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Abstract

We consider a linear rate equation, depending on three parameters, that model fragmentation.
For each of these fragmentation equations, there is a corresponding stochastic model, from which
we construct an explicit solution to the equation. This solution is proved unique. We then use
this solution to obtain criteria for the presence or absence of loss of mass in the fragmentation
equation, as a function of the equation parameters. Next, we investigate small and large times
asymptotic behavior of the total mass for a wide class of parameters. Finally, we study the loss
of mass in the stochastic models.
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1. Introduction

Fragmentation of particles appear in various physical processes, such as polymer
degradation, grinding, erosion and oxidation. In the models we consider, there are only
particles with mass one at the initial time. Those particles split independent of each
other to give smaller particles and each obtained particle splits in turn, independent of
the past and of other particles etc. The splitting of a particle of mass x gives rise to
a sequence of smaller particles with masses xs1; xs2; : : : where s1¿ s2¿ · · ·¿ 0. Thus,
it is convenient to introduce the following set:

S↓ :=

{
s = (si)i∈N∗ ; s1¿ s2¿ · · ·¿ 0 :

∞∑
i=1

si6 1

}
:
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Note that we take into account the case when
∑∞

i=1 si ¡ 1, which corresponds to
the loss of a part of the initial mass during the splitting. The rate at which a par-
ticle with mass one splits is then described by a non-negative measure � on S∗ =
S↓ \ {(1; 0; 0; : : :)}, called the splitting measure.This measure is supposed to Bt the
requirement∫

S∗
(1 − s1)�(ds)¡∞ (1)

(see Appendix A for an explanation). Note that the case when �(S∗) = ∞, which is
often excluded from fragmentation studies, is here included.

A linear rate equation has been developed (see e.g. Edwards et al., 1990) to study
the time evolution of the mass distribution of particles involved in a fragmentation
phenomenon (see also Beysens et al., 1995 for physical studies on fragmentation).
Here, we consider the special case when the splitting rate for a particle with mass x
is proportional to that of a particle with mass one. More precisely, this splitting rate
is equal to �(x)�(ds), where � is a continuous and positive function on ]0; 1] such
that �(1) = 1. As we will see in the next section, � should be seen as the speed of
fragmentation. Our deterministic fragmentation model is the weak form of this linear
rate equation and describes the evolution of the family (	t; t¿ 0) of non-negative
Radon measures on ]0; 1], where 	t(dx) corresponds to the average number per unit
volume of particles with mass in the interval (x; x + dx) at time t. This so-called
fragmentation equation is


@t〈	t; f〉=

∫ 1

0
�(x)

(
−cxf′(x)+

∫
S↓

[ ∞∑
i=1

f(xsi)−f(x)

]
�(ds)

)
	t(dx);

	0 = �1(dx)

(2)

for test-functions f belonging to C1
c(]0; 1]), the set of diFerentiable functions with

compact support in ]0; 1]. The second term between parentheses on the right-hand side
of Eq. (2) corresponds to a growth in the number of particles of masses xs1; xs2; : : : and
to a decrease in the number of particles of mass x, as a consequence of the splitting
of particles of mass x. The Brst term between parentheses on the right-hand side of
(2) represents a loss of particles of mass x, as a result of erosion. The constant c is
non-negative and called the erosion coe8cient of the fragmentation. The measure �, the
constant c and the function � are called the parameters of the fragmentation equation.

We next introduce a random fragmentation model, called fragmentation process. A
fragmentation process (X (t); t¿ 0) is a Markov process with values in S↓ satisfying
the fragmentation property, which will be deBned rigorously in Section 2. Informally,
this means that given the system at a time t, say X (t)=(s1; s2; : : :), then for each i∈N∗,
the fragmentation system stemming from the particle with mass si evolves independent
of the other particles and with the same law as the process X starting from a unique
particle with mass si. And then, if we denote by (si; j(r))j¿1 the masses of the particles
stemming from the one with mass si after a time r, the process X (t+ r) will consist in
the non-increasing rearrangement of the masses (si; j(r))i; j¿1. A family of fragmentation
processes with a scaling property (namely the self-similar fragmentation processes) was
studied in Bertoin (2001, 2002a, b). In Section 2, the main results on these processes
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are recalled and a larger set of fragmentation processes, characterized each by the three
parameters �; c and � of a fragmentation equation, is constructed.

This set of fragmentation processes is used to study the fragmentation equation.
More precisely, given the parameters �; c and �, we construct in Section 3 the unique
solution to the fragmentation equation with parameters �; c and �, by following a spe-
ciBc fragment (the so-called size-biased picked fragment process) of the corresponding
fragmentation process. Let X � denote this fragmentation process. The solution to the
fragmentation equation is then given for each t¿ 0 by

〈	t; f〉 = E

[ ∞∑
i=1

f(X �
i (t))

]
for f∈C1

c(]0; 1]); (3)

where (X �
1 (t); X �

2 (t); : : :) is the sequence X �(t). As a general rule, given a fragmentation
process X , we denote by (X1(t); X2(t); : : :) the sequences X (t), t¿ 0.

The main purpose of our work is to study the possible loss of mass in these determin-
istic and stochastic fragmentation models. If the family (	t; t¿ 0) is a solution to the
fragmentation equation (2), it is easy to see that the total mass 〈	t; id〉 is non-increasing
in t. We say that there is loss of mass in the fragmentation equation if there exists a
time t such that

〈	t; id〉¡ 〈	0; id〉 = 1:

We will see that this is equivalent to loss of mass in the corresponding fragmentation
process, as a result of

∃t¿ 0 : 〈	t; id〉¡ 1 ⇔ a:s: ∃t¿ 0 :
∞∑
i=1

X �
i (t)¡ 1:

There are three distinct ways to lose mass. The Brst two are intuitively obvious: there
is loss of mass if the erosion coeHcient is positive or if the splitting of a particle
with mass x gives rise to a sequence of particles with total mass strictly smaller than
x. However, there is also an unexpected loss of mass, due to the formation of dust
(i.e. an inBnite number of particles with mass zero). This latter is of course the most
interesting and one of our purposes is to establish for which parameters � and � it
occurs. This formation of dust has to be compared with gelation which may happen
in the context of coagulation models and which corresponds to the creation of an
inBnite-mass particle in Bnite time (see for example Jeon (1998) and Norris (2000)
for gelation studies). We mention also Aldous (1999) for a survey on coagulation and
fragmentation phenomena. Concerning loss of mass studies, Bertoin (2002b) proves the
occurrence of loss of mass to dust in fragmentation processes with function �(x) = x�

as soon as �¡ 0 and, in that case, that the mass vanishes entirely in Bnite time.
Filippov (1961) obtains some conditions for the presence or absence of loss of mass
(to compare with Corollary 8 in this paper) in the special case where �(S∗)¡∞. Let
us also mention Fournier and Giet (2003). They investigate this appearance of dust in
some coagulation-fragmentation equations, whose fragmentation part is rather diFerent
from ours (their fragmentations are binary, with absolutely continuous rates that are
not necessarily proportional to the one-mass rate). See also Jeon (2002).
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Formula (3) is the key point in the study of loss of mass, which is undertaken in
Section 4. We get necessary (respectively, suHcient) conditions on the parameters �; c
and � for loss of mass to occur and when there is loss of mass, we obtain results on
small times and large times behavior of the total mass 〈	t; id〉. Section 5 is devoted
to loss of mass and total loss of mass for a fragmentation process X � with parameters
�; c and �. DeBne � to be the Brst time at which all the mass has disappeared, i.e.

� := inf{t¿ 0 :X �
1 (t) = 0}:

We state necessary (respectively, suHcient) conditions on (�; c; �) for P(�¡∞) to be
positive. Then, we look at connections between loss of mass and total loss of mass and
study the asymptotic behavior of P(�¿ t) as t → ∞, for a large class of parameters
�; c and �.

This paper ends with an appendix containing on the one hand some results on the
mass behavior of a fragmentation model constructed from the Brownian excursion of
length 1 and on the other hand a proof that (1) is a necessary condition for our
fragmentation models to exist.

2. Preliminaries on fragmentation processes

Let (X (t); t¿ 0) be a Markov process with values in S↓ and denote by Ps the law
of X starting from (s; 0; : : :). The process X is a fragmentation process if it satisBes the
following fragmentation property: for each t0¿ 0, conditionally on X (t0)=(s1; s2; : : :),
the process (X (t + t0); t¿ 0) has the same law as the process obtained, for each
t¿ 0, by ranking in the non-increasing order the components of the sequences X 1(t),
X 2(t); : : :, where the r.v.’s X i are independent with respective laws Psi .

In this section, we Brst recall some results on homogeneous and self-similar frag-
mentation processes. Then we construct a larger family of fragmentation processes,
depending on the parameters �, c and � of the fragmentation equation (2). Given a
fragmentation process X , recall the notation (X1(t); X2(t); : : :) for the sequence X (t),
t¿ 0.

2.1. Homogeneous and self-similar fragmentation processes

A self-similar fragmentation process (X (t); t¿ 0) with index � is a fragmentation
process having the following scaling property: if Ps is the law of X starting from
(s; 0; : : :), then the law of (sX (s�t); t¿ 0) under P1 is Ps. If � = 0, the fragmentation
process X is said to be homogeneous. Bertoin (2002a) shows that we may always
consider a cLadlLag version of a self-similar fragmentation, the state S↓ being endowed
with the topology of pointwise convergence. We now recall some results on those
processes. For more details, see Bertoin (2001, 2002a) and Berestycki (2002).
Interval representation: Let X be a self-similar fragmentation process. It may be con-

venient, for technical reasons, to work with an interval representation of X . Roughly,
consider a Markov process F with state space the open sets of ]0; 1[ and such that
F(t′) ⊂ F(t) if t′¿ t¿ 0. The process F is called self-similar interval fragmentation
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process if it satisBes a scaling and a fragmentation property (for a precise deBnition,
we refer to Bertoin, 2002a). The interesting point is that given X , we can build a
self-similar interval fragmentation process, denoted by FX , with the same index of
similarity as X and such that X (t) is the non-increasing sequence of the lengths of the
interval components of FX (t), t¿ 0. In the sequel, we call FX the interval represen-
tation of X . For each t¿ 0, we call fragments the interval components of FX (t) and
denote by Ix(t) the fragment containing the point x at time t. If such a fragment does
not exist, Ix(t) := ∅. The length |Ix(t)| is called the mass of the fragment.
Characterization and Poisson point process description of homogeneous fragmenta-

tion processes: The law of a homogeneous fragmentation process starting from (1; 0; : : :)
is characterized by two parameters: a non-negative real number c (the erosion coe8-
cient) and a non-negative measure � on S∗=S↓ \ {(1; 0; : : :)} (the splitting measure)
satisfying requirement (1). The erosion coeHcient corresponds to the continuous part
of the process, whereas the splitting measure describes the jumps of the process. More
precisely, consider such a measure � and a Poisson point process ((�(t); k(t)); t¿ 0)
with values in S∗ × N∗ and whose characteristic measure is � ⊗ #, # denoting the
counting measure on N∗. As proved in Berestycki (2002), there is a pure jump cLadlLag
homogeneous fragmentation process X starting from (1; 0; : : :), whose jumps are the
times of occurrence of the Poisson point process and are described as follows: let t be a
jump time, then the k(t)th term of X (t−), namely Xk(t)(t−), is removed and “replaced”
by the sequence Xk(t)(t−)�(t), i.e. X (t) is obtained by ranking in the non-increasing
order the components of sequences (Xi(t−)i∈N∗\{k(t)} and Xk(t)(t−)�(t). Now, consider
a real number c¿ 0. The process (e−ctX (t); t¿ 0) is also a cLadlLag homogeneous frag-
mentation process. The point is that each homogeneous fragmentation process can be
described like this for a constant c¿ 0 and a splitting measure � and then is called a
homogeneous (�; c)-fragmentation process. Remark that when �(S∗) =∞, each particle
splits a.s. immediately.
Size-biased picked fragment process: Let X denote a homogeneous (�; c)-fragmen-

tation process starting from (1; 0; : : :) and let FX be the interval representation of X .
Consider a point picked at random in ]0; 1[ according to the uniform law on ]0; 1[ and
independent of X and note �(t) the length of the fragment of FX containing this point
at time t. We call the process (�(t); t¿ 0) the size-biased picked fragment process of
X . An important part of our work relies on the following property (see Bertoin (2001)
for a proof): the process

(�(t); t¿ 0) := (−log(�(t)); t¿ 0) (4)

is a subordinator (i.e. a right-continuous non-decreasing process with values in [0;∞],
started from 0 and with independent and stationary increments on [0; &[, where & is the
Brst time when the process reaches ∞). We refer to Bertoin (1999) for background
on subordinators. The distribution of � is then characterized by its Laplace exponent
� which is determined by

E[exp(−q�t)] = exp(−t�(q)); t¿ 0; q¿ 0
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and which can be expressed here as a function of the parameters � and c. More
precisely,

�(q) = c(q + 1) +
∫
S∗

(
1 −

∞∑
i=1

sq+1
i

)
�(ds); q¿ 0: (5)

In others words, the subordinator � has the following characteristics and will often be
used in this work:

• killing rate k = c +
∫
S∗

(
1 −

∞∑
i=1

si

)
�(ds);

• drift coeHcient d = c;

• L %evy measure L(dx) = e−x
∞∑
i=1

�(−log(si)∈ dx); x∈ ]0;∞[:

(6)

Recall that the Brst time & when the process � reaches ∞ has an exponential law with
parameter k and that there exists a subordinator # independent of &, with the same
drift coeHcient and L%evy measure as � but with killing rate 0, such that �t = #t when
t ¡ &.

We should point out that two diFerent homogeneous fragmentation processes may
lead to subordinators having the same distribution. For example, consider X 1 and X 2,
two homogeneous fragmentation processes with erosion coeHcient 0 and with respec-
tive splitting measures �1 and �2, where

�1(ds) = 1
2�(1=2;1=2;0:::)(ds) + 1

2�(1=2;1=4;1=4;0:::)(ds)

and

�2(ds) = 3
4�(1=2;1=2;0:::)(ds) + 1

4�(1=4;1=4;1=4;1=4;0:::)(ds):

Then in both cases, the Laplace exponent � is given by

�(q) = 1 − 3
2 ( 1

2 )q+1 − ( 1
4 )q+1:

Characterization of self-similar fragmentation processes: We have seen that a ho-
mogeneous fragmentation process is characterized by the two parameters � and c.
This property extends to self-similar fragmentation processes, which are character-
ized by three parameters: a splitting measure �, an erosion coeHcient c and the in-
dex of self-similarity � (this follows from a combination of results of Bertoin, 2001;
Berestycki, 2002).

2.2. Fragmentation processes (�; c; �)

The purpose is to build fragmentation processes depending on the parameters �,
c and � of the fragmentation equation (2). Recall that the function � is continuous
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and positive on ]0; 1] and such that �(1) = 1. Throughout this paper, we will use the
convention �(0) := ∞. Now, consider X a homogeneous (�; c)-fragmentation process
and (Ix(t); x∈ ]0; 1[; t¿ 0) its interval representation. We introduce the time-change
functions

T�
x (t) := inf

{
u¿ 0 :

∫ u

0

dr
�(|Ix(r)|) ¿t

}
; t¿ 0; x∈ ]0; 1[

with the convention inf{∅} := ∞. Then, for each t¿ 0, consider the family of open
intervals

Ĩ x(t) := Ix(T�
x (t)); x∈ ]0; 1[;

and remark that if y �= x, either Ĩ x(t) = Ĩ y(t) or Ĩ x(t) ∩ Ĩ y(t) = ∅. Let X �(t) denote
the non-increasing sequence of the lengths of the disjoint intervals of (Ĩ x(t); x∈ ]0; 1[).
Then, following the proof of Theorem 2 in Bertoin (2002a), we get:

Proposition 1. The process (X �(t); t¿ 0) is a fragmentation process.

We call the process X � a (�; c; �)-fragmentation process. Note that if �(x) = x� on
]0; 1], �∈R, Theorem 2 in Bertoin (2002a) states that X � is a self-similar fragmentation
process with parameters �; c and �.

If X �1 and X �2 are, respectively, (�; c; �1) and (�; c; �2)-fragmentation processes with
�16 �2, the time-change functions T�1 and T�2 satisfy

T�1
x (t)6T�2

x (t) for x∈ ]0; 1[ and t¿ 0:

Then, at each time t and for each point x∈ ]0; 1[, the fragment Ix(T�1
x (t)) is larger than

Ix(T�2
x (t)). Informally, fragmentation is faster in the process X �2 than in X �1 .

As in the homogeneous case, consider the process

(��(t); t¿ 0) := (|Ĩ U (t)|; t¿ 0);

where U is a random variable uniformly distributed on ]0; 1[, independent of the frag-
mentation process X �. In other words, ��(t) represents the mass at time t of the frag-
ment containing a point picked at random uniformly in ]0; 1[ at time 0. It is easy to
see that for each t¿ 0, if X �(t) = (X �

1 (t); X �
2 (t); : : :), the law of ��(t) is obtained as

follows: consider i(t) an integer-valued random variable such that

P(i(t) = i|X �(t)) = X �
i (t); i∈N∗;

P(i(t) = 0|X �(t)) = 1 −
∞∑
i=1

X �
i (t):

Then,

��(t)law∼ X �
i(t)(t); (7)
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where X �
0 (t) := 0. We call (��(t); t¿ 0) the size-biased picked fragment process of

X �. The following proposition will be essential in the sequel. Its proof is straight-
forward.

Proposition 2. If X �(0) = (1; 0; : : :), the process (��(t); t¿ 0) has the same distribu-
tion as (exp(−�)�(t)); t¿ 0), where � is subordinator (4) constructed from the homo-
geneous process X and )� the time change:

)�(t) := inf
{
u¿ 0 :

∫ u

0

dr
�(exp(−�r))

¿t
}

: (8)

It is then easy to see that X �
i (t)a:s:→ 0 as t → ∞ for each i¿ 0 when the fragmentation

process X � does not remain constant.

3. Existence and uniqueness of the solution to the fragmentation equation

Consider the fragmentation equation (2) with parameters �, c and � and recall that
a solution to this equation is a family of non-negative Radon measures on ]0; 1],
satisfying (2) at least for test functions f belonging to C1

c(]0; 1]). Let X � be a (�; c; �)-
fragmentation process starting from X �(0) = (1; 0; : : :). From X �, we build a solution to
this fragmentation equation starting from 	0 =�1 and prove that this solution is unique.
More precisely, we have:

Theorem 3. The fragmentation equation (2) has a unique solution (	t; t¿ 0), which
is given for all t¿ 0 by

〈	t; f〉 = E

[ ∞∑
i=1

f(X �
i (t))

]
for f∈C1

c(]0; 1]):

Remark the following consequence of (7): for all t¿ 0 and all f∈C1
c(]0; 1]),

E

[ ∞∑
i=1

f(X �
i (t))

]
= E[ Rf(��(t))]; (9)

where �� is the size-biased picked fragment process related to X � and Rf the function
deBned from f by Rf(x) := f(x)=x, x∈ ]0; 1]. This will be a key point of the proof of
Theorem 3. In this proof, the notation C1

K refers to the set of diFerentiable functions
on ]0; 1] with support in K .

Proof. (i) First, we turn the problem into an existence and uniqueness problem for an
equation involving non-negative measures on K = [a; 1], 0¡a6 1. The advantage is
that � is bounded on K . Now, consider (-t; t¿ 0) a family of measures on ]0; 1] and
set .t(dx) := x-t(dx), t¿ 0. It is easy to see that (-t; t¿ 0) solves Eq. (2) if and
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only if (.t; t¿ 0) satisBes{
@t〈.t; f〉 = 〈.t; �A(f)〉; f∈C1

c (]0; 1]);

.0(dx) = �1(dx);
(10)

where A is the linear operator on C1
c (]0; 1]) deBned by

A(f)(x) = −cxf′(x) − cf(x) +
∫
S↓

[ ∞∑
i=1

f(xsi)si − f(x)

]
�(ds); x∈ ]0; 1]:

Note that if f is equal to 0 on ]0; a], so is A(f). Then, �A(f) is well deBned on
[0; 1] for functions f∈C1

c (]0; 1]). Moreover, this implies that the family (.t; t¿ 0) is
a solution to Eq. (10) if and only if, for each 0¡a6 1, the family (1[a;1].t; t¿ 0)
is a solution to{

@t〈�t ; f〉 = 〈�t ; �A(f)〉; f∈C1
[a;1];

�0(dx) = �1(dx):
(11)

Then consider formula (9) and write lt for the distribution of ��(t), t¿ 0. Proving
Theorem 3 is equivalent to prove that (lt ; t¿ 0) is the unique solution to (10), which
is true if and only if, for each 0¡a6 1, the family (1[a;1]lt ; t¿ 0) is the unique
family of non-negative measures on [a; 1] satisfying (11).

(ii) In the sequel, K = [a; 1], 0¡a6 1. Consider the subordinator � such that
�� = exp(−�)�) where )� is the time change

)�(t) = inf
{
u¿ 0 :

∫ u

0

dr
�(exp(−�r))

¿t
}

(see Proposition 2). As a subordinator, � is a Feller process on [0;∞] and its generator
G� has a domain containing the set of diFerentiable functions with compact support in
[0;∞[. It is well known that for every function f belonging to this set, the function
G�(f) is given by

G�(f)(x) = −kf(x) + df′(x) +
∫

]0;∞[
(f(x + y) − f(x))L(dy); x∈ ]0; 1];

where k is the killing rate, d the drift coeHcient and L the L%evy measure of �. From
this and (6), we deduce that the generator Gexp(−�) of the Feller process exp(−�) has
a domain D containing C1

c(]0; 1]) and is given by

Gexp(−�)(f)(x) = −kf(x) − dx f′(x) +
∫

]0;∞[
(f(x exp(−y)) − f(x))L(dy)

= A(f)(x)

at least for f∈C1
c(]0; 1]). Then, introduce the function

�̃(x) =

{
�(x) if x∈K;

�(a) if 06 x6 a
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and consider the time-changed process exp(−�)�̃(·)), where

)�̃(t) = inf
{
u¿ 0 :

∫ u

0

dr
�̃(exp(−�r))

¿t
}

:

Observing that �̃ is bounded away from 0 and ∞ on [0; 1], we apply Theorem 1 and
its corollary in Lamperti (1967) to conclude that exp(−�)�̃) is a Feller process and
that its generator Gexp(−�)�̃ ) has the same domain D as Gexp(−�) and is given by

Gexp(−�)�̃ )(f) = �̃Gexp(−�)(f); f∈D: (12)

This formula can also be found in Section III.21 of Rogers and Williams (1994)
(however, they do not consider the Feller property for the time-changed process). For
each t¿ 0, denote by l̃t the law of the random variable exp(−�)�̃(t)). The family
(l̃t ; t¿ 0) is then a solution to the Kolmogorov’s forward equation:{

@t〈�t ; f〉 = 〈�t ; Gexp(−�)�̃ )(f)〉; f∈D;

�0(dx) = �1(dx):
(13)

Note that if the test-functions set is reduced to C1
K , (13) is the same as Eq. (11), since

Gexp(−�)�̃ ) = �A on C1
K . In particular, (1Klt ; t¿ 0) is a solution to (11), since for each

t¿ 0 and each function f supported in K , the following identity holds:

E[f(exp(−�)�(t))] = E[f(exp(−�)�̃(t))]:

This is due to the equality

{t¿ 0 : �)�(t)6− log a}a:s:={t¿ 0 : �)�̃(t)6− log a}
and the fact that )�(t)a:s:=)�̃(t) on this set. All this follows easily from the deBnitions
of )� and )�̃.

(iii) Now, it remains to prove that a non-negative solution to Eq. (13) is uniquely
determined on K if the test-functions set is C1

K . To prove this, it is suHcient to show
that for each 2¿ 0, the image of C1

K by the operator (2 id − Gexp(−�)�̃ )) is dense in
C0

K (the set of continuous functions with support in K) endowed with the uniform
norm—see for instance the proof of Proposition 9.18 of Chapter 4 in Ethier and Kurtz
(1986) and note that if (�t ; t¿ 0) is a solution to (13), the functions t �→ 〈�t ; f〉 are
continuous on [0;∞) for each f∈C1

K . Thus, we just have to prove this density. To
that end, observe that if x¡a and if f∈C0

K ,

Ex[f(exp(−�t))] := E[f(exp(−�t)) | exp(−�0) = x] = E1[f(x exp(−�t))] = 0:

Therefore, the function x �→ Ex[f(exp(−�t))] belongs to C0
K if f∈C0

K . This allows
us to consider the restriction of the generator Gexp(−�) to C0

K , denoted by Gexp(−�)=C0
K .

This operator is the generator of the strongly continuous contraction semigroup on C0
K

deBned by

T (t) :f∈C0
K �→ T (t)(f)∈C0

K ;

T (t)(f)(x) = E1[f(x exp(−�t))]; x∈ ]0; 1]:
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Its domain is C0
K ∩ D. The same remark holds for the process exp(−�)�̃) (because

we know that it is a Feller process and then the function x �→ Ex[f(exp(−�)�̃(t)))] is
continuous if f is continuous). We denote by Gexp(−�)�̃ )=C0

K the restriction of Gexp(−�)�̃ )

to C0
K . Its domain is C0

K ∩ D as well. Now, to conclude, we just have to apply the
forthcoming Lemma 4 to

E = K; B = C0
K ; G = Gexp(−�)=C0

K ; G̃ = Gexp(−�)�̃ )=C0
K and D = C1

K :

Indeed, generators G and G̃ satisfy (12), with �̃ bounded away from 0. The set C1
K is

dense in C0
K and it is clear that the function x �→ E1[f(x exp(−�t))] belongs to C1

K as
soon as f does.

Lemma 4. Let E be a metric space and B the Banach space of real-valued continuous
bounded functions on E, endowed with the uniform norm. Let G be the generator of
a strongly continuous contraction semigroup (T (t); t¿ 0) on B, with domain D(G).
Consider D ⊂ D(G), a dense subspace of B such that T (t) :D → D for all t¿ 0,
and �̃∈B such that �̃¿m on E for some positive constant m. If G̃ is the generator
of a strongly continuous contraction semigroup on B such that D(G̃) = D(G) and
G̃(f) = �̃G(f) on D(G), then for every 2¿ 0, (2 id − G̃)(D) is dense in B.

Proof. We need the notion of core. If A is a closed linear operator on B, a subspace
C of D(A) is a core for A if the following equivalence holds:

f∈D(A) and g = A(f)

⇔
there is a sequence (fn)∈C such thatfn → f and A(fn) → g:

The assumptions on D and (T (t); t¿ 0) and Proposition 3.3 of Chapter 1 in Ethier and
Kurtz (1986) ensure that D is a core for G. But then, D is also a core for G̃: if (fn)
is a sequence in D such that fn → f and G̃(fn) → g, then, since G̃(fn) = �̃G(fn)
and �̃¿m¿ 0 on E, G(fn) → g=�̃. Thus f∈D(G) = D(G̃) and G̃(f) = �̃G(f) = g.
Conversely, given f belonging to D(G̃) =D(G) and g= G̃(f), there is a sequence
(fn)∈D such that fn →f and G(fn)→G(f). But �̃ is bounded on E and then
G̃(fn)→ G̃(f). At last, we conclude by using Proposition 3.1 of Chapter 1 in Ethier
and Kurtz (1986). This proposition states that since D is a core for the generator G̃,
then (2 id − G̃)(D) is dense in B for some 2¿ 0, but it is easy to see with Lemma
2.11 (Chapter 1 in Ethier and Kurtz (1986)) that it holds for all 2¿ 0.

Remark. As shown in Section 2, two homogeneous fragmentation processes with dif-
ferent laws may lead to subordinators with the same laws. Therefore, it may happen
that two diFerent fragmentation equations (i.e. with diFerent parameters) have the same
solution.

From Theorem 3, we deduce that the unique solution (	t; t¿ 0) to the fragmenta-
tion equation (2) is the hydrodynamic limit of stochastic fragmentation models. More
precisely:
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Corollary 5. For each n∈N∗, let X �;n be a (�; c; �)-fragmentation process starting
from X �;n(0) = (1; 1; : : : ; 1︸ ︷︷ ︸

n term

; 0; : : :). Then for each t¿ 0, with probability one,

1
n

∞∑
i=1

�X �; n
i (t)(dx)

vaguely on ]0;1]→
n→∞ 	t:

Proof. For each k ∈{1; : : : ; n}, we denote by ((X �;n
k;1 (t); : : : ; X �;n

k; i (t); : : :); t¿ 0) the frag-
mentation process stemming from the kth fragment of X �;n(0). These processes are
independent and identically distributed, with the distribution of a (�; c; �)-fragmentation
process starting from (1; 0; : : :). Then Bx t¿ 0. Using the strong law of large numbers
for each f∈C1

c(]0; 1]), we get

1
n

( ∞∑
i=1

f(X �;n
i (t))

)
=

1
n

n∑
k=1

( ∞∑
i=1

f(X �;n
k; i (t))

)
a:s:→

n→∞〈	t; f〉: (14)

With probability one, this convergence holds for each function f such that for a n∈N∗

f(x) =




0 on ]0; 1
n ];(

x − 1
n

)2

P(x) on ] 1
n ; 1];

where P is a polynomial with rational coeHcients;

since this set of functions—denoted T—is countable. Observe that this set is dense
in C1

c(]0; 1]) for the uniform norm and for each f∈C1
c(]0; 1]) consider a sequence

(gk)k¿0 of functions of T such that gk →
k→∞

f=id. Since
∑∞

i=1 X �;n
i (t)6 n,

1
n

( ∞∑
i=1

X �;n
i (t)gk(X

�;n
i (t))

)
uniformly in n→

k→∞
1
n

( ∞∑
i=1

f(X �;n
i (t))

)
a:s:

and then it is easily seen that with probability one convergence (14) holds for each
f∈C1

c(]0; 1]).

Note that the question whether a similar result holds for the Smoluchowski’s coagu-
lation equation or not is still open (see Aldous, 1999). The problem is that the Smolu-
chowski’s coagulation equation is non-linear and then the mean frequencies of the
stochastic models do not evolve as the Smoluchowski’s coagulation equation, contrary
to what happens for the fragmentation equation. Nonetheless, Norris (1999) proved that
under suitable assumptions on the coagulation kernel, the solution to Smoluchowski’s
coagulation equation may be obtained as the hydrodynamic limit of stochastic systems
of coagulating particles.
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4. Loss of mass in the fragmentation equation

Let (	t; t¿ 0) be the unique solution to the fragmentation equation (2) with param-
eters �; c and � and consider for each t¿ 0 the total mass of the system at time t

m(t) =
∫ 1

0
x	t(dx):

In this section, we give necessary (resp. suHcient) conditions on the parameters �; c
and � for the occurrence of loss of mass (i.e. the existence of a time t such that
m(t)¡m(0)). Then, when loss of mass occurs, we study the asymptotic behavior
of m(t) as t → 0 or t → ∞ for a large class of parameters (�; c; �). This loss of
mass study relies on the fact that the solution (	t; t¿ 0) can be constructed from a
(�; c; �)-fragmentation process, denoted by X � (see the previous section). In particu-
lar, by monotone convergence, one can extend formula (9) to the pair of functions
(f; Rf) = (id; 1x¿0). Hence,

m(t) = E

[ ∞∑
i=1

X �
i (t)

]
= P(��(t)¿ 0); t¿ 0;

where (��(t); t¿ 0) is the size-biased picked fragment process related to X �. Then
recall Proposition 2 and introduce the random variable

I� :=
∫ ∞

0

dr
�(exp(−�r))

: (15)

Since �(0) = ∞, it is clear that I� is the Brst time when �� is equal to 0. This leads
to another expression of the mass

m(t) = P(I� ¿ t) (16)

which will be useful in this section. Note that for self-similar fragmentations, i.e. �(x)=
x� on ]0; 1], �∈R, I� is the well-known exponential functional of the L�evy process
�� (for background, we refer e.g. to Bertoin and Yor, 2002; Carmona et al., 1997).

At last, we recall that � denotes the Laplace exponent of the subordinator � and
can be expressed as a function of � and c (see (5)) and that k; c and L are the
characteristics of � (see (6)).

From now on, we exclude the degenerate case when the splitting measure � and the
erosion rate c are 0, for which there is obviously no loss of mass.

4.1. A criterion for loss of mass

If k ¿ 0, either the erosion coeHcient c is positive or a part of the mass of a particle
may be lost during its splitting (i:e: �(

∑∞
i=1 si ¡ 1)¿ 0). Therefore, it is intuitively

clear that if k ¿ 0, there is loss of mass. Nevertheless, loss of mass may occur even
when k = 0, as some particles may be reduced to dust in Bnite time. This phenomenon
can be explained as follows when � decreases near 0. Small fragments split even faster
since their mass is smaller. Therefore, particles split faster and faster as time passes and
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so they may be reduced to dust in Bnite time. We now present a qualitative criterion
for loss of mass.

Proposition 6. (i) If k ¿ 0, there is loss of mass and inf{t¿ 0 : m(t)¡m(0)} = 0.
(ii) If k = 0, then∫

0+

�′(x)
�inf (exp(−1=x))�2(x)

dx¡∞ ⇒ there is loss of mass;

∫
0+

�′(x)
�sup(exp(−1=x))�2(x)

dx = ∞ ⇒ there is no loss of mass;

where �inf and �sup are the continuous non-increasing functions de>ned on ]0; 1] by

�inf (x) = inf
y∈]0; x]

�(y) and �sup(x) = sup
y∈[x;1]

�(y):

Remark.

• If � is bounded on ]0; 1], we have that∫
0+

�′(x)
�sup(exp(−1=x))�2(x)

dx = ∞;

since �sup is then bounded on ]0; 1] and
∫

0+ �′(x)�−2(x) dx=∞ (recall that �(0)=0).
Thus, if � is bounded on ]0; 1] and k = 0, there is no loss of mass. In particular,
when k = 0, there is no loss of mass in the homogeneous case (i.e. � = 1).

• If � is non-increasing near 0 and k = 0, either limx→0+ �(x)¡∞ and then there is
no loss of mass or limx→0+ �(x) =∞ and then the functions �inf , � and �sup coincide
on some neighborhood of 0. In both cases, the following equivalence holds:∫

0+

�′(x)
�(exp(−1=x))�2(x)

dx¡∞ ⇔ there is loss of mass:

In order to prove Proposition 6, observe that loss of mass occurs if and only if
P(I� ¡∞)¿ 0, which justiBes the use of the forthcoming lemma (see Lemma 3.6 in
Bertoin, 1999):

Lemma 7. Let : be a subordinator with killing rate 0 and U its potential measure,
which means that for each measurable function f,

∫∞
0 f(x)U (dx)=E[

∫∞
0 f(:t) dt].

Let h : [0;∞) → [0;∞) be a non-increasing function. Then the following are
equivalent:

(i)
∫∞

0 h(x)U (dx)¡∞,
(ii) P(

∫∞
0 h(:t) dt ¡∞) = 1,

(iii) P(
∫∞

0 h(:t) dt ¡∞)¿ 0.
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Proof of Proposition 6. (i) Let e(k) denote the exponential random variable with pa-
rameter k at which the subordinator � is killed and # the subordinator with killing
rate 0, independent of e(k) and such that �t = #t if t ¡ e(k) and �t = ∞ if t¿ e(k).
Then, set

T�(t) := inf
{
u¿ 0 :

∫ u

0

dr
�(exp(−#r))

¿t
}

:

This random variable is independent of e(k) and using that for each time t

P(I� ¿ t) ⇔ T�(t)6 e(k);

we get

m(t) = E[e−kT �(t)]:

Note that this is true even if k = 0, with the convention 0 ×∞ := ∞. Now if k ¿ 0
and t ¿ 0, kT �(t)¿ 0 with probability one and then m(t)¡ 1.

(ii) Let U denote the potential measure of the subordinator �. It is straightforward
that ∫ ∞

0

U (dx)
�inf (exp(−x))

¡∞ ⇒ P(I� ¡∞) = 1

and it follows from Lemma 7 that∫ ∞
0

U (dx)
�sup(exp(−x))

= ∞ ⇒ P(I� ¡∞) = 0:

Thus, we just have to prove that for each continuous positive and non-increasing
function f on ]0; 1]∫ ∞

0

U (dx)
f(exp(−x))

¡∞ ⇔
∫

0+

�′(x)
f(exp(−1=x))�2(x)

dx¡∞: (17)

To that end, recall that the repartition function U (x) =
∫ x

0 U (dy) satisBes

U � 1
�(1=·) ; (18)

where the notation g � h indicates that there are two positives constants C and C′ such
that Cg6 h6C′g (see Proposition 1.4 in Bertoin, 1999). Then if limx→0+ f(x)¡∞,∫ ∞

0

U (dx)
f(exp(−x))

=
∫

0+

�′(x)
f(exp(−1=x))�2(x)

dx = ∞

since U (∞) = ∞ and
∫

0+ �′(x)�−2(x) dx = ∞. Next, if limx→0+ f(x) = ∞, introduce
the non-negative Bnite measure V deBned on [0;∞[ by∫ x

0
V (dy) =

1
f(1)

− 1
f(exp(−x))

:
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Note that∫ ∞
0

U (dx)
f(exp(−x))

=
∫ ∞

0

∫ ∞
x

V (dy)U (dx) =
∫ ∞

0
U (y)V (dy):

Combining this with (18) leads to the following equivalences:∫ ∞
0

U (dx)
f(exp(−x))

¡∞⇔
∫ ∞

0

V (dy)
�(1=y)

¡∞

⇔
∫ ∞

0

∫ ∞
1=y

�′(z)
�2(z)

dz V (dy)¡∞

⇔
∫ ∞

0

�′(z)
f(exp(−1=z))�2(z)

dz¡∞

and then to equivalence (17), since∫ ∞
·

�′(z)
f(exp(−1=z))�2(z)

dz¡∞ (the case when � = 0 is excluded):

Provided that � is non-increasing near 0 and �′(0+)¡∞, the following corollary
gives a simple necessary and suHcient condition on � for loss of mass to occur. This
result may be found in Filippov’s (1961) paper in the special case when �(S∗)¡∞.
Recall the notations �inf and �sup introduced in Proposition 6.

Corollary 8. Suppose that k = 0. Then,

(i)
∫

0+ dx=x�inf (x)¡∞ ⇒ loss of mass.
(ii) If �′(0+)¡∞ (i.e.

∫
S↓ (

∑∞
i=1 |log(si)|si)�(ds)¡∞),

loss of mass ⇒
∫

0+

dx
x�sup(x)

¡∞:

If � is non-increasing in a neighborhood of 0; �inf and �sup can be replaced by �.

In particular, as soon as �(x)¿ |log x|� near 0 for some �¿ 1, there is loss of mass.

Proof. The assumption k = 0 leads to

�(q)
q

→
q→0

∫ ∞
0

xL(dx) =
∫
S↓

( ∞∑
i=1

(−log(si))si

)
�(ds):

Remark that
∫∞

0 xL(dx)�=0, since L�=0 and then �′(0+)¿0. If moreover �′(0+)¡∞,
we have

�′(x)
�sup(exp(−1=x))�2(x)

∼
x→0+

1
�′(0+)x2�sup(exp(−1=x))

:



B. Haas / Stochastic Processes and their Applications 106 (2003) 245–277 261

Combining this with Proposition 6(ii) leads to result (ii). Now, if �′(0+) = ∞, the
function x �→ x2�′(x)�−2(x) is still bounded near 0 and then we deduce (i) in the
same way.

4.2. Asymptotic behavior of the mass

Our purpose is to study the asymptotic behavior of the mass m(t)= 〈	t; id〉 as t → 0
or t → ∞.

4.2.1. Small times asymptotic behavior

Proposition 9. Assume that �′(0+)¡∞ and �(x)6Cx�, 0¡x6 1, with C ¿ 0 and
�¡ 0. Then, m is di?erentiable at 0+ and m′(0+) = −k.

Remark. We will see in the proof that the upper bound

lim sup
t→0+

m(t) − 1
t

6− k

remains valid without any assumption on � and �.

Proof. As shown in the Brst part of the proof of Proposition 6

m(t) = E[e−kT �(t)]; t¿ 0;

where T� is the time change

T�(t) = inf
{
u¿ 0 :

∫ u

0

dr
�(exp(−#r))

¿t
}

and # a subordinator with killing rate 0, drift coeHcient c and L%evy measure L. Hence,

1 − m(t)
t

= E
[

1 − e−kT �(t)

t

]
: (19)

Observe that it is suHcient to prove the statement for functions � bounded on ]0; 1] or
non-increasing and such that �(x)6Cx� on ]0; 1] for some C ¿ 0 and �¡ 0. Indeed,
for each continuous positive function � such that �(x)6Cx� on ]0; 1] with C ¿ 0 and
�¡ 0, there are two continuous positive functions �1 and �2 such that �16 �6 �2 on
]0; 1] and

• �1 is bounded on ]0; 1] and �1(1) = 1;
• �2 is non-increasing, �2(x)6Cx� on ]0; 1] and �2(1) = 1

(we may take for example �2(x) := supy∈[x;1] �(y)). Then combine this with the fact
that

1 − m�̃(t)
t

6
1 − m R�(t)

t
∀t¿ 0 (20)



262 B. Haas / Stochastic Processes and their Applications 106 (2003) 245–277

when �̃6 R� on ]0; 1] (here m�̃ and m R� denote the respective masses of a (�; c; �̃)-
fragmentation equation and a (�; c; R�)-fragmentation equation).

(i) For t such that T�(t)¡∞, the time change T� can be expressed as follows:

T�(t) =
∫ t

0
�(exp(−#T�(r))) dr

= t
∫ 1

0
�(exp(−#T�(tr))) dr: (21)

Note that the Brst time when T� reaches ∞ is positive with probability one. Then if
� is bounded (resp. non-increasing), we get by the dominated convergence theorem
(resp. monotone convergence theorem), that

1 − e−kT �(t)

t
a:s:→

t→0+
k:

If � is bounded the dominated convergence theorem applies and gives

1 − m(t)
t

→
t→0+

k:

(ii) To conclude when � is non-increasing and smaller than the function x �→ Cx�, it
remains to show that (1 − e−kT �(t))=t is dominated—independently of t—by a random
variable with Bnite expectation. To see this, Brst note that it is suHcient to prove the
domination for (1 − e−kT�(t))=t, where

T�(t) = inf
{
u¿ 0 :

∫ u

0
exp(�#r) dr ¿Ct

}

(since T�(t)6T�(t) for t¿ 0). Next, remark that if #1 is a subordinator such that
#1¿ #, the following inequality between time changes holds:

T�
1 (t) := inf

{
u¿ 0 :

∫ u

0
exp(�#1

r ) dr ¿Ct
}
¿T�(t)

and then

1 − e−kT�(t)

t
6

1 − e−kT�
1 (t)

t
for each t¿ 0:

Thus it is suHcient to prove the domination for a subordinator bigger than # and so
we can (and will) assume that the subordinator # has a drift coeHcient c¿ k=|�|. Now
introduce the exponential functional

I� :=
∫ ∞

0
exp(�#r) dr:

Observe that

C−1I� = inf{t¿ 0 :T�(t) = ∞}:
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If t ¡C−1I�, we get that

d
dt

(e−kT�(t)) = −kCe−�#T�(t) e−kT�(t) (22)

(by using (21) for the function � = Cx�). But the (random) function t �→ −�#t − kt
is non-decreasing, since c¿ k=|�| and the process (#t − ct; t¿ 0) is a (pure jump)
non-decreasing process (according to the L%evy–Itô decomposition of a subordinator—
see Proposition 1.3 in Bertoin, 1999). Thus derivative (22) is non-increasing and t �→
e−kT�(t) is a concave function on [0; C−1I�[. From this, it follows that the slope (1 −
e−kT�(t))=t is non-decreasing on [0; C−1I�[ and it is straightforward that it is decreasing
on [C−1I�;∞[. This leads to the upper bound

1 − e−kT �(t)

t
6

C
I�

∀t¿ 0:

By Proposition 3.1 (iv) in Carmona et al. (1997), the expectation

E[I−1
� ] = (−�)�′(0+)¡∞;

and this ends the proof.

If k = 0, there is a more precise result. Recall (16) and set A := sup{a¿ 0 :E[I−a
� ]

¡∞}. Then for each =¿ 0 such that A− =¿ 0,

t=−A(1 − m(t))6
∫ t

0
x

=−A
PI�(dx) →

t→0+
0;

since E[I =−A
� ]¡∞. (Actually, it is easy to see that

lim inf
t→0+

log(1 − m(t))
log(t)

= A:)

For self-similar fragmentation processes, this points out the inXuence of � on the loss of
mass behavior near 0. Indeed, consider a family of self-similar fragmentation processes
such that the subordinator � is Bxed (with killing rate k =0) and � varies, �¡ 0. Then
introduce the set

Q :=
{
q∈R :

∫
x¿1

eqxL(dx)¡∞
}

:

This set is convex and contains 0. Let p be its right-most point. According to Theorem
25.17 in Sato (1999),

q∈Q ⇔ E[eq�t ]¡∞ ∀t¿ 0

and in that case E[eq�t ]=e−t�(−q). Then, following the proof of Proposition 2 in Bertoin
and Yor (2002), we get

E[I−q−1
� ] =

−�(�q)
q

E[I−q
� ] for q¡

p

|�| ;
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which leads to

p

|�|6 sup{q :E[I−q−1
� ]¡∞}:

And then

lim inf
t→0+

log(1 − m(t))
log(t)

¿ 1 +
p

|�| :

4.2.2. Large times asymptotic behavior
The main result of this subsection is the existence of exponential bounds for the mass

m(t) when t is large enough and when the parameters �, c and � satisfy conditions
(i) and (ii) of the following Proposition 11. Before proving this, we point out the
following intuitive result, which is valid for all parameters �, c and �.

Proposition 10. When loss of mass occurs, m(t) →
t→∞ 0.

Proof. From formula (16), we get that m(t) →
t→∞P(I� =∞). When k ¿ 0, the subordi-

nator � is killed at a Bnite time e(k) and then

I�6 e(k) sup
[exp(−�e(k)− );1]

(1=�)

which is a.s. Bnite. When k = 0, our goal is to prove that the probability P(I� =∞) is
either 0 or 1. To that end, we introduce the family of i.i.d. random variables, deBned
for all n∈N by

Xn := (�n+t − �n)06t61:

It is clear that I� can be expressed as a function of the random variables Xn. Then,
since for all n∈N

{I� = ∞} =
{∫ ∞

n

dr
�(exp(−�r))

= ∞
}

;

it is easily seen that the set {I� = ∞} is invariant under Bnite permutations of the
r.v. Xn, n∈N. Hence, we can conclude by using the Hewitt-Savage 0-1 law (see e.g.
Theorem 3, Section IV in Feller, 1971).

Our sharper study of the asymptotic behavior of the mass m(t) as t→∞ relies on
the moments properties of the random variable I�. If �(x) = x�, �¡ 0, it is well known
that the entire moments of I� are given by

E[I n� ] =
n!

�(−�) : : : �(−�n)
; n∈N∗; (23)
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and then, that

E[exp(rI�)]¡∞ for r ¡�(∞) := lim
q→∞�(q):

(see Proposition 3.3 in Carmona et al., 1997). From this and formula (16) we de-
duce that the mass m(t) decays at an exponential rate as t→∞, since for a positive
r ¡�(∞),

m(t) = P(I� ¿ t)6 exp(−rt)E[exp(rI�)]; t¿ 0: (24)

This result is still valid for a function �(x)¿Cx�, where �¡ 0 and C ¿ 0, because
I�6C−1

∫∞
0 exp(��r) dr. Remark that until now, we have made no assumption on �.

We now state deeper results when � behaves like a regularly varying function. Recall
that a real function f varies regularly with index a¿ 0 at ∞ if

f(rx)
f(x)

→
x→∞ ra ∀r ¿ 0:

If a = 0, f is said to be slowly varying. Recall also that the notation f � g indicates
that there exist two positives constants C and C′ such that Cg6f6C′g.

Proposition 11. Assume that

(i) C2x?6 �(x)6C1x�; 0¡x6 1; �6 ?¡ 0; C1 ¿ 0; C2 ¿ 0.
(ii) � � f on [1;∞); where f varies regularly at ∞ with index a∈ ]0; 1[.

Denote by  the inverse of the function t �→ t=�(t), which is a bijection from [1;∞)
to [1=�(1);∞). Then there exist two positive constants A and B such that for t large
enough

exp(−B (t))6m(t)6 exp(−A (t)): (25)

Actually, if � satisBes (ii), it is suHcient to suppose that C2x?6 �(x) with ?¡ 0 and
C2 ¿ 0 to obtain the upper bound m(t)6 exp(−A (t)) and conversely, if �(x)6C1x�

with �¡ 0 and C1 ¿ 0, the lower bound exp(−B (t)) holds.

Remark. If �(x) = x� for x∈ ]0; 1], �¡ 0, and � varies regularly at ∞ with index
a∈ ]0; 1[, it follows from a result in Rivero (2002) that

log(m(t)) ∼
t→∞

(1 − a)aa=(a−1)

�
 
(−�t

aa

)
:

We should also point out that there are some homogeneous fragmentation processes
such that the associated Laplace exponent � satisBes assumption (ii) without varying
regularly.

Proof. The proof relies on Theorems 1 and 2 in Kôno (1977), which we now recall. Let
: be a non-decreasing and “nearly regularly varying function with index b”, b∈ ]0; 1[,
which means that there exist two positive constants r1¿ r2 and a slowly varying
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function s such that

r2xbs(x)6 :(x)6 r1xbs(x) for x¿ 1: (26)

Let Y be a positive random variable such that, for n large enough,

c2n
2

2n∏
k=1

:(k)6E[Y 2n]6 c2n
1

2n∏
k=1

:(k); (27)

where c1 and c2 are positive constants. Then, there exist three positive constants A, B
and C such that for x large enough,

exp(−Bx)6P(Y ¿C:(x))6 exp(−Ax):

Coming back to the proof, we set

:(x) :=
x

�(x)
; x¿ 1:

This is an increasing continuous function (by the concavity of �) such that limx→∞
:(x)=∞ (by assumption (ii)). In particular, its inverse  is well deBned and increasing
on [:(1);∞). Since f varies regularly with index a∈ ]0; 1[, there exists a slowly
varying function g such that f(q)=qag(q) for q¿ 1. Then it follows from assumption
(ii) that : satisBes (26) with b=1−a and s=1=g (note that g is a positive function on
[1;∞)). On the other hand, recall that if �(x) = x�, �¡ 0, the entire moments of the
random variable I� are given by (23). Thus, for each function � satisfying assumption
(i), we have

C−n
1

n∏
k=1

k
�(−�k)

6E[I n� ]6C−n
2

n∏
k=1

k
�(−?k)

:

Moreover, assumption (ii) implies that for each C ¿ 0, �(Ct) � �(t) at least for
t ∈ [1;∞). Therefore, the moments of I� satisfy (27). Then, by applying the theorems
recalled at the beginning of the proof, we get

exp(−B (t=C))6m(t) = P(I� ¿ t)6 exp(−A (t=C)) for t large enough: (28)

It remains to remove the constant C. To that end, introduce h(x) := x=f(x) on [1;∞)
and consider the generalized inverse of h:

h←(x) := inf{y∈ [1;∞) : h(y)¿x}; x∈ [1=f(1);∞):

The function h varies regularly with index 1−a and so, according to Theorem 1.5.12 in
Bingham et al. (1987), h← varies regularly with index 1=(1 − a) and h(h←(x)) ∼

x→∞ x.

From this latter and assumption (ii), we deduce the existence of two positive constant
D1 and D2 such that

D1x6 :(h←(x))6D2x for x large enough:

And since  is increasing, we have

 (D1x)6 h←(x)6  (D2x) for x large enough:
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But then, since h← varies regularly, the function x �→  (x=C)= (x) is bounded away
from 0 and ∞ when x→∞. Then combine this with (28) to obtain (25).

Note that assumption (ii) in Proposition 11 implies that the erosion rate c is equal
to 0. Now, if c¿ 0 and if �(x)¿Ax� on ]0; 1], with �¡ 0 and A¿ 0, we observe
that the mass m(t) is equal to 0, as soon as t¿ 1=|A�c|. Indeed, recall that

k¿ c and �t¿ ct for each t¿ 0:

Then,

I�6
(1 − exp(�ce(k)))

|A�c|
which leads to{

m(t) = 0 if t¿ 1=|A�c|;
m(t)6 (1 + A�ct)k=|�c| if t6 1=|A�c|:

In the same way, we obtain that m(t)6 e−kat if �¿ a on ]0; 1] (before that, we had
exponential upper bounds only when �(x)¿Ax�, with �¡ 0 and A¿ 0).

5. Loss of mass in fragmentation processes

Let X � be a (�; c; �)-fragmentation process starting from (1; 0; : : :). We say that there
is loss of mass in this random fragmentation if

P

(
∃t¿ 0 :

∞∑
i=1

X �
i (t)¡ 1

)
¿ 0:

The results on the occurrence of this (stochastic) loss of mass as a function of the
parameters �; c and � are exactly the same as those on the occurrence of loss of
mass for the corresponding deterministic model (constructed from X � by formula (3)).
Indeed, the point is that, as shown in the proof of Proposition 10, the probability
P(I� ¡∞) is either 0 or 1 and then that the events {∃t¿ 0 :

∑∞
i=1 X �

i (t)¡ 1} and
{I� ¡∞} coincide apart from an event of probability 0. Thus, Proposition 6 and its
corollary are still valid for the loss of mass in the fragmentation process X � and when
there is loss of mass, it occurs with probability one.

When there is loss of mass, one may wonder if there exists a Bnite time at which
all the mass has disappeared, i.e. if

� := inf{t¿ 0 :X �
1 (t) = 0}¡∞:

In the sequel, we will say that there is total loss of mass if P(�¡∞)¿ 0. Bertoin
(2002b) proves that total loss of mass occurs with probability one for a self similar
fragmentation process with a negative index. Here, we give criteria on the parameters
�, c and � for the presence or absence of total loss of mass. From this we deduce that
even if k = 0 there is no equivalence in general between loss of mass and total loss
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of mass. Eventually, we study the asymptotic behavior of P(�¿ t) as t→∞, when
the parameters �, c and � satisfy the same assumptions as in Proposition 11.

The following remark will be useful in this section: if X � and X �′ are two fragmen-
tation processes constructed from the same homogeneous one and if �6 �′ on ]0; 1],
then

inf{t¿ 0 :X �′
1 (t) = 0}6 inf{t¿ 0 :X �

1 (t) = 0}: (29)

5.1. A criterion for total loss of mass

Proposition 12. Consider the continuous non-increasing functions �inf and �sup

constructed from � as in the statement of Proposition 6.

(i) If
∫

0+ dx=x�inf (x)¡∞, then P(�¡∞) = 1.
(ii) If k = 0 and

∫
S↓ |log(s1)|�(ds)¡∞, then

P(�¡∞)¿ 0 ⇒
∫

0+

dx
x�sup(x)

¡∞:

If � is non-increasing in a neighborhood of 0; �inf and �sup can be replaced by �.

Remark.

• This should be compared with Corollary 8 which states similar connections between
loss of mass and the integrability near 0 of functions x �→ 1=x�inf (x) and x �→
1=x�sup(x).

• The condition
∫
S↓ |log(s1)|�(ds)¡∞ is satisBed as soon as �(s16 =) = 0 for a

positive =, since |log(s1)|6 =−1(1 − s1) when s1 belongs to ]=; 1]. In particular, this
last condition on the measure � is satisBed for fragmentation models where k=0 and
such that the splitting of a particle gives at most n fragments (i.e. �(sn+1 ¿ 0) = 0).
Indeed, we have then that �(s1 ¡ 1=n) = 0, since �(

∑∞
i=1 si ¡ 1) = 0 when k = 0.

Proof. We just have to prove these assertions for a non-increasing function � and then
use remark (29). Thus in this proof � is supposed to be non-increasing on ]0; 1].

As shown in Section 2.2, the interval representation (Ĩ x(t); x∈ ]0; 1[; t¿ 0) of X � is
constructed from the interval representation (Ix(t); x∈ ]0; 1[; t¿ 0) of a homogeneous
(�; c) fragmentation process X in the following way:

Ĩ x(t) = Ix(T�
x (t));

where

T�
x (t) = inf

{
u¿ 0 :

∫ u

0

dr
�(|Ix(r)|) ¿t

}
:
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For every x in ]0; 1[, set �x := inf{t : Ix(t) = 0}. Then,

T�
x (t)¡�x if and only if t ¡

∫ ∞
0

dr
�(|Ix(r)|) ;

which leads to

� = sup
x∈]0;1[

∫ ∞
0

dr
�(|Ix(r)|) : (30)

(i) This part is merely adapted from the proof of Proposition 2(i) in Bertoin (2002b).
In particular, as mentioned there,

lim sup
r→∞

r−1 logX1(r)¡ 0:

Thus there exists a random positive number C such that

1
�(|Ix(r)|) 6

1
�(exp(−Cr))

for all x∈ ]0; 1[ and all r¿ 0;

since moreover � is non-increasing. Now, we just have to combine this with equality
(30) and the fact that the function x �→ 1=x�(x) is integrable near 0 to conclude that
�¡∞ a.s.

(ii) Since k = 0, the drift coeHcient c is equal to 0 and then the homogeneous
fragmentation process X is a pure jump process constructed from a Poisson point pro-
cess ((�(t); k(t)); t¿ 0)∈ S∗×N ∗, with characteristic measure �⊗# (see Section 2.1).
From this process, we build another jump process Y which we Brst describe infor-
mally: Y (0) = 1 and for each time t, Y (t) is an element of the sequence X (t). When
the fragment with mass Y splits, we keep the largest fragment and Y jumps to the
mass of this new fragment, etc. Note that generally, the jump times may accumulate.
Now, we give a rigorous construction of Y , by induction. To that end, we build simul-
taneously a sequence of particular times (tn)n∈N. Set t0 := 0 and Y (t0) := 1. Suppose
that tn−1 is known, that it is a randomized stopping time, and that Y is constructed
until tn−1. Let k(n − 1) be such that Y (tn−1) = Xk(n−1)(tn−1) and consider the frag-
mentation process stemming from Xk(n−1)(tn−1). Since X is homogeneous, there exists
a homogeneous (�; c)-fragmentation process independent of (X (t); t6 tn−1), denoted
by X n−1, such that the fragmentation process stemming from Xk(n−1)(tn−1) is equal to
Y (tn−1)X n−1. Let �n−1 and ((�n−1(t); kn−1(t)); t¿ 0) be respectively the size-biased
picked fragment process and the Poisson point process related to X n−1. Then set

tn := tn−1 + inf{t : �n−1(t)¡ 1
2};

Y (t) := Y (tn−1)X n−1
1 (t − tn−1); tn−16 t ¡ tn;

Y (tn) :=

{
�n−1

1 (tn − tn−1)Y (tn−1)X n−1
1 ((tn − tn−1)−) if kn−1(tn − tn−1) = 1;

Y (tn−1)X n−1
1 (tn − tn−1) otherwise:

Time tn is a randomized stopping time. Note that the random variables (tn − tn−1) are
iid with a positive expectation. So tn →∞ and Y is then well deBned on [0;∞).



270 B. Haas / Stochastic Processes and their Applications 106 (2003) 245–277

Call : the non-decreasing process (−log(Y )) and consider the jumps �̃(t) := :(t)−
:(t−), t¿ 0. It is easily seen that (�̃(t); t¿ 0) is a Poisson point process on ]0;∞[
with characteristic measure �(−log s1 ∈ dx). In other words, : is a subordinator with
Laplace exponent

’(q) =
∫
S↓

(1 − sq1)�(ds); q¿ 0:

It can be shown that for each t¿ 0 there exists a (random) point xt ∈ ]0; 1[ such that
Y (r) = |Ixt (r)| for r6 t. Combine this with equality (30) to conclude that

�¿
∫ t

0

dr
�(exp(−:(r))

for all t¿ 0

and then

�¿
∫ ∞

0

dr
�(exp(−:(r))

:

Therefore, the assumption P(�¡∞)¿ 0 implies that

P
(∫ ∞

0

dr
�(exp(−:(r))

¡∞
)

¿ 0

and so, following the proof of Proposition 6(ii), we conclude that∫
0+

’′(x)
�(exp(−1=x))’2(x)

dx¡∞:

Together with the assumption

’′(0+) =
∫
S↓

|log(s1)|�(ds)¡∞;

this implies that
∫

0+ (1=x�(x)) dx¡∞.

5.2. Does loss of mass imply total loss of mass?

If the killing rate k is positive, loss of mass always occurs, but in general total loss
of mass does not. Think for example of a pure erosion process. Now, we focus on
what happens when k = 0, i.e. when the loss of mass corresponds only to particles
reduced to dust. First, if the Laplace exponent � has a Bnite right-derivative at 0 and
if � is non-increasing near 0, loss of mass is equivalent to total loss of mass and both
occur with probability zero or one. This just follows from a combination of Corollary
8(ii) and Proposition 12(i). However, without this assumption on � there may be loss
of mass but no total loss of mass. Here is an example: Bx a∈ ]0; 1[ and take the
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parameters �; c and � as follows:

• �(ds) =
∑∞

n=1

(
1
na − 1

(n + 1)a

)
�(

1
2

1
2n+1 ; : : : ; 1

2n+1︸ ︷︷ ︸;0; :::
2n terms

) (ds),

• c = 0,

• �(x) =

{
1 if x¿ e−1;

(−log x) if 0¡x6 e−1:

It is clear that � is decreasing on ]0; e−1] and k = 0.

Lemma 13. Let � be the Laplace exponent speci>ed by (5) for the parameters above.
Then �(q)¿Cqa for some C ¿ 0 and for all q∈ [0; 1].

Proof. Consider the function

f(q) =
∫ ∞

1
(1 − e−(log 2)qx)x−1−a dx

= (q log 2)a
∫ ∞
q log 2

(1 − e−x)x−1−a dx:

The integral
∫∞

0 (1 − e−x)x−1−a dx is positive and Bnite since a∈ ]0; 1[. Then there
exists a positive real number C such that

f(q)¿Cqa ∀q∈ [0; 1]:

On the other hand, remark that

f(q) =
∞∑
n=1

∫ n+1

n
(1 − e−(log 2)qx)x−1−a dx

6
∞∑
n=1

(1 − e−(log 2)q(n+1))
∫ n+1

n
x−1−a dx

6
1
a

∞∑
n=1

(1 − e−(log 2)q(n+1))
(

1
na − 1

(n + 1)a

)
:

As a consequence, the following inequality holds:

∞∑
n=1

(
1 − 1

2q(n+1)

)(
1
na − 1

(n + 1)a

)
¿ aCqa ∀q∈ [0; 1]:
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This leads to:

�(q) =
∫
S∗

(
1 −

∞∑
i=1

sq+1
i

)
�(ds)

=
∞∑
n=1

(
1
na − 1

(n + 1)a

)(
1 −

(
1
2

)q+1

− 2n × 1
2(n+1)(q+1)

)

¿
1
2

∞∑
n=1

(
1
na − 1

(n + 1)a

)(
1 − 1

2(n+1)q

)

¿
a
2
Cqa ∀q∈ [0; 1]:

From this we deduce that there is loss of mass. Indeed, �′(x)6 x−1�(x) for positive
x since � is a concave function. Then combine this with Lemma 13 to obtain that

1
�(exp(−1=x))

× �′(x)
�2(x)

6
1

Cxa
for 0¡x6 1

and conclude with Proposition 6(ii). On the other hand, there is no total loss of mass
since the equalities∫

S↓
|log(s1)|�(ds) = log 2 and

∫ 1

0

dx
x�(x)

= ∞

imply with Proposition 12(ii) that P(�¡∞) = 0.

5.3. Asymptotic behavior of P(�¿ t) as t → ∞

In this subsection, we consider functions � such that C2x?6 �(x)6C1x� for x∈
]0; 1], where �6 ?¡ 0 and C1 and C2 are positive constants. Thus there is total loss
of mass with probability one. The following proposition states that P(�¿ t) and m(t)
have then the same type of behavior as t → ∞ (see also Proposition 11). More
precisely, we have

Proposition 14. Suppose that C2x?6 �(x)6C1x� for x∈ ]0; 1], where �6 ?¡ 0,
C1 ¿ 0 and C2 ¿ 0. Then,

(i) ∃C ¿ 0 such that P(�¿ t)6 exp(−Ct) for t large enough.
(ii) If � � f on [1;∞), for a function f varying regularly with index a∈ ]0; 1[ at

∞, there are two positive constants A and B such that for t large enough

exp(−B (t))6P(�¿ t)6 exp(−A (t));

where  is the inverse of the bijection t ∈ [1;∞) �→ t=�(t)∈ [1=�(1);∞).

Actually, the upper bounds hold as soon as �(x)¿C2x?, with ?¡ 0 and C2 ¿ 0
and the lower bound holds for functions � satisfying only �(x)6C1x�, with �¡ 0 and
C1 ¿ 0.
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To prove the proposition we need the following lemma:

Lemma 15. Let X be a self-similar fragmentation process with index �¡ 0 and � the
>rst time at which the entire mass has disappeared. Fix �′¿ �. Then, there exists
a self-similar fragmentation process with the same parameters (�; c) as X and with
index �′, denoted by X ′, such that

�6
∫ ∞

0
(X ′1(r))�

′−� dr:

Proof. Consider (Ix(t); x∈ ]0; 1[; t¿ 0) the interval representation of X . There exists
a self-similar interval representation process with parameters (�; c) and with index �′,
denoted by (I ′x(t); x∈ ]0; 1[; t¿ 0), such that

Ix(t) = I ′x(Tx(t));

where

Tx(t) = inf
{
u¿ 0 :

∫ u

0
|I ′x(r)|�

′−� dr ¿ t
}

(see Section 3.2. in Bertoin, 2002a). For each t¿ 0, call X ′(t) the non-increasing
rearrangement of the lengths of the disjoint intervals components of (I ′x(t); x∈ ]0; 1[).
Then X ′ is the required self-similar fragmentation process with index �′. Let x be in
]0; 1[. Since |I ′x(r)|6X ′1(r) for each r¿ 0, we have that

Tx

(∫ ∞
0

(X ′1(r))�
′−� dr

)
= ∞:

Then,

�6
∫ ∞

0
(X ′1(r))�

′−� dr;

because I ′x(∞) = 0 for every x in ]0; 1[.

Proof of Proposition 14. If �′ = K� for a positive constant K and if X � and X �′ are
two fragmentation processes constructed from the same homogeneous one, it is easily
seen that X �′

1 (t) = X �
1 (Kt) for each t¿ 0. Recall moreover remark (29). Since it is

supposed that C2x?6 �(x)6C1x� on ]0; 1], where �6 ?¡ 0, it is then enough to
prove results (i) and (ii) for a self-similar fragmentation process with a negative index.
Thus, consider X a self-similar fragmentation process with index �¡ 0. Applying the
previous lemma to X and �′ = �=2, we get

P(�¿ 2t)6 P
(∫ ∞

0
(X ′1(rt))−�=2 dr ¿ 2

)

6 P
(∫ ∞

1
(X ′1(rt))−�=2 dr ¿ 1

)

6
∫ ∞

1
E[(X ′1(rt))−�=2] dr; (31)
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since X ′1(t)6 1; ∀t¿ 0. Now, recall that

E[X ′1(t)]6E

[ ∞∑
i=1

X ′i (t)

]
= m�′(t);

where m�′ is the total mass of the fragmentation equation with the same parameters
(�; c) as X and with parameter �′(x) = x�=2. This leads to

E[(X ′1(t))−�=2]6

{
m�′(t) if (−�=2)¿ 1;

(m�′(t))−�=2 if (−�=2)¡ 1 (by Jensen’s inequality):
(32)

(i) Combining (31), (32) and (24), we obtain that for t large enough

P(�¿ 2t)6
∫ ∞

1
exp(−C′rt) dr =

1
C′t

exp(−C′t);

where C′ is a positive constant.
(ii) As stated in Proposition 11, since � � f, with f a regularly varying function

with index a∈ ]0; 1[, and since �′(x) = x�=2, the function

: : t ∈ [1;∞) �→ t=�(t)∈ [1=�(1);∞)

is an increasing bijection and its inverse  satisBes m�′(t)6 exp(−A1 (t)) for a con-
stant A1 ¿ 0 and t large enough. From this and inequalities (31) and (32), we deduce
the existence of a positive constant A2 so that for t large enough,

P(�¿ 2t)6
∫ ∞

1
exp(−A2 (rt)) dr:

Moreover, : is diFerentiable and its derivative is positive and smaller than 1=� (recall
that �′ is positive) and then :′ is bounded on [1;∞). Thus for t large enough,

P(�¿ 2t)6 t−1
∫ ∞
 (t)

exp(−A2r):′(r) dr

6 A2

∫ ∞
 (t)

exp(−A2r) dr

= exp(−A2 (t)):

Then, as in the proof of Proposition 11 the constant 2 can be removed by using
assumption (ii).

Eventually, introduce the r.v. I� (see deBnition (15)) to conclude for the lower bound.
This random variable is the Brst time when the size-biased picked fragment vanishes
and so I�6 � a.s. Then, we get the desired lower bound from Proposition 11 (recall
that m(t) = P(I� ¿ t)).
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Appendix A

A.1. An example

Let us consider the self-similar fragmentation process constructed from the Brownian
excursion of length 1. This process was introduced in Bertoin (2002a) and can be
constructed as follows. Write e=(e(t); 06 t6 1) for the Brownian excursion of length
1 and introduce the family of random open sets of ]0; 1[ deBned by

F(t) = {s∈ ]0; 1[ : e(s)¿t}; t¿ 0:

Then the process F is a self-similar interval fragmentation process with index −1=2. For
each t¿ 0, deBne by X (t) the non-increasing sequence of the lengths of the interval
components of F(t). The required fragmentation process is this process (X (t); t¿ 0),
which is obviously self-similar with index −1=2. Consider then the deterministic frag-
mentation model constructed from X and especially its mass, which is denoted by m(t)
for all time t. Since the process X is self-similar with a negative index, there is loss of
mass. Moreover, as shown in Bertoin (2002a), the Laplace exponent of the associated
subordinator � is given by

�(q) = 2q

√
2
-
B
(
q +

1
2
;
1
2

)
;

and this leads to the following equivalence:

�(q) ∼
q→∞ 2

√
2q1=2

(B denotes here the beta function). Hence, the remark following Proposition 11 ensures
that

logm(t) ∼
t→∞ − 2t2

and Proposition 14 gives exponential bounds for P(�¿ t) as t �→ ∞.
However, we may obtain sharper results. First, we know from Bertoin (2002a) that

the Brst time when the size-biased picked fragment of X is equal to 0 (namely I�) has
the same law as e(U ), where U is uniformly distributed on [0; 1] and independent of the
Brownian excursion. Thus the distribution of I� is given by

P(2I� ∈ dr) = r exp(−r2=2) dr;
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and then the mass is explicitly known:

m(t) = P(I� ¿ t) = exp(−2t2); t¿ 0:

On the other hand, the random variable � is obviously the maximum of the Brownian
excursion with length 1. And then, as proved in Kennedy (1976), the tail distribution
of this random variable is given by

P(�¿ t) = 2
∞∑
n=1

(4t2n2 − 1) exp(−2t2n2) t ¿ 0:

This implies that

P(�¿ t) ∼
t→∞ 8t2 exp(−2t2):

A.2. Necessity of condition (1)

We discuss here the necessity of assumption (1) for the splitting measure � in the
fragmentation equation (2) (that (1) is needed to construct a random fragmentation
was pointed out in Bertoin (2001)).

Suppose that
∫
S∗ (1 − s1)�(ds) = ∞ and that there exists a solution (	t; t¿ 0) to

(2). Let f be a function of C1
c (]0; 1]) whose support is exactly [3=4; 1] and such that

f(1) �= 0. Since the function t �→ 〈	t; f〉 is continuous on R+ and 	0 =�1, there exists
a positive time t0 such that

supp 	t ∩ [3=4; 1] �= ∅ (A.1)

for t ¡ t0. Then deBne by g an non-decreasing non-negative function on ]0; 1], smaller
than id, belonging to C1

c (]0; 1]) and such that

g(x) =

{
0 on ]0; 1=2];

x on [3=4; 1]:

Take x in [3=4; 1]. For each s∈S↓ and each i¿ 2, g(xsi)=0 since si6 1=2 for i¿ 2.
Thus ∫

S↓

[ ∞∑
i=1

g(xsi) − g(x)

]
�(ds) =

∫
S↓

(g(xs1) − g(x))�(ds)

6 x
∫
S↓

(s1 − 1)�(ds) = −∞:

By combining this with (A.1), we conclude that the derivative @t〈	t; g〉=−∞ on [0; t0[
and then that the fragmentation equation (2) has no solution.
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