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HIGHER ORDER PARAXIAL WAVE EQUATION APPROXIMATIONS 
IN HETEROGENEOUS MEDIA* 

A. BAMBERGERt, B. ENGQUISTt, L. HALPERN? AND P. JOLY? 

Abstract. A new family of paraxial wave equation approximations is derived. These approximations 
are of higher order accuracy than the parabolic approximation and they can be applied to the same 
computational problems, e.g., in seismology, underwater acoustics and as artificial boundary conditions. 
The equations are written as systems which simplify computations. The support and singular support are 
studied; energy estimates are given which prove the well-posedness. The reflection and transmission are 
shown to be continuously dependent on material interfaces in heterogeneous media. 

Key words. one-way wave equation, higher order approximation, migration 
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1. Introduction. Paraxial wave equation approximations are used to describe wave 
propagation with a preferred direction. The most common paraxial approximation is 
the parabolic equation 

10a2u t2U C a2U 
( 1.1 ) _- 2+ - = cAt dx2&t 2 

approximating the scalar wave function 

1 a2u /l 2u 92 u\ 
(1.2) c2 dt-( + 2)= 0. 

The solution u(x, t) of (1.1) is an exact approximation of solutions to (1.2) for plane 
waves traveling in the positive x2 direction, u =f(x2- ct). In [1], we studied mathemati- 
cal properties of the parabolic equation (1.1) and its generalization to variable velocity 
c(x). The paper [1] also contains references to the applications of paraxial approxima- 
tions in seismology, acoustics and as artificial computational boundary conditions. 

The error in the approximation above increases with increasing angle 0 between 
the direction of propagation and the x2 axis (u =f(cos 0x2+sin Ox, - ct)). In order to 
reduce this error higher order approximations other than (1.1) have been suggested. 
Claerbout 15] introduced a third order equation 

1043u 493u 3c 93u U c2 93 U 
(1.3) 3 + 2 22 3 c &t &+t ax2 4 ataxl 4 ax2ax, 

the so-called 45?-approximation for applications in seismology. Higher order paraxial 
approximations have also been suggested as artificial boundary conditions [8], [11]. 
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In this paper we shall present a new family of higher order paraxial approximations. 
The approximations are written as second order systems of partial differential equations. 
The higher order scalar equations in [8] can be written as systems of our type (see 
also [16]). 

In ? 2, the paraxial systems of equations are derived for homogeneous media. The 
derivation is based on rational approximations of the dispersion relation for (1.2). The 
section also contains analysis of the propagation properties of the equations and an 
error estimate. The error estimate shows that it is possible to approximate (1.2) by 
paraxial equation to any accuracy by choosing the order of the paraxial equation high 
enough. 

New higher order approximations for heterogeneous media are derived in ? 3. 
Here it is essential that the approximation be written as a system rather than a scalar 
higher order equation. The formulation as a system is also fundamental for the analysis. 
The well-posedness is established and propagation properties are analysed. The support 
of the fundamental solution is proved to propagate in a half-space with a finite speed. 
This is an essential feature for a paraxial equation. The transmission and reflection at 
an interface is shown to be continuously dependent on its location. 

In ? 4, numerical results are presented. Numerical approximations of the funda- 
mental solution of two higher order paraxial systems were computed. Different calcula- 
tions with different velocity profiles were performed by F. Collino [6]. 

Some of the results of this paper were announced in [9] and some technical details 
in the proofs are omitted here but are given in the report [3]. As in [1] we restrict 
ourselves to two space dimensions, but the techniques are the same in R'. 

2. Higher order approximations in homogeneous media. 
2.1. Derivation of the equations. Consider the two-dimensional wave equation 

(1.2). Let us recall [1] that the paraxial (or one way) approximation consists of 
approximating the part of the solution to the Cauchy problem propagating close to 
the positive x2 direction. By using the Fourier transform, this part u+ can be written 
as a sum of harmonic waves traveling in the positive x, direction 

(2.1) u'.(x, t) = Jai(k) exp i(w (k) t- k x) dk, 

where the amplitude a(k) depends on the initial values, and w is defined by 

(2.2) c (k)=(l-(c())2) 

The function u, is solution of a pseudo-differential equation, the symbol (or the 
dispersion relation) of which is 

(2.3) ( (= ck2-W(1 ) 

Our aim is to approximate u, by the solution of a partial differential equation, suitable 
for computation. Hence we have to approximate the symbol ' by rational functions 
in w and k. This is done by approximating the function 

(2.4) f(X) = (I _X)112 

by polynomial or rational functions in X = c(kl/w). 
The term c(k/wl) in (2.3) represents the sine of the angle between the direction 

of propagation of the harmonic plane wave and the x, direction: c(k,/w) = sin 0. Many 
applications are concerned with a narrow range of wave vectors, so that this angle 
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remains small. Thus the classical approach was to approximate f(X) for small values 
of X. 

A first-Taylor approximation to f 

f(X) =1 -2X+ O(X2) 

yields the following approximation to i 

ck2-w l- (c 1 

Multiplication by w leads to the quadratic polynomial 

(2.5) Ck2W- _W2 c 2 k2 
2 

which is the symbol of the so-called parabolic or 15'-approximation (1.1) (for details 
see [1]): 

(2.6) 1 a2u a2u c d 0 
c at atax2 2 ax1 

A first Pade approximation 

f(X) =1 -X+ O(X 3) 

leads to the symbol 

(2.7) -03 + Ck2W2+ C2kl20 - 4c3k2k2 

of the so-called 45?-approximation (1.3) 

(2.8) 1 ia3u a3u 3 a3U 
C2 a3U 

t3 atX2 C -7t_ 2 0X (2)c atatax2 4ata4 4 ax2ax ? 

A generalization to any order, by means of continued fractions (corresponding to three 
diagonals of the Pade table), has been used in [8] for absorbing boundary conditions. 
They are defined by 

X 
(2.9) gN(X) = 1 X 1(X) = 1. 

These functions are rational fractions in X, and they have been shown in [2] to have 
the important approximation property 

lIgN -f IIL-([0,1]) N 

From gN the partial differential operator of order N can be derived. The high order 
of derivative makes the practical use of these equations more difficult. Another way 
of writing the equations has been found independently by Halpern [9] and Guan-Quan 
Zhang [16] and had been used previously to design absorbing boundary conditions 
in [11]. It is based on the remark that a rational fraction can be split up into a sum 
of prime fractions. For example, the first Pade approximation is also equal to 

ilx f(X) - 1> _ + 0(X3). 

A natural generalization of the approximation (2.9) is then (see Figure 2.1) 

(2.10) fn(X) =116X- E l 2X 
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ff(X2)2) 

FIG. 2.1. Variations off,, for P3 0. 

The coefficients (3, (3k and yk are such, that 

(2.11) ?< yn < ... < YI < 1, 

(2.12) 8- , .8k > ,- niC. 

This generalization is justified by the fact that the Pade approximations gN can be 
written in the form (2.10). More precisely, the results are the following: 

(i) 92.+l(X) =f.n(X) 

f3 =0, 

2 sin2 k' 

kir 

Ywt 2 COSn+1 + 

(ii) 92n (X) = f-c (X) 

-1 

- 2n' 

with 
P3k 

=-sin2 - 

ki7r 
Yk cosk i2n 

The constraints (2.11) are natural. They express that f, is continuous on t?, 1]. The 
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constraints (2.12) on /3 and Pk ensure the hyperbolicity of the corresponding operator, 
as will be discussed below. 

Remark 2.1. The choice of the coefficients yk, /3, Pk depends on the applications. 
In many areas, one is concerned with thin beams, and hence the family gN will be 
chosen. For other purposes, one could, for instance, compute them to get an L' 
approximattion to f (For a more complete discussion see [14].) 

The decomposition (2.10) of the function fn enables us to write the approximate 
equation in a very convenient form. If u is a solution, its Fourier transform d' satisfies 

(2.13) [ck2 Wf(( ))] ) 

which implies 

n c2k2 
(2.14) ck2u Wu + @ ? Pk 2 / 2 32k2u 

k=1 w2ykc k1 

if /8 -= 0. We define n function Pk, 1 _ k c n, by their Fourier transforms 

c2k2 
A 1k A 

(2.15) (Pk 2_ 2 2 k2 U2 

so that equation (2.14) can be rewritten as 

n 

(2.16) cka-w a+_ U E /3 kPk = 0. 
k=1 

When the inverse Fourier transform is applied, (2.15) and (2.16) lead to the following 
system of equations: 

aU0u n O (Pk 
LU+Co - E, Pk dt =?'5 

(2.17) | kcyk kC , 1kn 

This is a system of (n + 1) linear equat,ions: one transport equation in the x2- direction 
and n one-dimensional wave equation in the xl direction. For /3 $ 0, we get the following 
system: 

(d2 da2 pCd2 kEk-2= 

) Ot Otx2 Ox11 atO 

(2.18) d 4k 2 2 2Pk 2 d2u 

A2-C 2- x 

This formulation is useful in three wa,ys. It is ea,sy to derive a priori estimates, it can 
be extended to heterogeneous media and it is convenient for numerical computations. 

Remark 2.2. In order to solve the Cauchy problems for (2.17) and (2. 18), additional 
initial data are required for the functions q'k and dpk/Ot. We shall return to this later. 

2.2a Propagation properties of the operator In this section, we shall only consider 
the case /3 =0(. If /3 $ 0, the results are somewhat different, but the techniques are the 
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same [3]. The propagation properties depend only on the determinant of the system, 
i.e., the approximate operator Sn the symbol of which is 

or, after clearing the denominator, 

n n n 

(2.19) Y.4(to, k) = (ck2 - ) H (2- c2 ykk)-C2w2k2 I [3k Hl (2- c22k ). 
k-l ;(=I j=1 

j?k 

Ln is a homogeneous operator of global order 2n + 1 and of order 1 in x2. It is clear 
from (2.17) that the equation is hyperbolic. Let us make this precise. 

DEFINITION [10]. The operator Y is hyperbolic in time if Y(1, 0) $ 0 (ie. time is 
not characteristic for Y) and if '(w, k) has only real roots Ct for k e R {0, O}. If, in 
addition, the roots are simple, f is strictly hyperbolic. 

LEMMA 2.1. The operator Y'n is hyperbolic in time, but not strictly hyperbolic. 
Proof k being fixed, the number of roots of ?n is the number of solutions z (finite 

or not) to the system: 

n =f(Z2), Y =k2 Z. 

It is now easy to check that the number of intersection points is 2n + 1. In particular, 
if k, = 0, c = -k2 is the only simple root of Yn, and cv = 0 is a root of multiplicity 2n. 

The theory of hyperbolic operators (cf. [10]) ensures that ?n has an unique 
fundamental solution En, defined for t> 0. Its support can be given explicitly. We 
define a subset Ln of R3 as the component of (1, 0, 0) in the set {(cw, k), ?n(cv, k) 0}. 
Then [10] the support <n of En is included in the closed convex cone with vertex at 
0, dual of 2,n in R', but in no smaller closed convex cone with vertex at 0 (Fig. 2.2). 
In our case we can write an explicit formula as follows. 

THEOREM 2.1. The support 7n (t) of thefundamental solution at time t is the domain 
of RS bounded by the x, axis and the curve 

(2.20) F~(t) = x= 2AfA (A2)X2,x20 AI/c. 
n 

I.0 {ct = [fn (A2) - 2A 2fn' (A 2)]X2, 
X2 I 1 

The form of the fundamental solution provides important information concerning 
the propagation of the solutions of ?n. Every solution of equation Y'nu = 0 propagates 
in the positive x2 direction, with a velocity V'c c. This is formulated precisely in the 
following theorem. 

THEOREM 2.2. If the initial values are of compact support in X, at any time t one has 

SUpp U C X+ Wn(t). 

Theorem 2.2 proceeds directly from Theorem 2.1. Theorem 2.1 is achieved by 
writing explicitly the equation of -9n, and then the equation of the dual. For more 
details see [3]. 

It is more difficult to study the singular support than the support of the fundamental 
solution, since Sn is not strictly hyperbolic. Let us first recall that the singular support 
of a distribution u is the smallest closed domain where u is not c'6. One can use the 
notion of wave front set (WFS) which provides additional information on the sin- 
gularities [10]. We restrict ourselves here to giving the singular support of En (Fig. 2.3). 
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iX2 

/ 

ct~~~~~~c1 

* 1 . _ . L__~ ~~~~~~~~~~~~~~~~~~~~~XI 

FIG. 2.2. Support of the fundamental solution. 

X2. 

ct 

it 
A L\ 

B~~~~~~~~~~~~~~~~~~~~~~XI 

Ct~~~~~~Cl 

CFl t 

FIG. 2.3. Singular support of the fundamental solution. 
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THEOREM 2.3. The singular support of En at time t consists of two parts: the curve 
defined by: 

(2.21) rF (t)= {X>2Af-(A)X2 x2_O A E R 

and the segment {x, jx1j I ylCt, x2 = 0}. 
The proof is technical and will be omitted here. It is given in [3]. Let us only 

point out that, for a strictly hyperbolic operator, the wave front set is the set rF1(t) of 
nullbicharacteristics passing through the origin. When the operator is no longer strictly 
hyperbolic, the wave front set contains, in addition, the lines making the set convex 
(see [7]). 

Since the operator ?n is hyperbolic, it follows in standard fashion that the Cauchy 
problem is well posed. Moreover, the form of the support of the fundamental solutions 
enables us to conclude that the initial boundary value problem in the half-space x2 > 0 
is well posed (for details see [10]). 

We now turn to an approximation result. All the calculations are formal, but will 
be fully justified by the regularity results given in ? 3. 

2.3. An error estimate. In practice we wish to approximate the problem in the 
half-space R2+ {X X > 0} 

d-Au = , xxeR 29 t O0 

(2.22) 1 u(t,x)=0, X92R, tC0 

t u(t,x1, 0) = g(t, X1), X1 ER, t'O, 

by the problem, 

fnUn-0 xef + t_O 

(2.23) un(t, x)=, xER, t0 

Un(t, Xl, ) = g(t, Xl),, Xl E R t-'O. 

We shall make the following assumptions on the boundary value g: 

(2.24) g e L2(R+ x R), 

(2.25) S = supp 
' c {(, k), kc, <1} 

where g is the Fourier transform of g with respect to t and xl. The first assumption 
is only a smoothness assumption, and the second one ensures that g and u contain 
only propagating modes. This hypothesis is essential for obtaining any approximation 
result. 

THEOREM 2.4. If the boundary data g satisfies assumptions (2.24) and (2.25) and 
if ?n is such that fn- approximates f uniformly on [0, 1] then un converges to u in the 
following sense: 

(2.26) VX2 E [0, +c0[ lim || U - Un || L([O,X2];L2(R+xR)) = 0- 

Let us recall that fn approximates f uniformly on [0, 1] means that IIfn fIIL?[o.10 
tends to 0 when n tends to infinity. The sequence gN of Pade approximants introduced 
in (2.9) satisfies this assumption. 
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Proof The analysis is similar to the one given for the, absorbing boundary condi- 
tions in [8]. The Fourier transforms in t and xl of u and u,, can be written as 

i(w,kl, x2) = '(w, kl) exp -i(o - c ( x2 

i4(w, kl, x2) = j(w, kl) exp -ifn c k 
x2. 

Using Parseval's theorem, the L2 norm of the error is given at every point x2 by 

IIUUnII2= I| -_ -2 d(odkl. 

The integral on S is handled in the following way: 

|| 1uu2d(o dkl.,.- 1g12exiz f( )) 

- ep- iWXf C(k)) dw dkl. 

Lebesgue's theorem ensures this term to converge to zero if fn tends uniformly to f 
Remark 2.3. Hypothesis (2.25) is restrictive, and it can be removed by expressing 

g as the solution of the wave equation on [-L, 0] with g given at x2= -L L can then 
be chosen such that (2.26) holds for any datum at -L (for details see [3]). 

3. New higher order equations in heterogeneous media. The purpose of this section 
is the same as that for the extension of the parabolic approximation to heterogeneous 
media [1]. We wish to generalize the equations (2.17) and (2.18) in such a way that: 

(i) The Cauchy problem and the initial boundary value problem are well posed. 
(ii) It is a good approximation of the wave equation for heterogeneous media 

with small velocity variations. 
(iii) It has good continuity properties with respect to material interfaces. The 

precise definitions are given in [1],,and we shall come back to the last two points below. 
For the parabolic approximation 

1 + -- u 
C 

_u=0 

c A OtOx2 2 a4 

we introduced unknown functions e, , X of c and determined them so that the equation 

c at c;(c) Ox2 at 2X(c)f(c) ax, ( xl 

satisfied (i), (ii) and (iii). The resulting equation had the form 

c 2 d x =0. 
avV taX2Y4J 2-- 

a,-, 

It is of course tempting to apply the same method to higher order equations, but it 
seems to be practically very difficult. We therefore restrict ourselves to transforming 
the terms 02/0l2 in (2.17) and (2.18) as we did for the parabolic approximation. 

We set 

(3.1) v = c-1/2u; =C 1/2 
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and introduce the new systems of equations, 

(3.2a) 1 dv dv a( k 
(3.2a) + - J8k 

~ 
=0, 

COat OX2 k=1 C Ot 
1 

a2IOk 2 oa O1k\ 01 v\ 
(3.2b) - 2 Yk 

C_ =kc ) k5 k'n 

if , = 0, and 

(3.3a) 1OaV 02V a O V_n 1 aO2fk 
(3c (t2Ptx2 Ox1 a xj ka1C at2 

(3.3b) 1 k 2 01 O1(k\ 0 1 O \ k n 
C a2 YXIax) ax,c) a1k-n 

if , $ 0. We shall see that these equations have the properties we expected and we 
begin with the well-posedness. 

3.1. Analysis of the well-posedness. We shall prove the well-posedness for the 
system (3.2), and we only state the results for system (3.3). We define the initial value 
problem for system (3.2) as follows: Find (v, k) 1;kln R 2X [0, T]t R, solutions of 
(3.2) with the initial data 

v(x, 0) = v, 

(Pk(X, 0) = p eR2k (3.2c) x E R . 
O(Pk( 0) I 

dt(x, O) =(P k, 
a9t 

THEOREM 3.1. Assume that the initial values (3.2c) have the regularity: 

v? avOx2 O1 Oxk 
2 

2) l 

The problem (3.2) then has a unique weak solution, with the regularity: 

Vt, q,k E Wlr(0, T; L2(R2)) n W2',(0, T; H-1(R2)), 1 _ k-' n 

aV+ 2 ay k E L(O, T; L2(R2)), 1 ' k ' n 
Ox1 Ox1 

-x E L(0, T; L 2(R 2)). 
ax2 

Moreover the following energy is constant as a function of time: 

E(t) = - dX + 2 E 2k !k | dx 

(3.4) P Jc Y+yj? dx 

+- E Ak ||c|+ kdx|d 

For a definition of the Sobolev spaces Hk and Wm'P see [12]. 
Proof The well-posedness follows in standard fashion from the energy estimate 

using the Galerkin method. We derive the latter in four steps: 
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(i) We differentiate (3.2a) with respect to t, multiply by avlat and integrate over 
R2. We then have 

1 d [ 1 |av| 2X =nE| 1 a2fPk aV (3.5) 1- - d[JJlav2 ] 
Gk3J-a -adx 

2 dt R;2C at k=1 Ri2 c at 2 at 
(ii) We multiply (3.2b) by av/a t + y2akfk/dt and integrate over R2. We get 

!A2 H! f/ 
2t7kl |d|d+l c?|d+y72j?.x dxl 2 dtL kJR2a C1 JR aX1 a412 

(3.6) 2r ! dt k tdX=, a 

JR2C at at 

(iii) We multiply (3.6) by /3k and add the resulting identities for 1 ' k n. This 
yields 

_ dr Y2 1 ag1k2 dX f av 2aOjIk2 
2d[EPkYk J| at dx+2kk E J|| C -+ Yk - dx] 

(3.7) ~ ~ ~ na #k 3 
+ E iJk || kdx o. 

klJJR2 CaCt at 

(iv) We eventually add (3.5) and (3.7), and we obtain 

d E(t) = 0. 
dt 

Remark 3.1. Since the coefficients do not depend on time, the regularity in time 
of the solution only depends on the regularity of the data. The regularity in space is 
limited by the regularity of c, even if the data are smooth. 

Remark 3.2. As a consequence-of the energy estimate, a continuity result of the 
solution with respect to the velocity can be stated (see [3]). 

For the case f $ 0, we need to specify another initial value 

(3.8) v 1(x)=- (x, ). 
a t 

The result is then the following theorem. 
THEOREM 3.2. Assume that the initial values have the regularity 

a9v0 v?- 011 e 'L 2(R 2), 
ax,' 

k~ 11 EL L(fR 1 ck n. 

The Cauchy problem for 3 $ 0 then has a unique weak solution, with the regularity: 

v, 'fk E W1'X(0, T; L2(R2)) n W2'0"(0, T; H_'(R2)), 1 C k _ n 

axE L(, T; L2(R2)) 1 _ k n. 
ax," 49X 
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Moreover this solution satisfies the identity E(t) = E(O) a.e. in [0, T], where the energy 
E(t) is given by 

||1 |dvp2 av 2 
2(t)= 2JC at 2 RJ2 ax, 

1 n 
2 ~1 a P2 

(3.9) '+- E IkYk II - k dx 
2k=1 JR2C aX2 

2 1+( 2+2 k dx. 
+2 E, k llC |-+ Yk |d 2 j=1 R ax, ax1 

The proof is similar to the one for Theorem 3.1 above (see [3]). 
Remark 3.3. Remarks 3.1 and 3.2 are still valid. 
We shall now define the initial boundary value problem for (3.2) in the halfspace 

2 

Find (v, 4/k) :42 x [0, T] -* R, solutions of (3.2), with initial data 
(3.10) v?, ?k, kil: 12 -- R and a boundary value at X2 = 0: V(x1, 0, t) = g(x1, t) on 

R xx[0, T]. 

THEOREM 3.3. Assuming the data have the, regularity, 

* V0, (P, lk4, a vo/ax2, a v/ax1 + yka//x1 E L (R+) 1 _ k _ n, 
* g E H1(0, T; L2(R)), 

the initial boundary value problem (3.2), (3.10) has a unique weak solution with the 
regularity, 

v, k E W1'r(0, T; L2( 24)) n W2'o(0, T; H-1(R24)), 1 = k-n 
dv +i 2 W"e (0 , T; L (R+)) 1 k= n=n av 2 aIIJk 22) 

ax, ax, 
av 22) 

-2E: LO(O, T; L (fR+)) ax2 

Moreover the following energy identity holds 

(3.11) E(t)=E(0)+-J - | (xl,s) dxl ds. 

The energy E(t) is given by 

EW = dx+- ZPkYk JJ 
2 |IR2 C I dt | 2 k=1 IIR2 c at 

(3.12) 1+ nf valI 

(1+ k| C -+ Yk dx. 
2 k==1JJR2 ax1 ax1 

Proof. The energy estimate is obtained in exactly the same way as in the Cauchy 
problem. Only step (i) is modified since a boundary term appears. The well-posedness 
is proved using a Galerkin method. 0 

When the initial values of v and av/at are identically zero, the initial values for 
i/k and a k/a t must be chosen equal to zero. It is the important case for the applications 
(see for instance the migration process in geophysics). When the initial values do not 
vanish, the choice of i/k and at/k/at at time zero is not so clear and remains an open 
question. 
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Remark 3.4. We required here a strong regularity for the datum on the boundary. 
It can actually be removed and weaker solutions can be found [3]. 

In the case P3 #0, we get a similar result, with the same differences as stated in 
Theorem 3.2 (see. [3]). 

3.2. Propagation properties. We restrict ourselves to the case where /3 = 0, i.e., to 
the solution of problem (3.2). We intend to generalize the propagation properties for 
homogeneous medium. The results are similar to those stated in [1] for the parabolic 
approximation and the technique is again based on energy estimates. 

Theorems 3.4 and 3.5 express in different ways that the solution propagates only 
in the positive x2 direction, even in heterogeneous medium. Theorem 3.6 specifies an 
upper bound for the propagation speed. 

THEOREM 3.4. Under the assumptions of Theorem 3.1 and if 

Supp V U ( U (supp kio U supp if)) c R 2 

then, at any time t > 0, one has 

SUPP V(*, t) UU SUPP 41k(., t)) c R+. 

THEOREM 3.5. Let (v?, ('i4)l, (44)l, c1) and (V2, (O')2, (frD2, C2) be two families 
of data, satisfying the assumptions of Theorem 3.1 and defining two solutions ofproblem 
(3.2) (v1, (rk)1) and (V2, ('fk)2). Suppose also that the data are equal in R2: 

0 0 
V1 

= V2 

(k)l= (0k)2 2 
a.e. in R_, 

(frD)l (fr)2 
Cl = C2 

then, at any time t > 0, the solutions are equal in R U 

vj( , t) = V2(@, t) a. e. in R _ 

(q/k)l(*, t) = (fk)2(*, t) Vk 1 ' k' n, a.e. in R2, 

where R= - {x, X2 < O}. 

Proofs. As in [1], both results follow from an a priori estimate in a half-space. 
LEMMA 3.1. The solution of the problem (3.2) has the regularity v(', x2, ') E 

Lo(R; H1(0, T; L2(aR))), and it satisfies the energy estimate in the half-space lx,= 
{X, X2-X2}: 

2j'f IJ a dx+E k4 
2 C I at (P 2 

2 k- kII c|dx + ek Pk 2| dx 

1 J |dv a X3 221n | 
kx 2JJY P C -+ )/jk dx 

2 k=1 nx ax, ax, 

(3.13) + I -(Xl,X2, s)1tdxl ds 
2 JOJR at 

2 
i2aX1 

k=1 C 2 k=1 
ky Id/2 I 

1 
n av ~0 02 (o2 +2JJ G c -+V-k 'dx. 

2 k=1 fix ax, ax, 
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The energy estimate is achieved by the same technique as in Theorem 3.3. To get 
Theorem 3.4, we apply Lemma 3.1 to (v, k), and to get Theorem 3.5, we apply it to 
(V 1- V2 , (fk ) I ( NO )2 

In order to describe the last result, we introduce some notation: c"* is the maximum 
of c on 2 

c* = max c(x), 
xeR2 

('c) denotes the curve 

2 
n 

tkX2 
Y-fn(X ) = 1- E 2 2i 

k=1I 1-YkX 

and (IW) is the part of ('T) included in the slab yjIxI _5 1. W*(t) denotes the support 
at time t of the fundamental solution in homogeneous medium with velocity c*. Let 
us recall (? 2) that the boundary of V*(t) is the dual of c*t x 60. 

For any 0 E ]--, w[, DE. is the line x2 = xI cotg 6. P(O) is the intersection of Do 
with IW, and M(8) is the point of D,6 such that jOP(O)j - IOM(O)j =1. When 0 varies, 
M varies on the set of group velocity vectors. A velocity is then defined by 

(3.14) V*(8) = c*IOM(6)! 

where IOMI denotes the length of the segment OM. 
The solution below gives an upper bound for the propagation velocity of the 

solution (v, '1k) to problem (3.2). 
THEOREM 3.6. If the initial values for (3.2) are of compact support Y( 

gY= supp v U (9U supp k) U U SUpp k) 

then at any time t, (v, frk) is compactly supported and 
n 

SUpp U( * t) U U SUpp Ok( *, t)J c Xf VW*( 
k=1 

Proof The proof is based on an energy estimate in a moving domain. As in [1] 
we first assume that the data are smooth, and X is the disc centered in 0 and of radius 
R. We define the half-plane Q, t by 

fQ ={xe R2, (x-(R+ Vt)) *>0} 

for a fixed value of V. rt is the [8, boundary, and dor is the measure on rt. 
We shall actually prove that for any*@ the energy in to is a decreasing function 

of time if V - V*(0). This will give the first part of the theorem. The energy is denoted 
by E(v, 4fk, [8,, t) and is given by 

1 v n 2 1 a fk2~ 
E(v, k, Q , t) = 2 J dx+- Ekk | _ dx 

2jj, c at 2k=l no,c at1 

(3.15) 2 

i1 n I 2 03f4k2 + 2f E k -+Yk- dx. 
JJ0; O, aX x, 

Using a Green formula we can express the energy as 

31dtE, yk 1 C = I 
(3-16) E (V'O, 11 t, t) + (D dC 
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where PD can be written as a quadratic form in aviat, J0k/at)1-zk--n (av/aX1 + 

yka4k/kaXi) 'kcn: 

?=(V- cos O) + f3k2kV k2 at k=1 at 

(3.17) +2c sin H E fk ( + Yk 1 j + Yk 
k=1 ax, a9X a t at/ 

+C 2V 2 f3k 

k==1 ax, ax, 

In order to determine the sign of 0, we now perform a Gauss decomposition of (P: 

n [aq,,. c2 /av 2 aqIk\2 
(=) Z J3kY V [ -+-sin6i +Yk Yk 

k=1 Lat V \ax, a9xlj 
n 2 c2 2 av 2a 4+ (cl V) sin 0 aVl2 

k=1 
V )[ k a+1 a1 ) +1-_ 2 (c2/ V2) sin2 0 atJ 

c 2 c ~~~av 2 

(fn-Vsin V-Cos at 

It is easy to see under which conditions (D is positive, and to conclude that, for any 
value of V such that V:_ V*(8), the energy in Q, is decreasing as a function of time. 
This proves the first part of Theorem 3.6. The second part is then derived by taking 
the intersection of all the half-spaces fQ for V = V*(8), when 0 varies. By translation, 
linearity and continuity the result is extended to any support and to discontinuous data. 

3.3. Reflection and transmission at a linear interface. As for the parabolic approxi- 
mation, we consider two homogeneous half-spaces Q- and fl+, with a velocity c- and 
c+, respectively, separated by an interface r(a). The unit normal and tangent vectors 
to the interface are denoted by v and r, respectively: 

r = (cos a, sin a), v = (-sin a, cos a), 

(3.18) r(a) = (x, xc v =0}, 

Q -(a) = {x,x v < 0}, 

Q+(a) = x, x -v> 0}. 

It is easy to derive the transmission conditions at the interface for the equations written 
on the form (3.2), (3.3). 

* If a =0, 

(3.19) [v] = O. 

* If a$O 
Equation (3.2): 

[v]-o, 

(3.20) ['fk]=O, 1?k n 

L [c dx (y2 k+k + V) ]1kcn 
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Equation (3.3): 

[v] =O, 

[qlk]=O, 1_ k'n, 

(3.21) =ca 0 ?' 

[cak = 0, 1k n. 

Again the cases of oblique interfaces and horizontal interfaces are very different. The 
latter produces no reflected wave and one transmitted wave, while the former gives 
rise to n reflected waves and (n+1) transmitted waves (equation (3.2)) or (n+1) 
reflected waves and (n + 1) transmitted waves (equation (3.3)). 

We first recall some basic definitions and notations: u, is the incident wave in Q- 

(3.22) u,(x, t) = exp i(wt - k * x), 

where cl and k are related by the dispersion relation in Q- 

(3.23) c ( c 

(For simplicity, the vector k defined here is such that k2/W > 0.) We define the incident 
slowness vector: 

(3.24) K=- 
cl) 

and the group velocity vector: 

(3.25) VG(K) =VkW- 

The group velocity vector is said to be "ingoing" (in the interface) in Q- if VG v > 0, 
and "outgoing" otherwise. 

Throughout the remainder of this paper we assume that lc-Kll-j 1/yl, that is to 
say that the vector K belongs to the "parabolic" branch of the dispersion curve. 

(i) REFLECTION. When the interface is horizontal, there is no reflected wave. 
When it is oblique, the reflected slowness vectors are defined to have the same projection 
as K on the interface, and such that their group velocity vectors are outgoing in Q-. 
The number of such vectors is n and they are denoted by {i, 1-' i-' n { < +7 (Fig. 3.1). 

The following Lemma gives the behaviour of {l, **, Ck when a tends to 0. 
LEMMA 3.2. When a tends to 0, the reflected slowness vectors are such that 

1 2), 

c yi (3.26) ci1' i-5n 

C2=-(K, via + 0(a2) 

where ,i and Pi are given by 

= 2C 2y(-Kl + 1/(cyi))' 
(3.27) 1-1 i ' n. 

Pi k2 +,.i 
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K2 

K ~ ~ ~~~~~K 

C,,~ ~ ~ ~ ~ ~ ~~~~K 

FIG. 3.1. Reflected slowness vectors (n 2). 

Proof of Lemma.3.2. It is clear that ; tends to l/(c-yi) and ;2 tends to infinity 
when a tends to zero. We then seek the expansion of Vi in the form 

1 2), 

c yi 

12) 
2=-(pi+ via+O(a2)) 

a 

where the coefficients pui, vi, pi are to be determined. 
We first write that K and Vi have the same projection on the interface: 

K1 cos a + K2 sin a = ;1 cos a + 2 sin a 

and we expand the equality in terms of a. We thus get 

1 
Pi = K, --, v= ui + K2 

c yi 

We then write the dispersion relation for V 

1 Pk k(C YDi)2 

2 C k(1 1 1-Yk(C )2 

When a tends to zero, we have 

p. (C-Ci)2 p, p 1 VE _ l (C 
;1)2 X 

C- 1-y(ci)2 C 2cy ii a 
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which gives a third relation between the three unknowns 

2c _ - K1- 1 
2 i yi 

The three equations then define yi, pi and Pi. 
(ii) TRANSMISSION. We choose here c--c+. When the interface is horizontal 

(i.e., a = 0), there is one transmitted slowness vector 'q* such that 

(3.28) * = K1, c+ r,* =((c+ q*)2). 

When a $ 0 there are n + 1 transmitted vectors 'q?, n * 0 belonging to the "para- 
bolic" branch of the dispersion curve, i.e., 

10~ 1 

(See Fig. 3.2.) 
Again we give the behaviour of 7 when a tends to 0. 
LEMMA 3.3. When a tends to 0, the transmitted slowness vectors have the expansion: 

0 = KI + (K2- 7q*)a + 0(a 2), 

12 
(3.29) 7=- 

+ -Aiaa+O(a2) 1_in, 

712=aK C+ Yi++ (P2 a2)), 1 i_n 

K~~~~~~K 

___ FG2__._ _____t_ _s v 

FIG. 3.2. Transmitted slowness vectors. 
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where Ai and pi are given by 

f3i 
A 2(c+)2y3 (Kl + I/(c+yi)j 

(3.30) 1 i i_- n. 
pi = Ai + K2, 

The proof is similar to that of Lemma 3.2. 
(iii) REFLECTION AND TRANSMISSION COEFFICIENTS. We start with 

the case of horizontal interface. There is no reflected wave and one transmitted wave 

(3.31) UT = T* exp iw(t - 71* x). 

When the interface is oblique, the reflected wave is 
n 

(3.32) UR= E Rj(a) exp iw (t-s - x) 
j=l 

and the transmitted wave is 
n 

(3.33) UT = E Tj (at) exp ic, (t - 7qi * x). 
j=0 

The main result of this part is the following theorem, which shows that the equation 
has the properties for which we aimed. 

THEOREM 3.7. When a = , the transmission coefficient T* is 

(3.34) T* -=c =/.7 

When a $ 0, one has 

lim Rj (a) = lima T*(a) = O, I j n, 

(3.35) 
lim To(a) = T*. 

The coefficients have the following form 

Ri (a) f3i _c _c), ,n 

(3.36) 2 (1 + yic-K,)2(1-yic+Kl) 

f3i (c - C)K, 
721(a) -a 1 ?<i -<n. 

2 (1 + yic-KD)(1 + yic+K )2 

Proof We seek the solution u of (3.2) in the following form 

U = UI +UR in QY 

U = UT in Q+. 

If a = 0, T* is easily obtained from the transmission condition [c-1/2u] =0. If a $ 0, 
the transmission conditions (3.20) provide a (2n + 1) x (2n + 1) system of equations the 
solution of which is (R1, . * , Rn,, T *, Tn), 

1+F iL Ri) A& E Ti, 

1({ 1 n Ri j 1 g Ti 1 < kn n 
/=7'J+ K K n 

VC 1~~-yK , i=1 1-ykc 5 c = 1yc 1 

1 ( 1 ~+ 12 R i+E l= k ='n. 
-V 1 + Ykc K i= -v- i =k 510 = 1 + Yk C 1q 
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The solution of this system is given by the following formulae (using a Gauss deter- 
minant): 

Rk=-1JL ,-1 Ojn c+ --K 1n 1 - (c-yCk)2 
____-K1 ccC-c H cKC j 

Tk= C 7 ?n ( k c-c-Kl 21- ) 

1;\ps c cn Ci 0;i-_nC 77i-oC nCi (1.1-n1) -s, n c-yjK, 

jjk 

We now apply Lemmas 3.2 and 3.3 to each term of the product which finishes the 
proof of Theorem 3.7. 

Remark 3.5. qo appears to be the approximation to the exact transmitted wave, 
while l, *, r. n can be considered as "parasitic" transmitted waves. 

By Theorems 3.1 and 3.7, criteria (i) and (iii) are verified. The value of T* given 
by (3.34) is the same as in the parabolic case. Criterion (ii) is thus obviously satisfied. 
Let us just notice that this high order paraxial approximation improves the accuracy 
in each homogeneous part of the medium, but not the transmission coefficient at the 
interface. 

4. Numerical experiments. In order to illustrate our theoretical results, we present 
here numerical experiments implemented by F. Collino at IFP. The results correspond 
to two equations of the family (3.2) obtained by the continued fractions expansion 
(2.8) for N =3 and N = 5, i.e., 

(4.1a) v = c-1/2 u c-1/25: 

(4.1b) 
1 av+ av_ 1 d o 
c at ax2 2c at 

(4.lc) 1~~~3ifr 12, a (at\ a (av' (4.1c) - --c )=-c-) 
c dt 4 ax1 ax/ ax1 ax, 

(4.2a) VC U /2u -, = c-1/2 (Pi, = c-112 

l ay av 21. 2 'T fi1 22irair2\ 
(4.2b) a+t _ 2 sin - - +sin = 0 

c at 2X2 5c 5 at 5 at 

1 a2(p, 2 IT a al d1 la dv 
- 2 -Cos - C C = 
c at 5 ax 1 ax1, ax1 ax,/ 

(4.2c) 1 a2f22 2r a a (2av 
- Cos --t I Ci c at 5 ax1 ax, ax1 ax1, 

The way the equations are written enables us to use a splitting method. As in [1], the 
time-dependence in (4.1b) and (4.1c) is handled by Fourier transform. The equations 
are then semi-discretized in xl by P, finite elements. A Crank-Nicolson scheme is 
finally used in the x2 direction. For further details and properties about these numerical 
schemes see [6]. Each of the figures we present here are snapshots of the solution at 
a given time. This gives an image of the solution in the (xl, x2) plane (this representation 
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cn m an c c cn U1 cn 
N N 

Equation (4. 1) 

I-I I, , I, | , U, U,1 
U, , I , . i .W 

Equation (4.2) 

FIG. 4.1. Fundamental solutions. 
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Equation (4.1) 

01Ci In 01 IN 01n 

s~~~~~ 

In I 

S 

Equation (4.2) 

FIG. 4.2. Horizontal interface. 
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Cii Cii Ci CiWi 

Equation (4.1) 

s s O m ~~ ~ ~ ~~C O Cn D 

Equation (4.2) 

FIG. 4.3. a =il4 
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Equation (4. 1) 

h) N N 9N N N N 
a_, -_.i' 

LP E Z X N N 
ci ( U 1 ci1 ie 

Equation (4.2) 

FIG. 4.4. a = ff18. 
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is commonly used by geophysicists). The areas where the solution is positive are darker, 
the ones where it is negative are lighter. 

For each simulation, the source is quasi-punctual, i.e., its support is very small. 
Its position is indicated on the figures by the point S. Its time dependence is given by 
the second derivative of a Gaussian function (Ricker source in Geophysics). 

In Fig. 4.1 the fundamental solutions of the paraxial approximations are plotted 
for (4.1) and (4.2). We can easily see that the support of the solution tends to the ideal 
semi-disk and that the number of parasitic branches increases with N. 

We now consider the specific heterogeneous medium we studied in ? 3 (see (3.18)). 
This medium consists of two homogeneous half-spaces fQ- (with velocity c) and Q 
(with velocity c+) separated by an interface F(a) whose angle with the horizontal xl 
direction is equal to a. The ratio c+/c is equal to 2 and the source is located in the 
medium flY. 

Figure 4.2 is a snapshot of the solution when the interface is horizontal (i.e. a = 0). 
In each case we easily distinguish, as indicated, the incident wave and the unique 
transmitted one. Note that the parasitic waves have not yet reached the interfaces at 
the time we consider. Also it is interesting to remark that for equations (4.2) the wave 
front, although it is not, seems to be discontinuous along the interface. In fact such a 
discontinuity occurs for the full wave equation if one does not consider the reflected 
waves: the head wave connects the reflected wave and the transmitted one. 

In Fig. 4.3 we give the results when a = iT/4. For (4.1) one clearly sees the reflected 
wave R1 (whose amplitude is rather strong) and the two transmitted ones To and TI. 
Note the curious shape of the second transmitted wave front, which is the parasitic 
one. Its amplitude is much less important than the one of the first transmitted wave. 
For (4.2), the two reflected waves R1 and R2 are clearly visible but we can only 
distinguish two transmitted waves (denoted by To and T1 in the figure). The slowest 
transmitted wave (which would be T2) is too weak to be visible. We can also remark 
the existence of a second family of reflected and transmitted waves which are due to 
the first parasitic arch of the incident wave which reached the interface. 

Finally we notice in both cases the existence in the medium f- of a head-wave 
connecting the first transmitted wave to the first reflected one. 

In Fig. 4.4 the angle a is equal to g/8. The involved phenomena are qualitatively 
the same as for a = v/4. It is moreover interesting to notice that the reflected and 
parasitic transmitted waves are much weaker, as the theory predicts, than for a =- 7/4. 

Acknowledgment. We are very grateful to F. Collino who authorized the publica- 
tion of his numerical experiments. 
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