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Summary. An estimate is derived for the error committed by the introduction 
of artificial boundaries and corresponding artificial boundary conditions 
when solving wave equations on unbounded domains. The estimate has two 
terms. One is proportional  to the largest reflection coefficient for the artificial 
boundary condition, the maximum taken only on those rays which appear  
in the computation.  The second term is proport ional  to 1/k where k is a 
measure of the average frequency present in the solution. 

Subject Classifications: AMS(MOS): 35L20; CR: G1.8. 

w 1. Setting the Problem 

To compute a solution of the wave equation 

Lu=632u/~t2-- Z (~2u/t')x2=O 

with x ~ N  d, one is forced by the finiteness of any computing machine to replace 
Ra by a bounded subset, g2. Then, in addition to the Cauchy data, one must 
impose conditions at the boundary of this compact  domain in order to define 
a unique approximant.  The usual idea is the following. In the exterior of Q, 
u satisfies Lu = 0 with vanishing initial data. Let N be the Dirichlet to Neumann 
operator,  u IR • 0n ~ 0~ u [~ • on. Ideally, one would impose the transparent condi- 
tion, 0 v v + N v = 0 ,  at the boundary. Then the solution v would be the exact 
solution and waves would pass freely through c~O. However, N is nonlocal and 
this nonlocality, especially in time, makes a time stepping scheme impossible. 
The boundary conditions chosen in practice are designed to approximate this 
exact condition. Waves defined by the mixed problem are partially reflected, 
the boundary  is not transparent. The goal is to impose artificial boundary condi- 
tions which are weakly reflecting in some sense. Such conditions are often called 
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absorbing since the majority of a wave is absorbed by the boundary and only 
a small part is reflected. To summarize, a good artificial condition must define 
a well-posed mixed initial boundary value problem and should be absorbing. 

In two important papers, Engquist and Majda [2, 3] constructed a family 
of such boundary conditions whose reflection coefficients (to be defined later) 
could be made as small as one likes. They were generated by Pad6 approximants 
to the exact, or transparent, condition. Taylor polynomial approximations of 
order higher than one yield ill-posed mixed problems (see also [10]). 

It is the goal of this paper to analyze the error committed when using artificial 
boundary conditions. The error estimate is a sum of two terms. One is propor- 
tional to the largest relevant reflection coefficient, and the other is proportional 
to 1/k where k is a measure of the average frequency in the wave considered. 
The latter is present because the ideas of geometric optics, in particular the 
reflection coefficient, are appropriate at high frequency only. 

The result, and the proof, are quantitative versions of the now standard 
qualitative results describing the reflection of singularities. 

w 2. The Artificial Boundary Conditions 

We suppose that Cauchy data are given in a set c 0 c N  a. The computation 
is then to be performed in the artificial domain f2, co~ f 2 c N  a. Two common 
choices for f2 are balls and rectangles. We suppose that f2 is convex with smooth 
boundary of strictly positive curvature (unhappily, rectangles do not satisfy this 
hypothesis). The approximate solution, v, is defined in [0, T] x f2 as the solution 
of a mixed initial boundary value problem 

L v = 0 ,  in ]0, T [ x  f2 

B y = 0 ,  in ]0, T [  x 0f2 

v = u  and v ,=u ,  at {t=0} x ~2. 

Here, B is a boundary condition given by an operator of order m at P,~ x 0f2 
possibly pseudodifferential in the 0f2 variables. Since ~ x Of 2 is noncharacteris- 
tic for L, we can express any derivative of v in terms of tangential derivatives 
of v and its outward normal derivative 0~v. Thus, the boundary operator can 
be written in the form 

B = P 0 ~ + Q ,  

where P (respectively Q) is a pseudodifferential operator of degree m -  1 (respec- 
tively m) on the boundary ~ x 0f2. The operators P and Q are assumed to 
be differential in time, so their symbols are polynomials in z. The principal 
symbols of P and Q are denoted P,,_ ; and Qm. 

We suppose that the mixed problem L, B is well posed in the sense that 
for Cauchy data, v(0, .), vt(0, .)~C~(f2) there is a unique solution veC~)([0, T] 
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x D) and there is a constant, c, independent of v so that 

max ~ Iv,(t)lz+lvxv(t)12dx<c ~ Iv,(O)12+lVxv(O)lZdx. 
O<t<T ~ 

The conditions constructed by Engquist and Majda are well-posed in the even 
stronger sense of Kreiss [2, 3, 5, 10]. 

w 3. The Sets F and Fb of Important Codirections 

For  fixed T > 0 ,  we want to estimate the difference u - v  on [0, T] x ~. The 
method is microlocal. Only a subset of the frequencies in T*([0, T] x ~) are 
relevant. First notice that the wavefront set WFu is contained in the union 
of null bicharacteristics of L which pass over ~o. The projections of these null 
bicharacteristics onto t, x space cut P~ x 0~2 transversally thanks to the fact 
that ~2 is strictly convex. At q in the boundary these bicharacteristics project 
to points z, ~ 'e T*([0, T] x c~2) with Z'2 >1~'[ 2, that is, they lie in the hyperbolic 
region for L. Over such points pass two bicharacteristics, one leaving ~ and 
the second reflected. 

The reflected curves will not lie in the wavefront set of u, but will usually 
be carriers of singularities of v. These rays may again encounter the boundary 
where they will be reflected, passing again over hyperbolic points. 

Let F c T* (F, x ~2) be the set generated by the null bicharacteristics passing 
over (o and their reflections. Let Fb be the projection on T*(IR x 0~2) of the 
points in closure of F. 

We use the standard extension, WFb, of the wavefront set, easily defined 
for solutions of L v s C  ~ up to the boundary. This subset of T*(IR x ~2)w 
T*(N x ~2)  is defined to be the ordinary wavefront set over the interior. At 
the boundary one introduces local coordinates so that N x [2={y1>0},  
Y=(Yl ,  Y'), and rl=(q ~, rf) is dual to y. Then (y', rf)CWFbv if and only if there 
is a pseudodifferential operator  A(y' ,D')eOPS ~ that is the symbol a(A)~S ~ 
properly supported and elliptic at y', q' such that A v is smooth near y'. Member-  
ship in H s microlocally at y', 7' is defined similarly, A r c H  ~ near y' being the 
criterion. Now standard results on the transverse reflection of singularities yields 

WFbuu W F b v c F u  ~. 

For a computat ion in [0, T] only the parts of F and Fb in this time band 
play a role. 

w 4. The Reflection Coefficient r(t,  x;  T, ~') 

There are many equivalent ways to define the reflection coefficient r. We recall 
two in this section and a third will appear in the proof  of the main estimate. 
The function r is defined on the hyperbolic region, {Z 2 > [~ '  [2} C T*(IR x ~O). 
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1. Plane Wave Definition 

This is the usual treatment in physics texts. For  q ~  x t~Q, choose Euclidean 
coordinates so that the outward normal to t3f2 at q is (1, 0 . . . . .  0). Define a 
homogeneous constant coefficient boundary operator ~ by taking the principal 
symbols P,,_ ~ and Q,, and freezing the values at q. 

For  z, ~' in the hyperbolic region over q, the two points in Char Lc~ Tq* 
which project to (q; z, ~') are (q; z, + ~ ,  ~') where ~l =--(1--1~'12/Z2) 1/2"c" Let w_+ 
-el4 '+,  qS+ =((z ,  +~1, r (t, xl ,  x')), be the corresponding exponential solu- 
tions of the wave equation. Note that z and ~ have the same sign. Then, 
w_ is calted the outgoing wave and w+ incoming, and r(q; z, 4') is the unique 
value such that w_ + r w + - w satisfies the boundary condition ~ w = O. 

Combining the definitions of ~ and w above yields an equation for r, 

P,, l (q;z ,~ ' ) i~ l (r -1)+Q, , (q;z ,~ ' ) ( r+l)=O.  

The coefficient of r is equal to ~ w +  and does not vanish. If it did, then w+ 
would be an incoming plane wave solution of Lw+ =0,  ~ w +  =0.  Starting with 
such a solution it is not difficult to show that the mixed problem L, B is not 
well-posed in the sense required in w 2. 

2. Geometric Optics Definition 

This treatment places the previous one in an analytically convenient form. Given 
a point qelR x 3 0  and a smooth ~b defined on a neighborhood o f q  in ~ x 0 0  
with ((bt)2>lVx~bl z, define two phase functions, 0+ on an ~d+ 1 neighborhood 
of q by 

(63t ~t +)2 = I [7x ~b + 12 , @+ I~ • o~=~b ,  (4.1) 

3v~+ = - - S v ~ -  in R x 30.  (4.2) 

The phase 0 -  corresponding to outgoing waves is the one for which 8vqJ and 
8t~k have opposite signs. Given an outgoing asymptotic solution from geometric 
optics, 

w _ = a _ ( t , x ,  fl)e i~O , a_ ~ ~, a_ .( t ,x)2-",  L w _ ~ 0 .  
n=0 

There is a unique reflected wave, 

w+ = a+ (t, x, 2)e ixq" +, a + ~  ~ a+ , , ( t ,x )2-" ,  L w + ~ 0 ,  
n=0 

so that on ~ x 3gL B ( w + + w _ ) ~ 0 .  On the boundary, the ratio of principal 
symbols a+, o(t, x)/a_, o(t, x) is equal to the reflection coefficient r(t, x, d~b). 

For  artificial boundary conditions, the reflected wave represents error. The 
ratio of reflected to incident wave is measured by r. Thus, 

g--max{Ir(t ,x ';z ,~') l:( t ,x;z ,~')sFb and O N t < T }  
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yields an intuitive lower bound on the attainable accuracy. For  well designed 
schemes, e should be small. 

w 5. Statement of the Main Theorem 

For  solutions of the wave equation on N. d, there is a natural family of conserved 
energies: 

es+l = ~ [0~(1 --Ax)S/2u[2 + I V~(1 --Ax)S/Zul2 dx.  

So long as u is supported in a fixed compact  subset of ~d, es is equivalent 
to the square of the H s norm. We now state the main error estimate. 

Theorem. There is a constant c 1 depending only on co, (2, T, s~TZ+ and a second 
constant c 2 depending also on the absorbing boundary condition B so that 

IIU--VlIHs([O.T] • fl)~Cl Ces(U) 1/2 q-c2 es- , (u) x/2. (5.1) 

Remarks. 1. It is crucial that cl is independent of B. Otherwise, the estimate 
(5.1) would merely affirm the fact that the mixed problem L, B is well-posed. 

2. Let ks_>-0 be defined by 

k 2 = G/es-1. 

Then, k s is a measure of the average frequency present in the solution u, and, 

II u - vii ~s < 2 (c,/~2 .q_ c2/k 2) es. (5.2) 

The frequency ks is large for rapidly oscillating solutions or for solutions which 
have rapid transitions. These are the most important  problems for the wave 
equation. For  them, the second term in (5.2) is small so the reflection coefficient 
is a reasonable measure to use when comparing artificial boundary conditions. 

3. The reflection coefficient is unaffected by lower order terms in B. Thus, 
we provide no guidance in choosing such terms. The ideas of Engquist and 
Majda yield operators which are homogeneous when the boundary is flat. For  
curved boundaries, they have a prescription for the lower order terms. 

Open Problem. Evaluate the effects of the lower order terms in B when the 
artificial boundaries are curved. 

4. The result and proof  extend immediately to variable coefficient operators 
in place of L. The crucial hypothesis is that null bicharacteristics passing over 
~0 cross N x 8(2 over the hyperbolic region. Here, that is guaranteed by the 
convexity assumption on O. 

Examples. We first consider the family of boundary operators 8,+a8~,  a > 0 .  
These are all energy nonincreasing. The case a = 0 is the Dirichlet condition, 
while the limit a ~ + oo yields the Neumann  condition. The value a = 1 is the 
most classical of the absorbing conditions. It is exact in one space dimension. 
We treat the planar c a s e  xe~-~ 2. 

To compute the reflection coefficient at angle of incidence ae[O, n/2[ we 
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use the plane wave definition. Let ~=(cose ,  sine), ~ = ( - c o s e ,  sine). Then, the 
reflection coefficient is the value r such that 

W =-- e i(t - ~ .x )  -t-- r e i ( t -  ~ . x )  

satisfies the boundary condition (~t + a ~/~ x~)w = 0 at x~ = 0. One finds 

a c o s e - 1  
7-- 

a c o s e + l "  

For  the Neumann  condition r - -  1, for Dirichlet r = -- 1. For any of the conditions 
one has [rl < 1 and r --* - 1 as e ~ 1r/2. In addition, [rl is a monotonically increas- 
ing function o f e  in [0, ~/2[ and decreasing in a for ae[0 ,  I]. 

If  the data are given on e ) = { l x l < R t }  and the artificial domain is ~2={Ix I 
~R2} with R I < R 2 ,  then the maximal angle of incidence occurs for the rays 
tangent to the smaller disc. They have since= R1/R2, so the maximal reflection 
coefficient is given by, 

a(1 p2/p2~l/2 1 
- - . . l / . X 2 !  - -  

a ( t -  R~/R~)'/~ + 1 

is 
For  flat boundaries, the second boundary condition of Engquist and Majda 

~ t  02b/ ~2b/ 
BzU--- 63vu-t- ~s 2 c3t2--0, 

where s is arclength in the boundary. For  curved boundaries the condition 
becomes 

0 
6q ~ B 2 u + lower order terms = 0. 

The corresponding reflection coefficient has magnitude equal to the square of 
the coefficient for 0~ + 0t [2, p. 633]. The table below gives values of e for two 
absorbing conditions in the case of concentric discs described above. 

Rz/R 1 2 3 4 

~3+ + ~ 0.072 0.029 0.016 
2 "a E - M  cond. 0.005 0.001 0.0002 

Values of e For  Concentric Discs of Radii R t < R2. 

Computat ions  verify the net advantage of the second condition [2]. 

w 6. Proof of the Theorem 

Let 5_=dist(co, OQ), then u = v  on [0, 6[ x f2. 
For  u, v in H~([0, T] x Q), we estimate the H ~ norm of the difference u - v .  

Any part  dominated by const.e~/_21 can be neglected. Thus, we may suppose 
that for 0 < t < 6 ,  W F u  and W F v  are supported in a small conic neighborhood 
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of the null bicharacterist ics passing over  co. A pseudodifferential  par t i t ion of 
unity replaces the resulting solut ion by a finite numb er  of solutions, each sup- 
por ted  away from ~ x 0~2 for t < 3 ,  and, with wavefront  set suppor ted  in a 
small conic ne ighborhood  of a single null bicharacterist ic  7 +. We abuse no ta t ion  
by calling the cont inuat ions  of these solutions u and v. They satisfy L u e C %  
L v e C  ~. For  u this is on IR n+ 1 and for v on ~ x (2 supplemented  by the homoge-  
neous b o u n d a r y  condi t ion B y = 0 .  The  C ~ te rm is es t imated in terms of es-1. 

M odu lo  a lower order,  hence negligible, error,  u = v until the bicharacterist ic  
7+ approaches  the bounda ry  ~ x ~?~2. At this b o u n d a r y  the singularity of  u 
passes right through.  The  singularity of v is reflected. K n o w n  results on reflection 
of singularities p roved  in increasing generali ty by Chazara in  [1], Lax-Ni renberg  
[7], Ma jda -Oshe r  [6], and Tay lo r  [8], show that  the wavefront  set of  the re- 
flected wave is conta ined in the reflected bicharacteristic.  We need to make  
that  result quanti tat ive.  

N e a r  the point  of  reflection qe lR x ~?~, we int roduce local coordinates  
y=(y~, y') so that  ~ x O becomes  {Yl >0},  ~3~ becomes  -O/~?y~, and, 

L (y, Dr) = (O t)2 + M (y, D') + lower order. 

The bicharacteris t ic  7+ passes over  a point  (q; q')~ Tq* (N~e). 
As in [9, Chap.  IX]  and [4, w 24.2], we make  systematic  use of  pseudodifferen- 

tial opera to r s  in y', D' depending smooth ly  on Y l- We use the factor izat ion 
(24.2.5) of [4], 

L = ( D  1 - A +  (y, D'))(D1 - A _  (y, D'))+fl(y, D') 

with tiES -~176 on a conic ne ighborhood  on (0, q; ~'). This  factorizat ion,  in t roduced  
for this purpose  by Lax and Ni renberg  [7], is used to control  the incident 
waves 

u_ = ( D 1 - - A _ ) u ,  v_ - ( D  t --A_)v,  
which satisfy, 

(D1-A+(y ,D ' ) )u_eC ~, (D1--A+(y,D'))v eC ~~ 

The first holds in a full ne ighborhood  of q, while the second is valid in Yl >0 .  
The C ~ terms have H s-  1 no rms  es t imated by e~/_Zx, hence makes  a negligible 
cont r ibut ion  to u_. These scalar hyperbol ic  pseudodifferential  equat ions  have 
7+ as bicharacteristic.  In this way, we see that  the H s-1 n o r m  of u _ - - v _  near  
q is bounded  by ,~.,1/2 The  H s - 1  ~ s - l .  no rms  of u_,  v_ give est imates for the H ~ 
no rms  of the incident parts  of  u, v. 

The  reflected parts ,  

u+ - ( D r  - A +)u, v+ --=(D1- A +)v, 

are defined using A+ f rom the factor izat ion (24.2.6) of  [4]. We have, 

(Dx-.71_)u+eC ~ (D~-71_)v+eC ~ (6.1) 
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the first on a neighborhood of q and the second in Yl >0.  Propagating into 
Yl <0,  we see that near q, Ilu+ thns<ce~/-21. 

It remains to estimate v+ near q. Thanks to Eq. (6.1), it suffices to estimate 
the H s-1 norm of the trace v+lyl= o near q. As f l + + f l _ ~ O P S ~  +l x IR~,), 
we see that in Yl = 0  

D1 v=(v+ + v_)/2 modulo H s-2. 

A+ --.4_ is elliptic at (q; r/'), its principal symbol is equal to 2L2(q, q,)1/2 which 
is positive since q, 1/' is in the hyperbolic region. Choose E a microlocal parame- 
trix, so 

v=E(y,  D')(v+ --v_)/2 modulo H ~- 1 

The boundary condition then reads, 

P(v+ +v_)+QE(v+ - v _ ) = 0  modulo H ~-m-l. 

Microlocally near (q; t/'), this is a pseudodifferential equation for v+ in terms 
of v_. The solution is 

v + = R (y, D') v_ modulo H ~- 2, (6.2) 
where R~OPS  ~ 

The next step is to identify the symbol of R as the reflection coefficient, 
a thirs interpretation of this important quantity. Let ~b, ~• be as in (4.1), (4.2), 
and, let w• be defined on a neighborhood of q in R x sq by, 

( D 1 - A + ) w _ ~ C  ~176 , ( D I - f I _ ) w + E C  ~ , w_ I r ,=0=d ~* , (6.3) 

B(w+ + w _ ) ~ 0 .  (6.4) 

The function w+ + w_ is a geometric optics solution as in the second character- 
isation of the reflection coefficient. The principal symbol of the incident wave, 
w_, is identically equal to one by the last equality in (6.3). Thus the principal 
symbol of the reflected part is equal to the reflection coefficient, 

w+ )r, =o = r(Y ', dq~)eia~ 2-  x). 

On the other hand, the asymptotic expansion of a pseudodifferential operator 
applied to e ~a~ (see [9, w VIII.7]) yields at y~ =0,  

e-iae'Q(w+ + w_)= Q,(y',  d~b)(a+, o(Y') + 1) + 0(2-1),  

e-iZ~D 1 w+ = a(~_)(y' ,  d qh)a +, o(Y') + 0 (2-1), 

e-~:~'O~ w_ =a(A  +)(y', d~ )+  0(2-1).  

Plugging P O ~ ( w + + w _ ) = - i P D ~ ( w + + w _ )  and the above identities into the 
boundary condition (6.4) and comparing with the definition of R gives, 

w+ It, =0 =a(R)(y' ,  dq~)eiZ'~+O(.2-l), 

and the identification is complete. 
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T h e  s h a r p  G f i r d i n g  i n e q u a l i t y  a n d  (6.2) t h e n  y ie ld  n e a r  q in  Y 1 - 0 ,  

liv+ IIn~-, <~  IIv-II .s- ,  + c  IlvllHs ,. 

N e a r  q in the interior, the component v_ is then controlled using equation 
(6.1), yielding 

tl II~,~_-__ [[v+ lt~s-, + IIv-ll~,s-, + l lvtlL-,  <c~,2es+ces-1 

in  s u c h  a n e i g h b o r h o o d .  T h e n ,  s t a n d a r d  m i c r o l o c a l  t e c h n i q u e s  a p p l y  u n t i l  t h e  

n e x t  r e f l ec t ion .  A t  t h a t  p o i n t ,  a n o t h e r  f a c t o r  e will  i n t e r v e n e .  O n e  c o n t i n u e s  

w i t h  a t  m o s t  a f ini te  n u m b e r  o f  r e f l ec t ions .  T h e  e n d  r e s u l t  is t h e  d e s i r e d  e s t i m a t e ,  

(5.1). [ ]  
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