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Abstract We show that we can construct simultaneously all the stable trees as a
nested family. More precisely, if 1 < α < α′ ≤ 2 we prove that hidden inside any
α-stable tree we can find a version of an α′-stable tree rescaled by an independent
Mittag-Leffler type distribution. This tree can be explicitly constructed by a pruning
procedure of the underlying stable tree or by a modification of the fragmentation
associated with it. Our proofs are based on a recursive construction due to Marchal
which is proved to converge almost surely towards a stable tree.

Keywords Stable Lévy trees · Pruning · Dissipative self-similar fragmentations ·
Marchal’s algorithm

Mathematics Subject Classification (2000) 60J25 · 60J80

1 Introduction

Since the beginning of the early 1990’s and the introduction of the Brownian continuum
random tree by Aldous [2], random trees have been the object of intense research in
probability theory. Various classes of continuous random trees have been considered
to extend the initial Brownian tree setup, two important such classes are Lévy and
fragmentation trees. The Lévy trees have been introduced by Le Gall and Le Jan [20]
to describe the genealogical structure of continuous-state branching processes and
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furnish all the possible scaling limits of Galton–Watson trees [12]. The fragmentation
trees [16] encode the genealogy of self-similar fragmentation processes and are the
scaling limits of Markov branching trees [15]. The intersection of these two classes
consists of the stable trees of parameter

α ∈ (1, 2].

When α = 2, the 2-stable tree corresponds to Aldous’ Brownian CRT, up to a multi-
plicative scaling. For general α ∈ (1, 2], the α-stable trees can either be seen as the
scaling limits of conditioned critical Galton–Watson trees with offspring distribution
in the domain of attraction of a stable law of index α [11], or as a 1/α − 1 self-similar
fragmentation tree which is invariant under uniform re-rooting [18]. The increasing
function α �→ 1 − 1/α will repeatedly appear when dealing with stable trees and we
shall use the following notation throughout the paper:

ᾱ = 1 − 1/α.

We adopt the convention of Duquesne and Le Gall [12] and denote by Tα the standard
α-stable tree, which is the one describing the genealogical structure of a continuous-
state branching process with branching mechanism λ �→ λα . Alternatively, for α = 2,
it can be defined as the scaling limit of a conditioned Galton-Watson tree with offspring
distribution η with mean 1 and variance σ 2 ∈ (0,∞) in the following sense:

T GW
n√

n

(d)−−−→
n→∞

√
2

σ
T2,

where T GW
n is a version of the above mentioned Galton–Watson tree conditioned to

have n vertices. Similarly, for α ∈ (1, 2) and for an offspring distribution η with mean
1 and such that η(k) ∼ Ck−1−α as k → ∞, we have that:

T GW
n

nᾱ

(d)−−−→
n→∞

(
α(α − 1)

C�(2 − α)

)1/α

Tα.

These convergences hold for the Gromov–Hausdorff topology, as recalled in Sect. 2.
The nested family of stable trees. Some connections between different stable

and Lévy trees have already been observed. In [1] Abraham et al. present a pruning
procedure for a large class of Lévy trees that leads to other Lévy trees. However,
when applied to stable trees, their procedure gives pruned subtrees that are not stable
anymore. In the other direction, Bertoin et al. [9] obtain stable trees by folding ran-
domly the branches of a Brownian tree. These results are a priori unrelated to the ones
presented here.

It is well-known [13,16] that the Hausdorff dimension of the α-stable tree is almost
surely 1/ᾱ, for all α ∈ (1, 2]. Thus, in some sense, the stable trees are decreasing
in the parameter α. The goal of this work is to give a precise geometric statement of
the last heuristic and to show that all the stable trees can be seen as a single family
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Fig. 1 A Brownian tree hidden in a stable tree

of (random) nested trees. To do so, rather than considering the standard versions of
the stable trees Tα , we will consider randomly scaled versions so that it is possible to
build on the same probability space a family of nested stable trees. More precisely,
we let �a , a > 0, denote a Gamma random variable with shape parameter a and scale
parameter 1, that is with density proportional to xa−1e−x 1{x>0}. We then set

Jα
(d)= α · (�1+ᾱ)ᾱ .

This variable has been designed so that if we rescale a stable tree Tα by a independent
variable distributed as Jα (that is we multiply the distances in Tα by the factor Jα)
then the height of a random uniform point in Jα · Tα has a distribution that does not
depend on α, namely a Gamma distribution of parameter 2. Our main result is then

Theorem 1 There exists a process of rescaled nested stable trees (Tα, 1 < α ≤ 2)

such that:

• Tα
(d)= Jα · Tα , where Jα is independent of Tα , α ∈ (1, 2],

• Tα′ ⊂ Tα , for all 1 < α ≤ α′ ≤ 2.

The existence of this decreasing process of rescaled stable trees is actually a simple
corollary of the following proposition, which says that hidden inside any stable tree
of parameter α, there exists a rescaled version of a stable tree of parameter α′ > α

(see Fig. 1).

Proposition 2 Let 1 < α < α′ ≤ 2. There exists a closed (random) subtree Tα,α′ of
the α-stable tree Tα , such that

Tα,α′
(d)= (Mα,α′)ᾱ

′ · Tα′ ,

where Tα′ is a standard α′-stable tree and Mα,α′ is an independent variable distrib-
uted as (α′/α)1/ᾱ′

times a generalized Mittag-Leffler distribution with parameters(
ᾱ/ᾱ′, ᾱ

)
.
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The definition of generalized Mittag-Leffler distributions is recalled in Sect. 3.1.
Throughout this work, the boundary case α′ = 2, where a (rescaled) Brownian tree
is extracted from an α-stable tree, deserves a special attention since our constructions
and proofs simplify substantially in this case. Although not unique, the subtree Tα,α′
of the last proposition can be explicitly constructed by a pruning procedure of the tree
Tα .

Pruning procedure. Let 1 < α < α′ ≤ 2. Conditionally on the stable tree Tα , let
Xi , i ≥ 0 be i.i.d. random leaves sampled according to its uniform mass measure. Then
write tn for the subtree spanned by X0, X1, . . . , Xn inTα . For d, d ′ ∈ {0, 2, 3, 4, 5, . . .}
with d ≥ d ′ and d ≥ 2, we introduce the following probabilities

pα,α′,d,d ′ =
⎧⎨
⎩

0 if d ′ = 0,

1 if d ′ = 2,
(d ′−1−α′)(α−1)
(d−1−α)(α′−1)

otherwise,
∈ [0, 1], (1)

from which we construct inductively a sequence of subtrees τn ⊂ tn ⊂ Tα as follows:

• τ1 = t1 = [[X0, X1]] is the line segment linking X0 to X1 in Tα ,
• at step i ≥ 2, write ti = ti−1 ∪ [[Xi ,�i ]], where �i ∈ ti−1 and [[Xi ,�i ]] is the

shortest path in ti connecting Xi to ti−1. Then let di denote the degree (multiplicity)
of �i in ti−1 and d ′

i its degree in τi−1, with the convention that d ′
i = 0 if �i /∈ τi−1.

Finally set (see Fig. 2)

τi = τi−1 ∪ [[Xi ,�i ]] with probability pα,α′,di ,d ′
i
,

τi = τi−1 otherwise.

The sequence (τn) is clearly increasing in Tα and we denote by Prunα,α′
(Tα; (Xi )i≥0) the closure of this increasing union.

Fig. 2 Illustration of the pruning construction. Here d ′ = 3, d = 4 and the trees τ5 and τ6 are in blue
(color figure online)
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Notice that when α′ = 2 we have pα,2,d,3 = 0 and thus no branch point of degree
larger or equal to 4 is created in τn . In other words, (τn) is a sequence a binary trees.
In this case, the pruning procedure boils down to adding those points Xn+1
whose attachment to τn preserves the binary structure of the tree and thus
Prunα,2(Tα; (Xi )i≥0) can be seen as a deterministic function of Tα and of the leaves
Xi , i ≥ 0.

Theorem 3 The statement of Proposition 2 holds with

Tα,α′ = Prunα,α′
(
Tα; (Xi )i≥0

)
.

Moreover, since α′ �→ pα,α′,d,d ′ is decreasing, we can couple the realizations of the
pruned subtrees such that α′ ∈ (α, 2] �→ Prunα,α′

(
Tα; (Xi )i≥0

)
is decreasing inside

Tα . The pruning operation can also be viewed from a fragmentation point of view
which sheds new light on the construction of Tα,α′ .

Modification of the stable fragmentation. Fragmentation theory is a mathematical
attempt to model the behavior of particles that undergo a splitting process, see [7] for
an account on this field. Any α-stable tree Tα can be associated with a self-similar
fragmentation process that describes the masses of the subtrees of Tα above a certain
height. In other words, an α-stable tree can be seen as the genealogical tree (in the
sense of [16]) of a pure-jump self-similar fragmentation process with index −ᾱ, whose
dislocation measure να has been identified by Bertoin [6] in the Brownian case α = 2
and by Miermont [22] in the general case (see Sect. 5 for an expression of να). All
these dislocation measures are conservative, which means that the mass is kept at
each dislocation. In Sect. 5 we introduce for 1 < α < α′ ≤ 2 a modification of the
dislocation measure να by (roughly speaking) keeping randomly some of the fragments
created by να . When α′ = 2, this simply consists in keeping only two fragments,
chosen proportionally to their sizes. In the other cases the procedure is more complex
and depends on the probabilities pα,α′,d,d ′ introduced in (1). Obviously, the resulting
dislocation measure να,α′ is now dissipative (some mass is lost at each dislocation). It
is still possible to associate with it a random tree coding its genealogy (see [26]) and
we have:

Proposition 4 The tree Tα,α′ of Proposition 2 can be seen as the genealogical tree of
a pure-jump self-similar fragmentation of index −ᾱ and dislocation measure να,α′ .

Thus, in addition to being the genealogy of a canonical conservative fragmentation
process, the stable tree of parameter α′ is also, up to a random scaling, the genealogical
tree of a dissipative fragmentation process with dislocation measure να,α′ and auto-
similarity index −ᾱ for all α ∈ (1, α′). Besides, as such a dissipative fragmentation
tree, Tα,α′ naturally carries a Malthusian measure whose total mass is distributed, up to
a deterministic scaling, as the random variable Mα,α′ appearing in the random scaling
in Proposition 2. In Theorem 15 of Sect. 5, we reinforce Proposition 4 by showing that
this dissipative fragmentation tree endowed with its Malthusian measure is distributed
as an α′-stable tree with its natural uniform mass measure, up to a random scaling
depending on Mα,α′ .

Strategy and organization of the paper. The construction of the subtree Tα,α′
presented in Proposition 2 relies on a discrete approach. In [21], Marchal intro-
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Fig. 3 Illustration of the recursive rules to construct Tα(n + 1) from Tα(n)

duced a Markov chain (Tα(n), n ≥ 1) made of increasing labeled trees which, once
re-normalized, converge towards the stable tree of parameter α. Let us present quickly
this construction: we start with Tα(1), the tree with a single edge, then inductively at
step n ≥ 2 we associate a weight α − 1 to every edges of the tree Tα(n) and a weight
d − 1 −α to each vertex with degree d ≥ 3. An edge or a vertex of Tα(n) is chosen at
random accordingly to these weights and a new edge is attached either directly to the
vertex or in the “middle” of the chosen edge, see Fig. 3 and Sect. 2.3 for more details.
In the case α = 2 this construction is the famous algorithm for growing binary trees
due to Rémy [25]. We prove in Theorem 5 that, once re-normalized, the trees Tα(n)

converge towards a stable tree

Tα(n)

nᾱ

a.s.−−−→
n→∞ αTα,

in the Gromov–Hausdorff sense. This result thus strengthens the convergence in prob-
ability already obtained in [17, Corollary 24].

The key observation that triggered this work is that it is possible to identify within
Marchal’s construction of the Tα(n)’s a “sub-Markov chain” of trees Tα,α′(n) ⊂ Tα(n)

whose growth mechanism is identical to Marchal’s algorithm but with parameter α′ >

α, see Sect. 3. The scaling limit of the sequence (Tα,α′(n), n ≥ 1) then furnishes the
tree Tα,α′ of Proposition 2.

The paper is organized as follows. Section 2 contains the background on discrete
and continuous trees as well as the presentation of Marchal’s construction and its
almost sure convergence towards the stable tree (Theorem 5). We then move in Sect. 3
to the observation that sub-constructions lie inside Marchal’s algorithm and deduce
Proposition 2 and Theorem 1. Section 4 is devoted to the pruning construction of
Tα,α′ (Theorem 3). Finally, the last section explores the fragmentation approach and
its consequences.

2 Background on stable trees

In this section, we present the recursive construction of Marchal and prove (Theorem 5)
that it converges almost surely, after rescaling, towards a stable tree. Before embarking
into that topic, we start by introducing some background on trees and the Gromov–
Hausdorff and Gromov–Hausdorff–Prokhorov distances.
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The stable trees are nested 853

2.1 Discrete and continuous trees

Discrete trees. A discrete tree τ is a finite connected graph without cycle, considered up
to graph isomorphisms: it is not embedded in any space and its vertices are unlabeled.
If x and y are two vertices of a tree τ , we denote by [[x, y]] the discrete geodesic in τ

between x and y. If y1, y2, . . . , yk are (distinct) vertices of τ we write

Span(τ ; y1, . . . , yk) =
⋃

1≤i, j≤k

[[yi , y j ]],

for the discrete tree spanned by these vertices. The degree of a vertex is the number
of edges adjacent to it, for instance a leaf is a vertex of degree one. A tree is binary if
the degrees of its vertices are in {1, 2, 3}.

A labeled discrete tree τ = (τ ; x0, x1, . . . , xn) is a pair formed by a discrete tree
τ given with an exhaustive enumeration of its leaves. If τ is a labeled tree we call
the shape of τ the tree τ obtained after forgetting the labeling of the tree. We will
systematically use bold letters for labeled trees and standard ones for their associated
shapes.

Continuous trees. We briefly recall here some facts on R-trees and refer to [14,19]
for an overview of this topic. An R-tree is a metric space (T , d) such that for every
x, y ∈ T ,

– there is an isometry ϕx,y : [0, d(x, y)] → T such that ϕx,y(0) = x and
ϕx,y(d(x, y)) = y

– for every continuous, injective function c : [0, 1] → T with c(0) = x, c(1) = y,
one has c([0, 1]) = ϕx,y([0, d(x, y)]).

We identify two R-trees when they are isometric, and still use the notation (T , d)

to represent an isometry class. Note that a discrete tree may be seen as a R-tree by
“replacing” its edges by segments. Unless specified, it is implicit in this paper that
these line segments are all of length 1. We use much of the notation we introduced
in the context of discrete trees when it is non ambiguously extended to R-trees. In
particular if (T , d) is an R-tree and if a, b ∈ T we denote by [[a, b]] the geodesic
line segment between a and b in T . Also Span(T ; y1, . . . , yk) = ∪1≤i, j≤k[[yi , y j ]]
still denotes the subtree spanned by y1, . . . , yk ∈ T . The degree (or multiplicity) of
a point x ∈ T is the number of connected components of T \{x}. A leaf is a point of
degree 1, a branch point has degree larger than or equal to 3, and an R-tree is said to
be binary if the degrees of its points are in {1, 2, 3}.

Gromov–Hausdorff–Prokhorov topology. The reader interested by the Gromov–
Hausdorff and Gromov–Hausdorff–Prokhorov topologies should consult [10,14,23]
for details and proofs. Let k ∈ {0, 1, 2, . . .}. A compact metric space (E, d) is k-pointed
if it is given with k points x1, . . . , xk ∈ E (when k = 0 this is just a compact metric
space). An isometry between two k-pointed compact metric spaces is an isometry
between the spaces that maps the k distinguished points to each other. The set of
isometry classes of k-pointed compact metric spaces is endowed with the classical
(k-pointed) Gromov–Hausdorff topology, that makes it Polish. This distance can be
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defined as

dGH((E, d; x1, . . . , xk), (E ′, d ′; x ′
1, . . . , x ′

k))

= inf
{

dH(φ(E), φ(E ′)) ∨ max
1≤i≤k

δ(φ(xi ), φ
′(x ′

i ))
}
,

where the infimum is taken over all choices of metric spaces (F, δ) and isometric
embeddings φ : E → F , φ′ : E ′ → F , and where dH denotes the Hausdorff distance
in F . The class of compact R-trees forms the accumulation points of the class of
rescaled discrete trees for the Gromov–Hausdorff topology and is thus closed. In the
remainder of the paper, we use the notation a · E for the rescaled metric space (E, ad)

for any a > 0.
The Gromov–Hausdorff topology can be enriched in order to take into account

measured spaces. A compact metric space (E, d) endowed with a Borel probability
measure μ is called a measured compact metric space. We can extend the Gromov–
Hausdorff topology to isometry classes (defined in the obvious way) of measured
compact metric spaces by putting

dGHP((E, d, μ), (E ′, d ′, μ′)) = inf
{
dH(φ(E), φ′(E ′)) ∨ dP(φ∗μ, φ′∗μ′)

}
,

where again φ, φ′ are isometries from E, E ′ into a common space (F, δ), φ∗μ, φ′∗μ′
are the push-forward of μ,μ′ by φ, φ′, and dP is the Prokhorov distance between
Borel probability measures on F :

dP(m, m′) = inf{ε > 0 : m(C) ≤ m′(Cε) + ε for every C ⊂ Fclosed},

where Cε = {x ∈ F : inf y∈C d(x, y) < ε} is the ε-neighborhood of C . The function
dGHP is a distance on the set of isometry classes of measured compact metric spaces
that makes it Polish.

Let us give another convenient way to express Gromov–Hausdorff distances. A
correspondence between two k-pointed compact metric spaces (E, d; x1, . . . , xk) and
(E ′, d ′; x ′

1, . . . , x ′
k) is a subset R of E × E ′ such that, for every y1 ∈ E , there exists at

least one point y2 ∈ E ′ such that (y1, y2) ∈ R and conversely, for every z2 ∈ E ′, there
exists at least one point z1 ∈ E such that (z1, z2) ∈ R. Also (x1, x ′

1), . . . , (xk, x ′
k) ∈

R. The distortion of the correspondence R is defined by

dis(R) = sup
{|d(x1, y1) − d ′(x2, y2)| : (x1, x2), (y1, y2) ∈ R

}
.

The Gromov–Hausdorff distance between (E, d; x1, . . . , xk) and (E ′, d ′; x ′
1, . . . , x ′

k)

can be expressed as half the infimum of the distortions of correspondences between
E and E ′. A similar (but more involved) definition of dGHP via correspondences can
be found in [23].
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2.2 The stable trees

We now give some additional background on stable trees and refer to [12,13] for a
complete account. Stable trees are random variables Tα for α ∈ (1, 2] taking values in
the set of isometry classes of compact R-trees that can be defined in various manners.
For example, the tree Tα can be defined by its finite-dimensional marginals (see [12,
Theorem 3.3.3]) or by its contour process. In particular, the 2-stable tree can be iden-
tified with

√
2 times the Brownian tree TBr coded by a standard normalized excursion

(et : 0 ≤ t ≤ 1). Note also that the Brownian tree introduced by Aldous in [3] is equal
to twice TGHP so that we have in distribution

T2 = √
2TGHP = TAldous√

2
.

We mention that contrary to the Brownian tree where all the branch points are of
degree 3, in the stable case 1 < α < 2, they are of infinite multiplicity ([13]).

Let us make precise the definition of Tα via scaling limits of Galton–Watson trees
and introduce the mass measure on Tα . For α ∈ (1, 2), consider an (unordered)
Galton–Watson tree with offspring η with mean 1 and such that η(k) ∼ Ck−1−α when
k → ∞. Let T GW

n denote a version of this tree conditioned to have n vertices, and
equip it with the uniform probability measure on its vertices, which is denoted by μn .
Then by Duquesne [11] (recall that ᾱ = 1 − 1/α),

(
T GW

n

nᾱ
, μn

)
(d)−−−→

n→∞

((
α(α − 1)

C�(2 − α)

)1/α

Tα, μα

)
,

for the Gromov–Hausdorff–Prokhorov topology, where Tα is a stable tree of index
α equipped with a probability measure μα which can be interpreted as the uniform
mass measure on Tα . A similar result holds for α = 2. It is well-known [12] that for
all α ∈ (1, 2], the measure μα is actually fully supported by the set of leaves of Tα

and that it can be measurably constructed from Tα . It thus makes sense to speak about
an i.i.d. sample Xn, n ≥ 0 of leaves according to μα conditionally on Tα . We shall
repeatedly use the following easy fact: {Xn, n ≥ 0} is dense in Tα a.s.

2.3 Marchal’s recursive construction

Let α ∈ (1, 2]. In [21], Marchal proposed a recursive construction to build random
finite trees that converge in the scaling limit towards the α-stable tree. The construction
is in fact a Markov chain (Tα(n))n≥1 with values in the set of labeled trees, such that
Tα(n) has n + 1 leaves and is defined as follows: we start with the tree Tα(1) which
is the only tree with one edge and two labeled vertices denoted by A0 and A1. We
then build recursively Tα(n + 1) from Tα(n) by adding a new edge. More precisely,
given Tα(n), assign a weight α − 1 to any edge of Tα(n) and a weight d − 1 − α to
each vertex of degree d ≥ 3 (all other vertices have zero weight). The total weight
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W (Tα(n)) of the tree Tα(n) is easily checked to be

W (Tα(n)) = nα − 1, (2)

and is in particular independent of the shape of the tree. We then choose an edge or a
vertex of Tα(n) proportionally to its weight:

• if we picked an edge then we split it into two edges with a middle vertex on which
we attach a new edge carrying the n + 1th leaf denoted by An+1.

• if a vertex has been selected then we attach a new edge carrying An+1 to it.

In [21], Marchal exactly computed the distribution of the tree Tα(n). More precisely,
he proved by induction on n that if t0 is a fixed labeled tree with n + 1 leaves, then

P(Tα(n) = t0) =
∏

v∈t0
pdeg(v)∏n−1

i=1 (iα − 1)
,

with p1 = 1, p2 = 0 and pk =|(α − 1)(α − 2) . . . (α − k + 2)| for k ≥ 3.

From this formula, it is easy to deduce (see [21]) that Tα(n) has the same distribution
as the labeled tree obtained from the finite n +1-dimensional marginal of the standard
α-stable tree, see Theorem 3.3.3 in [12]. With this identification in hand, it is shown
in [17, Corollary 24] that there exists a stable tree Tα built on the same probability
space that supports Tα(n), n ≥ 1, and equipped with its uniform mass measure μα ,
such that

(
Tα(n)

αnᾱ
,

∑n
i=0 δAi

n + 1

)
(P)−−−→

n→∞ (Tα, μα)

for the Gromov–Hausdorff–Prokhorov topology. The goal of the next section is to
improve this convergence into an almost-sure one.

2.4 The convergence theorem

Let Tα be an α-stable tree and conditionally on Tα , let (Xi , i ≥ 0) be a sample of i.i.d.
leaves distributed according to the mass distribution μα on Tα . We consider the finite
n + 1th-dimensional trees Span(Tα; X0, X1, . . . , Xn) for n ≥ 1. These objects are by
definition continuous trees but can equivalently be seen as discrete labeled trees

τα(n) = (τα(n); x0, x1, . . . , xn)

carrying positive lengths (�e) on their edges, see Fig. 4.

Theorem 5 (i) We have the joint identity in distribution

(Tα(n), n ≥ 1)
(d)= (τα(n), n ≥ 1).
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(ii) For every k ≥ 0, we have in the sense of k-pointed Gromov–Hausdorff distance

(
τα(n)

αnᾱ
; x0, x1, . . . , xk

)
a.s.−−−→

n→∞ (Tα; X0, X1, . . . , Xk). (3)

(iii) If μn = 1
n+1

∑n
i=0 δxi denotes the uniform mass measure on the leaves of τα(n)

then we have the following almost sure convergence for the Gromov–Hausdorff–
Prokhorov topology

(
τα(n)

αnᾱ
, μn

)
a.s.−−−→

n→∞ (Tα, μα).

Consequently, Tα(n)/αnᾱ endowed with the uniform mass measure on its leaves
indeed converges almost surely for the Gromov–Hausdorff–Prokhorov topology
towards an α-stable tree endowed with its uniform mass measure.

Proof To simplify the notation during the proof we fix α ∈ (1, 2] once for all and drop
the indicesα by writing τ n = (τn; x0, . . . , xn) instead of τα(n) = (τα(n); x0, . . . , xn).
To get (i), we use the fact discussed at the end of the previous section, and proved
by Marchal in [21], that Tα(n) = τ n in distribution in terms of labeled trees, for all
n ≥ 1. Since for k ≤ n the labeled trees τ k and Tα(k) are deduced from τ n resp. Tα(n)

by the same deterministic procedure, we deduce that (Tα(k))1≤k≤n has the same law
as (τ k)1≤k≤n . Since this holds for all n ≥ 1 we indeed get (i).

Let us turn to the second point and remark first that for every k ≥ 1 we have the
almost sure convergence in the sense of pointed Gromov–Hausdorff metric

(
Span(Tα; (Xi )0≤i≤n); X0, X1, . . . , Xk

)
a.s.−−−→

n→∞
(
Tα; X0, X1, . . . , Xk

)
. (4)

This is easy to obtain and follows from the fact that the sequence of leaves (Xi )i≥0 is
almost surely dense in the compact tree Tα . The convergence (3) will be established
by comparing the labeled tree τ n to its continuous analogue Span(Tα; (Xi )0≤i≤n)

obtained by dressing it up with edge lengths. More precisely, we recall that the contin-
uous tree Span(Tα; (Xi )0≤i≤n) can be seen as the discrete labeled tree τ n where each
edge e has been replaced by a Euclidean segment of length �

(n)
e , see Fig. 4 below.

For notation convenience we write

d(n)
gr for the graph metric in τn (with edge lengths 1)

d(n)
� for the metric on the vertices of τn associated to the edge-lengths (�

(n)
e ).

In particular the two metrics live on the set of vertices of τn . Also, for 0 ≤ i, j ≤ n
the d(n)

� distance between xi and x j in τn is equal to the distance between Xi and X j

in Tα . Our goal is to show that

sup
a,b∈τn

∣∣∣∣∣
d(n)

gr (a, b)

nᾱ
− αd(n)

� (a, b)

∣∣∣∣∣
a.s.−−−→

n→∞ 0. (5)
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Fig. 4 The trees Tα , Span(Tα; X0, . . . , X5) and τα(5) with its edge-lengths

Let us first show how to use the last display to complete the proof of the the-
orem. For that we use the definition of Gromov–Hausdorff distance via correspon-
dences. Let δ denote the metric on Tα and define a correspondence Rn between the
trees (τn, n−ᾱd(n)

gr ) and (Span(Tα; X0, . . . , Xn), αδ) by declaring that a ∈ τn and
x ∈ Span(Tα; X0, . . . , Xn) are in correspondence if x belongs to an “edge” of the
continuous tree that is combinatorially adjacent to the associate vertex a in τn . Note
that xi is in correspondence with Xi for all 0 ≤ i ≤ n. The distortion of this corre-
spondence is bounded by

dist(Rn) ≤ sup
a,b∈τn

∣∣∣∣∣
d(n)

gr (a, b)

nᾱ
− αd(n)

� (a, b)

∣∣∣∣∣ + 2α sup �(n)
e .

By (4) and the fact that branch-points are dense in Tα we deduce that supe �
(n)
e → 0

as n → ∞. This fact and (5) thus show that the distortion of Rn vanishes as n → ∞.
We finally use (4) to get (3).

It thus remains to prove (5). Fix ε > 0. For any n ≥ 0, we denote by Ln = ∑
�
(n)
e

the total length of the tree Span(Tα; X0, . . . , Xn) and by |τn| the number of edges of
the discrete tree τn . In order to simplify notation we set

χn = |τn|
Ln

.

It follows from [12, Theorem 3.3.3] that conditionally on τ n and on Ln , the edge
lengths �

(n)
e are distributed uniformly on R

|τn |
+ subject to the condition

∑
�
(n)
e = Ln .

In particular, conditionally on τ n and on Ln , if a and b are two vertices of τ n then
the distribution of the random variable d(n)

� (a, b) is given by first dividing uniformly
the interval [0,Ln] into |τn| pieces (by throwing |τn| − 1 i.i.d. uniform variables over
[0,Ln]) and summing the first d(n)

gr (a, b)-th ones. We can then apply the following
lemma to deduce

P

(∣∣∣∣∣d(n)
� (a, b)− d(n)

gr (a, b)

χn

∣∣∣∣∣≥εd(n)
� (a, b)

∣∣∣∣∣ τ n,Ln

)
≤ c−1

ε exp
(
−cεd(n)

gr (a, b)
)
, (6)
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P

(
d(n)
� (a, b) ≥ ε | τ n,Ln

)
≤ c−1

ε exp

(
−cε

χn

d(n)
gr (a, b)

)
. (7)

Lemma 6 Let ε > 0. There exists a constant cε > 0 such that for all n ≥ 1 and for
all L > 0, if 0 = U0 < U1 < · · · < Un−1 < Un = L is a uniform splitting of the
interval [0, L] then for any 0 ≤ k ≤ n we have

P

(∣∣∣∣Uk − kL

n

∣∣∣∣ ≥ εUk

)
≤ c−1

ε exp(−cεk),

P (Uk ≥ ε) ≤ c−1
ε exp

(
−cε

n

Lk

)
.

Proof By standard properties of the uniform splitting of the unit interval we have
L−1Uk = Tk/Tn in distribution where the Ti ’s are the arrival times of a standard
Poisson process. In particular for all ε > 0, there exists c > 0 such that

P(|Ti − i | ≥ εi) ≤ exp(−ci)

for all i ≥ 0 which easily implies the first inequality of the lemma. For the second
inequality, one has, for all k ≥ 1,

P(Uk ≥ ε) = P

(
Tk ≥ εTn

L

)

≤ P

(
Tk ≥ ε(1 − ε)n

L

)
+ P (Tn < (1 − ε)n)

≤ P

(
P(ε(1 − ε)nL−1) ≤ k

)
+ exp(−cn),

where P(a) denotes a Poisson random variable of parameter a > 0. Next, since the
function a ∈ (0,∞) �→ P(a) is stochastically increasing, and since, for q ∈ N, P(qk)

is distributed as the sum of q independent Poisson random variables of parameter k,
one has,

P

(
P(ε(1 − ε)nL−1) ≤ k

)
≤ P

(
P
(⌊

ε(1 − ε)nL−1k−1
⌋

k
)

≤ k
)

≤ P (P(k) ≤ k)�
ε(1−ε)n

Lk � .

Putting the pieces together and using P(P(k) ≤ k) → 1/2 as k → ∞ we get the
second inequality. ��
Lemma 7 We have the almost sure convergence

χn

nᾱ

a.s.−−−→
n→∞ α.
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860 N. Curien, B. Haas

Proof It is possible to prove the last lemma by analysing separately the processes
(|τn|)n≥1 and (Ln)n≥1 and show that |τn| ∼ αn and Ln ∼ n1/α a.s. as n → ∞.
However we bypass these calculations by using a result of [17, Sect. 5.4]: we have

d(n)
gr (x0, x1)

nᾱ

a.s.−−−→
n→∞ αδ(X0, X1). (8)

Recall that for any i, j ≥ 0 and any n ≥ max(i, j) we have d(n)
� (xi , x j ) = δ(Xi , X j ).

Let ε > 0 and set

An =
{∣∣∣∣∣δ(X0, X1) − d(n)

gr (x0, x1)

χn

∣∣∣∣∣ ≥ εδ(X0, X1)

}
.

Our goal is to show that the probability that An is realized for infinitely many n’s
is 0, thus proving that d(n)

gr (x0, x1)/χn almost surely converges towards δ(X0, X1).
Identifying the limit with (8) then proves the statement of the lemma. To do this, let
β ∈ (0, ᾱ) and consider the events Bn = {d(n)

gr (x0, x1) ≥ nβ}. By (8) (and the fact that
δ(X0, X1) > 0 a.s.) we get that P(∪k≥1 ∩n≥k Bn) = 1. Hence,

P(An i.o.) = P(An ∩ Bn i.o.),

where i.o. means “is realized for infinitely many n’s”. Using (6), we get that P(An∩Bn)

is less than c−1
ε exp(−cεnβ) hence by Borel–Cantelli P(An ∩ Bn i.o.) = 0. This

completes the proof of the lemma.
Coming back to the proof of Theorem 5(ii), for any n ≥ 1, conditionally on τ n and

on Ln , let us evaluate the probability that two vertices a, b ∈ τn are such that

∣∣∣∣∣d(n)
� (a, b) − d(n)

gr (a, b)

χn

∣∣∣∣∣ ≥ ε(Diam ∨ 1) +
√

χ−1
n , (∗)

where Diam is the diameter of Tα , that is the maximal distance between any pair of
points in Tα . We remark that Diam bounds from above all the quantities d(n)

� (a, b).
We then split the cases according to the graph distance between a and b:

• if d(n)
gr (a, b) ≥ √

χn then the conditional probability of (*) is bounded by
c−1
ε exp(−cε

√
χn) by (6),

• if d(n)
gr (a, b) <

√
χn then the conditional probability of (*) is bounded by

c−1
ε exp(−cε

√
χn) by (7).

We then use a conditional version of Borel–Cantelli’s lemma exactly as in the proof
of Lemma 7. Specifically, let Cn = {χn ≥ nᾱ} so that Lemma 7 implies P(∪k≥1 ∩n≥k

Cn) = 1. Let also Dn = {(∗) holds for some a, b ∈ τn}. We thus have P(Dn i.o.) =
P(Cn ∩ Dn i.o.). Since there are deterministically less than 2n vertices in τn , the
preceding discussion shows that

P(Cn ∩ Dn)≤P(Dn | Cn)≤E

[
c−1
ε 4n2 exp(−cε

√
χn) | Cn

]
≤c−1

ε 4n2 exp(−cεnᾱ/2).
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Hence by the standard Borel–Cantelli Lemma we have P(Cn ∩ Dn i.o.) = 0 and thus
P(Dn i.o.) = 0 as well. Consequently,

sup
a,b∈τn

∣∣∣∣∣
d(n)

gr (a, b)

χn
− d(n)

� (a, b)

∣∣∣∣∣
a.s.−−−→

n→∞ 0.

Finally we use Lemma 7 again to replace χn by αnᾱ in the last display and get (5).
The last point of the theorem is obtained in the same spirit. Since conditionally

on Tα the Xi ’s are i.i.d. according to μα it follows that μ
(n)
α = 1

n+1

∑n
i=0 δXi is the

empirical measure associated to μα and then

(
Tα, μ(n)

α

)
a.s.−−−→

n→∞ (Tα, μα),

in the Gromov–Hausdorff–Prokhorov sense. Futhermore, since Span(Tα; X0, . . . , Xn)

is a subtree of Tα that converges in the Gromov–Hausdorff sense towards Tα the last
display holds with (Tα, μ

(n)
α ) replaced by (Span(Tα; X0, . . . , Xn), μ

(n)
α ). Recall now

that Span(Tα; X0, . . . , Xn) can be seen as the tree τ n where each edge has been
replaced by a Euclidean segment of length �

(n)
e . This identification transports the

measure μ
(n)
α onto the discrete atomic measure μn . Thus it suffices to prove that

dGHP

((
τn,

d(n)
gr

αnᾱ
, μn

)
,
(
τn, d(n)

� , μn

))
−−−→
n→∞ 0.

But this again follows from (5). Indeed, the obvious correspondence R = {(x, x) :
x ∈ τn} between

(
τn,

d(n)
gr

αnᾱ

)
and

(
τn, d(n)

�

)
has a vanishing distortion as n → ∞

by (5). This means (see [10]) that for any ε > 0 and for all n large enough we can
isometrically embed these two trees into a common metric space (Fn, δn) such that two
elements in correspondence (that is the same vertex of τn in the two embeddings of the
trees) are at δn-distance less than ε from each other. The image measures νn and ν′

n of
μn by these embeddings then obviously satisfy νn(C) ≤ ν′

n(Cε) and ν′
n(C) ≤ νn(Cε)

for all Borel C ⊂ Fn . This suffices to prove the claim and to finish the proof of the
theorem. ��

3 The discrete approach

This section is mainly devoted to the construction of the α′-stable subtrees Tα,α′ of
Tα , for α′ > α, as stated in Proposition 2, and then to the proof of Theorem 1. In order
to establish the key couplings of Marchal’s constructions that will be used for the
proofs, we introduce once and for all a sequence Ui , i ≥ 2 of i.i.d. random variables
uniformly distributed on (0, 1) that are independent of all other variables introduced
so far and later on.
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3.1 Coupling different Marchal’s constructions

Fix α ∈ (1, 2). We will couple Marchal’s constructions for different values of α′ ∈
(α, 2] in such a way that the α′-constructions are nested “sub-constructions” of the
α-one. To see this, fix α′ ∈ (α, 2] and recall the definition of the probabilities pα,α′,d,d ′
in (1), as well as the definition of Marchal’s Markov chain (Tα(n), n ≥ 1) in Sect. 2.3.
The idea is to enrich the construction of this Markov chain with two colors, blue and
red, such that the only edge and the two leaves of Tα(1) are blue and the colors evolve
recursively according to the following rules, see Fig. 5. At step i ≥ 2:

– if an edge of color C ∈ {red,blue} is selected, then we split this edge into two C
edges divided by a C vertex and attach a C edge-leaf to it;

– if a vertex is selected, then the new edge-leaf attached on it is blue if

Ui ≤ pα,α′,di ,d ′
i

and red otherwise, where di is the degree of the vertex in the full tree Tα(i −1) and
d ′

i is its degree in the blue subtree of Tα(i − 1), with the convention that d ′
i = 0

if this vertex is red.

Fig. 5 Illustration of the construction of the blue tree (color figure online)

We denote by Tα,α′(n) the subtree of Tα(n) spanned by the blue edges and leaves.
Remark that when α′ = 2, the coloring rules are particularly simple (and determinis-
tic): each edge-leaf attached on a red edge or on a vertex (blue or red) is red, whereas
an edge-leaf attached on a blue edge is blue. In this case the blue subtree is therefore
binary. Remark also that the function α′ ∈ (α, 2] �→ pα,α′,d,d ′ is decreasing, hence
for every n ≥ 1 the function α′ ∈ (α, 2] �→ Tα,α′(n) is decreasing for the inclusion
inside Tα(n).

The labeling of Tα,α′(n) is given by sorting the leaves of Tα,α′(n) according to their
labels in Tα(n). Also, we let

Lα,α′(n) = number of leaves of Tα,α′(n) minus 1

and L−1
α,α′(n) = inf{k ≥ 1 : Lα,α′(k) = n} its inverse. Here is the main observation:

Lemma 8 The subchain Tα,α′(.) evolves as a time-changed Marchal’s construction
with parameter α′. More precisely, we have the following identity in distribution
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(
Tα,α′

(
L−1

α,α′(n)
))

n≥1

(d)= (Tα′(n))n≥1.

Futhermore, (Tα,α′(L−1
α,α′(n)))n≥1 is independent of (Lα,α′(n))n≥1.

Proof We examine the transition probabilities of the chain (Tα(n), Tα,α′(n))n≥1.
Recall that in Marchal’s construction, a weight α − 1 is assigned to each edge and a
weight d − 1 − α to each vertex of degree d ≥ 3. Without changing the dynamic, we
multiply all these weights by (α′ − 1)/(α − 1), so that each edge has now a weight
α′ − 1 and each vertex a weight (d − 1 − α)(α′ − 1)/(α − 1). By (2), the total weight
of the tree Tα(n) is now

W (Tα(n)) = α′ − 1

α − 1
(nα − 1).

Hence, the new edge-leaf added to Tα(n) to get Tα(n + 1) is blue if it has been

– grafted on an edge of Tα,α′(n), which occurs with probability (α′ − 1)/W (Tα(n))

for each edge of Tα,α′(n)

– or grafted on a vertex of Tα,α′(n) and then colored in blue, which occurs with
probability

(d − 1 − α)(α′ − 1)(α − 1)−1 × pα,α′,d,d ′

W (Tα(n))
= d ′ − 1 − α′

W (Tα(n))

when d ′ is the degree of the vertex in Tα,α′(n) and d its full degree in Tα(n).

Observe that these probabilities are proportional to the weights assigned in Marchal’s
construction with parameter α′. Consequently their sum, which is the total probability
that the added edge-leaf is blue, is equal to

Lα,α′(n)α′ − 1

W (Tα(n))
,

where we recall that Lα,α′(n) + 1 is the number of leaves of Tα,α′(n). Moreover,
conditionally on the fact that the added edge-leaf is blue, it is grafted on an edge or
vertex of Tα,α′(n) with the dynamic of Marchal’s algorithm with parameter α′. In other
words, the transition probabilities of the chain (Tα(n), Tα,α′(n))n≥1 can be described
as follows. First, Lα,α′(n), n ≥ 1 is a Markov chain with transition probabilities

P
(
Lα,α′(n + 1) = Lα,α′(n) + 1 | Fn

) = 1 − P
(
Lα,α′(n + 1) = Lα,α′(n) | Fn

)

= Lα,α′(n)α′ − 1

W (Tα(n))
, (9)

where Fn denotes the sigma-field generated by (Tα(k), Tα,α′(k), k ≤ n). Second,
conditionally on Lα,α′(n + 1) = Lα,α′(n) + 1, the transition probabilities on Tα,α′(n)

are those of Marchal’s construction with parameter α′, whereas conditionally on
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Lα,α′(n + 1) = Lα,α′(n), the transition on the red component Tα(n)\Tα,α′(n) fol-
lows the appropriate conditional distribution. The statements of the lemma follow
from these considerations.

The chain Lα,α′ can easily be studied using (9). Let us introduce its limit distribution
(after re-normalization). A generalized Mittag-Leffler random variable of parameters
(β, θ) with β ∈ (0, 1) and θ > −β is a random variable denoted by MLβ,θ which is
characterized by its positive moments

E

[
MLp

β,θ

]
= �(θ + 1)�(θ/β + p + 1)

�(θ/β + 1)�(θ + pβ + 1)
, p ≥ 0. (10)

This random variable is actually a biased version of a power of a stable distribution of
index β, see [24, Sect. 3] for background. For later use, remark that if 0 < a < b < 1
and if MLa,a , MLb,b and MLa/b,a are independent generalized Mittag-Leffler with
parameters (a, a), (b, b) and (a/b, a) respectively, then we have the following identity
in distribution

MLa,a = (
MLa/b,a

)b · MLb,b, (11)

this can be easily checked using moments (10).

Lemma 9 There exists a generalized Mittag-Leffler r.v. MLᾱ/ᾱ′,ᾱ such that

Lα,α′(n)

nᾱ/ᾱ′
a.s.−−−→

n→∞ MLᾱ/ᾱ′,ᾱ .

Proof It is possible to analyse the chain (Lα,α′(n))n≥1 “by hand” using the transition
probabilities (9). However we bypass any calculation by using a connection with
Pitman’s Chinese restaurant process, see [24, Sect. 3]. Indeed, it is straightforward
to check from (9) that the sequence (Lα,α′(n + 1) − 1, n ≥ 1) is distributed as the
sequence of the number of tables in a (ᾱ/ᾱ′, ᾱ)-Chinese restaurant process, see [24,
Sect. 3.2.3]. The result then follows from [24, Theorem 3.8]. ��

3.2 Proofs of Proposition 2 and Theorem 1

Let 1 < α < α′ ≤ 2 and consider an α-stable tree Tα and its uniform mass measure
μα . By Theorem 5, there exists a version of Marchal’s Markov chain (Tα(n), n ≥ 1)

such that

(
Tα(n)

αnᾱ
,

∑n
i=0 δAi

n + 1

)
a.s.−−−→

n→∞ (Tα, μα), (12)

in the Gromov–Hausdorff–Prokhorov sense. We will use the blue subchain (Tα,α′(n),

n ≥ 1) constructed from (Tα(n), n ≥ 1) in the previous section to build the closed
subtree Tα,α′ of Proposition 2.
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Proof of Proposition 2 Recall Lemma 8 and note from Lemma 9 that Lα,α′(n) → ∞
a.s. as n → ∞. Then apply Theorem 5 to obtain the almost sure convergence

Tα,α′(n)

Lα,α′(n)ᾱ
′

a.s.−−−→
n→∞ α′Tα′ ,

in the Gromov–Hausdorff sense, where Tα′ denotes a stable tree of index α′ (which is
not independent of Tα!). Furthermore, still by Lemma 8, the tree Tα′ is independent
of the sequence (Lα,α′(n), n ≥ 1), hence also of its limit after rescaling. Hence

Tα,α′(n)

αnᾱ
= Tα,α′(n)

αLα,α′(n)ᾱ
′ ×

(
Lα,α′(n)

nᾱ/ᾱ′

)ᾱ′

a.s.−−−→
n→∞

α′

α
(MLᾱ/ᾱ′,ᾱ)ᾱ

′Tα′ =: Tα,α′ ,

where MLᾱ/ᾱ′,ᾱ denotes the Mittag-Leffler random variable of Lemma 9, which
is independent of Tα′ . The variable Mα,α′ of Proposition 2 is thus equal to
(α′/α)1/ᾱ′

MLᾱ/ᾱ′,ᾱ and the tree Tα,α′ can be realized as a closed subtree of Tα . ��
In the constructions of Tα(n) and Tα,α′(n), the two leaves A0 and A1 are kept in

both trees and provide in the limit, by Theorem 5, two independent uniform points in
Tα and in Tα,α′ . More precisely, for β ∈ (1, 2] we denote by Iβ the height between
two uniform points in a β-stable tree. We also write Hn the distance between A0 and
A1 in Tα(n). Then we have by Theorem 5

Hn

nᾱ

a.s.−−−→
n→∞ α Iα.

The distance Hn is also the distance between A0 and A1 in Tα,α′(n). Hence, by Lemmas
8 and 9, combined with Theorem 5,

Hn

nᾱ
= Hn

Lα,α′(n)ᾱ
′ ×

(
Lα,α′(n)

nᾱ/ᾱ′

)ᾱ′
a.s.−−−→

n→∞ α′ Iα′
(
MLᾱ/ᾱ′,ᾱ

)ᾱ′
,

where, in the limit, the Mittag-Leffler random variable and Iα′ are independent. Thus
if for α < α′ ∈ (1, 2] we set

Qα→α′
(d)= α′

α

(
MLᾱ/ᾱ′,ᾱ

)ᾱ′ = (Mα,α′)ᾱ
′
,

we can easily check that for a < b < c ∈ (1, 2], we have Qa→c = Qa→b · Qb→c in
distribution where the two last variables are independent. Hence, Q can be interpreted
as a transition kernel. Furthermore the random height in the stable trees form an
invariant family for Q in the sense that

Iα
(d)= Qα→α′ · Iα′ (13)
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with the two variables on the right-hand side independent. This could have been
proved directly using moments and using the fact (see e.g. [22]) that α Iα is distributed
as MLᾱ,ᾱ for all α ∈ (1, 2]. Hence (13) reduces to (11).

We now aim at a backward analog of (13). As in Theorem 1, let Jα be distributed
as the power of a Gamma distribution, namely α(�1+ᾱ)ᾱ for α ∈ (1, 2]. In particular
the positive moments of Jα are given by

E
[
J p
α

] = α p � ((p + 1)ᾱ + 1)

� (ᾱ + 1)
, for p ≥ 0.

These variables have been designed to satisfy the “dual” relations of (13), namely,
for 1 < α < α′ ≤ 2, one can check using moments that the following identity in
distribution holds

Jα · Qα→α′ = Jα′ , (14)

when the two first random variables are independent.

Proof of Theorem 1 LetTα be a stable treeTα that has been rescaled by an independent
copy of Jα , that is Tα = Jα ·Tα . For α′ ∈ (α, 2], using Proposition 2, we can find inside
Tα a subtree Tα,α′ which is distributed as an α′-stable tree rescaled by an independent
factor distributed as Qα→α′ . Hence, after rescaling by Jα this provides a subtree of
Tα which is distributed as

Jα · Qα→α′Tα′
(d)= Jα′ · Tα′

(d)= Tα′,

since Qα→α′ and Jα are independent. Iterating, we obtain for all finite increasing
sequences 1 < α1 < · · · < αn ≤ 2 a sequence of nested trees Tαn ⊂ · · · ⊂ Tα1 .
Using Kolmogorov’s extension theorem we can thus construct a process (Tα)1<α≤2
of nested rescaled stable trees. �

Still using moments, note that

Jα Iα
(d)= �2,

when Iα and Jα are independent. This implies that the distance between two inde-
pendent uniform points in Tα has a Gamma distribution of parameter 2 (that is with
density xe−x on (0,∞)) for all α ∈ (1, 2]. For the nested sequence of trees (Tα)1<α≤2,
it is then possible to couple the choice of the two uniform independent points so that
their distance is the same in all trees Tα .

3.3 Zero measure

Proposition 10 For all α′ ∈ (α, 2],

μα

(
Tα,α′

) = 0 a.s.
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Proof We will use that (Tα, μα) is obtained from a Marchal’s Markov chain Tα via
(12), jointly with the fact that Tα,α′ is the scaling limit of the subchain Tα,α′ . Since,
by Lemma 9, the number of leaves of Tα,α′(n) is proportional to nᾱ/ᾱ′

<< n, it should
be intuitively clear that Tα,α′ has zero mass inside Tα . We sketch here a more rigorous
argument. Let γ denote the expectation of the μα-mass of Tα,α′ :

γ = E
[
μα

(
Tα,α′

)]
,

our goal being to show that γ = 0. For that purpose we use the self-similarity of
Marchal’s construction. Indeed, if we stop this construction after one step, we obtain
the tree Tα(2) made of a “Y” with three leaves A0, A1 and A2 joined by a branch
point denoted by B2. In the future evolution of the process, the three edges e0 =
{B2, A0}, e1 = {B2, A1} and e2 = {B2, A2} will give rise in the scaling limit to three
copies of rescaled stable trees denoted by τ0, τ1 and τ2. Similarly, the edges that will
later be grafted on B2 will also give rise to a countable collection of continuous trees
τ3, τ4, . . . such that the tree Tα is made of the glueing of all the τi ’s by one vertex. It is
clear from Marchal’s construction, and (12), that the measured trees (τi , μα,i ), i ≥ 0,
where μα,i denotes the restriction of the measure μα to τi , satisfy

τi = μα(τi )
ᾱT (i)

α , μα,i = μα(τi )μ
(i)
α ,

where the measured trees (T (i)
α , μ

(i)
α ), i ≥ 0 are i.i.d. copies of (Tα, μα), that are

moreover independent of the masses μα(τi ), i ≥ 0.
Let us now examine the evolution of the “blue” subprocess Tα,α′ inside each of

these trees. First, is it plain that the construction of Tα,α′ restricted to each offspring
subtree of the three initial edges e0, e1 and e2 follows exactly the rules of a subchain
of parameters α, α′ inside this subtree. This gives in the limit a subtree ti ⊂ τi , for
i ∈ {0, 1, 2} that satisfies

γ = E[μα(ti )]
E[μα(τi )] .

For i ≥ 3, the situation is almost the same, provided that the first edge grafted on B2
that will give rise to τi is blue. If this is not the case, that is the ancestral edge creating
τi is red, then the blue subprocess does not “enter” this part of the tree and we set
ti = ∅. If the ancestral edge creating τi is blue, then the blue subprocess enters this
part of the tree and provides in the limit a subtree ti ⊂ τi such that

γ = E[μα(ti ) | ti �= ∅]
E[μα(τi )] .

The subtree Tα,α′ is thus made of the union of the ti , i ≥ 0 and we have

γ = E

[∑
i≥0

μα(ti )1{ti �=∅}
]

= γ
∑
i≥0

P(ti �= ∅)E [μα(τi )] . (15)
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To conclude, note that P(∃i : ti = ∅) = 1. Indeed, the probability that for all τi , i ≥ 3
the ancestral edges are blue is

∏
d≥3

(d − 1 − α′)(α − 1)

(d − 1 − α)(α′ − 1)
= 0,

since α′ > α. Together with the fact that
∑

i≥0 μα(τi ) = 1 a.s., this implies that the
sum in (15) is strictly less than 1. Hence γ = 0.

4 Pruning of discrete and continuous trees

The goal of this section is to present a “geometric” way of retrieving Tα,α′(n) from
the labeled tree Tα(n). Although equivalent to the iterative construction of Tα,α′(n)

this new procedure, called “pruning operation” is well-suited to pass to the continuous
limit and yields Theorem 3.

4.1 Pruning

Let 1 < α < α′ ≤ 2. We recall and extend the pruning procedure of stable trees
described in the Introduction to the context of continuous or discrete trees. This pro-
cedure depends on the probabilities pα,α′,d,d ′ and uses the sequence of uniform random
variables (Ui )i≥2 introduced in Sect. 2.3. Let (t; x0, x1, x2, . . . , xn) be a discrete or
continuous tree given with an ordered subset of distinct leaves. We remove randomly
some edges in this labeled tree so as to obtain a subtree of t (given with an ordered
subset of its leaves) that we denote by Prunα,α′(t; x0, . . . , xn) and which is constructed
recursively as follows:

• the tree Prunα,α′(t; x0, x1) is [[x0, x1]], the tree spanned by x0 and x1 in t ;
• for i ≥ 2, consider two trees: ti−1, the tree spanned by x0, . . . , xi−1 in t , and

τi−1 = Prunα,α′(t; x0, . . . , xi−1). In t , the vertex xi is attached to ti−1 via the
point �i , that is

ti−1 ∩ [[xi ,�i ]] = {�i }.

Let then di denote the degree of �i in ti−1 and d ′
i its degree in τi−1 with the usual

convention that d ′
i = 0 if �i /∈ τi−1. See Fig. 2. We then set:

Prunα,α′(t; x0, . . . , xi ) = τi−1 ∪ [[xi ,�i ]] if Ui ≤ pα,α′,di ,d ′
i
,

Prunα,α′(t; x0, . . . , xi ) = τi−1 otherwise.

Note that Prunα,α′(t; x0, . . . , xn) is a function of (t; x0, . . . , xn) and of the random
variables (Ui )i≥2. This tree can be given with an ordered sequence of leaves, which is
the subsequence of elements of {x0, x1, . . . , xn} that end-up in Prunα,α′(t; x0, . . . , xn)

and following our principles we denote this labeled tree by Prunα,α′(t; x0, . . . , xn).
To stick with the color coding that we defined in Sect. 3.1 we think of the pruned
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subtree as a blue subtree of t whose complement in tn is red. In particular a leaf xi

is blue if it belongs to the pruned subtree. All these constructions are coupled via the
U ′

i s in such a way that

Prunα,α′(t; x0, . . . , xn−1) ⊂ Prunα,α′(t; x0, . . . , xn), ∀n ≥ 1,

and for every α the map α′ ∈ (α, 2] �→ Prunα,α′(t; x0, . . . , xn) is decreasing for
the inclusion in t . Thus, when t is a continuous tree and x0, . . . , xn, . . . is an infinite
sequence of (distinct) leaves in t , we can define

Prunα,α′(t; (xi )i≥0) =
⋃
n≥1

Prunα,α′(t; x0, . . . , xn).

Note also that when α′ = 2, since pα,2,d,3 = 0, the tree Prunα,α′(t; x0, . . . , xn) is
binary for all n ≥ 1. In this case, the pruning procedure is deterministic (it does not
depend on the Ui ’s): the leaves xi are just added one by one provided that the tree
remains binary. Notice also that the pruning constructions are coupled with the chain
Tα,α′ via the Ui ’s.

Now, recall that Tα(n) is a discrete tree with n + 1 ordered leaves A0, . . . , An .
The pruning has been defined such that the blue subtree Tα,α′(n) can also be seen as
Prunα,α′(Tα(n)):

Proposition 11 For all 1 < α < α′ ≤ 2 and for every n ≥ 1, we have

Prunα,α′
(
Tα(n)

)=Tα,α′(n).

Proof This is easy to prove by induction on n and is safely left to the reader.

4.2 Proof of Theorem 3

We start with a continuity property of the application Prun(.) with respect to the
leaves. It applies both in the discrete and continuous settings and will be useful to
prove Theorem 3.

Proposition 12 Let (t; x0, . . . , xn) be a discrete or continuous tree given with a subset
of n + 1 leaves. Then for any k ∈ {0, 1, . . . , n} we have

D
(
Prunα,α′(t; x0, . . . , xn), Prunα,α′(t; x0, . . . , xk)

)
≤ inf {ε > 0 : x0, . . . , xk is an ε-net in (t,D)} ,

where D denotes either the graph distance if t is discrete or its metric if t is a continuous
tree.

Proof Let 0 ≤ k ≤ n. By the monotonicity of the pruning operation, the pruned
tree Prunα,α′(t; x0, . . . , xn) can be obtained from Prunα,α′(t; x0, . . . , xk) by grafting
on each of its vertices and edges some trees. The maximal height of these grafted
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trees is thus equal to the (Hausdorff) distance between Prunα,α′(t; x0, . . . , xk) and
Prunα,α′(t; x0, . . . , xn). We just have to remark that none of the points x0, . . . , xk

belong to the grafted trees that is

{x0, . . . , xk} ∩ (
Prunα,α′(t; x0, . . . , xn)\Prunα,α′(t; x0, . . . , xk)

) = ∅.

The statement of the proposition follows.

Proof of Theorem 3 Starting with an α-stable tree Tα and a sample (Xi , i ≥ 0) of
i.i.d. random leaves with distribution μα (given Tα), we consider the chain Tα such
that (12) holds, as well as its blue subchain Tα,α′ . We have already established (see
the proof of Proposition 2) that once re-normalized by αnᾱ the blue tree Tα,α′(n)

converges almost surely towards Tα,α′ ⊂ Tα . By Proposition 11 we just have to show
that Prunα,α′(Tα(n)) converges after renormalization towards Prunα,α′(Tα; (Xi )i≥0).

For this, we will use that for every k ≥ 0 (see Theorem 5(ii))

(
Tα(n)

αnᾱ
; A0, A1, . . . , Ak

)
a.s.−−−→

n→∞ (Tα; X0, . . . , Xk), (16)

in the k + 1-pointed Gromov–Hausdorff topology. Let ε > 0. Almost surely, since
the Xi ’s form a dense subset of Tα , which is compact, we can find a (random) 0 ≤
k < ∞ such that {X0, . . . , Xk} is an ε-net in Tα . In particular, we eventually have that
{A0, . . . , Ak} is a �2αεnᾱ�-net in Tα(n). Applying Proposition 12 twice we get that
for n large enough,

δ
(
Prunα,α′(Tα; (Xi )i≥0), Prunα,α′(Tα; X0, . . . , Xk)

) ≤ ε,

1

αnᾱ
dgr

(
Prunα,α′(Tα(n)), Prunα,α′(Tα(n); A0, . . . , Ak)

) ≤ 2ε,

where δ is the metric in Tα . Hence the proof will be completed when we will have
shown that for every fixed k0 ≥ 0,

1

αnᾱ
Prunα,α′(Tα(n); A0, . . . , Ak0)

a.s.−−−→
n→∞ Prunα,α′(Tα; X0, . . . , Xk0), (17)

in the Gromov–Hausdorff sense as n → ∞. To see this, we will obviously use (16). Let
us however emphasize here that the convergence (16) in the k + 1-pointed Gromov–
Hausdorff sense does not imply the convergence of the pruned subtrees in general.
Counter-examples can easily be set up when some of the marked points in the limiting
tree are not leaves. However, here, the Xi ’s are distinguished leaves of Tα , therefore
the discrete labeled trees obtained by removing vertices of degree 2 (and glueing
the adjacent edges) in Span(Tα(n); A0, . . . , Ak0), n ≥ k0 and forgetting lengths on
the edges of Span(Tα; X0, . . . , Xk0) are all identical. From this and the definition of the
pruning procedure (with, for reminder, the same sequence of uniform random variables
Ui , i ≥ 2 in all cases), we get that the discrete labeled trees obtained by removing
vertices of degree 2 in Prunα,α′(Tα(n); A0, . . . , Ak0) for n large enough and forgetting
lengths on the edges of Prunα,α′(Tα; X0, . . . , Xk0) are all identical. Re-incorporating
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distances, the conclusion follows from the convergence of Span(Tα(n); A0, . . . , Ak0),
after normalization, towards Span(Tα; X0, . . . , Xk0), which is a consequence of (16),
see e.g. Lemma 14 in [15].

With the notation of the proof of Proposition 2 we have thus proved that

Prunα,α′(Tα; (Xi )i≥0) = Tα,α′ = M ᾱ′
α,α′ · Tα′ .

With a slight abuse of notation, we also denote by μα′ the uniform mass measure on the
tree Prunα,α′(Tα; (Xi )i≥0). Let then Bi , i ≥ 0 be the indices of the leaves that are kept
in the pruning procedure applied to (Tα; (Xi )i≥0). By the above proof, these indices
also correspond to the indices of the leaves Ai , i ≥ 0 that end-up being blue in the con-
struction of Tα,α′ from Tα . We then claim that conditionally on Prunα,α′(Tα; (Xi )i≥0),

the leaves XBi , i ≥ 0 are i.i.d. according to μα′ .

In words, the blue leaves of the pruning procedure form an i.i.d. sequence of leaves
distributed according to the uniform mass measure on the remaining pruned subtree.
Although this is a purely continuous setup statement we give a proof relying on a
discrete argument. Indeed, it follows from the preceding proof that for every k ≥ 0

(
Tα,α′(n)

αnᾱ
; AB0 , . . . , ABk

)
a.s.−−−→

n→∞
(
Prunα,α′(Tα; (Xi )i≥0); XB0 , . . . , XBk

)
,

in the k +1-pointed Gromov–Hausdorff sense. However, since Tα,α′ has the same dis-
tribution has a Marchal chain of parameter α′ time-changed by an independent increas-
ing process, we deduce from Theorem 5(ii) that XB0 , . . . , XBk are i.i.d. according to
μα′ conditionally on M ᾱ′

α,α′ · Tα′ as demanded.

5 A fragmentation point of view

In this section, we exploit the pruning operation of the last section in order to give
another point of view on the construction of Tα,α′ which is based on the fragmenta-
tion properties of the stable tree. Indeed, it is by now standard that the stable tree can
be constructed from a certain self-similar fragmentation process whose conservative
dislocation measure is explicitly known. We will show that we can trim this fragmen-
tation process by throwing certain fragments away and such that the genealogy of the
resulting dissipative fragmentation process is coded by the tree Tα,α′ . This, finally,
gives another interpretation of the random scaling appearing in Proposition 2 as the
limit of the Malthusian martingale associated to the dissipative fragmentation.

5.1 Fragmentation of the stable tree

General self-similar fragmentation processes. This paragraph is deliberately brief
and we refer to Bertoin [5–7] for a detailed and rigorous introduction to the theory of
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self-similar fragmentations. Let a ∈ R and ν be a sigma-finite measure on the set of
decreasing sequences

S =
{

s = (s1, s2, . . .) : s1 ≥ s2 ≥ . . . ≥ 0 and
∑
i≥1

si ≤ 1

}

(endowed with the topology of pointwise convergence), such that

ν(1, 0, . . .) = 0 and
∫
S

(1 − s1)ν(ds) < ∞.

Such measure is called a conservative dislocation measure when ν(
∑

i si < 1) = 0
and a dissipative dislocation measure otherwise.

A pure-jump self-similar fragmentation process F with index of self-similarity
a and dislocation measure ν is a S-valued càdlàg Markov process modelling the
evolution of a system of splitting masses. The sequence F(t) represents the masses
present at time t , ranked in the decreasing order. When ν is finite the dynamic of the
process is easy to describe:

(i) different masses present at a given time evolve independently
(ii) each mass m splits after a random time with an exponential distribution of para-

meter maν(S) to give sub-masses mS1, mS2, . . . where (S1, S2, . . .) ∈ S is dis-
tributed according to ν/ν(S), independently of the splitting time.

When ν is infinite, the splitting times are dense in R+ and the description of the process
is more tricky. Informally, the item (i) is still valid, whereas the second item is replaced
by the more general fact that a mass m splits in masses ms, s ∈ S at rate maν(ds).

In all cases, this can be made rigorous by using Poisson point processes (see
[4,5] for details). We start with the description of homogeneous fragmentations, the
fragmentations with an index of self-similarity equal to 0. Let (S(t), k(t))t≥0 be a
Poisson point process with intensity measure ν ⊗ #, where # denotes the counting
measure on N. Then it is possible to build a pure-jump càdlàg S-valued process H
such that H(0) = (1, 0, . . .) and H jumps only when an atom (S(t), k(t)) of the Pois-
son point process occurs: H(t) is then obtained from H(t−) by keeping all elements
of the sequence H(t−) but Hk(t)(t−) which is replaced by the sequence of masses
Hk(t)(t−)Si (t), i ≥ 1, that is

H(t) =↓ {
Hj (t−), Hk(t)(t−)Si (t), i, j ≥ 1, j �= k(t)

}
,

where the symbol ↓ means that we have ranked the terms in the decreasing order.
This defines a fragmentation process H with parameters (0, ν), and all (0, ν)-
fragmentations can be constructed similarly from a Poisson point process.

Next, from a homogeneous fragmentation H with dislocation measure ν and any
a ∈ R, one can construct a fragmentation F with parameters (a, ν) by using a family
of suitable time-changes. And vice-versa, any (a, ν)-fragmentation can be turned into
a homogeneous one with same dislocation measure by suitable time-changes. We do
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not specify these time-changes here, as it requires some additional technical material,
but refer to [6] for details. Let us just mention that the time-changes only depend on
the past evolution of the masses. They modify the splitting times of the masses but
neither change the masses themselves, nor the genealogical relations between them.
It turns out that for all t ≥ 0 and all i ∈ N, there exists a pair (s, j) ∈ [0,∞) × N

such that Fi (t) = Hj (s), and vice-versa.
Fragmentation trees. A rooted continuous tree is a pair consisting of a continuous

tree and one of its points, this distinguished point being called the root. To simplify
notation we write ht(.) for the distance to the root in a rooted tree.

In [16] it is proved that when a < 0 and ν is conservative, if F is an (a, ν)

fragmentation process then one can construct a random compact rooted continuous
tree T • endowed with a (random) probability measure μ which is supported on its
leaves such that T • codes “the genealogy” of the process F in the sense that almost
surely for all t ≥ 0 we have

F(t) =↓ μ-masses of the connected components of {v ∈ T • : ht(v) > t}. (18)

The boundedness of this genealogical tree is due to a loss of mass by formation of
dust in the fragmentation, which is itself due to the strictly negative index of self-
similarity. The tree T • is called the fragmentation tree associated with F . Recently,
this result has been extended to the dissipative dislocation measures [26], the main
difference being that the probability measure μ is then no more concentrated on the set
of leaves of the genealogical tree and also charges its skeleton. When ν is dissipative
and ν(0, 0, . . .) = 0 it is even fully supported by the skeleton.

A particular instance of fragmentation trees is given by the stable trees. Specifically,
let T •

α denote an α-stable tree endowed with its uniform mass measure μα and rooted
at X0 (a uniform random leaf). If Fα denotes the S-valued process associated with
T •

α by (18) then Bertoin [6] for the Brownian case and Miermont [22] for the general
setting showed that Fα is a pure-jump self-similar fragmentation process with self-
similarity index −ᾱ and computed its dislocation measure. For the fragmentation F2
this measure is given for all test functions f : S → Rby

∫
S

f (s)νBr(ds) =
1∫

1/2

f (x, 1 − x, 0, . . .)
(
πx3(1 − x)3

)−1/2
dx,

and for the stable fragmentation Fα , 1 < α < 2, it is given by

∫
S

f (s)να(ds) = CαE

[
σ1 f

(
�i

σ1
, i ≥ 1

)]
,

where

Cα = α(α − 1)�(ᾱ)

�(2 − α)
(19)
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and (σt , t ≥ 0) is a stable subordinator of Laplace exponent λ1/α and (�i , i ≥ 1)

the sequence of its jumps before time 1, ranked in the decreasing order. Note that
να(S) = ∞ for all α ∈ (1, 2], which is related to the fact that the set of leaves of Tα

is dense in Tα . Note also that να is conservative.
We need some more notation. Note that for all t ≥ 0, the connected components of

{v ∈ T •
α : ht(v) > t} are open subtrees of Tα . We denote these subtrees by T i

α (t), i ≥ 1
so that

Fi
α(t) = μα(T i

α (t)),

with Fα(t) = (Fi
α(t), i ≥ 1). These subtrees are all distributed as Tα\{X0}, up to

random scalings. Specifically, conditionally on Fα(t), the trees T i
α (t), i ≥ 1 are inde-

pendent, such that for all i , T i
α (t) endowed with the probability measure μα( · | T i

α (t))
is distributed as Fi

α(t)ᾱ · (T i
α \{Xi

0}) endowed with μi
α , where (T i

α , μi
α) is an indepen-

dent copy of the α-stable tree and Xi
0 is a random point of T i

α with distribution μi
α .

This is called the self-similar property of the stable tree Tα . A similar property holds
for all fragmentation trees.

5.2 The tree Tα,α′ is a dissipative fragmentation tree

From now on and in the remainder of this paper, we let 1 < α < α′ ≤ 2 and consider
a stable tree Tα together with a sample of uniform leaves Xi , i ≥ 0. We let

Tα,α′ = Prunα,α′(Tα, (Xi )i≥0)

and denote by T •
α and T•

α,α′ the trees Tα and Tα,α′ rooted at the point X0. Since Tα,α′
is a closed subtree of Tα for every x ∈ Tα there exists a unique point Proj(x) ∈ Tα,α′
minimizing the distance to x in Tα,α′ . We then consider the measure μα,α′ on Tα,α′
obtained as the push-forward of μα by the application Proj(.).

Proposition 13 The probability μα,α′ is purely atomic and supported by the skeleton
of Tα,α′ .

Proof If x /∈ Tα,α′ then a moment of thought using the definition of the pruning
procedure shows that Proj(x) is a branch point of Tα,α′ . Thus the image of the measure
μα restricted to Tα\Tα,α′ is supported by the countable branch points of Tα that
belong to Tα,α′ . The statement of the proposition follows since μα(Tα\Tα,α′) = 1 by
Proposition 10.

The goal of this section is to show that (T•
α,α′ , μα,α′) is the genealogical tree of

a dissipative self-similar fragmentation process. To make this precise, we start by
constructing its dislocation measure να,α′ from να . For this, we design a procedure
that extract randomly certain fragments of a dislocation of the unit mass.

Let s = (s1, s2, . . .) ∈ S. We first consider s∗ = (s∗
1 , s∗

2 , . . .) a size-biased random
reordering of this sequence from which we will extract a subsequence (ŝ∗

i )i≥1 as
follows. When α′ = 2 the extraction is deterministic: set ŝ∗

1 = s∗
1 and ŝ∗

2 = s∗
2 and
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ŝ∗
n = 0 for n ≥ 3. For α′ < 2, we use an extra randomness and the definition of the

probabilities pα,α′,d,d ′ defined by (1) in the Introduction. We proceed recursively on
n as follows:

(i) ŝ∗
1 = s∗

1 and ŝ∗
2 = s∗

2 ,
(ii) for n ≥ 3, let d = n and d ′ = #{1 ≤ i ≤ n − 1 : ŝ∗

i = s∗
i } + 1 and put

ŝ∗
n = s∗

n with probability pα,α′,d,d ′ ,

ŝ∗
n = 0 otherwise.

The dislocation measure να,α′ is then defined for all test functions f : S → R by

∫
S

f (s)να,α′(ds) :=
∫
S

να(ds) E

[
f
( ↓ (ŝ∗

i )
)]

, (20)

where we recall that the symbol ↓ means reordering in decreasing order. Note that
να,α′ is dissipative since α < α′.

Our goal, now, is to prove the following result which clearly leads to Proposition
4. The proof does not rely on the particular expression of the dislocation measure of
the stable tree and the result could be generalized to any fragmentation tree pruned by
a similar procedure.

Proposition 14 The process Fα,α′ obtained by considering for each t ≥ 0 the decreas-
ing reordering of the

μα,α′ -masses of the connected components of
{
v ∈ T•

α,α′ : ht(v) > t
}

is a self-similar fragmentation, with index −ᾱ and dislocation measure να,α′ .

To be coherent with the notation introduced for the fragmentation Fα of the sta-
ble tree T •

α , we denote by T i
α,α′(t), i ≥ 1 the open subtrees forming the connected

components of {v ∈ T•
α,α′ : ht(v) > t}, so that the elements of Fα,α′(t) satisfy for

i ≥ 1,

Fi
α,α′(t) = μα,α′(T i

α,α′(t)).

Note that for each i ≥ 1, there exists a unique integer j (≥ i) such that T i
α,α′(t) ⊂

T j
α (t), and then that

Fi
α,α′(t) = μα(T j

α (t)) = F j
α (t).

We then say that the mass F j
α (t) contributes to Fα,α′(t). Note that F j

α (t) contributes

to Fα,α′(t) if and only if T j
α (t) ∩ Tα,α′ �= ∅.
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Proof (Sketch) A complete proof of the last proposition would be technical and
we deliberately chose to stay rather informal. We first use the pruning construc-
tion of Tα,α′ to give a practical criterion to decide which of the elements of Fα(t)
contribute to Fα,α′(t). Let Fi

α(t) be an element of Fα(t) and consider the small-
est k ≥ 1 such that Xk ∈ T i

α (t). Then Fi
α(t) contributes to Fα,α′(t) if and only if

Xk ∈ Prunα,α′(Tα; X0, . . . , Xk), that is if Xk is a blue leaf, with the color coding of
Sect. 4.1. Consider then a jump of the process Fα: Pick a time t such that a fragment
Fi

α(t−) splits into a countable collection of masses

F j
α (t) for j ∈ J = {indices offspring of i at time t}.

In geometric terms, there exists a branch point at height t in T •
α that branches into the

subtrees T j
α (t), j ∈ J . Let us then assume that Fi

α(t−) contributes to Fα,α′(t−). This
means that during the pruning operation the first leaf Xk falling into T i

α (t−) is blue.
Now, let us condition on that fact and on (Fα(s), s ≤ t) and set

s j = μα(T j
α (t))

μα(T i
α (t−))

for j ∈ J.

Our goal is to show that the relative masses sk of the fragments Fk
α (t), k ∈ J that will

contribute to Fα,α′(t) are distributed as (ŝ∗
j ) j∈J . We denote by Yk, k ≥ 1 the leaves

among Xk, k ≥ 1 that belong to T i
α (t−). Clearly, on our conditioning, the (Yk)k≥1 are

i.i.d. sampled according to μα( · | T i
α (t−)). Thus, if T a1

α (t), T a2
α (t), . . . are the first,

second, …subtrees into which one of the points Yi falls then the sequence sa1, sa2 , . . .

is just a sized-biased ordering of the sequence (s j ) j∈J ,

(san )n≥1 = (s∗
j ) j∈J .

Moreover, for every n ≥ 1, the first leaf that falls into T an
α (t) is kept in the pruning

construction (otherwise said is blue) with probability pα,α′,d,d ′ , where d = an and
d ′ = {k ≤ n − 1 : T ak

α (t) ∩ Tα,α′ �= ∅} + 1. From this observation and the definition
of (ŝ j

∗) it should be clear that the sk’s, k ∈ J , corresponding to offspring subtrees of
T i

α (t−) intersecting Tα,α′ are thus distributed as ŝ∗
j , j ∈ J as desired. Obviously this

procedure has to be done for each jump of the fragmentation process. It is then possible
to conclude by using the Poisson point process construction of the fragmentation Fα .
One important point is to notice that the time-changes used to pass to the homogenous
counterparts of Fα and Fα,α′ are identical in both fragmentations for each element of
Fα that contributes to Fα,α′ . We leave subtleties to the careful reader. ��

5.3 From the dissipative fragmentation to a randomized conservative fragmentation

Since the random tree Tα,α′ is distributed as the stable tree Tα′ (up to a random scaling)
it supports a uniform mass measure distributed as μα′ . However, the measure μα,α′
(see last section) does not charge the set of leaves of the tree Tα,α′ but only its skeleton
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and so is not connected, a priori, to μα′ . We will see in this section how to construct
from μα,α′ a measure on the leaves of T•

α,α′ that will be related to μα′ .
Keeping the mass. Recall that the measure να is conservative, that is the mass is

conserved at each splitting. However there is a loss of mass in Fα by formation of dust
(due to the negative auto-similarity index). That is why, in this section, we rather focus
on the homogeneous counterpart Hα of the fragmentation Fα , which is obtained by
applying suitable time-changes in Fα , see Sect. 5.1. In this case we have for all t ≥ 0

∑
i≥1

Hi
α(t) = 1.

Obviously, this conservation of mass does not hold for homogeneous fragmentations
with a dissipative dislocation measure. However there is then a natural way to define
a random measure called the Malthusian measure which is stochastically conserved
[7,8,26]. Although this new random measure is not a probability measure, it has a
finite total mass with mean 1.

Let us now introduce rigorously this object. For this we use results established by
Stephenson [26] for general dissipative fragmentation trees, following the ideas of
Bertoin [7] for dissipative fragmentations with finite dislocation measures. From now
on, we focus on the case of να,α′ (see (20)), that is we consider Hα,α′ the homogeneous
counterpart of the process Fα,α′ . The starting point is the existence of a Malthusian
index p∗

α,α′ which is characterized by

∫
S

(
1 −

∑
i≥1

s
p∗
α,α′

i

)
να,α′(ds) = 0.

See below for the discussion about existence and computation of this exponent. Once
the existence of p∗

α,α is granted, the process

Mart1,0(s) =
∑
i≥1

(
Hi

α,α′(s)
)p∗

α,α′ , s ≥ 0

is a positive martingale, see e.g. [7,26]. More generally, for each t ≥ 0 and i ∈ N, the
process

Marti,t (s) =
∑
i→ j

(
H j

α,α′(s)
)p∗

α,α′, s ≥ t, (21)

where the sum is over all fragments whose ancestor at time t is Hi
α,α′(t), is a positive

càdlàg martingale which therefore converges almost surely towards a limiting value
denoted by Marti,t , i ∈ N, t ≥ 0. Actually, one can check that

E
[
Mart1,0

] = 1 (22)
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(this will be done during the proof of Theorem 15), which then ensures that the random
variables Marti,t , i ∈ N, t ≥ 0 can be chosen so that the convergences hold for all i, t ,
almost surely (see [26]). Besides, by the homogeneity property of the fragmentation
process Hα,α′ , we clearly have for all t ≥ 0,

(Marti,t , i ≥ 1) =
(
(Hi

α,α′(t))
p∗
α,α′ Mart(i,t)1,0 , i ≥ 0

)
,

where the r.v. Mart(i,t)1,0 , i ≥ 0 are independent, all distributed as Mart1,0 and also

independent of (Hi
α,α′(t), i ≥ 1). Finally, recall the notation T i

α (t) and T i
α,α′(t), i ≥ 1

used in the last section for the open subtrees above level t in T •
α and T•

α,α′ respectively.

We similarly denote by Hi
α(t) and Hi

α,α′(t) the open subtrees of T •
α and T•

α,α′ so that

Hi
α(t) = μα(Hi

α(t)), Hi
α,α′(t) = μα,α′(Hi

α,α′(t)).

The set of subtrees {Hi
α(t), i ∈ N, t ≥ 0} is in bijection with the set of subtrees

{T i
α (t), i ∈ N, t ≥ 0}, and it is the same for the subtrees indexed by α, α′. We now

have the material to build the Malthusian measure μ∗
α,α′ . On the event with probability

1 where all the martingales (21) converge, we set

μ∗
α,α′

(
Hi

α,α′(t)
)

= Marti,t (23)

for all i ∈ N and t ≥ 0. By [26], this indeed defines uniquely a σ -finite measure
μ∗

α,α′ on the tree T•
α,α′ , which is fully supported by the set of leaves. Note that the set

{Hi
α,α′(t), i ∈ N, t ≥ 0} generates the Borel σ -field on Tα,α′ .
Computing p∗

α,α′ . Apart from the Brownian case when α′ = 2, it is not easy
to calculate directly from the expression of να,α′ given in (20) its Malthusian index
p∗
α,α′ . However we can use information from the proof of Proposition 2, based on the

coupling in Marchal’s construction, to get that

p∗
α,α′ = ᾱ

ᾱ′ .

This will be done during the proof of Theorem 15. There is another indirect way to get
the value of p∗

α,α′ , provided we know that this index exists and that the measure να,α′
satisfies suitable (weak) integrability properties. Indeed, on the one hand, the Hausdorff
dimension of the α′-stable tree, hence also that of T•

α,α′ , is 1/ᾱ′ a.s. [13,16]. On the
other hand, according to results of [26] on general dissipative fragmentation trees, we
know that the Hausdorff dimension of the (−ᾱ)-self-similar fragmentation tree T•

α,α′
is almost surely p∗

α,α′/ᾱ, provided να,α′ satisfies the above mentioned integrability
properties. After identification this gives back p∗

α,α′ = ᾱ/ᾱ′.
The main result of this section is the fact that T•

α,α′ endowed with the measure
μ∗

α,α′ is distributed as an α′-stable tree endowed with its uniform mass measure, up to a
random scaling. Recall from (10) the definition of a generalized Mittag-Leffler random
variable MLᾱ/ᾱ′,ᾱ with parameters (ᾱ/ᾱ′, ᾱ) and set Mα,α′ = (α′/α)1/ᾱ′

MLᾱ/ᾱ′,ᾱ .
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Theorem 15 There is the following identity in distribution, with Mα,α′ independent
of (T •

α′ , μα′),

(
T•

α,α′ , E[Mα,α′ ]μ∗
α,α′

)
(d)=

(
M ᾱ′

α,α′T •
α′ , Mα,α′μα′

)
,

where E[Mα,α′ ] = (α/α′)1/ᾱ′
ᾱ′�

(
ᾱ
)
/�

(
ᾱ(1 + 1/ᾱ′)

)
, and where the measure μα′ in

the right-hand side of this identity actually represents the push-forward of μα′ on Tα′
by the homothety that sends Tα′ on M ᾱ′

α,α′Tα′ .

In other words, the dissipative fragmentation tree T•
α,α′ , endowed with a rescaled

version of its Malthusian measure, is distributed as the genealogical tree of an α′-
stable fragmentation of the random mass Mα,α′ . Note that the change of measures on
the tree, from μα,α′ to μ∗

α,α′ , changes the index of self-similarity of the underlying
fragmentation, which passes from −ᾱ to −ᾱ′.

Proof of Theorem 15 This proof is divided into three steps. We recall that in addition
to proving the identity in distribution of the statement, we also have to prove the
existence of p∗

α,α′ , as well as (22), so that the measure μ∗
α,α′ can indeed be defined via

(23) on an event with probability one.

Step 1. Recall that Tα,α′ = Prunα,α′(Tα, (Xi )i≥0) and that a leaf Xi is said to be
blue if it belongs to Tα,α′ and red otherwise. Write B for the indices of the blues leaves
and B(n) = B ∩ {0, 1, 2, . . . , n}. Recalling from the proof of Theorem 3 that B(n) is
the number of leaves of a chain Tα,α′ , we apply Lemma 9 to get

#B(n)

nᾱ/ᾱ′
a.s.−−−→

n→∞ MLᾱ/ᾱ′,ᾱ, (24)

where MLᾱ/ᾱ′,ᾱ has a generalized Mittag-Leffler distribution with parameters
(ᾱ/ᾱ′, ᾱ). In particular, its mean is

E[MLᾱ/ᾱ′,ᾱ] = ᾱ′� (ᾱ)

�
(
ᾱ
(
1 + 1/ᾱ′)) ,

using (10) and the relation �(a + 1) = a�(a) to get simplifications. Moreover, we
know from (the proof of) Proposition 2 and the discussion at the end of Sect. 4.2 that
there exists an α′-stable tree Tα′ such that

Tα,α′ = α′

α
MLᾱ′

ᾱ/ᾱ′,ᾱTα′

and that (Xi )i∈B is an i.i.d. sample of the uniform mass measure on (the leaves of)
Tα,α′ , which, with a slight abuse of notation, is also denoted by μα′ . Consequently,

μα′ is the almost sure empirical limit of

∑
i∈B(n) δXi

#B(n)
as n → ∞, (25)
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which will be useful in the following. Theorem 15 will therefore be proved if we show
the existence of p∗

α,α′ and (22) and that almost surely for all i ∈ N, t ≥ 0,

MLᾱ/ᾱ′,ᾱμα′
(
Hi

α,α′(t)
)

= E[MLᾱ/ᾱ′,ᾱ]μ∗
α,α′

(
Hi

α,α′(t)
)
. (26)

For this, we will use (24) and (25).
Step 2. As for their self-similar counterparts, Hα,α′ is a sub-fragmentation of

Hα . More precisely, for i ∈ N and t ≥ 0, there exists a unique integer j such that
Hi

α,α′(t) ⊂ H j
α(t) and moreover,

Hi
α,α′(t) = μα,α′(Hi

α,α′(t)) = μα(H j
α(t)) = H j

α (t).

Then, similarly to (24), introduce the random variable

MLi (t) = lim
n→∞

#{k ∈ B(n) : Xk ∈ H j
α(t)}

#{k ≤ n : Xk ∈ H j
α(t)}ᾱ/ᾱ′

which, by the self-similarity property of Tα and of the blue-coloring operation exists
a.s., is distributed as MLᾱ/ᾱ′,ᾱ and is independent of Hα(t). Moreover, the random
variables MLi (t), i ≥ 1 are independent. Now note the following easy but crucial fact:
almost surely,

MLᾱ/ᾱ′,ᾱμα′
(
Hi

α,α′(t)
)

= lim
n→∞

#B(n)

nᾱ/ᾱ′ × #{k ∈ B(n) : Xk ∈ H j
α(t)}

#B(n)

= lim
n→∞

#{k ∈ B(n) : Xk ∈ H j
α(t)}

#{k ≤ n : Xk ∈ H j
α(t)}ᾱ/ᾱ′

×
(

{k ≤ n : Xk ∈ H j
α(t)}

n

)ᾱ/ᾱ′

= MLi (t)
(

H j
α (t)

)ᾱ/ᾱ′
= MLi (t)

(
Hi

α,α′(t)
)ᾱ/ᾱ′

.

(27)

Note also that a.s.

∑
i≥1

μα′
(
Hi

α,α′(t)
)

= 1, ∀t ≥ 0.

Indeed, since Hα is the homogeneous version of the fragmentation Fα , the union
∪iHi

α(t) contains all the leaves of Tα but the root, ∀t ≥ 0 a.s. Consequently, ∪iHi
α,α(t)

also contains all the leaves (except the root) of T•
α,α′ , hence the last display. Together
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with (27), this leads to

MLᾱ/ᾱ′,ᾱ =
∑
i≥1

MLi (t)
(

Hi
α,α′(t)

)ᾱ/ᾱ′
, ∀t ≥ 0 a.s. (28)

Taking expectations and recalling that 0 < E[MLᾱ/ᾱ′,ᾱ] < ∞, this implies that

1 = E

[∑
i≥1

(
Hi

α,α′(t)
)ᾱ/ᾱ′ ]

= exp

(
− t

∫
S

(
1 −

∑
i≥1

sᾱ/ᾱ′
i

)
να,α′(ds)

)
,

using for the second equality that να,α′ is the dislocation measure of Hα,α′ and then
the well-known fact in the theory of homogeneous fragmentations

E

⎡
⎣∑

i≥1

(
Hi

α,α′(t)
)q

⎤
⎦ = exp

⎛
⎝−t

∫
S

⎛
⎝1 −

∑
i≥1

sq
i

⎞
⎠ να,α′(ds)

⎞
⎠ , ∀q ∈ R,

see e.g. Bertoin [5]. This shows that p∗
α,α′ indeed exists and is equal to ᾱ/ᾱ′. In

particular, we can now consider the martingales (21).
Step 3. It remains to show (22) and then use (27) to get (26). Following an idea of

[8] we get from (28) and the definition of the martingale (Mart1,0(t), t ≥ 0) that

E

[(
MLᾱ/ᾱ′,ᾱ − E[MLᾱ/ᾱ′,ᾱ]Mart1,0(t)

)2
]

= E

⎡
⎢⎣
⎛
⎝∑

i≥1

(
Hi

α,α′(t)
)ᾱ/ᾱ′ (

MLi (t) − E[MLᾱ/ᾱ′,ᾱ])
⎞
⎠

2
⎤
⎥⎦

= Var(MLᾱ/ᾱ′,ᾱ)E

⎡
⎣∑

i≥1

(
Hi

α,α′(t)
)2ᾱ/ᾱ′

⎤
⎦

= Var(MLᾱ/ᾱ′,ᾱ) exp

⎛
⎝−t

∫
S

(
1 −

∑
i≥1

s2ᾱ/ᾱ′
i

)
να,α′(ds)

⎞
⎠ ,

where the second equality comes from the fact that the random variables MLi (t), i ≥ 1
are i.i.d distributed as MLᾱ/ᾱ′,ᾱ , and independent of Hα(t). The function

q �→
∫
S

(
1 −

∑
i≥1

sq
i

)
να,α′(ds)
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is strictly increasing on its domain of definition and is equal to 0 for q = ᾱ/ᾱ′, as seen
above. Hence, noticing that Var(MLᾱ/ᾱ′,ᾱ) < ∞,

E

[(
MLᾱ/ᾱ′,ᾱ − E[MLᾱ/ᾱ′,ᾱ]Mart1,0(t)

)2
]

→ 0 as t → ∞,

which implies the almost sure equality

MLᾱ/ᾱ′,ᾱ = E[MLᾱ/ᾱ′,ᾱ]Mart1,0,

since moreover Mart1,0(t) → Mart1,0 a.s. Note that this implies the expected equality
(22), hence the existence of μ∗

α,α′ . Similarly, by the homogeneity property of the
fragmentation Hα , for each (i, t),

MLi (t)
(

Hi
α,α′(t)

)ᾱ/ᾱ′
= E[MLᾱ/ᾱ′,ᾱ]Marti,t , a.s.,

which, together with (27), finally gives the expected

MLᾱ/ᾱ′,ᾱμα′
(
Hi

α,α′(t)
)
=E[MLᾱ/ᾱ′,ᾱ]Marti,t = E[MLᾱ/ᾱ′,ᾱ]μ∗

α,α′
(
Hi

α,α′(t)
)

a.s.

Note that this identity is proved for each fixed (i, t) almost surely, and we actually
want it almost surely for all (i, t) ∈ N × [0,∞). This is indeed true: for each (i, t),
consider a sequence (tn) with tn ∈ Q ∩ [0,∞) decreasing towards t ; then one has

Hi
α,α′(t) =

⋃
n≥1

⋃
j∈Jn(i,t)

H j
α,α′(tn)

where Jn(i, t) is the set of all indices j such that the mass H j
α,α′(tn) is a descendant of

Hi
α,α′(t). The above union on j ∈ Jn(i, t) is disjoint, whereas that on n is an increasing

union. Consequently, a measure on Tα,α′ is entirely characterized by the weights it

assigns to the subtrees H j
α,α′(q), j ∈ N, q ∈ Q∩ [0,∞). This ends the proof (and the

paper).
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