.
Rewriting this as the sum of the differences of the waiting times and then using Wald’s formula
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again we obtain

E
[⏐⏐σkmax(n)(L ′) − σkmax(n)(K (β)

n )
⏐⏐] ≤ E

[kmax(n)∑
k=1

⏐⏐Wk(K (β)
n ) − Wk(L ′)

⏐⏐]
≤

Lemma A.7+(33)
ρ⌊nε⌋E[kmax(n)]

≤
(ii)

Cnγ−βρ⌊nε⌋,

thus ending the proof, since ρ⌊nε⌋ has limit 0. □

4.4.4. Proof of (30)
Let

IL (n) =

∫ t∧Sn,ε

0
δL(nγ−β s)ds, IL ′ (n) =

∫ t∧Sn,ε

0
δL ′(nγ−β s)ds and IK (n)

=

∫ t∧Sn,ε

0
δ

K (β)
n (nγ−β s)ds.

We will argue that both IL ′ (n) − IK (n) and IL (n) − IL ′ (n) converge in L1 to the zero measure
as n goes to infinity, which, combined with (31), will give (30). Since the considered measures
are in a finite-dimensional vector space, we use the simple norm |.| given, for a measure ν on
{1, . . . , κ}, by

|ν| =

κ∑
i=1

|ν(i)|.

• Notice first that, knowing that L ′ and K (β)
n have the same jumps, but simply jump at different

times, we can bound |IL ′ (n) − IK (n)| by⏐⏐IL ′ (n) − IK (n)
⏐⏐ ≤

1
nγ−β

( kmax(n)∑
k=1

⏐⏐Wk(K (β)
n ) − Wk(L ′)

⏐⏐+⏐⏐nγ−β(t ∧ Sn,ε) − σkmax(n)(K (β)
n )
⏐⏐

+
⏐⏐nγ−β(t ∧ Sn,ε) − σkmax(n)(L ′)

⏐⏐).
By Lemma 4.12, the second and third terms in the brackets tend to 0 in L1 when divided by
nγ−β . The first one has already been shown to converge in L1 to 0 at the end of the proof of
Lemma 4.12.
• Comparing IL (n) and IL ′ (n) requires more work. We will, in order, prove that all the following
random variables converge to 0 in L1:

(i) nβ−γ
(
σikmax(n) (L) − σkmax(n)(L ′)

)
,

(ii)
⏐⏐⏐IL ′ (n) − nβ−γ

∑kmax(n)
k=1 Wk(L ′)δL ′(σk−1(L ′))

⏐⏐⏐,
(iii)

⏐⏐⏐IL (n) − nβ−γ
∑ikmax(n)

k=1 Wk(L)δL(σk−1(L))

⏐⏐⏐,
(iv)

⏐⏐IL (n) − IL ′ (n)
⏐⏐.

◦ The proof of (i) relies on two basic observations: for every k, ik+1−ik is, conditionally on An(k)
and k + 1 ≤ kmax(n), equal to 1 with probability at least 1 − ρ⌊nε⌋ (see (34)) and, conditionally
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on it not being equal to 1 (an event with probability less than ρ⌊nε⌋), it is 1 plus some hitting time
of the discrete, finite state space Markov chain embedded in L , and thus bounded in expectation
by irreducibility. We can write

E
[
ik+1 − ik | An(k), k + 1 ≤ kmax(n)

]
≤ 1 + Dρ⌊nε⌋

for some constant D > 0. Moreover, if we additionally condition on the value of ik+1 − ik , then
σik+1 (L) − σik (L) − (σk+1(L ′) − σk(L ′)) is just the time it takes for L to go from L

(
σik+1(L)

)
to

K (β)
n
(
σk+1(K (β)

n )
)
, knowing it needs ik+1 − ik − 1 independent jumps to do so. Thus

E
[
σik+1 (L) − σik (L) − (σk+1(L ′) − σk(L ′)) | An(k), k + 1 ≤ kmax(n), ik+1 − ik

]
≤ D′(ik+1 − ik − 1)

where D′
= sup

i∈{1,...,κ}
1/|qi,i |. So finally,

E
[
σik+1 (L) − σik (L) − (σk+1(L ′) − σk(L ′)) | k + 1 ≤ kmax(n)

]
≤ D′ Dρ⌊nε⌋. (37)

Write then

E
[
σikmax(n) (L) − σkmax(n)(L ′)

]
= E

[kmax(n)−1∑
k=0

σik+1 (L) − σik (L)

−
(
σk+1(L ′) − σk(L ′)

)]
≤

(37)+Lemma A.7
D′ Dρ⌊nε⌋E

[
kmax(n)

]
and by Lemma 4.12 (ii), this tends to 0 when multiplied by nβ−γ .
◦ Item (ii) is proved by noting that⏐⏐⏐⏐IL ′ (n) − nβ−γ

kmax(n)∑
k=1

Wk(L ′)δL ′(σk−1(L ′))

⏐⏐⏐⏐ =

⏐⏐⏐⏐nβ−γ σkmax(n)(L ′) − t ∧ Sn,ε

⏐⏐⏐⏐,
and so its limit is 0 by Lemma 4.12 (iii).
◦ For (iii), notice similarly that⏐⏐⏐⏐IL (n) − nβ−γ

ikmax(n)∑
k=1

Wk(L)δL(σk−1(L))

⏐⏐⏐⏐ =

⏐⏐⏐⏐nβ−γ σikmax(n) (L) − t ∧ Sn,ε

⏐⏐⏐⏐,
and so its limit is 0 by (i) and Lemma 4.12(iii).
◦ Finally for (iv), notice first that, by (ii) and (iii),

lim
n→∞

⏐⏐IL (n) − IL ′ (n)
⏐⏐ = lim

n→∞
nβ−γ

⏐⏐⏐⏐ ikmax(n)∑
k=1

Wk(L)δL(σk−1(L)) −

kmax(n)∑
k=1

Wk(L ′)δL ′(σk−1(L ′))

⏐⏐⏐⏐.
Note that, by construction, for all k ≤ kmax(n), the kth term of the second sum is equal to the
(ik−1 + 1)th term in the first one, and so we can write⏐⏐⏐⏐ ik∑

i=ik−1+1

Wi (L)δL(σi−1(L)) − Wk(L ′)δL ′(σk−1(L ′))

⏐⏐⏐⏐ ≤

ik∑
i=ik−1+1

Wi (L) − Wk(L ′).
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Summing over k, we have⏐⏐⏐⏐ ikmax(n)∑
k=1

Wk(L)δL(σk−1(L)) −

kmax(n)∑
k=1

Wk(L ′)δL ′(σk−1(L ′))

⏐⏐⏐⏐ ≤

kmax(n)∑
k=1

(
σik (L) − σik−1 (L)

− (σk(L ′) − σk−1(L ′))
)

≤ σikmax(n) (L) − σkmax(n)(L ′),

and (i) ends the proof of (iv). □

5. Solo regime

We now focus on cases where the rate of type change is much smaller than the rate of
macroscopic jumps. The chain will therefore not change type in the scaling limit, with a dynamic
that only depends on its initial type, which brings us back to the standard monotype setting.

Hypothesis (Hsol). We fix a type i ∈ {1, . . . , κ} and assume that there exists γ > 0 such that:

(i) There exists a non-trivial, finite measure µ(i) on [0, 1] such that for all continuous
functions f : [0, 1] → R,

nγ
n∑

m=0

f
(m

n

) (
1 −

m
n

)
pn,i (m, i) −→

n→∞

∫
[0,1]

f (x)µ(i)(dx).

(ii) Moreover, ∑
j∈{1,...,κ}\{i}

Pn(i, j) = o(n−γ ).

As before, we let Z (i)
n denote the Lamperti transform of X (i)

n defined by (10) via the time-change
(9).

Theorem 5.1. Fix a type i ∈ {1, . . . , κ} and assume (Hsol) for i .
(i) Then,(

X (i)
n (⌊nγ ·⌋)

n
, Z (i)

n (⌊nγ ·⌋)
)

(d)
−→
n→∞

(
X (i), Z (i)),

where − log(Z (i)) is a subordinator with Laplace transform

ψi (q) = µ(i)({0}) + µ(i)({1})q +

∫
(0,1)

(
1 − xq

1 − x

)
µ(i)(dx),

and X (i) is the γ -Lamperti transform of Z (i).
(ii) Assume moreover that lim infn→∞n−γ

∑⌊rn⌋

k=0
∑

l∈{1,...,κ} pn, j (k, ℓ) > 0 for some r < 1 and
all types j . Then, jointly with the previous convergence

A(i)
n

nγ
(d)

−→
n→∞

I (i),

with I (i) the extinction time of X (i). Additionally, there is convergence of all positive moments of
A(i)

n /nγ to those of I (i), which are all finite.
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Remark. In words, the additional assumption in Theorem 5.1 (ii) says that the probability of
doing a jump larger than n−⌊rn⌋ is asymptotically larger than cn−γ for some c > 0, whatever the
starting type j . This assumption is probably too strong to get the conclusion of (ii) - for example,
in the case where pn,i (n, i) = 1−n−γ , pn,i (⌊n/2⌋, i) = n−γ and

∑
j∈{1,...,κ}\{i} Pn(i, j) = n−γ−ε,

ε > 0, one can check that both (i) and (ii) hold, without any additional assumption. However we
are not able to prove that (Hsol) alone implies the convergence of the absorption times in general.

Proof. (i). Let T type
n be the first time at which X (i)

n either changes its type, or is absorbed. Then,
consider the transition probabilities defined for n,m ∈ Z+,m ≤ n, by

qn(m) =

∑
j∈{1,...,κ}

pn,i (m, j).

Otherwise said, qn is the distribution of X (i)
n (1). Consider also the transition probabilities also

defined for n,m ∈ Z+,m ≤ n, by

rn(m) = pn,i (l, i) when m ≥ 1 and rn(0) = pn,i (0, i) +

∑
j∈{1,...,κ}\{i},l≤n

pn,i (m, j),

which corresponds to the dynamics of the chain X (i)
n sent to 0 at time T type

n . We can then couple
the construction of (X (i)

n , J (i)
n ) with that of two Markov chains X (q)

n , X (r)
n on Z+ starting from n,

with respective transition probabilities (qn(m)), (rn(m)) and such that

X (i)
n (k) = X (q)

n (k), ∀0 ≤ k ≤ T type
n and X (r)

n (k) = X (i)
n (k)1

{k≤T type
n −1}

, ∀k ≥ 0.

Next, note that (i) and (ii) of (Hsol) imply the convergences

nγ
n∑

m=0

f
(m

n

) (
1 −

m
n

)
qn(m) −→

n→∞

∫
[0,1]

f (x)µ(i)(dx),

nγ
n∑

m=0

f
(m

n

) (
1 −

m
n

)
rn(m) −→

n→∞

∫
[0,1]

f (x)µ(i)(dx),

for all continuous f : [0, 1] → R. This, together with Theorem 1 and Theorem 2 of [19], implies
in turn that(

X (r)
n (⌊nγ ·⌋)

n
,

A(r)
n

nγ

)
(d)

−→
n→∞

(
X (i), I (i)) , (

X (q)
n (⌊nγ ·⌋)

n
,

A(q)
n

nγ

)
(d)

−→
n→∞

(
X (i), I (i)) , (38)

with obvious notation, as well as the convergence of all positive moments of n−γ A(r)
n and n−γ A(q)

n

to those of I (i). Note also that

T type
n = A(r)

n and A(q)
n = T type

n + Ã(q)

X (q)
n (T type

n )
,

with Ã(q) a process distributed as A(q), independent of X (q)
n (T type

n ) (for this we use that T type
n

is a randomized stopping time for X (q)
n ). This, together with (38), implies that n−γ Ã(q)

X (q)
n (T type

n )
converges to 0 in probability, which in turn implies that

X (i)
n (T type

n )
n

=
X (q)

n (T type
n )

n
P

−→
n→∞

0 (39)



B. Haas, R. Stephenson / Stochastic Processes and their Applications 128 (2018) 3558–3605 3597

(note that I (i) > 0 a.s.). So, finally, we have that

X (r)
n (⌊nγ ·⌋)

n
(d)

−→
n→∞

X (i), for the Skorokhod topology

and  X (i)
n (⌊nγ ·⌋)

n
−

X (r)
n (⌊nγ ·⌋)

n


∞

≤
X (i)

n (T type
n )

n
P

−→
n→∞

0

and we conclude with a Slutsky-type argument that n−1 X (i)
n (⌊nγ ·⌋)

(d)
−→
n→∞

X (i).

(ii) With our additional assumption, it is easy to prove, in a way very similar to the proof of
Lemma 3.5, that for all a ≥ 0 and all types j ,

sup
n∈N

E

[(
A( j)

n

nγ

)a]
< ∞. (40)

Then, using the Markov property at time T type
n , we write

A(i)
n = T type

n + Ã(J (i)
n (T type

n ))

X (i)
n (T type

n )

with ( Ã( j)
k , k ≥ 0, j ∈ {1, . . . , κ}) distributed as (A( j)

k , k ≥ 0, j ∈ {1, . . . , κ}) and independent
of (J (i)

n (T type
n ), X (i)

n (T type
n )). By (40) and (39), we have that

Ã(J (i)
n (T type

n ))

X (i)
n (T type

n )

nγ
La

−→
n→∞

0

for all a ≥ 0. Besides, Theorem 1 and Theorem 2 of [19] imply (38) and the convergence of all
positive moments of n−γ A(r)

n (equivalently n−γ T type
n ) to those of I (i). All this together implies the

convergence in distribution of n−γ A(i)
n to I (i) and that E

[
(n−γ A(i)

n )a
]
< ∞ for all a ≥ 0. Hence

the conclusion. □

6. Applications

As mentioned in the Introduction, the description of the scaling limits of non-increasing
Markov chains on Z+ was an essential tool to describe the scaling limits of several random
objects: random walks, coalescence or fragmentation-coalescence processes, trees, maps.

Our initial motivation to extend these results to Markov chains on Z+ × {1, . . . , κ} was to
develop applications to the scaling limits of multi-type Markov branching trees, which is a natural
family of trees carrying types, that includes some models of randomly growing trees, and multi-
type Galton–Watson trees. These applications require some work and will be developed in the
upcoming paper [23].

There are however others interesting, and more direct, applications. We mention here two of
them.

6.1. Collisions in coalescents in varying environment

The Λ-coalescents were introduced by [30] and [31] and studied by several authors since then.
These models allow multiple collisions (i.e more than 2 particles may coalesce at once) and the
coalescing mechanism is driven by a finite measure on [0, 1], usually denoted by Λ. Roughly,
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such a process takes its values in the set of partitions of N, is Markovian, exchangeable, and such
that the rate at which n particles (blocks) coalesce into k particles (blocks), for 1 ≤ k ≤ n − 1, is

rn(k) =

(
n

k − 1

)∫
[0,1]

xn−k−1(1 − x)k−1Λ(dx), 1 ≤ k ≤ n − 1.

The case where Λ = δ0 corresponds to Kingman’s coalescent. We refer to [6] for a review on
that topic.

We consider here a variation of this model where the environment may influence the
coalescing mechanism, which is therefore allowed to vary from generation to generation. A
generalization in the same spirit was already considered in [29].
Coalescing mechanism. We assume that there are κ possible environments. Let Λ(i), 1 ≤ i ≤ κ

be κ finite, non-trivial measures on [0, 1] such that Λ(i)({0}) = 0 and∫
[u,1]

x−2Λ(i)(dx) ∼
u→0

c(i)u−γ (41)

for some γ ∈ (0, 1) and some strictly positive constants c(i), 1 ≤ i ≤ κ . To each of these
measures, we associate the following Laplace exponent

ψ (i)(q) =
1

Γ (2 − γ )c(i)

∫
[0,1]

(
1 − (1 − x)q) x−2Λ(i)(dx). (42)

Besides, we let Pn, n ≥ 1 be κ × κ stochastic matrices such that

nβ (Pn − I ) →
n→∞

Q (43)

for some β ≥ 0 and some irreducible Q-matrix Q, and hence a unique stationary distribution
denoted by π = (π (i), 1 ≤ i ≤ κ).

The coalescing mechanism then evolves as follows. In environment i , the particles coalesce
according to the mechanism Λ(i), i.e., the probability that n particles coalesce into k particles is

p(i)
n (k) =

1

Z (i)
n

(
n

k − 1

)∫
[0,1]

xn−k−1(1 − x)k−1Λ(i)(dx), 1 ≤ k ≤ n − 1

where Z (i)
n is a normalizing constant. Moreover, the probability that the environment changes

from i to j when n particles coalesce is Pn(i, j), so that the transition probabilities of our chain
on Z+ × {1, . . . , κ} is

pn,i (k, j) = Pn(i, j)p(i)
n (k).

When the matrix Pn is constant, independent of n, this corresponds to situations where the change
of environment does not depend on the number of present particles.
Number of collisions. Starting from n large, the quantity we are interested in is the total number
of collisions (that is, the number of steps) until all the n initial particles have coalesced in a unique
particle. We let C (i)

n denote this random variable when the n initial particles are in environment
i . When there is a unique environment (κ = 1), this question has been treated by several authors
[17,16,25,24,19,15]. In a varying environment, we obtain as a direct consequence of our results:

Theorem 6.1. Assuming (41) and (43), we have for all i0 ∈ {1, . . . , κ},

C (i0)
n

nγ
(d)

−→
n→∞

∫
∞

0
exp(−γ ξr )dr
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where,

(i) If β = γ : ξ is the first marginal of a MAP (ξ, J ) on R+ × {1, . . . , κ}, starting from
(ξ (0), J (0)) = (0, i0) and with characteristics:

◦ λi, j = Q(i, j) and Bi, j = δ0 for all i ̸= j
◦ (1 + Q(i, i)1{β=0})ψ (i), with ψ (i) as defined in (42), for all types i .

(ii) If 0 ≤ β < γ : ξ is a subordinator with Laplace exponent
∑κ

i=1π (i)ψ (i).

(iii) If β > γ > 0: ξ is a subordinator with Laplace exponent ψ (i0).

There is also convergence of all positive moments of C (i0)
n /nγ to those of

∫
∞

0 exp(−γ ξr )dr .
Moreover: if we denote by X (i0)

n (k), k ≥ 0 the number of particles after k collision steps, starting
from n particles in environment i0,

X (i0)
n (⌊nγ ·⌋)

n
(d)

−→
n→∞

exp(−ξρ),

where ρ is the usual time-change ρ(t) = inf{u ≥ 0 :
∫ u

0 exp(−γ ξr )dr > t}.

Proof. By Lemma 8 and Lemma 9 of [19], we know that under (41),

nγ
n∑

k=0

(
1 −

(
k
n

)q)
p(i)

n (k) −→
n→∞

ψ (i)(q), for all q ≥ 0.

which, together with Hypothesis (43) and Theorems 3.1, 3.2, 4.1, 4.2 and 5.1 readily yields the
result. □

6.2. Markov random walks with a barrier

Random walks with barriers are variants of the usual random walks with i.i.d. increments,
conditioned on not going over or below some fixed real numbers. In [19] and [25], where
they were also linked to some coalescent processes, some results on their scaling limits are
established, in particular when the increments are heavy-tailed. We generalize these in a simple
multi-type setting.

We consider a Markov random walk
(
(Sk, Jk), k ≥ 0

)
on Z × {1, . . . , κ}. This process is the

discrete analogue of a MAP and a natural generalization of a random walk with i.i.d. increments.
It is a process such that, conditionally on Fk , where Fk is the sigma-field generated by (Sl , Jl)
for l ≤ k, the distribution of (Sk+1 − Sk, Jk+1) only depends on Jk . Otherwise said, (Jk)k≥0 is
a Markov chain on {1, . . . , κ} (often called the driving chain) and, if J jumps from i to j , then
the corresponding jump of S has a distribution (q (i, j)

m ,m ∈ Z) independently of the past, where
the (q (i, j)

m ,m ∈ Z) are probability distributions on Z. We focus exclusively on the case where
(Sk, k ≥ 0) is nondecreasing i.e. the jump distributions (q (i, j)

m ,m ∈ Z) are supported on Z+. In
this case, the process is also sometimes referred to as a Markov renewal process. For background
on these processes, we refer to the work of Alsmeyer [3] and the references therein.

We will consider a variant of the Markov random walk which has a barrier at an integer n ∈ N.
Informally, this is a version of

(
(Sk, Jk), k ≥ 0

)
such that each jump of (S, J ) is conditioned on

not taking the S component higher than level n. To be specific, let n ∈ N, P = (P(i, j))1≤i, j≤κ
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be a stochastic matrix, and for i, j ∈ {1, . . . , κ} and k ∈ Z+, set

qk
(i, j)

=

∑
l≥k+1

q (i, j)
l and qk

(i)
=

∑
j ′∈{1,...,κ}

P(i, j ′)qk
(i, j ′).

We define a Markov chain
(
(Sn(k), Jn(k)), k ≥ 0

)
on {0, . . . , n} × {1, . . . , κ} with the explicit

jump rates q{n}

s,i (t, j) given by, for (i, j, s, t) ∈ {1, . . . , κ}2
× {0, . . . , n}

2, s ≤ t :

q{n}

s,i (t, j) =

⎧⎨⎩
P(i, j)q (i, j)

t−s

1 − qn−s
(i) if qn−s

(i) < 1,

1{t=s} P(i, j) if qn−s
(i)

= 1.

Moreover, we always start with S0(n) = 0, while J0(n) is deterministic. Under this setting, it is
clear that, letting Xn(k) = n − Sn(k), the process(

(Xn(k), Jn(k)), k ≥ 0
)

is a Markov chain on {0, . . . , n} × {1, . . . , κ}, and its transition probabilities are given by

ps,i (t, j) =

⎧⎨⎩
P(i, j)q (i, j)

s−t

1 − qs
(i) if qs

(i) < 1,

1{t=s} P(i, j) if qs
(i)

= 1.

These do not depend on n, and as such fall under the framework of the paper. Hence we use again
the notation (X (i)

n (k), J (i)
n (k)) to signify that the starting point is (n, i).

We can then give under a few conditions the scaling limit of Xn and its absorption time An .
To this end, notice first that for n large enough and fixed i, j ,

n∑
k=0

pn,i (k, j) =
1 − qn

(i, j)

1 − qn
(i) P(i, j) −→

n→∞
P(i, j).

In other words, when n is large, the types behave as a random walk with transition matrix P ,
which means that we could only end up in the mixing regime, with β = 0 and Q = P − I .

Theorem 6.2. We assume that the matrix P is irreducible, and call π its invariant measure.
(i) Let γ ∈ (0, 1) and assume that, for all i, j ∈ {1, . . . , κ}, there exists ai > 0 such that

nγ qn
(i) converges to ai . Then((

X (i)
n (⌊nγ t⌋)

n
, t ≥ 0

)
,

A(i)
n

nγ

)
(d)

−→
n→∞

((
Zρ(t), t ≥ 0

)
,

∫
∞

0
(Z t )γ dt

)
,

where − log Z is a subordinator with Laplace exponent ψ defined for λ ≥ 0 by

ψ(λ) =

κ∑
i=1

πi ai

∫
∞

0
(1 − e−γ x )

γ e−x dx
(1 − e−x )γ+1

and ρ(t) = inf
{
u ≥ 0 :

∫ u
0 Z (r )γ dr > t

}
.We also have convergence of all positive moments for

the second coordinate.
(ii) Assume that, for all i ∈ {1, . . . , κ}, mi :=

∑κ
j=1
∑

∞

k=1k P(i, j)q (i, j)
k is finite. Then, letting

m =
∑κ

i=1mi , we have((
X (i)

n (⌊nt⌋)
n

, t ≥ 0
)
,

A(i)
n

n

)
(d)

−→
n→∞

((
(1 − mt) ∨ 0, t ≥ 0

)
,

1
m

)
.

We also have convergence of all positive moments for the second coordinate.
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Proof. Having in mind the remark above the theorem, we now just need to properly apply
Theorem 4.2 to both cases. For point (i), we have to prove that, for i ∈ {1, . . . , κ}, and f a
continuous function on [0, 1],

1
nγ

n∑
k=0

κ∑
j=1

P(i, j)q (i, j)
n−k

1 − qn
(i)

(
1 −

k
n

)
f
( k

n

)
−→
n→∞

aiγ

∫ 1

0
f (x)(1 − x)−γ dx .

We can restrict ourselves to the case where f is continuously differentiable, and we end up
with the same computation as in the proof of Theorem 3 in [19], part (i), we do not repeat it
here. Similarly, for point (ii), noticing that (1 − mt ∨ 0, t ≥ 0) is the Lamperti transform of the
subordinator (mt, t ≥ 0), we have to prove that

n
n∑

k=0

κ∑
j=1

P(i, j)q (i, j)
n−k

1 − qn
(i)

(
1 −

k
n

)
f
( k

n

)
−→
n→∞

mi f (1).

By Proposition 3 of [19], we can restrict ourselves to f (x) =
1−xλ
1−x for λ > 0 (extended by

f (1) = λ), in which case the proof, once again, bears no difference to that of part (ii) of Theorem
3 of [19]. □

Remark. One could imagine various other models of Markov random walks with a barrier. For
example, instead of conditioning the walk on not taking the S component higher than n, we could
have killed the walk the first time that S exceeds n. Or we could imagine a model where the types
still form a Markov chain with transition matrix P and we only condition the position component
to not jump over n. The results one gets for these models have mostly the same flavor, and thus
we do not present them here.
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Appendix

A.1. A few results on the Skorokhod topology

We start with the proof of Lemma 1.3 and then settle a few lemmas useful for the proof of
Lemmas 3.3 and 4.10

Proof of Lemma 1.3. For (i), notice first that, by standard arguments, since the τn are
all increasing, we only need to show pointwise convergence. For t < T0(g) this is simple,
since, given f (τ (t)) > 0, the equation

∫ τn (t)
0 fn(r )αdr = t shows that τn(t) cannot have any

subsequential limit which is larger or smaller than τ (t). For t ≥ T0(g) (such that f (τ (t)) = 0),
we have by definition τ (t) = T0( f ), and must then show that τn(t) → T0( f ). It is a direct
consequence of the Skorokhod convergence of fn to f that lim inf τn(t) ≥ T0( f ). For the limsup,
let a > T0( f ), assume that a subsequence of τn(t) is greater than a. Along this subsequence, we
then have τn(t) − a ≤ fn(a)−α(t − τ (−1)

n (a)), which implies t ≥ fn(a)α(τn(t) − a). However,
since a > T0( f ), fn(a) tends to 0 and thus this implies that τn(t) converges to a, a contradiction
since we could replace a by (a + T0( f ))/2.
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Point (ii) is then an easy consequence of point (i). Recall that there exists for n ∈ N a time-
change λn which converges uniformly on compact sets to the identity function, such that fn ◦ λn

converges uniformly to f on compact sets. Then, letting µn = τ (−1)
n ◦ λn ◦ τ , µn also converges

uniformly on compact sets to the identity, and gn ◦ µn converges uniformly on compact sets
to g. □

Now, for all pairs of functions f, g in D ([0,∞), [0,∞)) and all t > 0, we define a new
function glue[t]( f, g) ∈ D ([0,∞), [0,∞)) as follows:

glue[t]( f, g)(s) = f (s), ∀s < t, glue[t]( f, g)(s) = g(s − t), ∀s ≥ t. (44)

Lemma A.1. Assume that:

• fn → f in D ([0,∞), [0,∞)), with fn non-increasing
• gn → g in D ([0,∞), [0,∞))
• tn ∈ R+ → t ∈ R+

• fn(tn−) → f (t−).

Then,

glue[tn ]( fn, gn) −→ glue[t]( f, g) in D ([0,∞), [0,∞)) .

Proof. We use for this Proposition 6.5, chapter 3 of [14]. Since fn and gn converge in the
Skorokhod sense, it is easy to see that conditions (a),(b),(c) of this proposition are satisfied
for every time s ̸= t . For s = t , let sn → t . If sn ≥ tn for all n large enough, then
hn(sn) = gn(sn − tn) → g(0) = h(t). If sn < tn for all n large enough, then hn(sn) = fn(sn). Let
ε > 0 such that fn(t − ε) → f (t − ε) (recall that this holds for every ε > 0 such that t − ε is not
a jump time of f ). Since fn is non-increasing, we have fn(tn−) ≤ fn(sn) ≤ fn(t − ε) for n large
enough, hence

f (t−) ≤ lim inf
n

fn(sn) ≤ lim sup
n

fn(sn) ≤ f (t − ε).

We conclude, by letting ε → 0 along an appropriate subsequence, that fn(sn) → f (t−) =

h(t−). Hence assertions (a),(b) and (c) of Proposition 6.5 are satisfied for hn, h and the result
follows. □

Lemma A.2. Let fn, f be non-increasing non-negative càdlàg functions such that

fn −→
n→∞

f on D([0,∞), [0,∞)).

Assume that tn = inf{s : fn(s) = 0} → t = inf{s : f (s) = 0} < ∞.

(i) If moreover f (t−) > 0 and lim inf fn(tn−) > 0, then fn(tn−) → f (t−).
(ii) If f (t−) = 0, then fn(tn−) → 0 = f (t−).

However it is easy to build examples where fn(tn−) → 0 whereas f (t−) > 0 (e.g.
f (s) = 1{s<1}, fn(s) = 1{s<1} + n−11{1≤s<1+n−1}).

Proof. Case (i). By definition of the Skorokhod topology, we know that there is a sequence of
times sn → t such that fn(sn−) → f (t−) and fn(sn) → f (t) = 0. Note that since the functions
fn are non-increasing and since lim inf fn(tn−) > 0, we necessarily have that sn ≥ tn for all
n large enough. On the other hand, if sn > tn , then fn(sn−) = 0, and this is not possible for



B. Haas, R. Stephenson / Stochastic Processes and their Applications 128 (2018) 3558–3605 3603

n large enough since fn(sn−) → f (t−) > 0. So finally sn = tn for all n large enough and
fn(tn−) → f (t−).

Case (ii). For all δ > 0, let ε > 0 such that f (t − ε) ≤ δ and fn(t − ε) → f (t − ε)
(such an ε exists since fn(s) → f (s) for a.e. s). Since the fn are non-increasing, this leads to
lim supn fn(tn−) ≤ δ for all δ > 0. □

Lemma A.3. Suppose that fn and f are càdlàg functions on [0, 1] such that fn converges to f
in the Skorokhod topology. Then fn also converges to f in L1([0, 1]).

Proof. Let ε > 0. We know that, for n large enough, there exists a continuous and increasing
time-change τn such that |τn(x) − x | ≤ ε and | fn(x) − f (τn(x))| ≤ ε for all x ∈ [0, 1]. Letting
f (x, ε) = sup

|y−x |≤ε

f (y) and f (x, ε) = inf
|y−x |≤ε

f (y), we then have

f (·, ε) − ε ≤ fn ≤ f (·, ε) + ε.

The proof is ended by noting that both f (·, ε) and f (·, ε) converge in L1 to f by the monotone
convergence theorem, since f is bounded and has countably many discontinuities. □

A.2. Weak convergence in probability of measures

The notion of weak convergence of finite measures on [0,∞) can be metrized by the
Prokhorov metric, defined by

d(µ, ν) := inf {ε > 0 | µ(A) ≤ ν(Aε) + ε and ν(A) ≤ µ(Aε) + ε for all A ∈ B(M)} ,

where µ and ν are two finite measures on [0,∞) and Aε denotes the ε-enlargement of A.
With this metric then comes a notion of convergence in probability for random measures. We

list here a few elementary properties which are of use. In all three upcoming lemmas, (µn, n ∈ N)
and µ are some random finite measures on [0,∞).

Lemma A.4. As n tends to infinity, µn converges in probability to µ if and only if, for any
subsequence of (µn, n ∈ N), one can extract another subsequence which converges a.s. to µ.

This is classical, and in fact true for random variables in any metric space, not just random
measures. The next lemma is just a consequence of the fact that continuous maps preserve
convergence in distribution.

Lemma A.5. Assume that µn converges in probability to µ and let f be a continu-
ous and bounded function on [0,∞). Then

∫
[0,∞) f (x)dµn(x) converges in probability to∫

[0,∞) f (x)dµ(x)

We end with a partial variant of the Portmanteau theorem in probability.

Lemma A.6. Assume that, for all t ≥ 0, µn([0, t]) converges in probability to µ([0, t]) as n
tends to infinity. Then µn converges in probability to µ.

Proof. We use Lemma A.4: let (νn, n ∈ N) be an extracted subsequence, and we will extract
from it a subsequence which converges a.s. to µ. Let (tk, k ∈ N) be an enumeration of the
nonnegative rational numbers. We then let σ1 be an extraction such that νσ1(n)([0, t1]) converges
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a.s. to µ([0, t1]), then extract σ2 from σ1 such that νσ2(n)([0, t2]) converges a.s. to µ([0, t2]), and
so on: for all k, σk is an extraction such that νσk (n)([0, ti ]) converges a.s. to µ([0, ti ]) for all i ≤ k.
We then do a diagonal extraction and let σ (n) = σn(n), and we then get that, for all rational t ,
νσ (n)([0, t]) converges a.s. to µ([0, t]). Now for irrational t , we get by monotonicity arguments

µ([0, t)) ≤ lim inf νσ (n)([0, t]) ≤ lim sup νσ (n)([0, t]) ≤ µ([0, t]).

Thus, if t is a continuity point of µ([0, ·]), νσ (n)([0, t]) converges to µ([0, ·]), and by the
Portmanteau theorem, νσ (n) converges a.s. to µ. This ends the proof. □

A.3. Wald’s formula

We use the following variant of Wald’s formula:

Lemma A.7. Let Xn, n ≥ 1 be real-valued random variables, N a random integer, and assume
that there exists a ≥ 0 such that, for all n, E[Xn | N ≥ n] ≥ a, then

E

[
N∑

i=1

X i

]
≥ aE[N ].

This stays true if we swap ≤ for ≥.

Proof. Just notice that E
[∑N

i=1 X i
]

=
∑

∞

i=1E
[
X i1{N≥i}

]
≥
∑

∞

i=1aP[N ≥ i] = aE[N ]. □
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