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ABSTRACT: We study the graph structure of large random dissections of polygons sampled
according to Boltzmann weights, which encompasses the case of uniform dissections or uniform
p-angulations. As their number of vertices n goes to infinity, we show that these random graphs,
rescaled by n−1/2, converge in the Gromov–Hausdorff sense towards a multiple of Aldous’ Brownian
tree when the weights decrease sufficiently fast. The scaling constant depends on the Boltzmann
weights in a rather amusing and intriguing way, and is computed by making use of a Markov chain
which compares the length of geodesics in dissections with the length of geodesics in their dual trees.
© 2014 Wiley Periodicals, Inc. Random Struct. Alg., 00, 000–000, 2014
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1. INTRODUCTION

Let Pn be the convex polygon inscribed in the unit disk D of the complex plane whose
vertices are the n-th roots of unity. A dissection of Pn is by definition the union of the sides
of Pn together with a collection of diagonals that may intersect only at their endpoints.
A triangulation (resp. a p-angulation for p ≥ 3) is a dissection whose inner faces are all
triangles (resp. p-gons).

Correspondence to: I. Kortchemski
© 2014 Wiley Periodicals, Inc.
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2 CURIEN, HAAS, AND KORTCHEMSKI

Fig. 1. A uniform dissection of a polygon with 387 vertices, embedded non isometrically in the plane.
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

In [4], Aldous studied random uniform triangulations of Pn seen as closed subsets of
D (see Fig. 2), and proved convergence, as n → ∞, towards a random closed subset of D

of Hausdorff dimension 3/2 called the “Brownian triangulation”. This approach has been
pursued in [10] in the case of uniform dissections, see also [13, 23] for related models.
In this work, instead of viewing dissections as subsets of the unit disk, we view them as
compact metric spaces by equipping the vertices of the polygon with the graph distance
(every edge has unit length).

Graph properties (such as maximal vertex or face degrees, diameter, etc.) of large random
dissections have attracted a lot of attention in the combinatorial literature. In particular, it
has been noted that the combinatorial structure of dissections (and more generally of non-
crossing configurations) is very close to that of plane trees (see Fig. 2 for an illustration).
For instance, the number of dissections of Pn exhibits the n−3/2 polynomial correction [17],
characteristic in the counting of trees. Also, various models of random dissections of Pn

have maximal vertex or face degrees of order log(n) [5, 10, 14, 18] and diameter of order√
n [15], thus suggesting a “tree-like” structure in Fig. 1.
In this work, we show that many different models of large random dissections, suit-

ably rescaled, converge towards the Brownian Continuum Random Tree (CRT) introduced

Fig. 2. A dissection, a triangulation and a quadrangulation of the octogon.
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SCALING LIMITS OF RANDOM DISSECTIONS 3

by Aldous in [2]. The latter convergence holds in distribution with respect to the
Gromov–Hausdorff topology which gives sense to convergence of compact metric spaces,
see Section 4.1 for background.

Boltzmann dissections. We will work with the model of random Boltzmann dissections
introduced in [23]. Let μ = (μj)j≥0 be a probability distribution on the nonnegative integers
Z+ = {0, 1, . . .} such that μ1 = 0 and the mean of μ is equal to 1 (μ is said to be critical).
For every integer n ≥ 3 for which it makes sense, the Boltzmann probability measure P

μ
n is

the probability measure on the set of all dissections of Pn defined by

P
μ
n (ω) = Z−1

n

∏
f inner face of ω

μdeg(f )−1,

where deg(f ) is the degree of the face f , that is the number of edges in the boundary of f ,
and Zn is a normalizing constant. Note that the definition of P

μ
n only involves μ2, μ3, . . ., the

initial weights μ0 and μ1 being here in order that μ defines a critical probability measure.
This will later be useful, see Proposition 2. We also point out that the hypothesis

∑
i≥2 iμi =

1 is not as restrictive as it may first appear, this is discussed in the remark before Section
2.2. In the following, all the statements have to be implicitly restricted to the values of n for
which the definition of P

μ
n makes sense.

Throughout the paper, Dμ
n denotes a random dissection of Pn distributed according to

P
μ
n , which is endowed with the graph distance. More generally, it is implicit in this paper

that all graphs are equipped with the graph distance. We use the version of the CRT which
is constructed from a normalized Brownian excursion e, see [25, Section 2], and we will
denote it by Te. If M is a metric space, the notation c · M stands for the metric space
obtained from M by multiplying all distances by c > 0. We are now ready to state our
main result.

Theorem 1. Let μ be a probability measure on {0, 2, 3, . . .} of mean 1 and assume that∑
i≥0 eλiμi < ∞ for some λ > 0. Set μ0 + μ2 + μ4 + · · · = μ2Z+ and let σ 2 ∈ (0, ∞) be

the variance of μ. Finally set c(μ) = ctree(μ) · cgeo(μ), where

ctree(μ) := 2

σ
√

μ0
, cgeo(μ) := 1

4

(
σ 2 + μ0μ2Z+

2μ2Z+ − μ0

)
.

Then the following convergence holds in distribution for the Gromov–Hausdorff topology

1√
n

· Dμ
n

(d)−−→
n→∞ c(μ) · Te. (1)

The reason why the constant c(μ) is split into two parts is explained below.

Examples. Let us give a few important special cases (see Section 5.2 for other examples).

• Uniform p-angulations. Consider an integer p ≥ 3. If μ
(p)

0 = 1 − 1/(p − 1), μ
(p)

p−1 =
1/(p − 1) and μ

(p)

i = 0 otherwise, then P
μ(p)

n is the uniform measure over all p-
angulations of Pn (in that case, we must restrict our attention to values of n such that

Random Structures and Algorithms DOI 10.1002/rsa



4 CURIEN, HAAS, AND KORTCHEMSKI

n − 2 is a multiple of p − 2). We thus get

c(μ(p)) = p

2
√

p − 1
for p even (p ≥ 4) and

c(μ(p)) = (p + 1)
√

p − 1

2p
for p odd (p ≥ 3).

It is interesting to note that c(μ(p)) is increasing in p.
• Uniform dissections. If μ0 = 2 − √

2, μ1 = 0 and μi = ((2 − √
2)/2)i−1 for

every i ≥ 2, then P
μ
n is the uniform measure on the set of all dissections of Pn (see

[10, Proposition 2.3]). In this case,

c(μ) = 1

7
(3 + √

2)23/4 � 1.0605.

If μ is critical but has a heavy tail, i.e. μk ∼ c ·k−(1+α) as k → ∞ for fixed α ∈ (1, 2) and
c > 0, a drastically different behavior occurs. Indeed, in the recent work [12], it is shown
that the random metric space Dμ

n , now renormalized by n1/α , converges towards the stable
looptree of parameter α which is also introduced in [12].

Combinatorial applications. Theorem 1 implies that E
[
F(Dμ

n /
√

n)
] → E [F(c(μ) · Te)]

as n → ∞ for every bounded continuous function F (defined on the set of compact metric
spaces) with respect to the Gromov–Hausdorff topology. By controlling the speed of conver-
gence in Theorem 1, we will actually show that the last convergence holds more generally
for functions F such that F(M) ≤ C · Diam(M)p for every compact metric space M and
fixed C, p > 0, where Diam(·) stands for the diameter, which is by definition the maximal
distance between two points in a compact metric space.

As a consequence, we obtain the asymptotic behavior of all positive moments of different
statistics of Dμ

n , such as the diameter, the radius or the height of a random vertex, see Section
5.1. For instance, in the case of uniform dissections, we get

E

[
Diam(Dμ

n )
]

∼
n→∞

1

21
(3 + √

2)29/4√πn � 1.7723
√

n.

This strengthens a result of [15, Section 5].

Strategy of the proof and organization of the paper. We have deliberately split the scal-
ing constant appearing in (1) into two parts in order to reflect the two main steps of the proof.

First, in Section 2.1, we associate with every dissection Dμ
n a “dual” tree denoted by

φ(Dμ
n ) (see Fig. 3). It turns out that φ(Dμ

n ) is a Galton–Watson tree with offspring distribu-
tion μ and conditioned on having n − 1 leaves (Proposition 2). Since the work of Aldous, it
is well known that, under a finite variance condition, Galton–Watson trees conditioned on
having n vertices, and scaled by

√
n, converge towards the Brownian CRT. Here, the condi-

tioning is different and involves the number of leaves. However, such a situation was studied
in [24, 27] and it follows that φ(Dμ

n )/
√

n converges in distribution towards ctree(μ) · Te.
The second step consists in showing that the random metric spaces Dμ

n and φ(Dμ
n ) are

roughly proportional to each other, the proportionality constant being precisely cgeo(μ). To
this end, we show that the length of a geodesic in Dμ

n starting from the root and targeting a
typical vertex is described by an exploration algorithm indexed by the associated geodesic in

Random Structures and Algorithms DOI 10.1002/rsa



SCALING LIMITS OF RANDOM DISSECTIONS 5

Fig. 3. A dissection D of P8 and its associated trees φ(D) and φ(D)•.

the tree φ(Dμ
n ). See Section 2.2 for precise statements. In order to obtain some information

on the asymptotic behavior of this exploration procedure, we first study in Section 3 the case
of the critical Galton–Watson tree conditioned to survive where the geodesic exploration
yields a Markov chain. For each step along the geodesic in the tree, the mean increment (with
respect to the stationary distribution of the Markov chain) along the geodesic in the dissection
is precisely cgeo(μ). In Section 4.2, we then control all the distances in φ(Dn

μ) by using large
deviations for the Markov chain. This allows us to estimate the Gromov–Hausdorff distance
between Dμ

n and φ(Dμ
n ) (Proposition 10) and yields Theorem 1.

Last, we develop in Section 5 applications and extensions of Theorem 1. In particular,
we study the asymptotics of positive moments of several statistics of Dμ

n and set up a
result similar to Theorem 1 for the scaling limits of discrete looptrees associated to large
Galton–Watson trees.

Let us also mention that in [1], Albenque and Marckert proved a result similar to Theorem
1 for the uniform stack triangulations. Their approach also relies on a comparison of the
distances in the graphs and in some dual trees. See also [6,21] for other examples of random
maps that are not trees and that converge towards the Brownian CRT.

2. DUALITY WITH TREES AND EXPLORATION OF GEODESICS

2.1. Duality With Trees

We briefly recall the formalism of discrete plane trees which can be found in [25] for
example. Let N = {1, 2 . . .} be the set of positive integers and let U be the set of labels

U =
∞⋃

n=0

(N)n,

where by convention (N)0 = {∅}. An element of U is a sequence u = u1 · · · um of positive
integers, and we set |u| = m, which represents the generation, or height, of u. If u = u1 · · · um

and v = v1 · · · vn belong to U , we write uv = u1 · · · umv1 · · · vn for the concatenation of u
and v. A plane tree τ is then a finite or infinite subset of U such that:

1. ∅ ∈ τ ,
2. if v ∈ τ and v = uj for some j ∈ N, then u ∈ τ ,
3. for every u ∈ τ , there exists an integer ku(τ ) ≥ 0 (the number of children of u) such

that, for every j ∈ N, uj ∈ τ if and only if 1 ≤ j ≤ ku(τ ).

Random Structures and Algorithms DOI 10.1002/rsa



6 CURIEN, HAAS, AND KORTCHEMSKI

In the following, tree will always mean plane tree. We will view each vertex of a tree τ as
an individual of a population whose τ is the genealogical tree. The vertex ∅ is the ancestor
of this population and is called the root. Every vertex u ∈ τ of degree 1 is then called a leaf
and the number of leaves of τ is denoted by λ(τ). Last, for all u, v ∈ τ , we denote by [[u, v]]
the discrete geodesic path between u and v in τ .

If τ is a plane tree, we denote by τ • the tree obtained from τ by attaching a leaf to the
bottom of the root of τ , and by rooting the resulting tree at this new leaf. Formally, we set
τ • = {∅} ∪ {1u, u ∈ τ }, and say that τ • is a planted tree.

For n ≥ 3, we denote by Dn the set of all the dissections of Pn, and let

k = exp

(−2ikπ

n

)
, 0 ≤ k ≤ n − 1,

be the vertices of any dissection of Dn (the dependence in n is implicit). Given a dissection
D ∈ Dn, we construct a rooted plane tree as follows: Consider the dual graph of D, obtained
by placing a vertex inside each face of D and outside each side of the polygon Pn and
by joining two vertices if the corresponding faces share a common edge, thus giving a
connected graph without cycles. This plane tree is rooted at the leaf adjacent to the edge
(0, n − 1) and is denoted by φ(D)•. Note that the root of φ(D)• has a unique child. Re-
rooting the tree at this unique child and removing the former root and its adjacent edge
gives a tree φ(D) with no vertex with exactly one child, whose planted version is φ(D)•.
See Fig. 3 below.

For n ≥ 3, it is easy to see that the application φ is a bijection between Dn and the set
of all plane trees with n − 1 leaves such that there is no vertex with exactly one child. For
symmetry reasons, it will be more convenient to work with the planted tree φ(D)• rather
than φ(D) (see e.g. (10) below). However, we also consider φ(D) because of its simple
probabilistic description. If ρ is a probability measure on Z+ such that ρ(1) < 1, the law
of the Galton–Watson tree with offspring distribution ρ is denoted by GWρ .

Proposition 2 ([24], see also [10]). Let μ be a probability distribution over {0, 2, 3, 4 . . .}
of mean 1. For every n such that GWμ(λ(τ) = n−1) > 0, the dual tree φ(Dμ

n ) of a random
dissection distributed according to P

μ
n is distributed according to GWμ(· | λ(τ) = n − 1).

This result explains the factor ctree(μ) in the scaling constant c(μ) appearing in The-
orem 1. Indeed, if we further assume that μ has finite variance σ 2, then from [24, 27], a
GWμ tree conditioned on having n leaves and scaled by n−1/2 converges in distribution
towards ctree(μ) · Te as n → ∞. This is mainly due to the fact that a GWμ tree conditioned
on having n leaves is very close to a GWμ tree conditioned on having μ−1

0 n vertices (see
[24]), combined with the well-known result of Aldous on the convergence of a GWμ tree
conditioned on having n vertices and scaled by n−1/2, towards 2σ−1 · Te. Hence

n−1/2 · φ(Dμ
n )

(d)−→
n→∞ ctree(μ) · Te,

in distribution for the Gromov–Hausdorff topology. Obviously, the same statement holds
when φ(Dμ

n ) is replaced by φ(Dμ
n )•.

Remark. The criticality condition on μ and the fact that μ is a probability measure are
not as restrictive as it could appear. Indeed, starting from a sequence (μi)i≥2 of nonnegative

Random Structures and Algorithms DOI 10.1002/rsa



SCALING LIMITS OF RANDOM DISSECTIONS 7

Fig. 4. Illustration of the steps of the algorithm constructing a geodesic between 0 and 12 in D.
The undetermined steps are in light color. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

real numbers (recall that the definition of P
μ
n does not involve μ0 nor μ1), one can easily

build a critical probability measure ν such that P
ν
n = P

μ
n , provided that there exists λ > 0

such that
∑

i≥2 iλi−1μi = 1 (for example, such a λ always exists when
∑

i≥2 iμi ∈ [1, ∞),
but additional assumptions are needed otherwise). Indeed, in that case, set

ν0 = 1 −
∑
i≥2

λi−1μi, ν1 = 0, νi = λi−1μi (i ≥ 2),

which defines a critical probability measure. Then it is easy to check (see e.g. the proof of
[10, Proposition 2.3]) that P

ν
n = P

μ
n .

2.2. Geodesics in the Dissection

Now that we have associated a dual tree with each dissection, we shall see how to find the
geodesics in the dissection using the geodesics in its dual tree.

We fix a dissection D ∈ Dn. By the rotational invariance of the model we shall only
describe geodesics in D from the vertex 0. Let ∅ = �0, �1, . . . , �n−1 be the n leaves of
φ(D)• in clockwise order. Our first observation states that the geodesics in the dissection
stay very close to their dual geodesics in the tree.

Proposition 3. For every k ∈ {0, 1, . . . , n − 1}, the dual edges of a geodesic path from 0
to k in D are all adjacent to the geodesic path [[�0, �k]] in φ(D)•.

Proof. The proof is clear on a drawing (see Fig. 4, where k = 12 and where the geodesic
[[�0, �k]] in φ(D)• is in bold). A geodesic in D going from 0 to k will only use edges of D
that belong to the faces crossed by the geodesic path [[�0, �k]] in φ(D)• (which are the white
faces in Fig. 4). Indeed, it is easy to see that such a geodesic in D will never enter the other
faces (which are shaded in gray in Fig. 4), since any one of these faces is separated from
the rest by a single edge of D.

A local iterative construction. We now detail how to obtain a geodesic going from 0
to k in D by an iterative “local” construction along the geodesic [[�0, �k]] in the dual tree
φ(D)• (note that there may exist several geodesics going from 0 to k in D, our procedure

Random Structures and Algorithms DOI 10.1002/rsa



8 CURIEN, HAAS, AND KORTCHEMSKI

only produces one of them). Before doing so, let us make a couple of observations and
introduce a piece of notation.

Fix k ∈ {1, . . . n − 1}. Let h be the number of edges of [[�0, �k]] (h is the height of �k in
φ(D)•) and denote by w0, w1, . . . , wh the vertices of [[�0, �k]] (ordered in increasing height).
Next, for every 0 ≤ i ≤ h − 1, let ei be the edge of D which is dual to the edge wiwi+1 of
φ(D)•. For 0 ≤ i ≤ h − 1, the endpoint of ei which is located on the left, resp. right, of
[[�0, �k]] (when oriented from �0 to �k) is denoted by eL

i , resp. eR
i (note that one may have

eR
i+1 = eR

i , and similarly for L). See Fig. 4.
Consider now G = {0 = x0, x1, . . . , xm = k} the set of all the vertices of a geodesic in D

going from 0 to k. An easy geometrical argument shows that for every i ∈ {0, . . . , h − 1}, if
the edge ei together with its endpoints is removed from D, then the vertices 0 and k become
disconnected (or absent) in D. Hence, for every 0 ≤ i ≤ h − 1, at least one of the endpoints
eR

i or eL
i of the edge ei belongs to G. Furthermore, the geodesic G visits e0, e1, . . . , eh−1 in

this order (we say that G visits an edge e if one of the endpoints of e belongs to G) and for
every 1 ≤ i ≤ h − 1, after G has visited ei, G will not visit ej for every 0 ≤ j < i. Finally,
we denote by dD the graph distance in the dissection D.

The algorithm Geod(k). We now present an algorithm called Geod(k) that constructs
“step-by-step” a geodesic in D going from 0 to k. Formally, we shall iteratively construct
a path P = {y0, y1, . . .} of vertices going from 0 to k together with a sequence of integers
(si : 0 ≤ i ≤ h) such that the cardinal of P is sh + 1 and, for every i ∈ {0, 1, . . . , h − 1},

si = inf{j ≥ 0 : yj = eR
i or eL

i }
(this infimum will always be reached). The induction procedure will be on i ∈ {0, 1, . . . , h}.
For i ≤ h − 1, we will not always know at stage i if ysi = eL

i or ysi = eR
i . In the cases when

this is known, we define the position pi ∈ {L, R} through ysi = epi
i and say that the position

is “determined”. Otherwise we set pi = U and say that the position is “undetermined”.
The induction then proceeds as follows. First, set y0 = 0, so that s0 = 0 and p0 = L.

Also, for reasons that will appear later, let I be an empty set. Then, recursively for i ∈
{0, 1, . . . , h − 2}, assume that {s0, s1, . . . , si} and {p0, p1, . . . , pi} have been constructed, as
well as {ys0 , ys1 , . . . , ysi} in the cases where pi ∈ {L, R}. Denote by gi the number of edges
of φ(D)• adjacent to wi+1 that are strictly on the left of [[�0, �k]] and let Eg

i be set of edges
in D that are dual to those edges. Similarly, let di be the number of edges adjacent to wi+1

that are strictly on the right of [[�0, �k]] and let Ed
i be set of edges in D that are dual to those

edges.
We now want to build a shortest path in D from the current position ysi ∈ {eL

i , eR
i }

to k. In that aim, we have to decide whether ysi+1 = eL
i+1 or ysi+1 = eR

i+1 or if we have
to wait for a further step to decide whether the right or left position is best. Note that
|dD(eL

i+1, k) − dD(eR
i+1, k)| ≤ 1 since dD(eL

i+1, eR
i+1) = 1. Hence in order to choose whether

ysi+1 = eL
i+1 or ysi+1 = eR

i+1, we have to compare dD(ysi , eL
i+1) with dD(ysi , eR

i+1).
There are five different cases:

• The position stays determined and stays on the same side of [[�0, �k]]: If pi = L
and gi ≤ di. In this case (in Fig. 4, this happens for i = 0), we have dD(eL

i , eL
i+1) <

dD(eL
i , eR

i+1), hence we add to P the vertices visited when walking along the edges of
Eg

i (here and later, we do not add a vertex to P if it is already present in P) and set

si+1 = si + gi and ysi+1 = eL
i+1(hence pi+1 = L).

Random Structures and Algorithms DOI 10.1002/rsa



SCALING LIMITS OF RANDOM DISSECTIONS 9

The case pi = R and di ≤ gi is similar: in this case, we add to P the vertices visited
when walking along the edges of Ed

i , and set si+1 = si + di and ysi+1 = eR
i+1 (hence

pi+1 = R).
• The position stays determined and changes sides: If pi = L and di + 1 < gi.

In this case (in Fig. 4, this happens for i = 1) we have dD(eL
i , eR

i+1) < dD(eL
i , eL

i+1).
We thus add to P the vertex eR

i as well as the vertices visited when walking along the
edges of Ed

i . Then we set si+1 = si + 1 + di and ysi+1 = eR
i+1 (hence pi+1 = R).

The case pi = R and gi + 1 < di is symmetric (in Fig. 4, this happens if i = 5).
• The position becomes undetermined: If pi = L and 1 + di = gi, or if pi = R and

1 + gi = di. In these cases (in Fig. 4, this happens for i = 2), we have dD(epi
i , eL

i+1) =
dD(epi

i , eR
i+1) hence we cannot decide right away if ysi+1 = eL

i+1 or ysi+1 = eR
i+1. We thus

need to use the additional undetermined state U, and set pi+1 = U. In this cases, we
add no new vertices to the set P, but instead add to the set I the edges of Eg

i and Ed
i

(the set I contains the so-called undetermined edges). Moreover, in both cases, we set
si+1 = si + 1 + di = si + gi.

• The position stays undetermined: If pi = U and di = gi. In this case (in Fig. 4,
this happens for i = 3), since the position pi is either left or right, the distance between
ysi and eR

i or the distance between ysi and eL
i can be chosen to be di = gi. We thus

stay undetermined and set pi+1 = U and si+1 = si + di. Furthermore, we add no new
vertices to the set P, but add instead the edges of Eg

i and Ed
i to the set I.

• The position becomes determined: If pi = U and di �= gi. In this case (in Fig.
4, this happens for i = 4), if di < gi, then dD(eR

i , eR
i+1) < dD(eL

i , eL
i+1) and we set

si+1 = si + di and ysi+1 = eR
i+1 (hence pi+1 = R). We then add to P all the vertices

visited when crossing the undetermined edges of I which are on the right of [[�0, �k]],
and now set I = ∅.

The case gi < di is symmetric.

Last step (i = h − 1). If pi = R, we set si+1 = si. If pi = L (in Fig. 4, this happens for
i = 6), we add the endpoints of eR

i to P and set si+1 = si + 1. Finally, if pi = U, we add to
P the vertices visited when walking along the edges of Ed

i and set si+1 = si.
This finishes the construction of the path P. The following result should be clear (see

Fig. 4):

Proposition 4. The path P constructed by Geod(k) is a geodesic path in D from 0 to k
whose length is sh.

In the sequel, we will only be interested in the length sh of this specific geodesic going
from 0 to k. Recall that h is the height of �k in φ(D)•. The explicit construction of P implies
that the sequence (gn, dn, pn, sn)0≤n≤h−1 obtained when running Geod(k) satisfies s0 = 0,
p0 = L, and then for every 0 ≤ n ≤ h − 2, setting �sn+1 = sn+1 − sn:

• If pn = R,
if dn < gn + 1 then(�sn+1, pn+1) = (dn, R)

if dn > gn + 1 then(�sn+1, pn+1) = (gn + 1, L)

if dn = gn + 1 then(�sn+1, pn+1) = (dn, U);

• If pn = L,
if gn < dn + 1 then (�sn+1, pn+1) = (gn, L)

if gn > dn + 1 then (�sn+1, pn+1) = (dn + 1, R)

if gn = dn + 1 then (�sn+1, pn+1) = (gn, U);

Random Structures and Algorithms DOI 10.1002/rsa



10 CURIEN, HAAS, AND KORTCHEMSKI

• If pn = U,
if dn < gn then(�sn+1, pn+1) = (dn, R)

if dn > gn then (�sn+1, pn+1) = (gn, L)

if dn = gn then (�sn+1, pn+1) = (dn, U).

Now set Hφ(D)•(�k) = sh−1. Since |sh − sh−1| ≤ 1 by construction, we get from Proposition
4 that ∣∣dD(0, k) − Hφ(D)•(�k)

∣∣ ≤ 1. (2)

For later use, we now extend the definition of Hτ (u) to general trees τ and every vertex
u ∈ τ (not only leaves). To this end, denote by τ[u] the subtree of τ formed by the vertices
of [[∅, u]] together with the children of vertices belonging to ]]∅, u[[. Note that when τ is a
finite tree and u ∈ τ is a leaf, then by the previous discussion Hτ (u) only depends on τ[u].
Hence, for τ a possibly infinite tree and u any vertex of τ , we can set

Hτ (u) := Hτ[u](u)when u �= ∅, and Hτ (∅) = 0.

3. A MARKOV CHAIN

In the remaining sections, μ denotes a probability distribution on {0, 2, 3, . . .} with mean 1
and such that

∑
i≥0 eλiμi < ∞ for some λ > 0. To prove Theorem 1, it will be important

to describe the asymptotic behavior of the length of a typical geodesic of the random
dissection Dμ

n as n → ∞. To this end, the first step is to understand the behavior of the
algorithm Geod when run on the spine of the critical Galton–Watson tree conditioned
to survive. This can informally be seen as the “unconditioned version”, where we gain
some independence (specifically, the variables (gi, di) of the last section become i.i.d.). In
that setting, the algorithm Geod yields a true Markov chain whose asymptotic behavior is
studied in Section 3.2. The second step, carried out later in Section 4.2, consists in going
back to the “conditioned version” GWμ.

3.1. The Critical Galton–Watson Tree Conditioned to Survive

If τ is a tree and k ≥ 0, we let [τ ]k = {u ∈ τ : |u| ≤ k} denote the subtree of τ composed
by its first k generations. We denote by Tn a Galton–Watson tree with offspring distribution
μ, conditioned on having height at least n ≥ 0. Kesten [22, Lemma 1.14] showed that for
every k ≥ 0, the convergence

[Tn]k
(d)−−→

n→∞ [T∞]k ,

holds in distribution, where T∞ is a random infinite plane tree called the critical GWμ tree
conditioned to survive. Since we mainly consider planted trees, let us describe the law of T •

∞.
We follow [22,26]. First let μ be the size-biased distribution of μ, defined by μ

k = kμk for
every k ≥ 0. Next, let (Ci)i≥1 be a sequence of i.i.d. random variables distributed according
to μ and let C0 = 1. Conditionally on (Ci)i≥0, let (Vi+1)i≥0 be a sequence of independent
random variables such that Vk+1 is uniformly distributed over {1, 2, . . . , Ck}, for every k ≥ 0.
Finally, let W0 = ∅ and Wk = V1V2 . . . Vk for k ≥ 1.

The infinite tree T •
∞ has a unique spine, that is a unique infinite path (W0, W1, W2, . . .)

and, for k ≥ 0, Wk has Ck children. Then, conditionally on (Vi)i≥1 and (Ci)i≥0, all children
of Wk except Wk+1, ∀k ≥ 1, have independent GWμ descendant trees, see Fig. 5.
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SCALING LIMITS OF RANDOM DISSECTIONS 11

Fig. 5. An illustration of T •
∞.

The following result states a useful relation between a standard GWμ and the infinite
version T •

∞ (see e.g. [26, Chapter 12.1] for a proof when T •
∞ is replaced by T∞). We let T

denote the set of all discrete plane trees.

Proposition 5. For every measurable function F : T × U → R+ and for every n ≥ 0,
we have

GWμ

[ ∑
u∈τ• ,|u|=n

F
([τ •]n, u

)] = E

[
F
([T •

∞]n, Wn

)]

3.2. The Markov Chain

Recall the definition of H at the end of Section 2.2. Set S0 = 0 and for n ≥ 1, set

Sn = HT•∞(Wn+1). (3)

Informally, (Sn)n≥0 is the length process of a path of minimal length in the “dual dissection”
of T •

∞ starting from the root and running along the spine of T •
∞. The goal of this section is

to prove the almost sure convergence of n−1Sn towards cgeo (where cgeo is the second factor
in the constant c(μ) of Theorem 1) and then to establish large deviations estimates. These
will be useful to deduce Theorem 1 in Section 4.2.

By analogy with the notation of Section 2.2, for i ≥ 0, we let Gi = Vi+2 − 1 be the
number of children of Wi+1 on the left of the spine and similarly we let Di = Ci+1 − Vi+2

be the number of children of Wi+1 on the right of the spine. We then build a Markov
chain (Xn, Pn)n≥0 with values in Z+ × {R, L, U} following the procedure of the Section 2.2.
Formally the evolution of this chain is given by the following rules. First, X0 = 0, P0 = L.
Next

Random Structures and Algorithms DOI 10.1002/rsa
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• If Pn = R,
if Dn < Gn + 1 then (Xn+1, Pn+1) = (Dn, R)

if Dn > Gn + 1 then (Xn+1, Pn+1) = (Gn + 1, L)

if Dn = Gn + 1 then (Xn+1, Pn+1) = (Dn, U);

• If Pn = L,
if Gn < Dn + 1 then (Xn+1, Pn+1) = (Gn, L)

if Gn > Dn + 1 then (Xn+1, Pn+1) = (Dn + 1, R)

if Gn = Dn + 1 then (Xn+1, Pn+1) = (Gn, U);

• If Pn = U,
if Dn < Gn then (Xn+1, Pn+1) = (Dn, R)

if Dn > Gn then (Xn+1, Pn+1) = (Gn, L)

if Dn = Gn then(Xn+1, Pn+1) = (Dn, U).

From the discussion following Proposition 4, we have Sn = X0 + · · · + Xn for every n ≥ 0.
The transition probabilities from (Xn, Pn) to (Xn+1, Pn+1) only depend on the value of

Pn. The process (Sn, Pn)n≥0 therefore belongs to the family of so-called Markov additive
processes (see e.g. [9]) and (Pn)n≥0 is called its driving chain. To simplify notation, set
μk = ∑

i≥k μi for k ≥ 0. From the explicit distribution of (Ci, Vi+1)i≥1 (note that they are
i.i.d) we easily calculate the transition probabilities of (Xn, Pn): For all i ≥ 0,

P (Xn+1 = i, Pn+1 = R|Pn = R) = P (Xn+1 = i, Pn+1 = L|Pn = L) = μ2i+1

P (Xn+1 = i, Pn+1 = L|Pn = R) = P (Xn+1 = i, Pn+1 = R|Pn = L) = μ2i+11{i≥1}
P (Xn+1 = i, Pn+1 = U|Pn = R) = P (Xn+1 = i, Pn+1 = U|Pn = L) = μ2i1{i≥1}

and,

P (Xn+1 = i, Pn+1 = R|Pn = U) = P (Xn+1 = i, Pn+1 = L|Pn = U) = μ2i+2

P (Xn+1 = i, Pn+1 = U|Pn = U) = μ2i+1.

Note that the right and left positions R and L play symmetrical roles. Hence, with a slight
abuse of notation, we will consider from now on that Pn can take only two values: D (for
Determined) or U, with the convention that Pn = D if and only if Pn ∈ {L, R}. From the
previous calculations, we thus get for every i ≥ 0,

P (Xn+1 = i, Pn+1 = D|Pn = D) = μ2i+1 + μ2i+11{i≥1}
P (Xn+1 = i, Pn+1 = U|Pn = D) = μ2i1{i≥1}
P (Xn+1 = i, Pn+1 = D|Pn = U) = 2μ2i+2

P (Xn+1 = i, Pn+1 = U|Pn = U) = μ2i+1.

Recall that μ2Z+ = ∑
i≥0 μ2i and let μ2N = ∑

i≥1 μ2i and μ2N+� = ∑
i≥0 μ2i+1. The

previous discussion leads to the following description of the driving chain (Pn).

Lemma 6. The driving chain (Pn) has the following transition probabilities:

P (Pn+1 = D|Pn = D) = μ2N+1 + μ0 = 1 − P (Pn+1 = U|Pn = D)

P (Pn+1 = D|Pn = U) = μ2Z+ = 1 − P (Pn+1 = U|Pn = U) .

This chain is irreducible and aperiodic if and only if μ2N > 0. In this case, its stationary
distribution π is

π(D) = μ2Z+
μ2Z+ + μ2N

, π(U) = μ2N

μ2Z+ + μ2N

.
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In order to establish a strong law of large numbers for (Sn), it is useful to introduce the
mean of a typical step of the driving chain in the stationary state:

cgeo(μ) := Eπ [X1] =
∑
i≥0

iP (X1 = i | P0 = D) π(D) + iP (X1 = i | P0 = U) π(U).

Note that this also makes sense when μ2N = 0 since P0 = D. We now give an explicit
expression of cgeo(μ) in terms of μ. Recall that σ 2 denotes the variance of μ.

Lemma 7. We have cgeo(μ) = 1
4

(
σ 2 + μ0μ2Z+

2μ2Z+−μ0

)
.

Proof. Note first that

cgeo(μ) =
(∑

i≥0 iμ2i+1 + ∑
i≥0 iμ2i

)
μ2Z+ + (∑

i≥0 iμ2i+1 + ∑
i≥0 iμ2i+2

)
μ2N

μ2Z+ + μ2N

and then that

∑
i≥0

iμ2i+1 =
∑
k≥1

μk

[(k−1)/2]∑
i=0

i = 1

2

∑
k≥1

μk

[
k − 1

2

] [
k + 1

2

]
,

where [r] denotes the largest integer smaller than r ∈ R. Similarly,

∑
i≥0

iμ2i = 1

2

∑
k≥1

μk

[
k

2

] [
k

2
+ 1

]

and since [(k − 1)/2] [(k + 1)/2] + [k/2] [k/2 + 1] is equal to k2/2 when k is even and
(k2 − 1)/2 when k is odd, we finally get

∑
i≥0

iμ2i+1 +
∑
i≥0

iμ2i = 1

4

(∑
k≥1

k2μk − μ2N+1

)
= σ 2 + 1 − μ2N+1

4
= σ 2 + μ2Z+

4
.

Similarly (recall that μ1 = 0),

∑
i≥0

iμ2i+1 +
∑
i≥0

iμ2i+2 = 1

4

(∑
k≥1

(k2 − 2k)μk + μ2N+1

)
= σ 2 − 1 + μ2N+1

4
= σ 2 − μ2Z+

4
,

which leads to the desired expression for cgeo(μ).

The strong law of large numbers applied to the Markov chain (Xn, Pn) hence implies
that n−1Sn converges to cgeo(μ) almost surely as n → ∞. For the proof of Theorem 1, we
will need an estimate of the speed of the latter convergence. To this end, we establish the
following large deviations result.

Proposition 8. For every ε > 0, there exist a constant B(ε) > 0 and an integer nε such
that, for all n ≥ nε ,

P

(∣∣∣∣Sn

n
− cgeo(μ)

∣∣∣∣ ≥ ε

)
≤ exp(−B(ε) · n). (4)

Random Structures and Algorithms DOI 10.1002/rsa



14 CURIEN, HAAS, AND KORTCHEMSKI

Proof. Recall that
∑

i≥0 eλiμi < ∞ for a certain λ > 0. When μ2N = 0, (Sn) is a standard
random walk (with i.i.d. increments), with step distribution having exponential moments.
The bound (4) is then a standard large deviations result. To prove a similar result when
μ2N > 0 (which we now assume), we use Theorem 5.1 of [20]. According to this theorem,
(4) holds as soon as the following three conditions are satisfied:

1. the driving chain (Pn) is irreducible aperiodic;
2. the chain (Xn, Pn) satisfies the following recurrence condition: there exist m0 ≥ 1 and

a non-zero measure ν on Z+ × {D, U} and constants a, b ∈ (0, ∞) such that

aν(i, X) ≤ P
(
Xn+m0 = i, Pn+m0 = X|Pn = Y

) ≤ bν(i, X) (5)

for every i ∈ Z+ and X, Y ∈ {D, U}.
3. there exists α > 0 such that∑

i≥0

exp(αi)(ν(i, D) + ν(i, U)) < ∞. (6)

To be completely accurate, Theorem 5.1 of [20] actually assumes that the set of all α > 0
such that (6) holds is open. However, by analyzing the proof, it turns out that this extra
condition is only needed to get a lower large deviations bound.

By Lemma 6, we know that the driving chain is irreducible aperiodic when μ2N > 0. To
check the second condition, we will need the explicit expression of the two-step transition
probabilities:

P (Xn+2 = i, Pn+2 = D | Pn = D) = (μ2N+1 + μ0)(μ2i+1 + μ2i+11{i≥1}) + μ2N2μ2i+2

P (Xn+2 = i, Pn+2 = U | Pn = D) = (μ2N+1 + μ0)μ2i1{i≥1} + μ2Nμ2i+1

P (Xn+2 = i, Pn+2 = D | Pn = U) = μ2Z+(μ2i+1 + μ2i+11{i≥1}) + μ2N+12μ2i+2

P (Xn+2 = i, Pn+2 = U | Pn = U) = μ2Z+μ2i1{i≥1} + μ2N+1μ2i+1.

This suggests to set

ν(i, D) = μ2i+1 + μ2i+11{i≥1} + 2μ2i+2 and ν(i, U) = μ2i1{i≥1} + μ2i+1.

Assuming then that μ2N+� > 0, it is easy to check that (5) is satisfied with the two constants
a = min (μ2N, μ2N+�) and b = 1 (and m0 = 2). Next, if μ2N+� = 0, notice that μ2i+1 =
μ2i+2 for all i, so that

ν(i, D) = 3μ2i+2 + μ2i+21{i≥1} and ν(i, U) = μ2i1{i≥1}.

The inequalities (5) thus hold with the constants a = μ2N/3 and b = 1 (notice that μ0 ≥
1/2 ≥ μ2N/3). Hence, in all cases the second condition is satisfied. Finally, the last condition
clearly holds since we have assumed that μ has exponential moments and since

∑
i≥1

exp(αi)(ν(i, D) + ν(i, U)) =
∑
i≥1

exp(αi)
(
2μ2i+1 + 2μ2i+2 + μ2i + μ2i+1

)
.
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4. CONVERGENCE TOWARDS THE BROWNIAN CRT

4.1. The Gromov–Hausdorff Topology

We start by recalling the definition of the Gromov–Hausdorff topology (see [8, 16] for
additional details). If (E, d) and (E ′, d ′) are two compact metric spaces, the Gromov–
Hausdorff distance between E and E ′ is defined by

dGH(E, E ′) = inf
{
dF

H(φ(E), φ′(E ′))
}

,

where the infimum is taken over all choices of metric spaces (F, δ) and isometric embeddings
φ : E → F and φ′ : E ′ → F of E and E ′ into F, and where dF

H is the Hausdorff distance
between compacts sets in F. The Gromov–Hausdorff distance is indeed a metric on the space
of all isometry classes of compact metric spaces, which makes it separable and complete.

An alternative practical definition of dGH uses correspondences. A correspondence
between two metric spaces (E, d) and (E ′, d ′) is by definition a subset R ⊂ E × E ′ such
that, for every x1 ∈ E, there exists at least one point x2 ∈ E ′ such that (x1, x2) ∈ R and
conversely, for every y2 ∈ E ′, there exists at least one point y1 ∈ E such that (y1, y2) ∈ R.
The distortion of the correspondence R is defined by

dis(R) = sup
{|d(x1, y1) − d ′(x2, y2)| : (x1, x2), (y1, y2) ∈ R

}
.

The Gromov–Hausdorff distance can then be expressed in terms of correspondences by the
formula

dGH(E, E ′) = 1

2
inf

R⊂E×E′
{
dis(R)

}
, (7)

where the infimum is over all correspondences R between (E, d) and (E ′, d ′).

4.2. Proof of Theorem 1

We first need to introduce some notation. Let τ �= {∅} be a finite tree such that no vertex has
a unique child. Recall that τ • is the planted tree obtained from τ by attaching an additional
leaf at the root and denote by dτ•(u, v) the graph distance between u, v ∈ τ •. From Section
2.2, recall also that �0, . . . , �λ(τ) are the leaves (in clockwise order) of τ •. If u, v are leaves
of τ •, let 0 ≤ p, q ≤ λ(τ) be such that u = �p and v = �q. Then denote by D = φ−1(τ )

the random dissection associated with τ by duality (see Section 2.1). With a slight abuse of
notation, we let dD(u, v) be the distance between p and q in D.

We say that a sequence of positive numbers (xn)n≥0 is oe(n) if there exist constants
a, c, C > 0 such that xn ≤ Ce−cna

for every n ≥ 0, and we write xn = oe(n). Finally, fix
ε > 0 and set

εn(τ
•) = ε max(Diam(τ •),

√
n).

Lemma 9. We have

GWμ

(
∃u, vleaves in τ •,

∣∣dD(u, v) − cgeo(μ)dτ•(u, v)
∣∣ ≥ εn(τ

•)
∣∣∣λ(τ •) = n

)
= oe(n).
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Proof. Recall the notation |u| for the generation of a vertex u of a tree. We start by
comparing the distance between a leaf and the root in the dissection and in the tree and
show that

GWμ

(
∃uleaf in τ •,

∣∣dD(∅, u) − cgeo(μ)|u|∣∣ ≥ εn(τ
•)
∣∣∣λ(τ •) = n

)
= oe(n). (8)

For this, we use the notation Hτ•(u) introduced at the end of Section 2.2. By (2), we have
|dD(∅, u) − Hτ•(u)| ≤ 1 for every leaf u ∈ τ •. In addition, by [24, Theorem 3.1], we have

GWμ (λ(τ •) = n) = GWμ (λ(τ) = n − 1) ∼
n→∞

√
μ0

2πσ 2
· 1

n3/2
,

so that oe(n)/GWμ (λ(τ •) = n) = oe(n). Thus (8) will follow if we can show that

GWμ

(∃u ∈ τ •,
∣∣Hτ•(u) − cgeo(μ)|u|∣∣ ≥ εn(τ

•)
) = oe(n). (9)

To this end, we bound from above the left-hand side of (9) by

GWμ

[∑
u∈τ•

1
{∣∣Hτ•(u) − cgeo(μ)|u|∣∣ ≥ εn(τ

•)
}]

=
∞∑

j=1

GWμ

⎡
⎣ ∑

u∈τ• ,|u|=j

1

{∣∣∣∣Hτ•(u)

j
− cgeo(μ)

∣∣∣∣ ≥ εn(τ
•)

j

}⎤⎦

=
∞∑

j=1

GWμ

⎡
⎣ ∑

u∈τ• ,|u|=j

1

{∣∣∣∣H[τ•]j (u)

j
− cgeo(μ)

∣∣∣∣ ≥ εn(τ
•)

j

}⎤⎦

≤
∞∑

j=1

GWμ

⎡
⎣ ∑

u∈τ• ,|u|=j

1

{∣∣∣∣H[τ•]j (u)

j
− cgeo(μ)

∣∣∣∣ ≥ ε max(j,
√

n)

j

}⎤⎦ .

For the last inequality, we have used the fact that if there exists u ∈ τ • with |u| = j then
Diam(τ •) ≥ j. Hence, using Proposition 5 and then (3), we get

GWμ

(∃u ∈ τ •;
∣∣Hτ•(u) − cgeo(μ)|u|∣∣ ≥ εn(τ

•)
)

≤
∞∑

j=1

P

(∣∣∣∣H[T•∞]j (Wj)

j
− cgeo(μ)

∣∣∣∣ ≥ ε max(j,
√

n)

j

)

=
∞∑

j=1

P

(∣∣∣∣Sj−1

j
− cgeo(μ)

∣∣∣∣ ≥ ε max(j,
√

n)

j

)
.

Now, suppose that n > n4
ε , so that Proposition 8 can be applied:

∞∑
j=n1/4

P

(∣∣∣∣Sj−1

j
− cgeo(μ)

∣∣∣∣ ≥ ε max(j,
√

n)

j

)
≤

∞∑
j=n1/4

P

(∣∣∣∣Sj−1

j
− cgeo(μ)

∣∣∣∣ ≥ ε

)
= oe(n).

Assume in addition that n is sufficiently large so that εn1/4 > cgeo(μ). In order to bound
the remaining terms corresponding to 1 ≤ j ≤ n1/4, note that if |Sj−1/j − cgeo(μ)| ≥ εn1/4
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for some 1 ≤ j ≤ n1/4, then necessarily there exists 0 ≤ i ≤ n1/4 such that Si+1 − Si >

εn1/4. Then note from Section 3, with the notation introduced there, that Si+1 − Si ≤
1 + max(Gi, Di). Since the variables (Gi, Di)i≥1 are i.i.d. with exponential moments, by
combining an exponential Markov inequality with a union bound we easily get that for
every j ≤ n1/4, P

(|Sj−1/j − cgeo(μ)| ≥ ε max(j,
√

n)/j
) = oe(n). Therefore

n1/4∑
j=1

P

(∣∣∣∣Sj−1

j
− cgeo(μ)

∣∣∣∣ ≥ ε max(j,
√

n)

j

)
= oe(n),

which establishes (9) and hence (8).
To conclude, we use the rotational invariance of Boltzmann dissections. Conditionally

on τ •, let L and L′ be two leaves chosen independently and uniformly at random from τ •.
Then, under GWμ,

(dD(L, L′), dτ•(L, L′), τ •,[L]) (d)= (dD(∅, L), dτ•(∅, L), τ •), (10)

where τ •,[L] denotes the planted tree τ • re-rooted at L. Note that it is crucial here to work
with the planted version of trees. Hence, by (8), we get that

GWμ

(∣∣dD(L, L′) − cgeo(μ)dτ•(L, L′)
∣∣ ≥ εn(τ

•)
∣∣∣λ(τ •) = n

)
= oe(n). (11)

Now, conditionally on τ •, let (Lj, L′
j)1≤j≤λ(τ•)3 be a sequence of i.i.d. couples of independent

uniform leaves. Conditionally on λ(τ •) = n, the probability that there exists 1 ≤ j ≤ n3 such
that |dD(Lj, L′

j) − cgeo(μ)dτ•(Lj, L′
j)| ≥ εn(τ

•) is smaller than n3oe(n) = oe(n) by (11).
On the other hand, conditionally on λ(τ •) = n, the probability that there exists a couple of

leaves of τ • which does not belong to (Lj, L′
j)1≤j≤n3 is smaller than n2

(
1 − n−2

)n3 = oe(n).
Hence

GWμ

(
∃u, vleaves in τ •,

∣∣dD(u, v) − cgeo(μ)dτ•(u, v)
∣∣ ≥ εn(τ

•)
∣∣∣λ(τ •) = n

)
≤ oe(n) + oe(n).

The next proposition will lead to an effortless proof of Theorem 1, as well as interesting
applications to the convergence of moments. If τ is a finite tree, we denote by τ � the graph
formed by the leaves of τ equipped with the graph distance of τ . Recall that Dμ

n denotes a
random dissection of Pn distributed according to P

μ
n and let Tn = φ(Dμ

n )• be its dual planted
tree. By Proposition 2, Tn has the same distribution as the planted version of a GWμ tree
conditioned on having n − 1 leaves. Finally, recall the notation εn(·) introduced just before
Lemma 9.

Proposition 10. We have:

(i) dGH

(
T �

n , Tn

) ≤ ln(n)

ln(2)
,

(ii) P
(
dGH

(
Dμ

n , cgeo(μ) · T �
n

) ≥ εn(Tn)
) = oe(n).

Random Structures and Algorithms DOI 10.1002/rsa



18 CURIEN, HAAS, AND KORTCHEMSKI

Proof. The first assertion comes from the following deterministic observation: if τn is a
tree with n vertices such that no vertex has a unique child, then

dGH

(
τ �

n , τn

) ≤ ln(n)

ln(2)
. (12)

Indeed, for u ∈ τn, denote by u� a leaf with lowest generation among the descendants of u.
If |u�| ≥ k + |u|, then there are at least 2k vertices among the k-th generation descending
from u. Hence 2k ≤ n, so that k ≤ ln(n)/ ln(2). As a consequence, every vertex of τn has a
leaf at distance at most ln(n)/ ln(2) and (12) follows.

The second assertion is an immediate consequence of Lemma 9 by considering the trivial
correspondence {(k, �k), 0 ≤ k ≤ n − 1} ⊂ Dμ

n × (cgeo(μ) · T �
n ).

Proof of Theorem 1. By [24, 27], Tn/
√

n converges in distribution for the Gromov–
Hausdorff topology towards ctree(μ) · Te as n → ∞. Hence, by Proposition 10 (i), T �

n /
√

n
converges in distribution towards ctree(μ) · Te. It is thus sufficient to establish that

dGH

(Dμ
n√
n

, cgeo(μ)
T �

n√
n

)
(P)−→

n→∞ 0. (13)

From Proposition 10 (ii),

√
n

max(
√

n, Diam(Tn))
dGH

(Dμ
n√
n

, cgeo(μ)
T �

n√
n

)
(P)−→

n→∞ 0.

Moreover, since Tn/
√

n converges in distribution towards ctree(μ) · Te, the random variable
max(

√
n, Diam(Tn))/

√
n converges in distribution towards an a.s. finite random variable.

Convergence (13) hence follows, and this completes the proof.

5. APPLICATIONS

5.1. Convergence of Moments for Different Statistics

The following result strengthens Theorem 1 and will lead to asymptotic estimates for
moments of various statistics of Dμ

n .

Proposition 11. Let F be a positive continuous function defined on the set of all (isometry
classes of) compact metric spaces, such thatF(M) ≤ CDiam(M)p for all compact metric
spaces M and fixed C, p > 0. Then:

E

[
F

(Dμ
n√
n

)]
−→
n→∞ E [F(c(μ) · Te)] .

Let Height(τ ) denote the height of a finite tree τ . The main tool to prove Proposition 11
is the following bound on the height of large conditioned Galton–Watson trees, which is a
particular case of [19, Lemma 33].
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Lemma 12. For every q > 0, there exists a constant Cq < ∞ such that, for every n ≥ 1
and s > 0,

GWμ

(
Height(τ ) ≥ sn1/2|λ(τ) = n

) ≤ Cq

sq
.

Proof of Proposition 11. By Theorem 1, F
(
Dμ

n /
√

n
)

converges in distribution towards

F(c(μ) · Te). It is thus sufficient to check that E
[
F
(
Dμ

n /
√

n
)2 ]

is bounded as n → ∞. In
the following lines, C is a finite constant that may vary from line to line and may depend
on p. Since F(M) ≤ CDiam(M)p and since Diam(M) ≤ Diam(N ) + 2dGH(M, N ) for
any two compact metric spaces M and N (see e.g. [8, Exercise 7.3.14.]), the expectation
E
[
F
(
Dμ

n /
√

n
)2 ]

is bounded above by the expression

CE

[
Diam

( Tn√
n

)2p
]

+ CE

[
dGH

( T �
n√
n

,
Tn√

n

)2p
]

+ CE

[
dGH

(Dμ
n√
n

, cgeo(μ) · T �
n√
n

)2p
]

.

By Lemma 12, the first term of the last expression is bounded as n → ∞, and by Proposition
10 (i), the second term is bounded as well. For the third term, first note that since the graphs
Dμ

n and T �
n have n vertices, they are at Gromov–Hausdorff distance at most n from each

other. Hence, using Proposition 10 (ii), we get

E

[
dGH

(Dμ
n√
n

, cgeo(μ) · T �
n√
n

)2p
]

≤ n2p · oe(n) + CE

[
max

(
Diam(Tn)√

n
, 1

)2p
]

≤ C.

This completes the proof.

5.1.1. Applications to the Diameter. Since E
[
Diam(Te)

] = 2
√

2π/3 (see e.g. [3,
Section 3]), we get from Proposition 11 that

E

[
Diam(Dμ

n )
]

∼
n→∞ c(μ)

2
√

2π

3

√
n.

This gives a precise asymptotic estimate of the expected value of Diam(Dμ
n ) and improves

results of [15, Section 5] where bounds for the expected value of the diameter of uniform
dissections and triangulations were found using a generating functions approach. More
generally, for every p > 0,

E

[
Diam(Dμ

n )p
]

∼
n→∞ c(μ)p

∫ ∞

0
xpfD(x)dx · np/2,

where fD, the density of the diameter of the Brownian tree, is given by

fD(x) = 2
√

2π

3

∑
k≥1

(
4

x4

(
4b4

k,x − 36b3
k,x + 75b2

k,x − 30bk,x

)+ 2

x2

(
4b3

k,x − 10b2
k,x

))
exp(−bk,x),

with bk,x = (4πk/x)2 for x > 0 (see e.g. [28] and [3, Section 3]).
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5.1.2. Applications to the Radius. Let Radius(Dμ
n ) denote the maximal distance of

a vertex of Dμ
n to the vertex 0. A simple extension of Theorem 1 and Proposition 11

to the pointed Gromov–Hausdorff topology (see e.g. [25]), entails that, for every p > 0,
E
[
Radius(Dμ

n )p
]

is asymptotic to c(μ)p
E
[
Height(Te)

p
]

np/2 as n → ∞. Using the explicit
expression for E

[
Height(Te)

p
]

in [7], we get

E
[
Radius(Dμ

n )p
] ∼

n→∞ c(μ)p2−p/2p(p − 1)�(p/2)ζ(p)np/2,

where � denotes Euler’s gamma function and ζ Riemann’s zeta function. In particular, for
p = 1, we get

E
[
Radius(Dμ

n )
] ∼

n→∞ c(μ)

√
π

2

√
n.

In [15], this result has been established for uniform dissections and uniform triangulations
by using a generating functions approach.

5.1.3. Applications to the Height of a Uniform Leaf. Let HeightU(Dμ
n ) denote the

distance to the vertex 0 of a vertex of Dμ
n chosen uniformly at random. A simple extension

of Theorem 1 and Proposition 11 to the two-pointed Gromov–Hausdorff topology, entails
that, for every p > 0, E

[
HeightU(Dμ

n )p
]

is asymptotic to c(μ)p
E
[
HeightU(Te)

p
]

np/2 as
n → ∞, where HeightU(Te) is the height of a uniformly chosen point of Te. Since the
random variable HeightU(Te) has density 4x exp(−2x2) (see e.g. [3, Section 3]), we get

E
[
HeightU(Dμ

n )p
] ∼

n→∞ c(μ)p2−p/2�(1 + p/2)np/2.

In particular, for p = 1, we get E
[
HeightU(Dμ

n )
] ∼

n→∞ c(μ)
1

2

√
π

2

√
n.

5.2. Examples: Dissection with Constrained Face Degrees

Let A be a non-empty subset of {3, 4, 5, . . .} and let D(A)
n be the set of all dissections of Pn

whose face degrees all belong to the set A. We restrict our attention to the values of n for
which D(A)

n �= ∅. Let D(A)
n be uniformly distributed over D(A)

n . By [10, Section 3.1.1], D(A)
n

is distributed according to the Boltzmann probability measure P
νA
n for a certain probability

measure νA defined as follows. Denote by A− 1 the set {a − 1 : a ∈ A} and let rA ∈ (0, 1)

be the unique real number in (0, 1) such that∑
i∈A−1

iri−1
A = 1.

Then νA is defined by

νA(0) = 1 −
∑

i∈A−1

ri−1
A , νA(i) = ri−1

A for i ∈ A − 1.

Note that the assumptions of Theorem 1 are satisfied. Hence, setting cA = c(νA) to simplify
notation, we get:

1√
n

· D(A)
n

(d)−−→
n→∞ cA · Te,
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Fig. 6. A discrete tree τ and its associated discrete looptree Loop(τ ).

together with the convergences of all positive moments of the different statistics mentioned
in the previous section.

For uniform dissections (A = {3, 4, 5, . . .}) and p-angulations for p ≥ 3 (A = {p}),
the scaling constants cA have been given in the Introduction. Let us mention two other
interesting cases where cA is explicit (we leave the calculations to the reader):

• Only even face degrees (A = {4, 6, 8, . . .}). In this case cA =
√

1

2
+ 9

2
√

17
� 1.2615.

• Only odd face degrees (A = {3, 5, 7, . . .}). In this case, the explicit expression of cA is
complicated (but available) and we only give a numerical approximation: cA � 1.0547.

5.3. Extensions and Discrete Looptrees

Let us mention some possible extensions of Theorem 1. In one direction, it is natural to
expect that Theorem 1 is still valid under the weaker assumption that μ is critical and has
finite variance. However our proof based on large deviation estimates seems unadapted and
finer arguments would be needed. In another direction, it would be interesting to extend
Theorem 1 to other classes of so-called sub-critical graphs which also exhibit a tree-like
structure, see [15, 17].

We now study the scaling limits of discrete looptrees associated with large conditioned
Galton–Watson trees, which is a model similar to the one of Boltzmann dissections: With
every rooted oriented tree (or plane tree) τ , we associate a graph denoted by Loop(τ ) and
constructed by replacing each vertex u ∈ τ by a discrete cycle of length given by the degree
of u in τ (i.e. number of neighbors of u) and gluing all these cycles according to the tree
structure provided by τ , see Fig. 6. We view Loop(τ ) as a compact metric space by endowing
its vertices with the graph distance. Recall the notation μ0 + μ2 + μ4 + · · · = μ2Z+ .

Theorem 13. Let μ be a probability measure on Z+ of mean 1 and such that
∑

k≥0 μkeλk <

∞ for some λ > 0. For n ≥ 1, let tn be a GWμ tree conditioned on having n vertices. Then
we have the following convergence in distribution for the Gromov–Hausdorff topology

n−1/2 · Loop(tn)
(d)−−→

n→∞
2

σ
· 1

4

(
σ 2 + 4 − μ2Z+

) · Te.

Random Structures and Algorithms DOI 10.1002/rsa



22 CURIEN, HAAS, AND KORTCHEMSKI

Fig. 7. A discrete tree τ and its associated graph Loop(τ ). The contracted edges are bold, dashed and
in red. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

The proof of Theorem 13 goes along the same lines as that of Theorem 1, but is much
easier since here the Markov chain is just a random walk. We leave details to the reader.
In [12], it is shown that when μ is a critical probability measure on Z+ belonging to the
domain of attraction of a stable law of index α ∈ (1, 2), the random metric spaces Loop(tn),
appropriatly rescaled, converge towards the so-called random stable looptree of index α.
Hence Theorem 13 completes [12] by including the case where μ has finite variance.

We end this paper by considering a model which is similar to the one of discrete looptres:
With every rooted oriented tree (or plane tree) τ , we associate a graph denoted by Loop(τ )

constructed as follows. First consider the graph on the set of vertices of τ such that two
vertices u and v are joined by an edge if and only if one of the following three conditions
are satisfied in τ : u and v are consecutive siblings of a same parent, or u is the first sibling
(in the lexicographical order) of v, or u is the last sibling of v. Then Loop(τ ) is by the
definition the graph obtained by contracting the edges (u, v) such that v is the last child of
u in lexicographical order in τ , see Fig. 7. We view Loop(τ ) as a compact metric space by
endowing its vertices with the graph distance.

Theorem 14. Let μ be a probability measure on Z+ of mean 1 and such that
∑

k≥0 μkeλk <

∞ for some λ > 0. For n ≥ 1, let tn be a GWμ tree conditioned on having n vertices. Then
we have the following convergence in distribution for the Gromov–Hausdorff topology

n−1/2 · Loop(tn)
(d)−−→

n→∞
2

σ
· 1

4

(
σ 2 + μ2Z+

) · Te.

As for Theorem 13, the proof of Theorem 14 goes along the same lines as that of
Theorem 1, and is again easier since here the Markov chain is also just a random walk. We
leave details to the reader. The motivation of this model comes from the fact that Theorem 14
has an interesting application to the study of the asymptotic behavior of subcritical site-
percolation on large random triangulations [11].
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