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Abstract We consider a family of fragmentation processes where the rate at which
a particle splits is proportional to a function of its mass. Let F

(m)
1 (t),F

(m)
2 (t), . . .

denote the decreasing rearrangement of the masses present at time t in a such process,
starting from an initial mass m. Let then m → ∞. Under an assumption of regular
variation type on the dynamics of the fragmentation, we prove that the sequence
(F

(m)
2 ,F

(m)
3 , . . .) converges in distribution, with respect to the Skorohod topology, to

a fragmentation with immigration process. This holds jointly with the convergence
of m − F

(m)
1 to a stable subordinator. A continuum random tree counterpart of this

result is also given: the continuum random tree describing the genealogy of a self-
similar fragmentation satisfying the required assumption and starting from a mass
converging to ∞ will converge to a tree with a spine coding a fragmentation with
immigration.

Keywords Fragmentation · Immigration · Weak convergence · Regular variation ·
Continuum random tree

Mathematics Subject Classification (2000) 60J25 · 60F05

1 Introduction and Main Results

We consider Markovian models for the evolution of systems of particles that undergo
splitting, so that each particle evolves independently of others with a splitting rate
proportional to a function of its mass. In [8], Bertoin obtains such fragmentation
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model with some self-similarity property by cutting the Brownian Continuum Ran-
dom Tree (CRT) of Aldous [1, 2] as follows: for all t ≥ 0, remove all the vertices of
the Brownian CRT that are located under height t and consider the connected com-
ponents of the remaining vertices. Next, set FBr ,(1)(t) := (F

Br ,(1)
1 (t),F

Br ,(1)
2 (t), . . .)

for the decreasing sequence of masses of these connected components: FBr,(1) is
then a fragmentation process starting from (1,0, . . .) where fragments split with a
rate proportional to their mass to the power −1/2.

On the other hand, Aldous [1] shows that the Brownian CRT rescaled by a factor
1/ε converges in distribution to an infinite CRT composed by an infinite baseline
[0,∞) on which are attached compact CRT’s distributed, up to a scaling factor, as
the Brownian CRT. In terms of fragmentations, his result implies that

ε−2(F
Br ,(1)
2 (ε·),FBr ,(1)

3 (ε·), . . .) law→ FIBr as ε → 0,

where FIBr is some fragmentation with immigration process constructed from the
infinite Brownian CRT of Aldous. Equivalently, if FBr ,(m) denotes the Brownian frag-
mentation starting from (m,0, . . .), m ≥ 0,

(F
Br ,(m)
2 ,F

Br ,(m)
3 , . . .)

law→ FIBr as m → ∞.

Motivated by this example, our goal is to characterized in terms of fragmentation
with immigration processes the limiting behavior of

(m − F
(m)
1 ,F

(m)
2 ,F

(m)
3 , . . .) as m → ∞

for some general fragmentations F (m) where the rates at which particles split are
proportional to a function τ of their mass. In cases where τ is a power function, this
will give the asymptotic behavior of (1 − F (1)(ε·),F (1)

2 (ε·), . . .) as ε → 0.

This paper is organized as follows. In the remainder of this section, we first intro-
duce the fragmentation and fragmentation with immigration processes we will work
with (Subsect. 1.1) and then state the main results on the limiting behavior of F (m)

(Subsect. 1.2). These results are proved in Sect. 2. Sections 3, 4 and 5 are devoted
to fragmentations with a power function τ . Section 3 concerns the behavior near 0
of such fragmentations starting from (1,0, . . .). Section 4 deals with the asymptotic
behavior as m → ∞ of some CRT representations of the fragmentations F (m). Sec-
tion 5 is an application of these results to a family of fragmentations, namely the
“stable fragmentations”, introduced by Miermont [26, 27]. Last, an Appendix con-
tains some technical proofs and some generalization of our results to fragmentations
with erosion.

1.1 Fragmentation and Fragmentation with Immigration Processes

1.1.1 (τ ,ν)-Fragmentations

For us, the only distinguishing feature of a particle is its mass, so that the fragmen-
tation system is characterized at a given time by the decreasing sequence s1 ≥ s2 ≥
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· · · ≥ 0 of masses of particles present at that time. We shall then work in the state
space

l
↓
1 :=

{
s = (si)i≥1 : s1 ≥ s2 ≥ · · · ≥ 0 :

∑
i≥1

si < ∞
}

which is equipped with the distance

d(s, s′) :=
∑
i≥1

|si − s′
i |.

The dust state (0,0, . . .) is rather denoted by 0. Consider then (F (t), t ≥ 0), a
càdlàg l

↓
1 -valued Markov process, and denote by F (m) a version of F starting from

(m,0, . . .), m ≥ 0.

Definition 1 The process F is called a fragmentation process if
• for all m, t ≥ 0,

∑
i≥1 F

(m)
i (t) ≤ m

• for all t0 ≥ 0, conditionally on F(t0) = (s1, s2, . . .), (F (t0 + t), t ≥ 0) is distrib-
uted as the process of the decreasing rearrangements of F (s1)(t), F (s2)(t), . . . where
the F (si)’s are independent versions of F starting respectively from (si ,0,0, . . .),

i ≥ 1.

When F (m) law= mF(1) for all m ≥ 0, the fragmentation is usually called homoge-
neous. Such homogeneous processes have been studied by Bertoin [7] and Berestycki
[4]. In particular, one knows that when the process is pure-jump, its law is character-
ized by a so-called dislocation measure ν on

l
↓
1,≤1 :=

{
s ∈ l

↓
1 :

∑
i≥1

si ≤ 1, s1 < 1

}

that integrates (1 − s1) and that describes the jumps of the process. Informally,
each mass s will split into masses ss1, ss2, . . . ,

∑
i≥1 si ≤ 1, at rate ν(ds). We

call such process a ν-homogeneous fragmentation. To be more precise, the pa-
pers [4, 7] give a construction of the fragmentation based on a Poisson point
process (ti , (s(ti), k(ti)))i≥1 on l

↓
1,≤1 × N (N = {1,2, . . . }) with intensity measure

ν ⊗ #, where # denotes the counting measure on N. The construction is so that,
at each time ti , the k(ti)-th mass F

(m)
k(ti )

(ti−) splits in masses s1(ti)F
(m)
k(ti )

(ti−),

s2(ti)F
(m)
k(ti )

(ti−), . . . , the other masses being unchanged. The sequence F (m)(ti) is
then the decreasing rearrangement of these new masses and of the unchanged masses
F

(m)
k (ti−), k 
= k(ti). When ν is finite, this means that each particle with mass s waits

an exponential time with parameter ν(l
↓
1,≤1) before splitting, and when it splits, it di-

vides into particles with masses sS1, sS2, . . . , where (S1, S2, . . .) is independent of

the splitting time and is distributed according to ν(·)/ν(l
↓
1,≤1). When ν is infinite, the

particles split immediately.
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General Setting In this paper, we are more generally interested in pure-jump frag-
mentation processes where particles with mass s split at rate τ(s)ν(ds), where

– τ is a continuous strictly positive function on (0,∞)

– τ is monotone near 0
– ν is a dislocation measure on l

↓
1,≤1, i.e.

∫
l
↓
1,≤1

(1 − s1)ν(ds) < ∞ (H)

– ν(l
↓
1,≤1) = ∞

– ν(
∑

i≥1 si < 1) = 0.

The latter hypothesis on ν means that the particles do not lose mass within sudden
dislocations. The fact that ν is infinite will be essential in the assumptions of our main
theorems (forthcoming Theorems 5 and 7; see also Lemma 6).

Construction The distribution of each (τ, ν)-fragmentation is constructed through
time-changes of a ν-homogeneous fragmentation starting from (1,0, . . .) in the fol-
lowing manner (see [17] for details): let F (1),hom be a ν-homogeneous fragmenta-
tion starting from (1,0, . . .) and consider a family (I hom(t), t ≥ 0) of nested random
open sets of (0,1) such that F (1),hom(t) is the decreasing sequence of the lengths
of interval components of I hom(t), for all t ≥ 0. One knows ([4, 8]) that such in-
terval representation of the fragmentation always exists. For x ∈ (0,1), t ≥ 0, call
I hom
x (t) the connected component of I hom(t) that contains x, with the convention

I hom
x (t) := ∅ if x /∈ I hom(t). Moreover, it is easily seen that F (1),hom(t) → 0 a.s.

as t → ∞, since the dislocation measure ν(l
↓
1,≤1) 
= 0. This implies that a.s. for all

x ∈ (0,1), |I hom
x (t)| → 0 as t → ∞, where |I hom

x (t)| denotes the length of the inter-
val I hom

x (t). We therefore set I hom
x (∞) := ∅, which makes the function t �→ |I hom

x (t)|
continuous at ∞.

Introduce then for m > 0 the time-changes

T m
x (t) := inf

{
u ≥ 0 :

∫ u

0

dr

τ (m|I hom
x (r)|) > t

}
, (1)

where, by convention, τ(0) := ∞ and inf{∅} := ∞. Clearly, the open sets of (0,1)

I τ (t) :=
⋃

x∈(0,1)

I hom
x (T m

x (t)), t ≥ 0,

are nested and we call F (m)(t) the decreasing rearrangement of m times the lengths of
the intervals components of I τ (t), t ≥ 0. The process F (m) is then the required frag-
mentation process starting from (m,0, . . .) with splitting rates τ(s)ν(ds) (Proposition
1, [17]). When m = 0, F (m)(t) = 0 for all t ≥ 0, by definition.

Self-Similar Fragmentations When τ(s) = sα for some α ∈ R, the fragmentation

is called self-similar with index α, since F (m) law= mF(1)(mα·) for all m ≥ 0. These
self-similar fragmentations processes have been extensively studied by Bertoin [7–9].
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Two Classical Examples The Brownian fragmentation is a self-similar fragmenta-
tion process constructed from a normalized Brownian excursion e(m) with length m

as follows: for each t, FBr ,(m)(t) is the decreasing rearrangement of lengths of con-
nected components of {x ∈ (0,m) : 2e(m)(x) > t}. Equivalently it can be constructed
from the Brownian continuum random tree of Aldous by removing vertices under
height t , as explained in the introduction (precise definition of continuum random
trees are given in Sect. 4). The index of self-similarity is then −1/2 and Bertoin [8]
proves that the dislocation measure is given by

νBr (s1 ∈ dx) = (2πx3(1 − x)3)−1/2dx, x ∈ [1/2,1), and

νBr (s1 + s2 < 1) = 0,
(2)

this second property meaning that each fragment splits into two pieces when dislo-
cating.

On the other hand, by logging the Brownian continuum random tree along its
skeleton, Aldous and Pitman [3] have introduced a self-similar fragmentation FAP

with index 1/2 which is transformed by an exponential time-reversal into the standard
additive coalescent. This Aldous-Pitman fragmentation is in some sense dual to the
Brownian one: its dislocation measure is also νBr (see [8]).

Loss of Mass Consider the total mass M(m)(t) = ∑
i≥1 F

(m)
i (t) of macroscopic par-

ticles present at time t in a fragmentation F (m). When the fragmentation rate of small
particles is sufficiently high, some mass may be lost to dust (i.e. a large quantity of
microscopic—or 0-mass—particles arises in finite time), so that the mass M(m)(t)

decreases to 0 as t → ∞. Such phenomenon does not depend on the initial mass
m > 0 and more precisely either occurs with probability one simultaneously for all
m > 0 or does not occur, for any m > 0, with probability one. For example, one
knows that there is loss of mass as soon as

∫
0+ dx/(xτ(x)) < ∞. We refer to [17]

for details and some necessary and sufficient condition. An interesting fact is that the
mass M(m) decreases continuously:

Proposition 2 The function t �→ M(m)(t) is a.s. continuous on [0,∞).

This will be useful for some forthcoming proofs. A proof is given in the Appendix.

1.1.2 (τ ,ν,I)-Fragmentations with Immigration

Let I be the set of measures on l
↓
1 that integrate (

∑
j≥1 sj ) ∧ 1. Two such measures

I, J are considered to be equivalent if their difference I − J puts mass only on {0}.
Implicitly, we always identify a measure with its equivalence class. In particular, in
the following, we will often do the assumption I (l

↓
1 ) 
= 0, which means that I puts

mass on some non-trivial sequences. Endow then I with the distance

D(I,J ) = sup
f ∈F

∣∣∣∣
∫

l
↓
1

f (s)(I − J )(ds)

∣∣∣∣, (3)
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where F is the set of non-negative continuous functions on l
↓
1 such that f (s) ≤

(
∑

j≥1 sj ) ∧ 1. The function s �→ (
∑

j≥1 sj ) ∧ 1 belongs to F and therefore I is
closed. It is called the set of immigration measures.

Definition 3 Let ((ri ,ui ), i ≥ 1) be a Poisson point process (PPP) with intensity

I ∈ I and, conditionally on this PPP, let F
(ui

j )
, i, j ≥ 1, be independent (τ, ν) frag-

mentations starting respectively from ui
j , i, j ≥ 1. Then consider for each t ≥ 0, the

decreasing rearrangement

FI (t) := {
F

(ui
j )

k (t − ri), ri ≤ t, j, k ≥ 1
}↓ ∈ l

↓
1 .

The process FI is called a fragmentation with immigration process with parameters
(τ, ν, I ).

When there is no fragmentation (ν(l
↓
1,≤1) = 0), we rather call such process a pure

immigration process with parameter I and we denote it by (I (t), t ≥ 0).

This means that at time ri , particles with masses ui
1, ui

2,. . . immigrate and then start
to fragment independently of each other (conditionally on their masses), according to
a (τ, ν) fragmentation. The initial state is 0. Note that the total mass of immigrants
until time t

σI (t) :=
∑

ri≤t,j≥1

ui
j (4)

is a.s. finite and therefore that the decreasing rearrangement FI (t) indeed exists and
is in l

↓
1 . The process σI is a subordinator, i.e. an increasing Lévy process. We refer

to the lecture [6] for backgrounds on subordinators. In particular, we recall that a
subordinator σ is characterized by its Laplace exponent, which is a function φσ such
that E[exp(−qσ(t))] = exp(−tφσ (q)), for all q, t ≥ 0.

Note also that FI is càdlàg, since the F
(ui

j ) are càdlàg, since dominated conver-
gence applies and since, clearly, the following result holds.

Lemma 4 For all integers 1 ≤ n ≤ ∞, let xn = (xn
i , i ≥ 1) be a sequence of non-

negative real numbers such that
∑

i≥1 xn
i < ∞ and let xn↓ denotes its decreasing

rearrangement. If
∑

i≥1 |xn
i − x∞

i | → 0, then
∑

i≥1 |xn↓
i − x

∞↓
i | → 0, i.e. xn↓ →

x∞↓ in l
↓
1 .

Equilibrium for such fragmentation with immigration processes has been studied
in [18] in a slightly less general context.

1.2 Main Results: Asymptotics of F (m)

Introduce for all m > 0, the measure νm ∈ I defined for all non-negative measurable
functions f on l

↓
1 by

∫
l
↓
1

f (s)νm(ds) :=
∫

l
↓
1,≤1

f (s2m,s3m, . . .)ν(ds).
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Set also

ϕν(m) := (ν(s1 < 1 − m−1))−1 = 〈νm,1{∑i≥1 si>1}〉−1

which is finite for m large enough and converges to 0 as m → ∞, since ν(l
↓
1,≤1) = ∞.

We are now ready to state our main result. We remind that the distance on I is
defined by (3). Also, the set of càdlàg paths in R

+×l
↓
1 is endowed with the Skorohod

topology.

Theorem 5 Let F be a (τ, ν) fragmentation and suppose that τ(m)νm → I ∈ I ,
I (l

↓
1 ) 
= 0, as m → ∞. Then,

(m − F
(m)
1 , (F

(m)
2 ,F

(m)
3 , . . .))

law→ (σI ,F I) as m → ∞,

where FI is a fragmentation with immigration with parameters (τ, ν, I ) starting
from 0, and σI is the process (4) corresponding to the total mass of particles that
have immigrated until time t , t ≥ 0.

In some sense, letting m → ∞ in F (m) creates an infinite amount of mass that
regularly injects into the system some groups of finite masses which then undergo
fragmentation. A similar phenomenon has been observed in the study of some differ-
ent processes conditioned on survival (see e.g. [11, 13, 15, 25]).

Example Recall the characterization (2) of the Brownian dislocation measure νBr .
Clearly, m−1/2νBr ,m → IBr where the measure IBr is defined by

IBr (s1 ∈ dx) = (2πx3)−1/2dx, x > 0, and IBr (s2 > 0) = 0. (5)

So the previous theorem applies to the Brownian fragmentation and the fragmentation
with immigration appearing in the limit has parameters (τ : x �→ x−1/2, νBr , IBr ).
The Lévy measure of the subordinator σIBr

is simply IBr (s1 ∈ dx). Informally, this
corresponds to the convergence, mentioned in the introduction, of the Brownian CRT
to a tree with a spine on which are branched rescaled Brownian CRTs. This tree with
a spine codes (see Sect. 4 for precise statements) the above (τ : x �→ x−1/2, νBr , IBr )

fragmentation with immigration.

Other examples are given in Sect. 5.1.
The assumption on the convergence of τ(m)νm may seem demanding and, clearly,

is not always satisfied. A moment of thought, using test-functions of type fa(s) =
1{∑i≥1 si>a}, a > 0, leads to the following result.

Lemma 6 Suppose that τ(m)νm converges to some measure I ∈ I , I (l
↓
1 ) 
= 0, as

m → ∞. Then both τ and ϕν vary regularly at ∞ with some index −γν, γν ∈ (0,1)

and τ(m) ∼ Cϕν(m) as m → ∞, with C = I (
∑

i≥1 si > 1) > 0. As a consequence,
the limit I is γν -self-similar, that is∫

l
↓
1

f (as1, as2, . . .)I (ds) = aγν

∫
l
↓
1

f (s)I (ds) for all a > 0, f ∈ F ,
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which in turn implies that σI is a stable subordinator with index γν and Laplace
exponent C�(1 − γν)q

γν , q ≥ 0.

Note that γν < 1 since I integrates (
∑

i≥1 si) ∧ 1 and that γν > 0 since
I (

∑
i≥1 si > a) → 0 as a → ∞. Note also that γν > 0 is equivalent to ϕν(m) → 0 as

m → ∞, which occurs if and only if ν is infinite. That is why our general hypotheses
(H) include the fact that ν is infinite.

Lemma 6 therefore implies that Theorem 5 applies to measures ν such that
ϕν(m)νm converges, coupled together with functions τ whose behavior at ∞ is pro-
portional to that of ϕν . In particular, the speed of fragmentation of small particles
plays no role in the existence of a limit for F (m).

Remark then that it is possible to construct from any γ -self-similar immigration
measure I, I (l

↓
1 ) 
= 0, γ ∈ (0,1), some dislocation measures ν such that ϕν(m)νm

converge1 to I , which gives a large class of measures ν to which Theorem 5 applies.
Also, note that when the fragmentation is binary (i.e. when ν(s1 + s2 < 1) = 0), the
convergence of ϕν(m)νm holds as soon as ϕν varies regularly at ∞ with some index
in (−1,0).

We now turn to functions τ such that (ϕν/τ)(m) converges to 0 or ∞, in which
cases Theorem 5 does not apply. One way to avoid trivial limits in such situation is
to consider the process F (m) up to a time change:

Theorem 7 Suppose that τ varies regularly at ∞, and that ϕν(m)νm → I ∈ I as
m → ∞ (in particular, by Lemma 6, ϕν varies regularly at infinity with an index in
(−1,0)).

(i) If, as m → ∞, (ϕν/τ)(m) → 0, then,

((m − F
(m)
1 ((ϕν/τ)(m)·)),F (m)

2 ((ϕν/τ)(m)·),F (m)
3 ((ϕν/τ)(m)·), . . .)

law→ (σI , (I (t), t ≥ 0)),

where (I (t), t ≥ 0) is a pure immigration process with parameter I .
(ii) If (ϕν/τ)(m) → ∞ as m → ∞ and the fragmentations F (m) lose mass to dust,

then the following finite-dimensional convergence holds as m → ∞,

((m − F
(m)
1 ((ϕν/τ)(m)·)),F (m)

2 ((ϕν/τ)(m)·),F (m)
3 ((ϕν/τ)(m)·), . . .) law→

f.d.
(σI ,0).

We recall that the case when (ϕν/τ)(m) → � ∈ (0,∞) is given by Theorem 5.
The assertion (ii) is not valid when the fragmentations F (m) do not lose mass, since

the quantities m−∑
i≥1 F

(m)
i ((ϕν/τ)(m)) are then equal to 0 and so cannot converge

to σI (1). However, a result similar to that stated in (ii) holds for fragmentations that
do not lose mass, provided that the distance d is replaced by the distance of uniform
convergence on l

↓
1 . Also, the reason why the limit in this statement (ii) holds only in

1For example, define ν by
∫
l
↓
1,≤1

f (s)ν(ds) := ∫
l
↓
1

f (1 − ∑
j≥1 sj , s1, s2, . . .)1{s1≤1−∑

j≥1 sj }I (ds).

Clearly, ν(
∑

j≥1 sj 
= 1) = 0, ν integrates (1 − s1) and m−γ νm → I .
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the finite dimensional sense and not with respect to the Skorohod topology, is that the
functional limit of (F

(m)
2 ((ϕν/τ)(m)·),F (m)

3 ((ϕν/τ)(m)·), . . .) cannot be càdlàg (see
the last paragraph of Sect. 2.2 for an explanation).

Another remark is that under the assumptions of assertion (i), the processes
F

(m)
i ((ϕν/τ)(m)·), i ≥ 2, although not increasing, converge as m → ∞ to some

increasing processes. In particular, F
(m)
2 ((ϕν/τ)(m)·) converges to (a

1(t), t ≥ 0)

where a
1(t) is the largest jump before time t of some stable subordinator with

Laplace exponent a�(1 − γν)q
γν , q ≥ 0, and a = limm→∞ ϕν(m)ν(s2 > m−1) (this

limit exists, although s �→ 1{s1>1} /∈ F , because I (s1 ∈ dx) is absolutely continuous,
as a consequence of the self-similarity). In case ν is binary, one more precisely has:

Corollary 8 Suppose that ν is binary, that ϕν varies regularly at ∞ with some index
−γν, γν ∈ (0,1) and that τ varies regularly at ∞. Then, if (ϕν/τ)(m) → 0,

((m − F
(m)
1 ((ϕν/τ)(m)·)),F (m)

2 ((ϕν/τ)(m)·),F (m)
3 ((ϕν/τ)(m)·), . . .)

law→ (σ,1,2, . . .),

where σ is a stable subordinator with Laplace exponent �(1 − γν)q
γν and

(1(t),2(t), . . .) the decreasing sequence of its jumps before time t, t ≥ 0.

Example This can be applied to the Aldous-Pitman fragmentation, since ϕνBr
(m) ∼

π1/2(2m)−1/2. We get that

((m − F
AP,(m)
1 (m−1·)),FAP,(m)

2 (m−1·),FAP,(m)
3 (m−1·), . . .)

law→ (σAP ,AP
1 ,AP

2 , . . .), (6)

where σAP is a stable subordinator with Laplace exponent (2q)1/2 and (AP
1 (t),

AP
2 (t), . . .) the decreasing sequence of its jumps before time t , t ≥ 0. To see

this, use that ϕνBr
(m)m−1/2 ∼ (π/2)1/2m−1 to obtain from Corollary 8 the con-

vergence of the process in the left hand side of (6) to (σ ((2/π)1/2·),1((2/π)1/2·),
2((2/π)1/2·), . . .) where σ is a stable subordinator with Laplace exponent
�(1/2)q1/2 = (πq)1/2 and (1(t),2(t), . . .) the decreasing sequence of its jumps
before time t, t ≥ 0. It then clear that the Laplace exponent of σAP = σ((2/π)1/2·)
is (2q)1/2. Aldous and Pitman [3], Corollary 13, obtained this result by studying
size-biased permutations of their fragmentation.

Other explicit (and non-binary) examples are studied in Sect. 5.2.

2 Proofs

The main lines of the proofs of Theorems 5 and 7 are quite similar. We first give a
detailed proof of Theorem 5 and then explain how it can be adapted to prove The-
orem 7. We will need the following classical result on Skorohod convergence (see
Proposition 3.6.5, [14]).
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Lemma 9 Consider a metric space (E,dE) and let fn,f be càdlàg paths with values
in E. Then fn → f with respect to the Skorohod topology if and only if the three
following assertions are satisfied for all sequences tn → t , tn, t ≥ 0:

(a) min(dE(fn(tn), f (t)), dE(fn(tn), f (t−))) → 0

(b) dE(fn(tn), f (t)) → 0 ⇒ dE(fn(sn), f (t)) → 0 for all sequences sn → t, sn ≥ tn

(c) dE(fn(tn), f (t−)) → 0 ⇒ dE(fn(sn), f (t−)) → 0 for all sequences sn → t,

sn ≤ tn.

2.1 Proof of Theorem 5

In this section it is supposed that τ(m)νm → I , I (l
↓
1 ) 
= 0, as m → ∞. Our goal

is then to prove Theorem 5, which is a corollary of the forthcoming Lemma 11. In
order to state and prove this lemma, we first introduce some notations and give some
heuristic geometric description of what is happening. There is no loss of generality in
supposing that the (τ, ν) fragmentations F (m), m ≥ 0, are constructed from the same
ν-homogeneous one, which is done in the following.

2.1.1 Heuristic Description

We first give a geometric description of the fragmentation F (m), which may
be viewed as a baseline B = [0,∞) on which fragmentation processes are at-
tached.

Let �(m) be the process obtained by following at each dislocation the largest sub-
fragment. According to the Poissonian construction of homogeneous fragmentation
processes and the time-change between ν-homogeneous and (τ, ν)-fragmentations
(see Sect. 1.1.1), the process �(m) is constructed from some Poisson point process
((ti , si ), i ≥ 1) (independent of m) with intensity measure ν as follows: if ξ denotes
the subordinator defined by

ξ(t) :=
∑
ti≤t

(− log(si
1)), t ≥ 0, (7)

and ρ−(m) the integral

ρ−(m)(t) :=
∫ t

0
dr/τ(m exp(−ξ(r))),

then

�(m)(t) = m exp(−ξ(ρ(m)(t))), t ≥ 0, (8)

where

ρ(m)(t) := inf
{
u : ρ−(m)(u) > t

}
(9)

(inf{∅} = ∞). The set of jump times of �(m) is then {tmi := ρ−(m)(ti), i ≥ 1}.
The evolution of the fragmentation F (m) then relies on the point process

((tmi , si ), i ≥ 1): at time tmi , the fragment with mass �(m)(tmi −) splits to give a
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fragment with mass �(m)(tmi ) = �(m)(tmi −)si
1 and smaller fragments with masses

�(m)(tmi −)si
j , j ≥ 2. For j ≥ 2, call F

(�(m)(tmi −)si
j ) the fragmentation describing the

evolution of the mass �(m)(tmi −)si
j and consider that it is branched at height tmi on

the baseline B. Then the process F (m) is obtained by considering for each t ≥ 0 all
fragmentations branched at height tmi ≤ t and by ordering in the decreasing order

the terms of sequences F
(�(m)(tmi −)si

j )
(t − tmi ), tmi ≤ t, j ≥ 2, and �(m)(t). In some

sense, there is then a tree structure under this baseline with “fragmentation” leaves.
This will be discussed in Sect. 4.

Similarly, a (τ, ν, I ) fragmentation with immigration FI can be viewed as the

baseline B with fragmentations leaves F
(ui

j ), j ≥ 1, attached at time ri , where

((ri ,ui ), i ≥ 1) is a Poisson point process with intensity I and F
(ui

j )
, i, j ≥ 1, some

(τ, ν) fragmentations starting respectively from ui
j , i, j ≥ 1, that are independent

conditionally on ((ri ,ui ), i ≥ 1).

Now, to see the connection between these descriptions and the result we want
to prove on the convergence of (F

(m)
2 ,F

(m)
3 , . . .) to FI , note that the processes

�(m) and F
(m)
1 , although different, coincide at least when �(m)(t) ≥ m/2, since

�(m)(t) is then the largest fragment of F (m)(t). Fix t0 < ∞. It is easily seen that
under the assumption τ(m)νm → I (which in particular implies that τ(m) → 0
as m → ∞), a.s. ρ(m)(t0) → 0 as m → ∞, which in turn implies that for large
m’s and all t ≤ t0, �(m)(t) ≥ m/2, and therefore �(m)(t) = F

(m)
1 (t). In particular

(F
(m)
2 (t),F

(m)
3 (t), . . .) is then the decreasing rearrangement of the terms of sequences

F
(�(m)(tmi −)si

j )
(t − tmi ), tmi ≤ t, j ≥ 2.

Hence, informally, one may expect that the process (F
(m)
2 ,F

(m)
3 , . . .) converges

in law to FI as soon as (�(m)(tmi −)si
j , i ≥ 1, j ≥ 2) converges to (ui

j , i, j ≥ 1),

and (tmi , i ≥ 1) to (ri , i ≥ 1). The statement of these convergences is made rig-
orous in the forthcoming Lemma 10, which is then used to prove the required
Lemma 11.

2.1.2 Convergence of the Point Processes

Consider the set [0,∞) × l
↓
1 × l

↓
1 endowed with the distance

d[0,∞)×l
↓
1 ×l

↓
1
((t1, s1, s′

1), (t2, s2, s′
2)) := |t1 − t2| +

∑
i≥1

(|s1,i − s2,i | + |s′
1,i − s′

2,i |
)

(which makes it Polish) and introduce the set R[0,∞)×l
↓
1 ×l

↓
1

of Radon point mea-

sures on [0,∞) × l
↓
1 × l

↓
1 that integrate 1{t≤t0} × ∑

j≥1(sj + s′
j ), for all t0 ≥ 0. Two

such measures are considered to be equivalent if their difference puts mass only on
[0,∞) × {(0,0)}. Again, we shall implicitly identify a measure with its equivalence
class. Introduce then F[0,∞)×l

↓
1 ×l

↓
1

, the set of R
+-valued continuous functions f on

[0,∞) × l
↓
1 × l

↓
1 such that f (t, s, s′) ≤ 1{t≤t0}

∑
j≥1(sj + s′

j ) for some t0 ≥ 0 (we
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shall denote by t
f

0 such t0’s) and equip R[0,∞)×l
↓
1 ×l

↓
1

with the topology induced by

the convergence μn → μ ⇔ 〈μn,f 〉 → 〈μ,f 〉 for all f ∈ F[0,∞)×l
↓
1 ×l

↓
1

.

Lemma 10 Set

μm :=
∑
i≥1

δ(tmi ,(�(m)(tmi −)si
j )j≥2,(msi

j )j≥2)
and μ :=

∑
i≥1

δ(ri ,ui ,ui ).

These measures belong to R[0,∞)×l
↓
1 ×l

↓
1
, and with respect to the above topology on

R[0,∞)×l
↓
1 ×l

↓
1

,

μm
law→ μ as m → ∞.

Proof According to Theorems 4.2 and 4.9 of Kallenberg [22], the convergence in
distribution of μm to μ is equivalent to the convergence of all Laplace transforms
E[exp(−〈μm,f 〉)] to E[exp(−〈μ,f 〉)], f ∈ F[0,∞)×l

↓
1 ×l

↓
1

. The proof is split into
two parts.

(1) In this first part, we will show that for all f ∈ F[0,∞)×l
↓
1 ×l

↓
1

and all t ≥ 0,

E[exp(−〈μ(t)
m ,f 〉)] converges to E[exp(−〈μ(t), f 〉)], where

μ(t)
m :=

∑
ti≤tτ (m)

δ(tmi ,(�(m)(tmi −)si
j )j≥2,(msi

j )j≥2)
,

μ(t) :=
∑
ri≤t

δ(ri ,ui ,ui ).

We recall that tmi = ρ−(m)(ti) and �(m)(tmi −) = m exp(−ξ(ti−)) and set

gf (t, s, s′) := 1 − exp(−f (t, s, s′))

for all f ∈ F[0,∞)×l
↓
1 ×l

↓
1

. Note that gf ∈ F[0,∞)×l
↓
1 ×l

↓
1

and gf (t, s, s′) ≤
1 ∧ (

∑
j≥1(sj + s′

j )). Now, to start with, we claim that for all t ≥ 0,

E
[
exp

(−〈μ(t)
m ,f 〉 + Im,t (f )

)] = 1, (10)

where Im,t (f ) is defined by

Im,t (f ) :=
∫

[0,tτ (m)]×l
↓
1

gf (ρ−(m)(v), exp(−ξ(v−))s, s)dv ⊗ νm(ds)

=
∫

[0,t]×l
↓
1

gf (ρ−(m)(vτ(m)), exp(−ξ(vτ(m)−))s, s)dv ⊗ τ(m)νm(ds).

Indeed, the Change of Variables Formula for right-continuous processes of finite vari-
ation gives
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exp
(−〈μ(t)

m ,f 〉 + Im,t (f )
) − 1

= −
∑

0<ti≤tτ (m)

exp
(−〈μ(ti−)

m , f 〉 + Im,ti (f )
)

× gf (ρ−(m)(ti), (m exp
(−ξ(ti−

)
)si

j )j≥2, (msi
j )j≥2)

+
∫

[0,tτ (m)]×l
↓
1

exp
(−〈μ(v−)

m , f 〉 + Im,v(f )
)

× gf (ρ−(m)(v), exp(−ξ(v−))s, s)dv ⊗ νm(ds).

Then, using the Master Formula for Poisson Point Processes (see e.g. [31], Chap.
XII), we get that the expectation of the sum in the right-hand side of the equality is
equal to the expectation of the integral. Hence (10).

(a) We now claim that a.s. for all f ∈ F[0,∞)×l
↓
1 ×l

↓
1

, the integral Im,t (f ) converges

to It (f ) := ∫
[0,t]×l

↓
1
gf (v, s, s)dv ⊗ I (ds) as m → ∞. Indeed,

Im,t (f ) − It (f ) =
∫

[0,t]×l
↓
1

gf (v, s, s)dv ⊗ (τ (m)νm(ds) − I (ds))

+
∫

[0,t]×l
↓
1

(gf (ρ−(m)(vτ(m)), exp(−ξ(vτ(m)−))s, s)

− gf (v, s, s))dv ⊗ τ(m)νm(ds).

The first integral in the right-hand side of this equality converges to 0, since
τ(m)νm → I and the function s �→ ∫

[0,t] gf (v, s, s)dv is continuous and bounded by

2t (
∑

i≥1 si ∧ 1) on l
↓
1 . It remains to prove that the second integral converges to 0, a.s.

for all f ∈ F[0,∞)×l
↓
1 ×l

↓
1

. This will be proved if we check that a.s. for all 1-Lipschitz

functions g ∈F[0,∞)×l
↓
1 ×l

↓
1

such that gf (t, s, s) ≤ 1 ∧ (
∑

i≥1 si),

∫
[0,t]×l

↓
1

(g(ρ−(m)(vτ(m)), exp(−ξ(vτ(m)−))s, s)−g(v, s, s))dv⊗τ(m)νm(ds) → 0.

The absolute value of this last integral is bounded from above by

∫
[0,t]×l

↓
1

((
|ρ−(m)(vτ(m)) − v| +

∑
i

si(1 − exp(−ξ(tτ (m)−)))

)
∧ 1 ∧

∑
i

si

)

× dv ⊗ τ(m)νm(ds). (11)

Fix then some ε > 0 and recall that τ varies regularly at ∞ with some negative
index −γν (cf. Lemma 6). In particular, τ(m) → 0 and therefore, with probability
one, for all m sufficiently large (depending on ε and t), 1 − exp(−ξ(tτ (m)−)) ≤ ε.
On the other hand, still thanks to the regular variation of τ , one knows (see Potter’s
Theorem, Th. 1.5.6 [10]) that there exists for all A > 1, some constant M(A) ≥ 0
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such that

A−1 exp((−3γν/2)ξ(r)) ≤ τ(m)

τ(m exp(−ξ(r)))
≤ A exp((−γν/2)ξ(r)), (12)

for all m,r such that m exp(−ξ(r)) ≥ M(A). When m exp(−ξ(tτ (m))) ≥ M(A), this
implies that

A−1
∫ v

0
exp((−3γν/2)ξ(τ (m)r))dr ≤ ρ−(m)(vτ(m))

≤ A

∫ v

0
exp((−γν/2)ξ(τ (m)r))dr,

hence

A−1v exp((−3γν/2)ξ(τ (m)t)) ≤ ρ−(m)(vτ(m)) ≤ Av

for all v ∈ [0, t]. Taking A = (1 + ε), it is then easy to get that with probability
one, ∣∣ρ−(m)(vτ(m)) − v

∣∣ ≤ εt (13)

for all m large enough and all 0 ≤ v ≤ t. Coming back to the integral (11), we see
that for m large enough, it is smaller than

∫
[0,t]×l

↓
1

((
ε

(
t +

∑
i≥1

si

))
∧ 1 ∧

∑
i≥1

si

)
dv ⊗ τ(m)νm(ds),

which converges to t
∫
l
↓
1
((ε(t + ∑

i≥1 si)) ∧ 1 ∧ ∑
i≥1 si)I (ds) as m → ∞. At

last, letting ε → 0, we see that the integral (11) converges to 0 as m → ∞,
which implies that a.s. for all functions f ∈ F[0,∞)×l

↓
1 ×l

↓
1
, Im,t (f ) converges to

It (f ).

(b) To finish this first part of the proof, fix f ∈ F[0,∞)×l
↓
1 ×l

↓
1

and note that

E
[
exp(−〈μ(t)

m ,f 〉)(exp(Im,t (f )) − exp(It (f )))
] → 0

by dominated convergence, since for all m, Im,t (f ) ≤ t
∫
l
↓
1
((2

∑
i≥1 si) ∧ 1)×

τ(m)νm(ds), which is deterministic and converges to t
∫
l
↓
1
((2

∑
i≥1 si) ∧ 1)I (ds) as

m → ∞. On the other hand, by (10),

E
[
exp(−〈μ(t)

m ,f 〉)(exp(Im,t (f )) − exp(It (f )))
]

= 1 − E
[
exp(−〈μ(t)

m ,f 〉)] exp(It (f )),

and therefore, E[exp(−〈μ(t)
m ,f 〉)] → exp(−It (f )), which, applying Campbell for-

mula (see e.g. [23]) to the Poisson Point Process (ri ,ui )i≥1, is equal to
E[exp(−〈μ(t), f 〉)].
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(2) In particular, E[exp(−〈μ(t
f
0 +1)

m , f 〉)] converges to E[exp(−〈μ(t
f
0 +1), f 〉)] =

E[exp(−〈μ,f 〉)]. Write then

E[exp(−〈μm,f 〉)]

= E
[
exp(−〈μ(t

f
0 +1)

m , f 〉)
]

−E

[
exp(−〈μ(t

f
0 +1)

m , f 〉)
(

1 − exp

(
−

∑
(t

f
0 +1)τ (m)<ti

f (tmi , (�(m)(tmi −)si
j )j≥2, (msi

j )j≥2)

))]

(14)

and note that the integrand in the second expectation in the right-hand side is null
as soon as ρ−(m)((t

f

0 + 1)τ (m)) > t
f

0 . Since ρ−(m)((t
f

0 + 1)τ (m)) → t
f

0 + 1 a.s.
(see (13)), this integrand is null for m large enough and we conclude by dominated
convergence that the second expectation in the right-hand side of (14) converges to
0. Hence we have that E[exp(−〈μm,f 〉)] → E[exp(−〈μ,f 〉)]. �

2.1.3 A.s. Convergence of Versions of (m − F
(m)
1 , (F

(m)
2 , . . .)) to a Version of

(σI ,F I)

Using Skorohod’s representation theorem (our set of point measures is Polish, see
e.g. Appendix A7 of Kallenberg [22]), one can consider versions μm and μ such
that μm → μ a.s. We will work with these versions in this section, and, to simplify,
we will consider the representation of the measure μ (resp. μm, m > 0) that does
not put mass on [0,∞) × {(0,0)}. We then call σm, m > 0, a (random) family of
permutations such that, a.s. ∀i ≥ 1,

rm
i := tmσm(i) → ri ,

ui,m := (�(m)(tmσm(i)−)s
σm(i)
j )j≥2 → ui , (15)

zi,m := (ms
σm(i)
j )j≥2 → ui .

Consider next some i.i.d. family of ν-homogeneous fragmentations issued from
(1,0, . . .), say Fhom,(i,j), i, j ≥ 1, and for each pair (i, j), construct from Fhom,(i,j)

some (τ, ν)- fragmentations F
(u

i,m
j ), m > 0, and F

(ui
j ), starting respectively from

u
i,m
j , m > 0, and ui

j . Extend the definition of these processes to t ∈ R
∗− by setting

F
(u

i,m
j )

(t) = F
(ui

j )
(t) := 0. Then for t ≥ 0, let

F (i,j),m(t) := F
(u

i,m
j )

(t − rm
i ) (16)

and set

�
(m)

(t) := m
∏
rm
i ≤t

(
1 − m−1

∑
j≥1

z
i,m
j

)
. (17)
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The process �
(m)

is distributed as �(m), since
∑

j≥1 si
j = 1 ν-a.e. for all i ≥ 1 (but

note that the law of (�
(m)

,m > 0) is a priori not the same as that of (�(m),m > 0),

since the distribution of (μm,m > 0) has been transformed when considering ver-

sions of μm that converge a.s. to μ). The point is then that the process F
(m)

obtained

by considering for each t ≥ 0 the decreasing rearrangement of the terms �
(m)

(t),
F

(i,j),m
k (t), i, j, k ≥ 1, is distributed as F (m). Furthermore, if t0 < ∞ is fixed, then

a.s. for m large enough and all 0 ≤ t ≤ t0, F
(m)

1 (t) = �
(m)

(t) and

L(m)(t) := (F
(m)

2 (t),F
(m)

3 (t), . . .) = {F (i,j),m
k (t), i, j, k ≥ 1}↓, (18)

as noticed in the heuristic description.
Define similarly

F (i,j),I (t) := F
(ui

j )
(t − ri), t ≥ 0.

The process of the decreasing rearrangements of terms of F (i,j),I (t), i, j ≥ 1, which
we still denote by FI , is a (τ, ν, I )-fragmentation with immigration starting from 0.

Also, we still call σI (t) := ∑
ri≤t,j≥1 ui

j , t ≥ 0. Theorem 5 is thus a direct conse-
quence of the following convergence:

Lemma 11 (m − �
(m)

,L(m))
a.s.→ (σI ,F I) as m → ∞.

To prove this convergence, we shall prove that a.s. for all t ≥ 0, the following
assertions hold whenever mn → ∞, and tn → t , tn ≥ 0:

(Aa) if t is not a jump time of (σI ,F I), then (mn − �
(mn)

(tn),L
(mn)(tn)) →

(σI (t),F I (t))

(Ab) if t is a jump time of (σI ,F I), there exist two increasing integer-valued se-
quences (one of them may be finite) ϕ, ψ such that N = {ϕn,ψn,n ≥ 1} and
(i) if ϕ is infinite, then for all sequences sϕn → t s.t. sϕn ≥ tϕn ,

(mϕn − �
(mϕn)

(sϕn),L
(mϕn)(sϕn)) → (σI (t),F I (t))

(ii) if ψ is infinite, then for all sequences sψn → t s.t. sψn ≤ tψn ,

(mψn − �
(mψn)

(sψn),L
(mψn)(sψn)) → (σI (t−),F I (t−)).

According to Lemma 9, this is sufficient to conclude that (m − �
(m)

,L(m))
a.s.→

(σI ,F I) with respect to the Skorohod topology. In order to prove these assertions,
we will first show two preliminary lemmas.

Lemma 12 Let F hom be a ν-homogeneous fragmentation starting from (1,0, . . .)

and fix some a ≥ 0. Then the following statement holds a.s. for all sequences an → a,
an ≥ 0. Consider F (an) and F (a) the (τ, ν)-fragmentations constructed from F hom

starting respectively from an, n ≥ 0, and a, and extend these processes to t ∈ R
∗− by

setting F (an)(t) = F (a)(t) = 0. Then, whenever vn → v, vn, v ∈ R, one has,
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(a) if v is not a jump time of F (a), F (an)(vn) → F (a)(v)

(b) if v is a jump time of F (a) there exist two increasing sequences ϕ, ψ such that
N = {ϕn,ψn,n ≥ 1} and
(i) if ϕ is infinite and if wϕn → v, wϕn ≥ vϕn , then F (aϕn )(wϕn) → F (a)(v)

(ii) if ψ is infinite and if wψn → v, wψn ≤ vψn ,then F (aψn )(wψn) → F (a)(v−).

In particular, when v = 0, ϕ is the increasing rearrangement of {k : vk ≥ 0} and
ψ is that of {k : vk < 0}.

This implies that a.s. for all sequences an → a, an ≥ 0, F (an) → F (a) with respect
to the Skorohod topology.

Proof Note that the statement is obvious when a = 0, since supv

∑
k≥1 F

(an)
k (v) ≤

an → 0. It is also obvious when vn → v < 0, since F (an)(vn) = F (a)(v) = 0 for large
n. So we suppose in the following that a, an > 0, and v ≥ 0.

To start with, we point out two convergence results when wn → v, wn ≥ 0. The
notations I hom, T m

x , m ≥ 0, x ∈ (0,1), were introduced in Sect. 1.1.1. First, we claim
that T

an
x (wn) → T a

x (v) ∈ [0,∞], provided |I hom
x (r)| > 0 for all r ≥ 0, which oc-

curs a.s. for a.e. x ∈ (0,1), since ν(
∑

j≥1 sj < 1) = 0 (in the rest of this proof, we
omit the “a.s.”). Indeed, consider such x. If there were a subsequence (kn)n≥0 s.t.
limn→∞ T

akn
x (wkn) > T a

x (v) with T a
x (v) < ∞ (the limit may be infinite), then one

would have

wkn ≥
∫ T

akn
x (wkn )

0
dr/τ(akn |I hom

x (r)|) >

∫ T a
x (v)+ε

0
dr/τ(akn |I hom

x (r)|)

for some ε > 0 and all n large enough. The latter integral would then converge to∫ T a
x (v)+ε

0 dr/τ(a|I hom
x (r)|) > v, by dominated convergence (note that under our as-

sumptions, for n0 large enough, the set {akn |I hom
x (r)|, r ≤ T a

x (v)+ε,n ≥ n0} belongs
to some compact of (0,∞)). This would lead to lim infn→∞ wkn > v, which is im-
possible. Similarly, it is not possible that T

akn
x (wkn) → b < T a

x (v). Hence

T an
x (wn) → T a

x (v) for a.e. x ∈ (0,1). (19)

Next, we want to check that

M(an)(wn) → M(a)(v) as n → ∞. (20)

If there is no loss of mass, this is trivial, since M(an)(wn) = an and M(a)(v) = a. If
there is loss of mass, write M(a)(v) = a

∫ 1
0 1{T a

x (v)<∞}dx and note that∫ 1
0 1{T a

x (v)=∞;T a
x (v−)<∞}dx = 0 (by definition {T a

x (v−) < ∞} =
{∫ ∞

0 dr/τ(a|I hom
x (r)|) ≥ v}), since the function v �→ M(a)(v) is (a.s.) continuous

(Proposition 2). Then write

M(an)(wn) = an

∫ 1

0
1{T an

x (wn)<∞;T a
x (v)<∞}dx + an

∫ 1

0
1{T an

x (wn)<∞;T a
x (v)=∞}dx.
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By (19), the first term in the right hand side converges to M(a)(v) as n → ∞. It
remains to check that the integral

∫ 1
0 1{T an

x (wn)<∞;T a
x (v)=∞}dx converges to 0. To see

this, we use that for all x ∈ (0,1) s.t. |I hom
x (r)| > 0 for all r ≥ 0, one has

lim sup
n→∞

1{T an
x (wn)<∞} = lim sup

n→∞
1{∫ ∞

0 dr/τ(an|I hom
x (r)|)>wn}

≤ 1{∫ ∞
0 dr/τ(a|I hom

x (r)|)≥v}. (21)

The latter inequality is obtained by splitting the integrals into two
∫ ∞

0 = ∫ M

0 + ∫ ∞
M

,

where M is such that b �→ τ(b|I hom
x (r)|) is monotone in a neighborhood of a,

∀r ≥ M (we recall that τ is monotone near 0). Then
∫ M

0 dr/τ(an|I hom
x (r)|) converges

to
∫ M

0 dr/τ(a|I hom
x (r)|) by dominated convergence and

∫ ∞
M

dr/τ(an|I hom
x (r)|)

converges to
∫ ∞
M

dr/τ(a|I hom
x (r)|) by monotone convergence (consider monotone

subsequences of (an)n≥1; also note that all integrals involved here are
finite, as the F (an), n ≥ 1, and F (a) lose mass to dust). Hence (21). Then, by
dominatedconvergence, lim supn→∞

∫ 1
0 1{T an

x (wn)<∞;T a
x (v)=∞}dx is smaller than∫ 1

0 1{T a
x (v−)<∞;T a

x (v)=∞}dx, which is equal to 0.
We are now ready to prove assertion (a). Suppose that v is not a jump time of

F (a). Then for all x ∈ (0,1), s �→ |I hom
x (s)| is continuous at T a

x (v) (even when
T a

x (v) = ∞, see the construction of the process, Sect. 1.1.1) and since v is neces-
sarily strictly positive, we may suppose that vn ≥ 0 and then apply (19). Therefore,
F

(an)
k (vn) → F

(a)
k (v) for all k ≥ 1. On the other hand, M(an)(vn) → M(a)(v) by (20).

Hence F (an)(vn) → F (a)(v).

We now turn to (b) and first suppose that v > 0. That v is a jump time of F (a)

means that there exists a unique interval component of its interval representation that
splits at time v. More precisely, it means that there exists a unique interval com-
ponent, say I hom

v,a , of the interval representation of F hom that splits at some time
T a(v) such that T a(v) = T a

x (v) for all x ∈ I hom
v,a . Moreover, for all s < T a(v) and

all x, y ∈ Ihom
v,a , I hom

x (s) = I hom
y (s), which implies that for all b,u > 0 and x ∈ I hom

v,a ,

T b
x (u) < T a(v) ⇒ T b

y (u) = T b
x (u) ∀y ∈ I hom

v,a . This allows us to introduce the in-

creasing sequence ψ, independent of x ∈ I hom
v,a , of all integers k s.t. T

ak
x (vk) < T a

x (v)

for some (hence all) x ∈ I hom
v,a . The increasing sequence ϕ is then that of all integers

k s.t. T
ak
x (vk) ≥ T a

x (v) for some (all) x ∈ Iv,a .
Suppose then that ϕ is infinite and let wϕn → v, wϕn ≥ vϕn . On the one hand,

T
aϕn
x (wϕn) ≥ T a

x (v), n ≥ 1, and the functions s �→ |I hom
x (s)| are right-continuous at

T a
x (v) when x ∈ I hom

v,a . On the other hand, the functions s �→ |I hom
x (s)| are continuous

at T a
x (v) when x /∈ I hom

v,a . Therefore, the convergences (19) imply that F
(aϕn )

k (wϕn)

converges to F
(a)
k (v), ∀k ≥ 1. Moreover, Maϕn (wϕn) converges to Ma(v) by (20)

and then, F (aϕn )(wϕn) converges to F (a)(v). Hence (b)(i).
Suppose next that ψ is infinite and let wψn → v, wψn ≤ vψn . One has T

aψn
x (wψn) <

T a
x (v) for all x ∈ I hom

v,a , n ≥ 1. By (19), this implies that F
(aψn )

k (wψn) converges to



J Theor Probab (2007) 20: 721–758 739

F
(a)
k (v−), ∀k ≥ 1. Then, using (20), we get that F (aψn )(wψn) converges to F (a)(v−).

Hence (b)(ii).
Last, it remains to prove (b) when v = 0. Let here ϕ be the increasing rearrange-

ment of {k : vk ≥ 0} and ψ the increasing rearrangement of {k : vk < 0}. If ϕ is
infinite, let wϕn → 0, wϕn ≥ vϕn. Then wϕn ≥ 0, and so, according to (19) and (20),
F (aϕn )(wϕn) converges to F (a)(0). If ψ is infinite, let wψn → 0, wψn ≤ vψn . Then
F (aψn )(wψn) = 0 = F (a)(0−). �

The results and convergences stated in the rest of this subsection hold, simultane-
ously, a.s. for all t ≥ 0, and all sequences mn → ∞ and tn → t , tn ≥ 0. Therefore we
drop the “a.s.” from notations. Also, we fix t ≥ 0, as well as sequences mn → ∞ and
tn → t , tn ≥ 0.

Lemma 13 (i) If t /∈ {ri, i ≥ 1}, then mn − �
(mn)

(tn) → σI (t).

(ii) If t = ri0 for some i0, then mn − �
(mn)

(tn) converges to σI (t) when tn ≥ r
mn

i0

for large n’s and it converges to σI (t−) when tn < r
mn

i0
for large n’s.

Proof Recall that μm → μ and set Zi,mn := ∑
j≥1 z

i,mn

j , Ui := ∑
j≥1 ui

j .

(i) Take t ′ > t s.t. t ′ /∈ {ri , i ≥ 1} and fix 0 < η < 1/2. One has
∑

i>k,ri≤t ′ U
i < η

for some k large enough and then
∑

i>k,r
mn
i ≤t ′ Z

i,mn < η for all n large enough. In
particular, all components of these sums are then smaller than η. Taking n larger if
necessary (so that mn ≥ 1) one gets that for all i > k, m−1

n Zi,mn1{rmn
i ≤t ′} < η < 1/2,

which implies (using | ln(1 − x)| ≤ 2x for 0 < x ≤ 1/2) that∣∣mn ln(1 − m−1
n Zi,mn)1{rmn

i ≤t ′}
∣∣ ≤ 2Zi,mn1{rmn

i ≤t ′} ≤ 2η.

When moreover tn ≤ t ′,∣∣∣∣
∑
i≥1

(Ui1{ri≤t} + mn ln(1 − m−1
n Zi,mn)1{rmn

i ≤tn})
∣∣∣∣

≤
∣∣∣∣
∑
i≤k

(Ui1{ri≤t} + mn ln(1 − m−1
n Zi,mn)1{rmn

i ≤tn})
∣∣∣∣

+
∑
i>k

(Ui1{ri≤t ′} + 2Zi,mn1{rmn
i ≤t ′})

≤
∣∣∣∣
∑
i≤k

(Ui1{ri≤t} + mn ln(1 − m−1
n Zi,mn)1{rmn

i ≤tn})
∣∣∣∣ + 3η. (22)

On the other hand, since t /∈ {ri, i ≥ 1}, Zi,mn1{rmn
i ≤tn} → Ui1{ri≤t} for all i ≥ 1, or

equivalently,

−mn ln(1 − m−1
n Zi,mn)1{rmn

i ≤tn} → Ui1{ri≤t}.

Hence the upper bound of (22) is bounded from above by 4η for n large enough.
Therefore −mn

∑
r
mn
i ≤tn

ln(1 − m−1
n Zi,mn) converges to σI (t) (= ∑

ri≤t U
i ), which
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implies that

mn

(
1 −

∏
r
mn
i ≤tn

(
1 − m−1

n Zi,mn
)) → σI (t).

(ii) If t = ri0 and tn ≥ r
mn

i0
for n large enough, then, for all i ≥ 1, Zi,mn1{rmn

i ≤tn}
converges to Ui1{ri≤t} and one concludes exactly as above. Now, if tn < r

mn

i0
for

large n’s, Zi0,mn1{rmn
i0

≤tn} converges to Ui01{ri0<t} and still, Zi,mn1{rmn
i ≤tn} converges

to Ui1{ri≤t} for i 
= i0. The conclusion then follows by replacing 1{ri0≤t} by 1{ri0<t}
in the proof above. �

We are ready to prove assertions (Aa) and (Ab).

Proof of Lemma 11 The proof is split into two parts, according to whether t is, or
not, a jump time of FI . It strongly relies on the convergence μm → μ.

(1) If t is not a jump time of FI , then t − ri is not a jump time of F
(ui

j ),
∀i, j ≥ 1 (in particular, t /∈ {ri, i ≥ 1}). When t − ri > 0, applying Lemma 12(a)
to the sequences an = u

i,mn

j , a = ui
j , vn = tn − r

mn

i and v = t − ri , one gets that

F (i,j),mn(tn) → F (i,j),I (t), ∀j ≥ 1. Clearly, such convergence also holds when t <

ri , since then F (i,j),mn(tn) = 0 for n large enough. Fix next some η, ε > 0 and then
some k s.t.

∑
i+j>k ui

j 1{ri≤t+ε} < η. For n large enough,
∑

i+j>k u
i,mn

j 1{rmn
i ≤tn} < η,

and therefore∑
i,j≥1

d(F (i,j),mn(tn),F
(i,j),I (t)) ≤

∑
i+j≤k

d(F (i,j),mn(tn),F
(i,j),I (t)) + 2η.

So, the right hand side of this inequality is smaller than 3η for n large enough, i.e.∑
i,j≥1 d(F (i,j),mn(tn),F

(i,j),I (t)) → 0. Then, by Lemma 4, one concludes that

L(mn)(tn) → FI (t). On the other hand, Lemma 13(i) implies that mn − �
(mn)

(tn) →
σI (t). Hence we have assertion (Aa).

(2) Now assume that t is a jump time of FI . Our goal is to construct some in-
creasing sequences ϕ and ψ , N = {ϕn,ψn,n ≥ 1}, such that assertions (Ab)(i) and
(Ab)(ii) hold. For all i, j ≥ 1, let J (i,j) denote the set of strictly positive jump times

of F
(ui

j ). Such process F
(ui

j ) only jumps when a fragment splits, since its total mass
is continuous (Proposition 2). Then, since the Fhom,(i,j) are constructed from inde-
pendent Poisson point processes, independent of ((ri ,ui ), i ≥ 1), (a.s.) the J (i,j)’s

are pairwise disjoint and disjoint from {ri, i ≥ 1}. Also, every F
(ui

j ) jumps at 0 (we
recall that these processes are defined on R) and therefore the set of jump times of

F
(ui

j ) is J (i,j) ∪ {0}, i, j ≥ 1. So, if t is a jump time of FI :
• either t − ri0 ∈ J (i0,j0) for some (unique) pair (i0, j0). Then, one can ap-

ply Lemma 12(b) to an = u
i0,mn

j0
, a = u

i0
j0

, vn = tn − r
mn

i0
and v = t − ri0 .

Let ϕ and ψ be the sequences that appear in this statement and first, suppose
that ϕ is infinite. Consider then some sequence sϕn → t , sϕn ≥ tϕn , and apply
Lemma 12(b)(i) to wϕn = sϕn − r

mϕn

i0
. One obtains that F (i0,j0),mϕn (sϕn) converges
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to F (i0,j0),I (t). On the other hand, by Lemma 12(a), F (i,j),mϕn (sϕn) converges to
F (i,j),I (t) for all (i, j) 
= (i0, j0) since t − ri /∈ J (i,j) ∪ {0}. Hence, as in (1), we
get that

∑
i,j≥1 d(F (i,j),mϕn (sϕn),F

(i,j),I (t)) tends to 0, and then, by Lemma 4, that

Lmϕn (sϕn) converges to FI (t). Moreover, mϕn − �
(mϕn)

(sϕn) converges to σI (t), by
Lemma 13(i) since t /∈ {ri , i ≥ 1}. Hence (Ab)(i).

Similarly, supposing that ψ is infinite and sψn → t , sψn ≤ tψn , one gets, by apply-

ing Lemma 12(b)(ii), that Lmψn (sψn) → FI (t−). Moreover, mψn −�
(mψn)

(sψn) con-
verges to σI (t) = σI (t−), still by Lemma 13(i) since t /∈ {ri, i ≥ 1}. Hence (Ab)(ii)
and then (Ab).

• or t ∈ {ri, i ≥ 1}, say t = ri0 . For i 
= i0, t − ri /∈ J (i,j) ∪ {0} and therefore, as
explain above, F (i,j),mn(sn) converges to F (i,j),I (t) = F (i,j),I (t−), for all sequences
sn → t . Let then ϕ be the increasing sequence of integers k such that tk ≥ r

mk

i0
and

ψ be the increasing sequence of integers k such that tk < r
mk

i0
. When ϕ is infinite

and sϕn → t = ri0 , sϕn ≥ tϕn , one has, by Lemma 12(b)(i), that F (i0,j),mϕn (sϕn) con-
verges to F (i0,j),I (t), ∀j ≥ 1. Together with the fact that F (i,j),mϕn (sϕn) converges
to F (i,j),I (t) for i 
= i0, j ≥ 1, we obtain, as in (1), that L(mϕn)(sϕn) converges to

FI (t). On the other hand, mϕn − �
(mϕn)

(sϕn) converges to σI (t), by Lemma 13(ii).
Hence assertion (Ab)(i). Now, if ψ is infinite, let sψn → t , sψn ≤ tψn . Clearly,
F (i0,j),mψn (sψn) = 0 = F (i0,j),I (t−), ∀j,n ≥ 1. Moreover F (i,j),mψn (sψn) converges
to F (i,j),I (t−) for i 
= i0, j ≥ 1, and therefore L(mψn)(sψn) tends to FI (t−). At

last, mψn − �
(mψn)

(sψn) converges to σI (t−) by Lemma 13(ii). Hence assertion
(Ab)(ii). �

Remark The convergence in law of m − �(m) (and a fortiori of m − F
(m)
1 ) to some

γ -stable subordinator σ , γ ∈ (0,1), actually holds as soon as ϕν varies regularly at
∞ with index −γ and τ(m) ∼ Cϕν(m), C > 0. Very roughly, the point is

– either to check that the regular variation assumptions imply that the measures∑
i≥1 δ

(rm
i ,

∑
j≥1 u

i,m
j )

converge in distribution to some Poisson point measure∑
i≥1 δ(ri ,x

i ) on [0,∞) × R
+, where ((ri , x

i), i ≥ 1) is a PPP with intensity
C′x−γ−1dx, x > 0. This will lead to some result identical to Lemma 13 (replacing
there σI by σ )

– or to use classical results on convergence of subordinators (see e.g. [21]) and,
again, regular variation theorems.

2.2 Proof of Theorem 7

We still use the notations �(m), ((tmi , si ), i ≥ 1) and ((ri ,ui , i ≥ 1) introduced in
the previous subsection, and we suppose that τ varies regularly at ∞, and that
ϕν(m)νm → I as m → ∞.

Lemma 14 Define

μ̃m :=
∑
i≥1

δ(tmi (τ/ϕν)(m),(�(m)(tmi −)si
j )j≥2,(msi

j )j≥2)
, m > 0.
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Then, as m → ∞,

μ̃m
law→ μ =

∑
i≥1

δ(ri ,ui ,ui ).

Proof As in the proof of Lemma 10, the goal is to prove the convergence of Laplace
transforms E[exp(−〈μ̃m,f 〉)] to E[exp(−〈μ,f 〉)], for all f ∈ F[0,∞)×l

↓
1 ×l

↓
1

. The ar-

gument is very similar to that of Lemma 10, so we leave it to the reader. Roughly,
the main changes consist in replacing there τ(m) by ϕν(m) and ρ−(m)(t) by
ρ−(m)(t)(τ/ϕν)(m). As an example, the first stage consists in proving the conver-
gences of E[exp(−〈μ̃(t)

m , f 〉)] to E[exp(−〈μ(t), f 〉)], ∀t ≥ 0, where

μ̃(t)
m :=

∑
ti≤tϕν(m)

δ(tmi (τ/ϕν)(m),(�(m)(tmi −)si
j )j≥2,(msi

j )j≥2)
,

μ(t) =
∑
ri≤t

δ(ri ,ui ,ui ).

The main tools are the convergence of ϕν(m)νm to I and the regular variation of τ,

which still gives the Potter’s bounds (12). �

In the rest of this section, we consider versions of μ̃m, μ such that μ̃m → μ a.s.
Let then σ̃ m,m > 0, be a family of permutations such that, a.s.,

r̃m
i (τ/ϕν)(m) := tmσ̃m(i)(τ/ϕν)(m) → ri ,

ũi,m := (�(m)(tmσ̃m(i)−)s
σ̃m(i)
j )j≥2 → ui ,

z̃i,m := (ms
σ̃m(i)
j )j≥2 → ui .

Define next F̃ (i,j),m, �̃(m) and L̃(m) from r̃m
i , ũi,m, z̃i,m, i ≥ 1, m ≥ 0, by formulas

similar to (16), (17) and (18). Also, let F̃ (m) be obtained by considering for each
t ≥ 0 the decreasing rearrangement of the terms �̃(m)(t), F̃

(i,j),m
k (t), i, j, k ≥ 1, and

note that, for all m ≥ 0, �̃(m) law= �(m) and F̃ (m) law= F (m). We should point out that
contrary to what happens when τ(m)νm converges to a non-trivial limit, �̃(m) and
F̃

(m)
1 do not necessarily coincide on [0, t0] for large m’s under the assumptions of

Theorem 7. However �̃(m)((ϕν/τ)(m)·) and F̃
(m)
1 ((ϕν/τ)(m)·) do coincide on [0, t0]

for large m’s and that is all we need for the proof of Theorem 7.
Then, by imitating the proof of Lemma 13, one easily obtains

Lemma 15 With probability one, for all t ≥ 0, and all sequences mn → ∞ and
tn → t , tn ≥ 0,

(i) if t /∈ {ri, i ≥ 1}, then mn − �̃(mn)((ϕν/τ)(mn)tn) → σI (t),
(ii) if t = ri0 , then mn − �̃(mn)((ϕν/τ)(mn)tn) converges to σI (t) when

(ϕν/τ)(mn)tn ≥ r̃
mn

i0
for n large enough and it converges to σI (t−) when

(ϕν/τ)(mn)tn < r
mn

i0
for n large enough.
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To prove Theorem 7(ii), we also need the following lemma.

Lemma 16 Suppose that the parameters (τ, ν) are such that (τ, ν)-fragmentations
lose mass to dust and let F hom be a homogeneous ν-fragmentation starting from
(1,0, . . .). Fix then some a ≥ 0 and for all sequences an → a, an ≥ 0, let F (an),
F (a) be the (τ, ν)-fragmentations constructed from F hom, starting respectively from
an, n ≥ 0, and a. Then, a.s. for all sequences an → a, an ≥ 0, and all sequences
tn → ∞, F (an)(tn) → 0.

Proof As in the proof of Lemma 12 we may suppose that a > 0. Then, with proba-
bility one, since the fragmentation F (a) loses mass, every x falls into the dust after
a finite time, i.e.

∫ ∞
0 1/τ(aI hom

x (r))dr < ∞. It is then easily seen, using dominated
convergence and the fact that τ is monotone near 0, that there exists some (random) C

such that
∫ ∞

0 1/τ(anI
hom
x (r))dr ≤ C < ∞ for all n large enough (this has already be

detailed in the proof of Lemma 12). Hence T
an
x (tn) = ∞ for large n’s, and therefore,

M(an)(tn) = an

∫ 1
0 1{T an

x (tn)<∞}dx converges to 0. �

Proof of Theorem 7 (i) Let I (t) be the decreasing rearrangement {ui
j , j ≥ 1, ri ≤ t}↓,

t ≥ 0. Our goal is to show that a.s.

(
m − �̃(m)((ϕν/τ)(m)·), L̃(m)((ϕν/τ)(m)·)) → (σI , (I (t), t ≥ 0)) (23)

when (ϕν/τ)(m) → 0. Under this assumption, a.s. for all t ≥ 0 and all sequences
mn → ∞, tn → t , with tn ≥ 0, one has that (ϕν/τ)(mn)(tn − r̃

mn

i (τ/ϕν)(mn)) con-
verges to 0, since r̃

mn

i (τ/ϕν)(mn) → ri . Hence F̃ (i,j),mn((ϕν/τ)(mn)tn) converges to
ui

j when (ϕν/τ)(mn)tn ≥ r̃
mn

i for large n’s and it reaches 0 when (ϕν/τ)(mn)tn < r̃
mn

i

for large n’s. Recalling Lemma 15, it is then easy to adapt the proof of Lemma 11
to obtain the required convergence (23). Note that the only jump times of the limit
process are the ri ’s, which makes the proof shorter than that of Lemma 11.

(ii) The following hold a.s. Suppose that (ϕν/τ)(m) → ∞ and fix t ≥ 0. When
t > ri , (ϕν/τ)(m)(t − (τ/ϕν)(m)̃rm

i ) → ∞ and then, according to Lemma 16,
F̃ (i,j),m((ϕν/τ)(m)t) → 0. When t < ri , F̃ (i,j),m((ϕν/τ)(m)t) = 0 for m large
enough. From this, we deduce that for all t /∈ {ri , i ≥ 1}, L̃(m)((ϕν/τ)(m)t) →
0. Furthermore, m − �̃(m)((ϕν/τ)(m)t) → σI (t) according to Lemma 15. So, if
we consider some finite sequence of deterministic times t1, . . . , tk , we know that
(a.s.) these times are not in {ri, i ≥ 1}, and therefore that the convergences of
(m − �̃(m)((ϕν/τ)(m)tl), L̃

(m)((ϕν/τ)(m)tl)) to (σI (tl),0), 1 ≤ l ≤ k, hold simul-
taneously. Hence the convergence in the finite dimensional sense. �

Let us point out that the convergence of L̃(m)((ϕν/τ)(m)·) to 0 in the Skoro-
hod sense does not hold when (ϕν/τ)(m) → ∞. Indeed, consider some i such that
ui

1 > 0 (such i exists since I (l
↓
1 ) 
= 0) and set tm := (τ/ϕν)(m)̃rm

i , m ≥ 0. Then
F̃ (i,1),m((ϕν/τ)(m)tm) converges to ui

1 
= 0 and consequently L̃(m)((ϕν/τ)(m)tm) �

0. Therefore, assertion (a) of Lemma 9 is not satisfied.
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3 Small Times Asymptotics in the Self-Similar Cases

We are now looking at the small times asymptotics of F (1) when τ(m) = mα , α ∈ R.
The assumptions on τ and ν are still those made in (H) (to complete our study, remark
that when ν(l

↓
1,≤1) < ∞, the initial particle waits a positive time before splitting and

therefore F (1)(ε)
a.s.= (1,0, . . .) for ε small enough). Introduce then the function

ϕ−1
ν (ε) := inf{m : ϕν(m) < ε},

which is well defined in a neighborhood of 0 since ν(l
↓
1,≤1) = ∞, and recall that

under the assumption ϕν(m)νm → I , the function ϕν is regularly varying at ∞ (with
index −γν ). Classical results on regular variation (see [10]) then implies that ϕ−1

ν is
also regularly varying (at 0) and ϕν ◦ ϕ−1

ν (ε) ∼ ε when ε → 0.
In the following, we say that a fragmentation with immigration process with para-

meters τ(m) = mα , �ν, I , where � ∈ R
+, is a (α, �ν, I ) fragmentation with immigra-

tion. By convention, when � = ∞, a (α, �ν, I ) fragmentation with immigration FI is
a process constantly null, FI (t) = 0, ∀t ≥ 0, but the subordinator σI of its total mass
of immigrants is still non-trivial and constructed from the measure I . Roughly, this
corresponds to the case where particles immigrate and vanish immediately.

Corollary 17 Suppose that ϕν(m)νm → I and m−αϕν(m) → � ∈ [0,∞] as m →
∞, and let FI be a self-similar fragmentation with immigration with parameters
(α, �ν, I ), starting from 0. Then,

ϕ−1
ν (ε)(1 − F

(1)
1 (ε·), (F (1)

2 (ε·),F (1)
3 (ε·), . . .)) law→ (σI ,F I) as ε → 0, (24)

where the convergence holds with respect to the Skorohod topology when � < ∞ and
in the finite-dimensional sense when � = ∞.

Proof Thanks to the self-similarity of F , the convergence (24) is obtained by:

– applying Theorem 5 when m−αϕν(m) → � ∈ (0,∞) to the process F ((ε�−1)1/α),
and then using that a fragmentation with immigration process with parameters
(α, �ν, I ) is distributed as FI�−1

(�·) where FI�−1
denotes a fragmentation with

immigration (α, ν, �−1I )

– applying Theorem 7 when m−αϕν(m) → � ∈ {0,∞} to the process F (ϕ−1
ν (ε)). �

Remark that the fragmentation with immigration process that arises in this limit is
γν -self-similar (as a consequence of the γν -self-similarity of I stated in Lemma 6),
i.e.

(F I (at), t ≥ 0)
law= (a1/γν F I (t), t ≥ 0) for all a > 0.

Bertoin [9] proves that large times behavior of self-similar fragmentations differs
significantly according as α < 0, α = 0 or α > 0. The above corollary shows that the
rules are quite different for small times behavior: the convergence rate only depends
on ν and then the form of the limit only depends on the position of α with respect
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to γν . The index α = −γν is the only one for which the limit may be a non-trivial
fragmentation with immigration and this occurs if and only if ϕν(m) behaves as a
power function as m → ∞. This suggests that this index is in some sense more natural
than the others.

However, the limit is also non-trivial when α > −γν. In particular, Corollary 8, in
this self-similar setting, says that if ν is binary and if ϕν varies regularly at ∞ with
some index −γν ∈ (−1,0), then, as soon as α > −γν ,

ϕ−1
ν (ε)(1 − F

(1)
1 (ε·),F (1)

2 (ε·),F (1)
3 (ε·), . . .) law→ (σ,1,2, . . .) as ε → 0,

where σ is a stable subordinator with Laplace exponent �(1 − γν)q
γν and

(1(t),2(t), . . .) the decreasing sequence of its jumps before time t, t ≥ 0. This
completes a result of Berestycki [5] who shows that

ϕ−1
ν (ε)(F

(1)
2 (ε),F

(1)
3 (ε), . . .)

law→ (1(1),2(1), . . .)

when α ≥ 0, ν is binary and ϕν varies regularly at ∞. He also investigates the behav-
ior of F

(1)
2 (ε) near 0 for all measures ν and α ≥ 0, and obtains that F

(1)
2 (ε) ∼ R(ε)

a.s. where R is the record process of a PPP with intensity ν(s2 ∈ dx).

We also refer to Miermont and Schweinsberg [28] for some specific examples.

Total Mass Behavior In the self-similar setting, the total mass M(1)(t) =∑
i≥1 F

(1)
i (t) of macroscopic particles present at time t is non-constant if and only if

α < 0. A consequence of Corollary 17 is that the behavior near 0 of the mass 1−M(1)

is then specified as follows.

Corollary 18 Under the assumptions of Corollary 17, as ε → 0,

ϕ−1
ν (ε)(1 − M(1)(ε·)) law→ σI − MFI ,

where MFI (t) = ∑
j≥1 FIj (t), t ≥ 0 (again, the convergence holds with respect to

the Skorohod topology when � < ∞ and in the finite-dimensional sense when � = ∞).
In particular, the limit is equal to σI when � = ∞, is 0 when � = 0, and is non-trivial
when 0 < � < ∞.

Note that when α > −γν , the limit � equals 0 and so the speed of convergence of
1 −M(1)(ε) to 0 is faster than 1/ϕ−1

ν (ε). When −γν < α < 0, one can obtain a lower
bound for this speed by using Theorem 4 of [20], which implies that for all γ < −α,
there exists a positive constant Cγ such that 1 − M(1)(ε) ≥ Cγ ε1/γ , ∀ε > 0.

4 Underlying Continuum Random Trees

In this section τ(m) = mα with α < 0, so that the fragmentation loses mass to dust
and reaches 0 in finite time a.s. As noticed in [20], the genealogy of the fragmentation
can then be described in terms of a continuum random tree.
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The definition of CRT we are considering here is the one given by Aldous
[2], to which we refer for background and precise definitions. Let l1 := {x =
(x1,x2, . . .),

∑
k≥1 |xk| < ∞} be endowed with the norm ‖x‖1 := ∑

k≥1 |xk|, and let
{ek, k ≥ 1} be its usual basis. Roughly, a CRT is a pair (T ,κ) where T is a closed
subset of l1 that possesses the “tree” property: for all v,w ∈ T , there exists a unique
(injective) path connecting v to w, denoted by [[v,w]]. This tree is rooted, that is one
vertex is distinguished as being the root ∅T . It is moreover equipped with a σ -finite
mass measure κ, which is non-atomic and puts mass only on the set of leaves, a leaf
of T being a vertex that does not belong to [[∅, v[[, ∀v ∈ T .

According to Theorem 1 of [20], since α < 0, the fragmentation F (1) can be con-
structed from some random compact CRT (T 1,κ

1) rooted at 0 as follows: for each
t ≥ 0, F (1)(t) is the decreasing rearrangement of the κ

1-masses of connected compo-
nents of T 1 obtained by removing the vertices with a distance from the root smaller
than t . We shall say that (T 1,κ

1) codes the fragmentation F (1). Note that the mea-
sure κ

1 is here a (random) probability measure.
Now, for m > 0, let T m denote the tree T 1 rescaled by a factor m−α and let κ

m

be m times the image measure of κ
1 by this scaling. Then, according to the self-

similarity property, (T m,κ
m) codes a fragmentation F (m) starting from (m,0, . . .),

with parameters (α, ν) (:= (τ, ν) with τ(m) = mα).
In the remainder of this section we assume that

mανm → I ∈ I, I (l
↓
1 ) 
= 0, as m → ∞. (25)

Given Theorem 5, one can then expect that the sequence of CRTs (T m,κ
m) con-

verges in distribution to some “(α, ν, I ) fragmentation with immigration CRT”
(TFI ,κFI ), which should be seen as an infinite baseline B := {xe1, x ≥ 0} on which
compact CRTs are branched. A version of this tree with a spine is constructed below.

We first specify the notion of convergence of trees we are using here. Two trees are
considered to be equivalent if there exists an isometry that maps one onto the other
and that preserves the root. Implicitly, we always identify a tree with its equivalence
class. A natural distance to consider then is the so-called Gromov-Hausdorff distance,
which is a distance measuring how far two metric spaces are from being isometric
(see [16] for a precise definition and properties). Restricted to compact trees of l1,
this distance is given by

DGH(T ,T ′) : = inf(DE
H(ϕ(T ), ϕ′(T ′)) ∨ dE(ϕ(∅T ), ϕ′(∅T ′))),

where the infimum is taken over all isometric embeddings ϕ,ϕ′ : l1 → E into a same
metric space (E,dE) and DE

H denotes the usual Hausdorff distance on the set of com-
pact subsets of E. However, the trees that appear as limit of T m are not compact (but
their restrictions to closed balls are). Hence we have to truncate them, by introducing,
for every tree T and every integer n, T |n := {x ∈T : ‖x‖1 ≤ n}. We then consider that
a sequence Tk converges to T as k → ∞ i.f.f. DGH(Tk|n,T |n) → 0 for all n ≥ 0.

Let us now construct, for each positive m, a “nice version” of the CRT (T m,κ
m)

by using the geometric description of F (m) of Sect. 2.1. Instead of branching frag-
mentations on a baseline, we here branch CRTs. To do so, write N\{1} = ⊎

i,j≥1 Ji,j

where Card(Ji,j ) = ∞ and let fi,j be a bijection between N and Ji,j . Remind then
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that ((ri ,ui ), i ≥ 1) is a PPP with intensity I and that there exist some versions of
the measures μm = ∑

i≥1 δ(rm
i ,ui,m,zi,m) (rm

i , ui,m, and zi,m were introduced in for-
mula (15) Sect. 2.1) and μ = ∑

i≥1 δ(ri ,ui ,ui ) such that μm converges a.s. to μ, and
rm
i → ri , ui,m → ui , zi,m → ui . Define then the maps

mm
i,j :

∑
k≥1

xkek �→ rm
i e1 + (u

i,m
j )−α

∑
k≥1

xkefi,j (k),

mI
i,j :

∑
k≥1

xkek �→ rie1 + (ui
j )

−α
∑
k≥1

xkefi,j (k).

Introduce next a family (Ti,j ,κi,j ), i, j ≥ 1, of independent copies of (T 1,κ
1), in-

dependent of (rm
i ,ui,m, i ≥ 1) and ((ri ,ui ), i ≥ 1). The tree T (u

i,m
j ) := mm

i,j (Ti,j ), en-

dowed with the measure u
i,m
j κi,j ◦ (mm

i,j )
−1, codes a fragmentation F

(u
i,m
j ) branched

on B at height rm
i and the required “nice version” of (T m,κ

m), which is denoted by

(T m
,κ

m), is defined by

T m := {xe1,0 ≤ x ≤ tm∞}
⋃

i,j≥1

T (u
i,m
j )

,

κ
m :=

∑
i,j≥1

u
i,m
j κi,j ◦ (mm

i,j )
−1,

(26)

where tm∞ is the first time at which �
(m)

(defined by (17)) reaches 0.
Similarly, a nice version of the (α, ν, I ) fragmentation with immigration CRT is

defined by

TFI := B
⋃

i,j≥1

T (ui
j )

,

κFI :=
∑
i,j≥1

ui
jκi,j ◦ (mI

i,j )
−1,

(27)

where T (ui
j ) := mI

i,j (Ti,j ). To obtain a version of the (α, ν, I ) fragmentation with
immigration from this tree, just set FI (t) for the decreasing sequence of κFI -masses
of connected components of {x ∈TFI : ‖x‖1 ≥ t, x1 ≤ t}. At last, note that since I is
(−α)-self-similar (by Lemma 6), the CRT is also self-similar, i.e.

(T a
FI , a

−1/α
κ

a
FI )

law= (TFI ,κFI ) for all a > 0,

where T a
FI is the tree TFI rescaled by the factor a and κ

a
FI is the image measure of

κFI by this scaling.
We are now ready to state the counterpart, in term of trees, of Theorem 5, assuming

that (25) holds. The topology on the set of measures on l1 is the topology of vague
convergence.



748 J Theor Probab (2007) 20: 721–758

Theorem 19 As m → ∞,

(T m,κ
m)

law→ (TFI ,κFI ).

For the proof, we need the following lemma, where hi,j := sup{‖x‖1,x ∈ Ti,j } is
the height of the tree Ti,j . It is known (see [17]) that those random variables have
exponential moments.

Lemma 20 For all n ∈ N,

∑
rm
i ≤n,j≥1

u
i,m
j h

−1/α
i,j

P→
∑

ri≤n,j≥1

ui
jh

−1/α
i,j as m → ∞. (28)

As a consequence, one can extract from any increasing integer-valued sequence κ a
subsequence κ such that for all n,p ∈ N, as m → ∞,

∑
r
κm
i ≤n,j≥1

1{(ui,κm
j )−αhi,j p>1}

a.s.→
∑

ri≤n,j≥1

1{(ui
j )−αhi,j p>1} < ∞. (29)

Proof (i) Fix n ∈ N and recall that a.s. μm converges to μ and ri /∈ N, i ≥ 1. Con-
sequently, u

i,m
j 1{rm

i ≤n} → ui
j 1{ri≤n} for all i, j ≥ 1 a.s., and a.s. for all η > 0, there

exists a k ∈ N such that for m large enough,
∑

i+j≥k

(u
i,m
j 1{rm

i ≤n} + ui
j 1{ri≤n}) ≤ η. (30)

We want to prove that Xm := ∑
rm
i ≤n,j≥1 u

i,m
j h

−1/α
i,j converges to X :=∑

ri≤n,j≥1 ui
jh

−1/α
i,j in probability. Remark that X < ∞ a.s. since E[X | (ri ,ui ), i ≥

1] = E[h−1/α

1,1 ]∑ri≤n,j≥1 ui
j is finite a.s. Similarly, Xm < ∞ a.s. Then, since

P(|Xm − X| > ε) = E[E[1{|Xm−X|>ε} | (rm
i ,ui,m), (ri ,ui ), i,m ≥ 1]],

it is sufficient, by dominated convergence, to prove that the conditional expectation
converges a.s. to 0, ∀ε > 0. For large m’s, one has

E[1{|Xm−X|>ε} | (rm
i ,ui,m), (ri ,ui ), i,m ≥ 1]

≤ ε−1E[|Xm − X| | (rm
i ,ui,m), (ri ,ui ), i,m ≥ 1]

≤ ε−1E[h−1/α

1,1 ]
∑
i,j≥1

|ui,m
j 1{rm

i ≤n} − ui
j 1{ri≤n}|

≤ ε−1E[h−1/α

1,1 ]
( ∑

i+j<k

|ui,m
j 1{rm

i ≤n} − ui
j 1{ri≤n}| + η

)
,

the last inequality coming from (30). So for all η > 0, we have a upper bound smaller
than 2ηε−1E[h−1/α

1,1 ] for all m sufficiently large, a.s. Hence the conclusion.
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(ii) The measure I is self-similar (by Lemma 6) and consequently atomless on
l
↓
1 \{0}. As (ri ,ui )i≥1 is a PPP with intensity I , independent of the hi,j ’s, this im-

plies that a.s. (ui
j )

−αhi,jp 
= 1, ∀i, j,p ≥ 1, which in turn leads to the convergence
of 1{(ui,m

j )−αhi,j p>1}1{rm
i ≤n} to 1{(ui

j )−αhi,j p>1}1{ri≤n} a.s. ∀i, j,p,n ≥ 1. Then for all

k ≥ 1,
∣∣∣∣

∑
rm
i ≤n,j≥1

1{(ui,m
j )−αhi,j p>1} −

∑
ri≤n,j≥1

1{(ui
j )−αhi,j p>1}

∣∣∣∣

≤
∑

i+j<k

|1{(ui,m
j )−αhi,j p>1}1{rm

i ≤n} − 1{(ui
j )−αhi,j p>1}1{ri≤n}|

+ p−1/α
∑

i+j≥k

(u
i,m
j h

−1/α
i,j 1{rm

i ≤n} + ui
jh

−1/α
i,j 1{ri≤n}). (31)

So if we prove that each sequence κ possesses a subsequence κ independent of n ∈ N

such that, a.s. for all ε > 0 there exists a k such that
∑

i+j≥k

(u
i,κm

j h
−1/α
i,j 1{rκm

i ≤n} + ui
jh

−1/α
i,j 1{ri≤n}) ≤ ε for all m large enough, (32)

then we will have the statement (using also that the first term in the right hand side
of the inequality (31) is composed by a finite number of terms that all converge to 0
as m → ∞). Clearly, to get (32), it is sufficient to show that there is a subsequence κ

such that ∀n, ∑
r
κm
i ≤n,j≥1

u
i,κm

j h
−1/α
i,j →

∑
ri≤n,j≥1

ui
jh

−1/α
i,j a.s.

To construct this subsequence, we use the convergence in probability (28). It im-
plies that for all n, there is a subsequence κ (n) such that the above a.s. convergence
holds. We want a sequence κ independent of n and to do so, use a diagonal extrac-
tion argument: extract κ (1) from κ and then recursively κ (n+1) from κ (n). Then set
κm := κ (m)(m). �

Proof of Theorem 19 The goal is to prove that the version (T m
,κ

m), defined in (26),
of the fragmentation CRT with total weight m converges in probability to the version
(TFI ,κFI ), defined in (27), of the fragmentation with immigration CRT. Or, equiv-
alently, that for any increasing integer-valued sequence κ , one can extract a subse-

quence κ such that (T κm
,κ

κm ) converges a.s. to (TFI ,κFI ). So, fix such a sequence
κ and consider its subsequence κ introduced in Lemma 20, so that the a.s. conver-
gences (29) hold. In the rest of the proof, all the assertions hold a.s., so we drop the
“a.s.” from the notations.

(i) A first remark is that for all i, j ≥ 1,

D
l1
H(T (u

i,m
j )

,T (ui
j )

) ≤ |rm
i − ri | +

∣∣(ui,m
j )−α − (ui

j )
−α

∣∣hi,j → 0 as m → ∞. (33)
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Fix then n,p ∈ N. As a consequence of (29), the number of trees among {T (u
i,κm
j ),

i, j ≥ 1, r
κm

i ≤ n}, which are not entirely contained in {x : ‖x−x1e1‖1 ≤ p−1} is

constant (finite) for m large enough. Let K be the finite set of (i, j) s.t. T (ui
j ) is not

entirely contained in {x : ‖x−x1e1‖1 ≤ p−1}. Then for large m’s,

D
l1
H(T κm |n,TFI |n) ≤ p−1 + max

i,j∈K
D

l1
H(T (u

i,κm
j )

,T (ui
j )

).

Considering (33) and taking m larger if necessary, one sees that this upper bound is

in turn bounded by 2p−1. This holds for all p ∈ N. Hence DGH(T κm |n,TFI |n) → 0,
∀n ∈ N.

(ii) Next, for all R
+-valued continuous function f with compact support on

l1, 〈ui,m
j κi,j ◦ (mm

i,j )
−1, f 〉 converges to 〈ui

jκi,j ◦ (mI
i,j )

−1, f 〉, since mm
i,j (x) →

mI
i,j (x) for all x ∈ l1. To deduce from this that the sum over i, j ≥ 1 of these

measures converges, fix some η > 0 and let Cf := supl1
|f (x)|. Again we use

the argument that there exists some k ∈ N such that
∑

i+j≥k ui
j 1{ri≤Cf } < η and∑

i+j≥k u
i,m
j 1{rm

i ≤Cf } < η for all m large enough, which leads to

|〈κm,f 〉 − 〈κFI , f 〉|
≤ 2Cf η +

∑
i+j<k

∣∣〈ui,m
j κi,j ◦ (mm

i,j )
−1, f 〉 − 〈ui

jκi,j ◦ (mI
i,j )

−1, f 〉∣∣

which is bounded by (2Cf + 1)η for large m’s. �

5 Stable Fragmentations

In this section, we apply our results to two specific families of fragmentations con-
structed from the so-called stable tree (T β,κ

β) with index β , 1 < β < 2. This object
is a CRT introduced by Duquesne and Le Gall [12], to which we refer for a rigor-
ous construction. Roughly, T β arises as the limit in distribution of rescaled critical
Galton-Watson trees Tn, conditioned to have n vertices and edge-lengths nβ−1−1, and
an offspring distribution (ηk, k ≥ 0) such that ηk ∼ Ck−1−β as k → ∞. It is endowed
with a probability measure κ

β which is the limit as n → ∞ of the empiric measure
on the vertices of Tn.

5.1 Stable Fragmentations with a Negative Index of Self-Similarity

Let Fβ−(t) denotes the decreasing sequence of κ
β -masses of connected components

obtained by removing in T β all vertices at distance less than t from the root, t ≥ 0.
Miermont [26] shows that Fβ− is a self-similar fragmentation with index 1/β − 1,
and with a dislocation measure νβ given by

∫
l
↓
1,≤1

f (s)νβ(ds) = CβE
[
T

β

1 f ((T
β

1 )−1(
β

1 ,
β

2 , . . .))
]
, f ∈ F ,
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where Cβ = β2�(2 − β−1)/�(2 − β). The process T β is a stable subordinator with
Laplace exponent q1/β , i.e.

E[exp(−qT β
r )] = exp(−rq1/β), q, r ≥ 0, (34)

and (
β

1 ,
β

2 , . . .) denotes the sequence of jumps in the decreasing order of T β before
time 1. In order to apply Theorem 5 to these fragmentations, we state the following
lemma.

Lemma 21 As m → ∞, m1/β−1ν
β
m → Iβ , where Iβ is defined by

∫
l
↓
1

f (s)Iβ(ds) = β(β − 1)(�(2 − β))−1
∫ ∞

0
E

[
f (xβ(

β

1 ,
β

2 , . . .))
]
x−βdx,

f ∈ F .

Using (34), one sees that Iβ integrates (1 − exp(−∑
i≥1 si)) and therefore

that it is an immigration measure (it is also a consequence of the above conver-
gence).

Proof In all the proof, T
β

1 ,
β

1 ,
β

2 , . . . are rather denoted by T1,1,2, . . . . A clas-
sical idea is to use a size-biased permutation (∗

1,
∗
2, . . .) of (1,2, . . .) to obtain

some results on the latter. To do so, we first recall that T1 has a density (see e.g.
formula (40) in [30]), that we denote by q . One then obtains, using Palm measures
theory (see e.g. [29]), the following equality:

E[f (T1,
∗
1,

∗
2,

∗
3, . . . ,

∗
k+1)]

= ck+1
β

∫ ∞

0

∫ s0

0

∫ s0−s1

0

. . .

∫ s0−s1−···−sk

0

f (s0, s1, . . . , sk+1)q(s0 − s1 − · · · − sk+1)dsk+1 . . .ds1ds0

s
1/β

k+1s
1/β
k . . . s

1/β

1 (s0 − s1 − · · · − sk) . . . (s0 − s1)s0

(35)

for all non-negative measurable function f on (R+)k+2, where
cβ = (β�(1 − 1/β))−1.

Let then g be a non-negative measurable function on (R+)k . One has

m1/β−1E

[
T1g

(
m∗

2

T1
,
m∗

3

T1
, . . . ,

m∗
k+1

T1

)]

= ck+1
β

∫ ∞

0

∫ u

0

∫ u−s2

0

. . .

∫ u−···−sk

0

(
m1/β−1

∫ ∞

u

g(ms2/s0,ms3/s0, . . . ,msk+1/s0)

(s0 − u)1/β
ds0

)
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× q(u − s2 − · · · − sk+1)dsk+1 . . .ds2du

s
1/β

k+1s
1/β
k . . . s

1/β

2 (u − s2 − · · · − sk)(u − s2 − · · · − sk−1) . . . (u − s2)u

= βcβE

[∫ ∞

0

g(∗
1/(v

−β + m−1T1), . . . ,
∗
k/(v

−β + m−1T1))

vβ
dv

]
, (36)

where for the first equality we use formula (35), the change of variables s1 �→ s0 − u

and Fubini’s Theorem, and for the second equality the change of variables s0 �→
u + mv−β and again formula (35). This holds in particular for g(x1, . . . , xk) =
f ◦ d↓(x1, . . . , xk,0, . . .) when f ∈ F and d↓ is the function that associates to
(x1, x2, . . .) ∈ (R+)∞,

∑
i≥1 xi < ∞, its decreasing rearrangement in l

↓
1 (this func-

tion is measurable). Our aim now is to let k → ∞ in equality (36) for such functions
g. To do so, first note that d↓(x1, . . . , xk,0, . . .) → d↓(x1, x2, . . .) in l

↓
1 as k → ∞,

for all (x1, x2, . . .) ∈ (R+)∞,
∑

i≥1 xi < ∞. We then claim that dominated con-
vergence applies in both sides of the equality. Indeed, for the left hand side, since
f (s) ≤ (

∑
i≥1 si) ∧ 1, one has for all k,

T1g

(
m∗

2

T1
,
m∗

3

T1
, . . . ,

m∗
k+1

T1

)
≤ T1

(
1 ∧ m

(
T1 − ∗

1

T1

))
.

It is therefore sufficient to prove that E[T1 ∧m(T1 −∗
1)] < ∞, which, clearly, holds

if E[T1 − ∗
1] < ∞. It is not hard to see, using the joint distribution (35), that the

last expectation is proportional to E[(T1)
1−1/β ], which, according to formula (43)

in [30], is finite. Hence dominated convergence applies in the left hand side of (36).
Now, for the right hand side, one uses that

g(∗
1/(v

−β + m−1T1), . . . ,
∗
k/(v

−β + m−1T1)) ≤ (T1v
β ∧ 1)

which is integrable with respect to dP⊗v−βdv, because (1− exp(−T1v
β)) is. At last,

letting k → ∞, one obtains

m1/β−1E

[
T1f ◦ d↓

(
m∗

2

T1
,
m∗

3

T1
, . . .

)]

= βcβE

[∫ ∞

0

f ◦ d↓(∗
1/(v

−β + m−1T1),
∗
2/(v

−β + m−1T1), . . .)

vβ
dv

]

= βcβE

[∫ ∞

0

f (1/(v
−β + m−1T1),2/(v

−β + m−1T1), . . .)

vβ
dv

]
.

This latter term converges as m → ∞ to βcβ

∫ ∞
0 E[f (vβ(1,2, . . .))]v−βdv,

again by dominated convergence. Hence we would have the required conver-
gence 〈m1/β−1ν

β
m,f 〉 → 〈Iβ, f 〉 for all continuous non-negative functions f ∈ F

if we could replace in the left hand side of the above formula the sequence
d↓(m∗

2/T1,m∗
3/T1, . . .) by (m2/T1,m3/T1, . . .). Of course, this is not possi-

ble. However, when ∗
1 > T1/2, one has ∗

1
a.s.= 1 (equivalently d↓(∗

2,
∗
3, . . .)

a.s.=
(2,3, . . .)), since the size-biased pick ∗

1/T1 is then necessarily equal to the
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largest mass 1/T1. Therefore, one can write

m1/β−1E

[
T1f

(
m2

T1
,
m3

T1
, . . .

)]

= m1/β−1E

[
T1f ◦ d↓

(
m∗

2

T1
,
m∗

3

T1
, . . .

)]

+ m1/β−1E

[(
T1f

(
m2

T1
,
m3

T1
, . . .

)

− T1f ◦ d↓
(

m∗
2

T1
,
m∗

3

T1
, . . .

))
1{∗

1≤T1/2}
]

and this converges to the required limit as m → ∞, because the absolute value of
the second term in the right hand side of the equality is bounded from above by
m1/β−1E[2T11{∗

1≤T1/2}] which in turn is bounded by m1/β−1E[4(T1 − ∗
1)], which

converges to 0 as m → ∞. �

From this and Theorem 5, one deduces that

(m − (F
β−
1 )(m), ((F

β−
2 )(m), (F

β−
3 )(m), . . .))

law→ (σIβ ,F Iβ), (37)

where FIβ is a fragmentation with immigration process (1/β − 1, νβ, Iβ) and σIβ is
the stable subordinator with index 1−1/β representing the total mass of immigrants.
In terms of trees (Theorem 19), one has

(T β,m,mκ
β,m)

law→ (TFIβ ,κFIβ ),

where T β,m is the stable tree rescaled by a factor m1−1/β and κ
β,m is the image

of κ
β by this scaling; (TFIβ ,κFIβ ) is a fragmentation with immigration CRT with

parameters (1/β − 1, νβ,F Iβ).
In Chap. 4.4.2 of [19], it is shown that (some version of) this fragmentation with

immigration FIβ can be constructed from the height process Hβ coding a contin-
uous state branching process with immigration, with branching mechanism uβ and
immigration mechanism βuβ−1 as follows: for all t ≥ 0, F Iβ(t) is the decreasing
rearrangement of the lengths of finite excursions of Hβ above t . In a recent work,
Duquesne [11] shows that the rescaled height function of some ordered version of
the stable tree with index β converges to Hβ , which corroborates our results.

Last, thanks to the self-similarity, the convergence (37) also specifies the behavior
of (Fβ−)(1)(ε·) as ε → 0. In particular, the mass of dust 1 − (Mβ)(1) behaves as
follows.

Corollary 22 As ε → 0, ε−β/(β−1)(1 − (Mβ)(1)(ε·)) law→ ∫ t

0 Lβ(u)du, where Lβ is a
continuous state branching process with immigration starting from 0, with branching
mechanism uβ and immigration mechanism βuβ−1.

In a previous work, Miermont [26] obtained this convergence result on the mass
of dust for one dimensional marginal.



754 J Theor Probab (2007) 20: 721–758

Proof According to (37), ε−β/(β−1)(1 − (Mβ)(1)(ε·)) converges in law to some non-
trivial limit that corresponds to the total mass of microscopic particles produced until
time t by the fragmentation with immigration FIβ. The construction of FIβ from
Hβ implies that this limit is equal to

∫ t

0 Lβ(u)du, where Lβ(u) is the local time at u

of Hβ. Last, Lambert [24] proves that Lβ is a continuous state branching process with
immigration starting from 0, with the characteristics mentioned in the statement. �

Remark Using the same tools, one sees that the above corollary is also valid when
replacing β by 2 and the fragmentation Fβ by a self-similar fragmentation with index
−1/2 and dislocation measure

√
2νBr .

5.2 Stable Fragmentations with a Positive Index of Self-Similarity

We here consider the self-similar fragmentations Fβ+ with index 1/β and dislo-
cation measure νβ , 1 < β < 2. Such fragmentations can also be constructed from
the stable trees T β , by cutting them at nodes (see [27]). According to Lemma 21,
m1/β−1ν

β
m → Iβ as m → ∞. It is then easy that ϕν(m) ∼ m1/β−1�(1/β)/β as

m → ∞ and therefore ϕν(m)ν
β
m → �(1/β)Iβ/β. On the other hand, the index of

self-similarity is 1/β and m−1/βϕν(m) → 0. Corollary 17 then ensures that letting
ε → 0,

ε−β/(β−1)(1 − F
β+
1 (ε·), (F β+

2 (ε·),F β+
3 (ε·), . . .)) law→ ((σIβ (t), Iβ(t)), t ≥ 0),

where (Iβ(t), t ≥ 0) denotes a pure immigration process with intensity Iβ and
σIβ its (1 − 1/β)-stable subordinator of total mass of immigrants (here we have
used that a pure immigration process with intensity �(1/β)Iβ/β is distributed
as ((�(1/β)/β)β/(β−1)I β(t), t ≥ 0)). Let then � be a (β − 1)-stable subordina-
tor with Laplace exponent βqβ−1, q ≥ 0, independent of T β and call (

β

1 (�(t)),


β

2 (�(t)), . . .) the decreasing sequence of jumps of T β before time ρ(t), t ≥ 0. A

moment of thought shows that ((
β

1 (�(t)),
β

2 (�(t)), . . .), t ≥ 0) is distributed as
(Iβ(t), t ≥ 0). Therefore,

Corollary 23 As ε → 0,

ε−β/(β−1)(1 − F
β+
1 (ε·), (F β+

2 (ε·),F β+
3 (ε·), . . .))

law→ (T
β

�(·), (
β

1 (�(·)),β

2 (�(·)), . . .)).

Miermont [27] obtained this result for one dimensional marginal.

Acknowledgements I am grateful to the referee for a careful reading which helps improving on the
original version of this work.
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Appendix

Proof of Proposition 2

Our aim is to prove that under the general hypotheses (H) we have made on τ, ν, the
mass M(m)(t) = ∑

i≥1 F
(m)
i (t) is a.s. continuous in t . We point out that the condition

ν(l
↓
1,≤1) = ∞ is actually not required, i.e. the result is available for any dislocation

measure, provided that ν(
∑

i≥1 si < 1) = 0. So in the following ν can be finite or
infinite, but the other hypotheses on τ, ν made in (H) have to be fulfiled. We exclude
the trivial case ν(l

↓
1,≤1) 
= 0 and, since the proof is the same for all m, we suppose

that m = 1 and use the notations M, F instead of M(1), F (1).
As often in the study of loss of mass, the problem can be tackled by considering

the evolution of some fragments independently tagged at random. So, consider the
interval representation I τ from which F has been constructed in Sect. 1.1.1 and let
U,U ′ be two independent r.v. uniformly distributed on (0,1), independent of I τ . Let
then Dτ (resp. D′

τ ) be the first time, possibly infinite, at which U (resp. U ′) falls into
the dust and note that with probability one, P(Dτ = D′

τ = t | I τ ) = (M(t−)−M(t))2

for all t ≥ 0. Consequently, the mass M is a.s. continuous as soon as P(Dτ = D′
τ <

∞) = 0.
The goal now is to prove that this probability is equal to 0. To do so, note first,

using the time changes (1), that

Dτ =
∫ ∞

0
dr/τ(|I hom

U (r)|) =
∫ ∞

0
dr/τ(exp(−σ(r))),

where, by definition, σ = − ln(|I hom
U |). A well-known result of [7] says that σ is a

subordinator with zero drift and Lévy measure L(dx) = ∑
i≥1 e−xν(− log si ∈dx).

Introduce then T , the first time at which U and U ′ do not belong to the same frag-
ment and call m(T ) (resp. m′(T )) the length of the fragment containing U (resp. U ′)
at that time. Since ν does not lose mass during sudden dislocations, the masses m(T ),
m′(T ) are a.s. strictly positive. Let then, for m > 0, τ(m·) denote the function t ∈
[0,∞) �→ τ(mt). Using the fragmentation property, one sees that Dτ = T +D̃τ(m(T )·)
and D′

τ = T + D̃τ(m′(T )·), where, conditionally on m(T ) and m′(T ), D̃τ(m(T )·) and
D̃τ(m′(T )·) are independent and distributed as Dτ(m(T )·) and Dτ(m′(T )·) respectively.
Therefore, P(Dτ = D′

τ < ∞) = P(D̃τ(m(T )·) = D̃τ(m′(T )·) < ∞) is equal to 0 as
soon as the point ∞ is the only possible atom of Dτ(m·), ∀m > 0. The proof ends
with the following lemma. We recall that σ has no drift component.

Lemma 24 Let f be a locally integrable and strictly positive function on [0,∞).
Suppose moreover that f is monotone near ∞. Then the integral

∫ ∞
0 f (σ (r))dr is

either a.s. finite or a.s. infinite and when it is a.s. finite, its distribution is atomless.

Proof The first assertion is a consequence of the Hewitt-Savage 0-1 law and is shown,
e.g., in the proof of Proposition 10 of [17]. In the following we suppose that the
integral

∫ ∞
0 f (σ (r))dr is a.s. finite. In particular, f is non-increasing near ∞ and

converges to 0.
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(i) The proof is easy when ν is finite. Indeed, let then T1 be the first jump time of σ.

It is well-known that T1 and σ(r +T1) are independent and that T1 has an exponential
distribution. Therefore, splitting the integral at T1, we see that

∫ ∞
0 f (σ (r))dr can be

written as the sum of two independent r.v.:
∫ ∞

0
f (σ (r))dr = f (0)T1 +

∫ ∞

0
f (σ (r + T1))dr ,

the first one, f (0)T1, being absolutely continuous. It is easy that
∫ ∞

0 f (σ (r))dr is
then also absolutely continuous, hence atomless.

(ii) From now on, we suppose that ν is infinite. Introduce then for all t ≥ 0 the
stopping times

θ(t) := inf

{
u :

∫ u

0
f (σ (r))dr > t

}
,

with the convention inf{∅} = ∞. According to the strong Markov property, condi-
tional on θ(t) < ∞,

∫ ∞

0
f (σ (r))dr = t +

∫ ∞

0
f (σ (θ(t)) + σ (t)(r))dr,

where σ (t)(r) := σ(r + θ(t)) − σ(θ(t)), r ≥ 0, is a subordinator distributed as σ and
independent of σ(θ(t)).

Now fix some t > 0 and to begin with, suppose that f is strictly decreasing on
[0,∞). The function x ∈ (0,∞) �→ ∫ ∞

0 f (x + σ (t)(r))dr is then strictly decreas-
ing, hence injective. Consequently, there is at most one point, say Xt , such that∫ ∞

0 f (Xt + σ (t)(r))dr = t. If that point does not exist, Xt := ∞. Then,

P

(∫ ∞

0
f (σ (r))dr = 2t

)
= P

(∫ ∞

0
f (σ (θ(t)) + σ (t)(r))dr = t, θ(t) < ∞

)

= P(σ(θ(t)) = Xt, θ(t) < ∞)

with Xt independent of σ(θ(t)). This latter probability is then 0, because for all
0 < a < ∞, P(σ(θ(t)) = a) ≤ P(∃s : σ(s) = a) and, by Kesten’s Theorem (see e.g.
Proposition 1.9 in [6]), since σ has 0 drift and ν is infinite, P(∃s : σ(s) = a) = 0.
Hence the conclusion holds when f is strictly decreasing on [0,∞).

Suppose next that f is only non-increasing on [0,∞) and that P(
∫ ∞

0 f (σ (r))dr =
t ′) > 0 for some t ′ > 0. Still because the random variables σ(θ(t)) (t > 0) have no
atom (except ∞), this implies that for each t ∈ (0, t ′), the probability that the function
x �→ ∫ ∞

0 f (x + σ (t)(r))dr is equal to t ′ − t on some non-void interval is strictly
positive, which implies in turn that

∀t ∈ (0, t ′),∃qt ∈ Q
+ : P

(∫ ∞

0
f (qt + σ(r))dr = t

)
> 0. (38)

On the other hand, ∀q ∈ Q
+, the set of t ∈ R

+ such that P(
∫ ∞

0 f (q +σ(r))dr = t) >

0 is at most countable, hence the set of (q, t) ∈ Q
+ ×R

+ s.t. P(
∫ ∞

0 f (q +σ(r))dr =
t) > 0 is at most countable. This contradicts (38).
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At last, when f is non-increasing (only) in a neighborhood of ∞, say on [b,∞),
we can turn down to the previous case as follows: let Tb := inf{t : σ(t) > b} and write

∫ ∞

0
f (σ (r))dr =

∫ Tb

0
f (σ (r))dr +

∫ ∞

0
f (σ (Tb) + σ̃ (r))dr, (39)

where σ̃ is independent of (σ (t), t ≤ Tb) and distributed as σ. Conditional on
(σ (t), t ≤ Tb), we know that

∫ ∞
0 f (σ (Tb) + σ̃ (r))dr is atomless since f (σ (Tb) + ·)

is non-increasing on [0,∞). Therefore, using (39) and still conditioning on (σ (t), t ≤
Tb), we see that

∫ ∞
0 f (σ (r))dr is also atomless. �

Fragmentations with Erosion

Until now, we have considered pure-jump fragmentation processes. However it is
well-known that a fragmentation may have a continuous part, and more precisely,
that a general homogeneous fragmentation is characterized by its dislocation mea-
sure ν and by an erosion coefficient c ≥ 0 that measures the melting of the par-
ticles. More precisely, any homogeneous fragmentation F hom can be factorized as

F hom(t) = e−ctF
hom

(t), t ≥ 0, for some c ≥ 0 and some pure-jump ν-homogeneous

fragmentation F
hom

. Exactly as in Sect. 1.1.1, one can then construct from any (c, ν)-
homogeneous fragmentation, some (τ, c, ν) fragmentation and (τ, c, ν, I ) fragmen-
tation with immigration.

We still work under the hypotheses (H). Theorems 5 and 7 can then be modified
as follows:

– all the results concerning the convergence of (F
(m)
2 ,F

(m)
3 , . . .) are still valid, pro-

vided that in Theorem 5 we replace the (τ, ν, I ) fragmentation with immigration
by some (τ, c, ν, I ) fragmentation with immigration

– under the assumptions of Theorem 5, this convergence holds jointly with that of
(m−F

(m)
1 )/mτ(m) to the deterministic process (ct, t ≥ 0). Under the assumptions

of Theorem 7, it holds jointly with that of (m − F
(m)
1 ((ϕν/τ)(m)·))/mϕν(m) to

(ct, t ≥ 0).

The main difference in the proofs is that the subordinator ξ introduced in (7) is
here replaced by the subordinator ξc, ξc(t) := ξ(t) + ct , t ≥ 0.

References

1. Aldous, D.: The continuum random tree I. Ann. Probab. 19(1), 1–28 (1991)
2. Aldous, D.: The continuum random tree III. Ann. Probab. 21, 248–289 (1993)
3. Aldous, D., Pitman, J.: The standard additive coalescent. Ann. Probab. 26(4), 1703–1726 (1998)
4. Berestycki, J.: Ranked fragmentations. ESAIM Probab. Stat. 6, 157–175 (2002)
5. Berestycki, J.: Fragmentations et coalescences homogènes. Thèse de doctorat de l’université Paris 6.

Available via http://tel.ccsd.cnrs.fr/
6. Bertoin, J.: Subordinators: examples and applications. In: Bernard, P. (ed.) Lectures on Probabil-

ity Theory and Statistics, Ecole d’été de probabilités de St-Flour XXVII. Lecture Notes in Math.,
vol. 1717, pp. 1–91. Springer, Berlin (1999)



758 J Theor Probab (2007) 20: 721–758

7. Bertoin, J.: Homogeneous fragmentation processes. Probab. Theory Relat. Fields 121(3), 301–318
(2001)

8. Bertoin, J.: Self-similar fragmentations. Ann. Inst. H. Poincaré Probab. Stat. 38, 319–340 (2002)
9. Bertoin, J.: The asymptotic behavior of fragmentation processes. J. Eur. Math. Soc. 5(4), 395–416

(2003)
10. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Encyclopedia of Mathematics and its

Applications, vol. 27. Cambridge University Press, Cambridge (1989)
11. Duquesne, T.: Continuum random trees and branching processes with immigration. Stoch. Process.

Appl. (to appear)
12. Duquesne, T., Le Gall, J.F.: Random Trees, Lévy Processes and Spatial Branching Processes.

Astérisque, vol. 281. Société Mathématique de France (2002)
13. Etheridge, A.M., Williams, D.E.: A decomposition of the 1+β superprocess conditioned on survival.

Proc. R. Soc. Edin. A 133, 829–847 (2003)
14. Ethier, S.N., Kurtz, T.G.: Markov Processes, Characterization and Convergence. Wiley, New York

(1986)
15. Evans, S.N.: Two representations of a conditioned superprocess. Proc. R. Soc. Edin. A 123, 959–971

(1993)
16. Gromov, M.: Metric Structures for Riemannian and Non-Riemannian Spaces. Progress in Mathemat-

ics. Birkhäuser, Boston (1999)
17. Haas, B.: Loss of mass in deterministic and random fragmentations. Stoch. Process. Appl. 106(2),

245–277 (2003)
18. Haas, B.: Equilibrium for fragmentations with immigration. Ann. Appl. Probab. 15(3), 1958–1996

(2005)
19. Haas, B.: Fragmentations et perte de masse. Thèse de doctorat de l’université Paris 6. Available via

http://tel.ccsd.cnrs.fr/
20. Haas, B., Miermont, G.: The genealogy of self-similar fragmentations with a negative index as a

continuum random tree. Electron. J. Probab. 9, 57–97 (2004)
21. Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Springer, Berlin (2003)
22. Kallenberg, O.: Random Measures. Akademie-Verlag, Berlin (1975)
23. Kingman, J.F.C.: Poisson Processes. Oxford Studies in Probability, vol. 3. Clarendon Press/Oxford

University Press, New York (1993)
24. Lambert, A.: The genealogy of continuous-state branching processes with immigration. Probab. The-

ory Relat. Fields 122(1), 42–70 (2002)
25. Lyons, R., Pemantle, R., Peres, Y.: Conceptual proofs of LLogL criteria for mean behavior of branch-

ing processes. Ann. Probab. 23(3), 1125–1138 (1995)
26. Miermont, G.: Self-similar fragmentations derived from the stable tree I: splitting at heights. Probab.

Theory Relat. Fields 127(3), 423–454 (2003)
27. Miermont, G.: Self-similar fragmentations derived from the stable tree II: splitting at nodes. Probab.

Theory Relat. Fields 131(3), 341–375 (2005)
28. Miermont, G., Schweinsberg, J.: Self-similar fragmentations and stable subordinators. In: Séminaire

de Probabilités XXXVII. Lectures Notes in Math., vol. 1832, pp. 333–359. Springer, Berlin (2003)
29. Neveu, J.: Processus ponctuels. In: Ecole d’été de probabilités de St-Flour VI. Lecture Notes in Math.,

vol. 598, pp. 249–445. Springer, Berlin (1977)
30. Pitman, J.: Combinatorial stochastic processes. In: Ecole d’été de probabilités de St-Flour XXXII.

Lecture Notes in Math., vol. 1875. Springer, Berlin (2006)
31. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn. Springer, New York

(1998)


	Fragmentation Processes with an Initial Mass Converging to Infinity
	Abstract
	Introduction and Main Results
	Fragmentation and Fragmentation with Immigration Processes
	(tau,nu)-Fragmentations
	General Setting
	Construction
	Self-Similar Fragmentations
	Two Classical Examples
	Loss of Mass

	(tau,nu,I)-Fragmentations with Immigration

	Main Results: Asymptotics of F(m)

	Proofs
	Proof of Theorem 5
	Heuristic Description
	Convergence of the Point Processes
	A.s. Convergence of Versions of (m-F1(m),(F2(m),…)) to a Version of (sigmaI,FI)

	Proof of Theorem 7

	Small Times Asymptotics in the Self-Similar Cases
	Total Mass Behavior

	Underlying Continuum Random Trees
	Stable Fragmentations
	Stable Fragmentations with a Negative Index of Self-Similarity
	Stable Fragmentations with a Positive Index of Self-Similarity

	Acknowledgements
	Appendix
	Proof of Proposition 2
	Fragmentations with Erosion

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


