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A 2D nonlinear inversion of well-seismi data 21. IntrodutionSeismi prospeting, i.e. the idea of using seismi waves to get information about thesubsurfae, is understood as a high resolution tehnique ompared with potential meth-ods suh as gravimetry. Geophysiists, as many other physiists, always are in questof a higher resolution: they want to get as muh detail as possible of the objet theyinspet. However resolution is not de�ned just by the physial means used for sanningthe objet. The way the data are proessed, i.e. algorithms, for the objet reon-strution, an have strong in�uene on the resolution. This is the �eld on whih ourwork is to be plaed. Another important point is the ability to get quantitative infor-mation about the omposition of the objet. This is the seond motivation for our paper.Data aquisition for seismi prospeting mainly onerns the aquisition of surfae data.However well seismi data often are interesting for detailed studies of reservoirs. Ifthe data quality is usually better ompared with that of surfae data, the part of thesubsurfae that is illuminated, that is the part that we an image, is of very limitedextension. Classially we distinguish:� the aquisition of vertial seismi pro�les (VSP) in whih, the reeivers overingsome depth range within the well, the soure is loated at the surfae at the viinityof the borehole; for suh aquisitions waves usually propagate along diretions loseto the vertial so that most of the imaging tehniques ([19℄) rely on a 1D propagationassumption;� the aquisition of walkaway data in whih, the reeivers still overing some depthrange within the well, the soure is moved, shot after shot, at di�erent o�setsfrom the borehole; by using suh aquisitions we expet to enlarge the part of thesubsurfae that an be imaged.In the following we will make a distintion between di�erent zones assoiated withdi�erent depth ranges: the �overburden� and the �target� separated by the horizontalplane at the depth of the shallower reeiver. The target itself will be subdivided intothe �upper target� orresponding to the depth interval overed by the reeivers and the�lower target� below. Well-seismi data (Figure 1) show a �rst arrival whih is most oftena downgoing wave. This arrival is usually followed by many downgoing waves: thesewaves have undergone (at least) a �re�etion� z at some interfae in the overburdenbefore propagating down again. The presene of many downgoing waves re�et thevertial heterogeneity of the overburden. Well seismi data also show upgoing waveswhih are the result of �re�etions� that have taken plae within either the upper orlower target (or in both). However the tremendous heterogeneity of sedimentary layersleads to a very omplex wave propagation and this omplexity is not revealed by thez We use quotes to highlight that suh a desription relies on a geometrial optis view of wavepropagation. In our paper, we want to promote waveform inversion and therefore we question suh aview.



A 2D nonlinear inversion of well-seismi data 3visual inspetion of the data: what we see is in fat the result of interferenes betweena multitude of wavefronts.Should we want to image well-seismi data using the proedure whih is routinelyused for the imaging of surfae seismi data, we would apply the data a migration([8℄, [25℄, [5℄, [9℄), after having estimated the propagation veloity distribution in thesubsurfae. Suh an imaging tehnique turns out to be inadequate for our data thathave shown many downgoing waves illuminating the target whereas migration assumesthat a single wavefront illuminates the target. This is the reason why the standardproedure for imaging VSP data prefers to aount for the omplexity of the illuminatingwave�eld at the expense of a tremendous simpli�ation of the geometrial aspets ofwave propagation (preisely at the expense of a 1D propagation assumption). Howeverit is often attempted to preproess the data so as to get loser to the 1D propagationassumption. Should we want to aount for the multiple sattering e�ets ([33℄) inwave propagation, we would have to apply a nonlinear imaging tehnique suh as thenonlinear inversion of VSP data proposed by [22℄ in a 1D framework. Here the goal is toreonstrut the aousti impedane pro�le while aounting for the nonlinear haraterof the operator that maps the pro�le and the wave�eld. This nonlinear harater is farfrom negligible as soon as the impedane pro�le shows important heterogeneity thusgiving rise to important multiple sattering ([16℄).The nonlinear inverse problem in whih we reonstrut the impedane pro�le forknown veloity distribution should not be onfused with the inverse problem in whih wewant to reonstrut the propagation veloity distribution from seismi data, a problemextensively studied by many authors (see for instane [32℄ for an overview). For the 1Dnonlinear inversion of VSP data, measuring the depth in terms of vertial traveltimeallows us to get rid of the estimation of the veloity distribution (exept that we haveto express the depth of the di�erent reeivers in terms of vertial traveltime, but theonversion is simple sine the VSP data allow us to evaluate preisely the di�erene intraveltimes between suessive reeivers).In our paper we want to set up a 2D extension of the waveform inversion developedby [22℄. We want not only to get rid of the unrealisti 1D propagation assumption butalso we want to estimate the impedane distribution (as opposed to a single pro�le)in some viinity of the well and this with a vertial resolution (to be understood asseparation power) muh better than the one obtained for surfae seismi data. As in [22℄,we will have to reonstrut the illuminating wave�eld in the same time as we reonstrutthe impedane distribution. Indeed the estimated impedane distribution depends onthe illuminating wave�elds and, in some situations, in a very sensitive way ([15℄). Thereonstrution of this illuminating wave�eld is in fat one of the major di�ulties forour extension sine, ontrary to the 1D propagation framework and to the migrationontext, the geometries of the illuminating wavefronts are unknown (Figure 2 left). Thisdi�ulty will onstrain us to only onsider media that vary gently along the horizontaldiretion. In addition we will restrit ourselves to aousti wave propagation and assumethe veloity distribution (x; z) to be known.



A 2D nonlinear inversion of well-seismi data 4In a �rst part we introdue, in a rather general ontext, the formalism for theinversion of walkaway data and study how to struggle against the indeterminationinherent in this inverse problem. In a seond part we present the numerial methodused for the solution of the inverse problem. Compared with the 1D inverse problemwe are faed to two important di�erenes: the neessity to introdue lateral boundariesin the propagation domain and the tremendous in�ation of unknowns. This in�ationwill lead us to be very areful for the numerial implementation. In the third partwe evaluate, by means of tests on syntheti data, the performane of our method withspeial emphasis on the aessible vertial resolution.2. The 2D extension of the 1D problemWe thus onsider walkaway data. Di�erent datasets are aquired by moving the soureat di�erent o�sets from the well, supposed here to be vertial with horizontal loationx = 0. These distanes will be alled o�sets throughout the paper. One dataset is thusassoiated with a spei� o�set. We denote by S the number of suh datasets. Thereeivers, loated at depths denoted by z1; :::; zQ, reord, as a funtion of time t, thepartile displaement veloity vetor. In a 2D ontext this vetor is haraterized by itshorizontal and vertial omponents. Our data are thus omposed of the measurementsDs;q(t) assoiated with reeiver q and with dataset (or o�set) number s, this for t 2 [0; T ℄where T is the reording duration. We denote by D the vetor in (L2 (℄0; T [))2�S�Qonstituted of suh measurements. As in [22℄ we restrit ourselves to the imaging of thetarget and thus want to get rid of the overburden whose base is at depth z1. This leadsus to introdue a boundary ondition at this depth. The target an only be imageddown to a depth zmax. This depth an be omputed given the reording duration T andthe propagation veloity distribution.2.1. The forward problemWe thus onsider waves propagating within a domain orresponding to depths largerthan z1 and introdue a boundary ondition at this depth. We also have to speifyonditions at the other boundaries. Use of absorbing layers at the viinity of these otherboundaries is essential for a realisti modeling. We have hosen the PML (PerfetlyMathed Layer) tehnique in the framework proposed by [6℄ [7℄ for the 2D and 3DMaxwell equations. LetO = ℄�a; a[� ℄z1; zmax[ (1)be the domain of interest. This is the domain where the veloity (x; z) and impedaneI(x; z) distributions are de�ned. The PML domain with width l is de�ned as
 = ℄�X ;X [� ℄z1; Z[ ; (2)where we have set X = a + l and Z = zmax + l. We extend the original veloity andimpedane distributions to the PML domain by setting (similar expressions also hold



A 2D nonlinear inversion of well-seismi data 5for the veloity distribution):8>><>>: I(x; z) = I(a; z) for x > a;I(x; z) = I(�a; z) for x < �a;I(x; z) = I(x; z1) for z > z1: (3)Within domain 
, the Euler equation with absorption is written as8>>>>>>>>>><>>>>>>>>>>:
I �tux � �x(px + pz) + �x I ux = 0;I �tuz � �z(px + pz) + �z I uz = 0;1I�tpx � �xux + 1I�xpx = 0;1I�tpz � �zuz + 1I�zpz = 0; (4)

with zero initial onditions and the following boundary onditions8>>>><>>>>: (px + pz) (x; z1; t) = h (x; t) ;(px + pz) (x; Z; t) = 0;(px + pz) (�X; z; t) = 0;(px + pz) (X; z; t) = 0: (5)The priniple of the PML tehnique onsists in splitting the pressure funtionp(x; z; t) into two subfuntions px(x; z; t) and pz(x; z; t), so as to obtain 4 equationsinvolving spatial derivatives along a single diretion. Then an absorption term assoiatedwith this diretion is introdued (�x(x) or �z(z)). These absorption terms vanish withinthe domain of interest O and grow aording to a polynomial funtion within the PMLlayer. They are expressed as�x(x) = ����������� 0 if x 2 [�a; a℄��0x(x + a)3l3 if x 2 [�a� l;�a℄�0x(x� a)3l3 if x 2 [a; a + l℄ (6)
�z(z) = ������� 0 if z 2 [z1; zmax℄�0z(z � zmax)3l3 if z 2 [zmax; zmax + l℄ (7)where �0x and �0z are onstants that have been set up in an empiri way following thenumerial experiments given in [20℄. Thus, by adding the two equations in px and pz, weretrieve the standard aousti wave equation (written in the form of Euler equations),within the domain of interestO. In addition Dirihlet homogeneous boundary onditionsfor the pressure are spei�ed at the boundaries of domain 
 (exept for the partorresponding to z1).The above equations are written for a generi boundary ondition h(x; t) at z = z1.However we will onsider di�erent displaement veloity wave�elds us(x; z; t) solutionsof the equations above with boundary onditions hs(x; t). In the sequel these boundaryonditions will be refered to as the pressure onditions. We all parameter a pair



A 2D nonlinear inversion of well-seismi data 6onstituted of an impedane distribution I(x; z) de�ned on O and of a sequene of Spressure onditions hs(x; t); s = 1; :::; S. We denote by H the vetor whose omponentsare those S pressure onditions. The forward problem thus onsists in omputing theseismi response to suh parameter, given the veloity distribution. Preisely the seismiresponse is desribed by the syntheti data U s;q(t) for s = 1; :::; S and q = 1; :::; Q thatare the displaement veloity vetors (with omponents us;qx (0; zs; t) and us;qz (0; zs; t))observed by the reeiver at zq in the dataset number s.We introdue the forward modeling operator:M : (I;H) 7�! U = fU s;q(t); s = 1; :::; S; q = 1; :::; Q; t 2 [0; T ℄g :Let us point out again that the solution of the forward problem requires the propagationveloity distribution to be known within domain O (and only within this domain).2.2. The 2D inverse problem: an ill-posed problemWe aim at retrieving the parameters whose seismi response best mathes the reordeddata. The inverse problem an thus be formulated asminI;H J (I;H) ; (8)where J (I;H) is the so-alled seismi mis�t funtion de�ned by:J (I;H) = kD �M (I;H)k2 ; (9)where k k is the norm in (L2 (℄0; T [))2�S�Q.Thus formulated, the inverse problem appears indetermined: obviously we annotretrieve the pressure onditions assoiated with eah dataset and therefore we annotimage the target. Indeed we lak information about the geometries of the illuminatingwavefronts. To overome indetermination, we need prior information. This priorinformation will be aounted for by means of an appropriate regularization.2.3. The regularized 2D inverse problemIf we onsider media that are slowly varying along the x diretion, we may integrate inthe original objetive funtion (9) a regularization term R1(I) aounting for the lateralvariations of the impedane distribution: R1(I) = k�xIk2L2(℄�a;a[�℄z1;zmax[) : But this is notenough: we also need prior information about the pressure onditions, an informationrequired, let us point it out again, for the estimation of the impedane distribution.As for the 1D inverse problem, we want, through the pressure onditions, to aountfor the omplexity of the wave�eld that illuminates the target. The big di�erene, whihis in fat a major di�ulty for our extension, stems from the fat that the wave�eld isonly known at x = 0 (loation of the well) and we an hardly oneive a reliable methodto extrapolate the wave�eld when we move away from x = 0: basially we basiallylak information about the wavefront geometries. Suh wavefronts are shown in Figure2a and b. However we underline that suh information is in pratie unavailable: the



A 2D nonlinear inversion of well-seismi data 7information displayed in Figure 2 is the result of the modeling experiment presented insetion 4.To overome this di�ulty, we apply the walkaway data a Radon transform knownas slant staking in the geophysial literature ([13℄). We thus obtain well data assoiatedwith a lose to plane wave exitation (whih would be similar to a pressure ondition atz = 0). The exitation would be a genuine plane wave if the point soures were in�nitelylose to eah other while overing the whole of the surfae and if the propagationveloity at z = 0 were onstant. Under the latter assumption the angle �0 made bythe propagation diretion with the vertial is given by: sin �0 = 0�t�s , where:� 0 is the veloity at z = 0;� �s is the distane between two onseutive soures (we thus assume here equidistantsoures);� �t is the time delay imposed from one soure to the next: this delay tunes, as seenfrom the above formula, the propagation diretion of the plane wave.Thus we an transform our S original reordings into Ŝ slant staked datasets. By doingso we �x the �ts; s = 1; :::; bS to be used. The pressure ondition at z = z1 assoiatedwith slant staked data will be denoted by ĥs(s; t); s = 1; :::; bS. We introdue the vetorH gathering the pressure onditions ĥs(s; t); s = 1; :::; bS. If we hoose bS = S, we mayexpet no information loss. The angles �0 (whih in fat depend on index s) will bealled illumination angles: they will be hosen depending on the interval [z1; zQ℄ wherethe reeivers are loated and on the part of the subsurfae where we want to enhanethe resolution of the seismi imaging. Here we just mention this point whih woulddeserve a whole study.If we deal with a 1D medium, we an have preise information about the propagationangle �1 of the plane wave at depth z1 using the lassial formula: sin �11 = sin �00 (1 isthe propagation veloity at z1).However the media we will onsider are only lose to 1D so that, at depth z1, thewavefronts are only approximately plane. We thus assume the pressure ondition to varyslowly along lines that are orthogonal to vetor s (supersript s refers to the datasetobtained by slant staking with time delay �ts) de�ned by:s(x) = " sin �s1(x)� os �s1(x) # with sin �s1(x) = (x;z1)�ts�s :The pressure onditions at z = z1 assoiated with the slant staked data an thusbe assumed to vary gently along diretions that are orthogonal to s(x). This leads usto introdue a seond regularization term R2(H) de�ned by R2(H) = PbSs=1 s � rĥs2,where k k denotes the norm in L2 (℄�a; a[� ℄0; T [).We point out that, even in the ase of a 1D medium, this regularization term is notexat: indeed, in this ase, the pressure wave�eld at z = z1 is onstituted of wavefrontspropagating aording to angle �1 but also of wavefronts propagating aording to angle



A 2D nonlinear inversion of well-seismi data 8��1, the latter wavefronts orresponding to �re�etions� that reah z1 under the formof upgoing waves. Use of inhomogeneous transparent boundary onditionsx suh aspI (x; z1; t)�tP (x; z1; t) + �zpIP (x; z1; t) = h(x; t): (10)in replaement of the Dirihlet boundary onditions (5) would have been better suitedfor a orret handling of prior information about the pressure onditions at z1. Howeveruse of Dirihlet boundary onditions leads to simpler formulas. In addition, ourprior information assoiated with the Dirihlet boundary ondition is not unreasonable(Figure 2d): indeed the amplitude of the downgoing part of the wave�eld is muh largerthan the amplitude of the upgoing ontribution.With these elements we end up with the regularized formulation of the inverseproblem written as:minI;H J� (I;H) (11)with J� (I;H) = J (I;H) + �2D�2I R1(I) + �2D�2HR2 (H) (12)In equation (12) �D; �I and �H represent the unertainties assoiated with theseismi data and the piees of prior information assoiated with the impedanedistribution and pressure onditions, respetively. In fat these unertainties an hardlybe estimated before hand. We have thus deided to set the values for �D�I and �D�H using atrial and error approah with the aim of getting a balane between the three omponentsof the regularized objetive funtion at the optimum. Our strategy would be justi�edif the assumption of an unorrelated Gaussian additive noise orrupting the di�erentpiees of information would be realisti... Although more appropriate strategies ([31℄p.211) ould have been used, ours has the advantage of being straightforward.We thus have replaed the ill-posed problem (8) by a regularized version that willhopefully be well-posed. Preisely we hope that if the unertainties �D; �I and �Hare small enough, then the omputed impedane distribution will be �lose� to thedistribution we look for. We explain in the next setion the reasons on whih ourexpetations rely.2.4. A justi�ation of the regularizationThe understanding of the mehanisms that allows the reonstrution of the impedanedistribution from well-seismi data is essential if we want to know to what extent thesolution of problem (11) provides an approximation of the impedane distribution weare looking for.x More sophistiated inhomogeneous transparent boundary onditions an be found in [3℄. For thesake of simpliity we just give the simplest version.



A 2D nonlinear inversion of well-seismi data 92.4.1. The reonstrution of a 1D medium using plane wave exitations In a �rst stepwe onsider the ase of noise free data (the ase of noise orrupted data will be skimmedover at the end of this subsetion).We thus onsider a 1D medium exited by a plane wave propagating aording toillumination angle �0. We denote by ep(kx; z; !), eux(kx; z; !) and euz(kx; z; !) the 2DFourier transforms of p(x; z; t), ux(x; z; t) and uz(x; z; t), respetively. The Fouriertransform ep(kx; z; !) is solution of the Helmholtz equation:� !2I 0� 12 �  kx! !21A ~p� �z � I �z ~p� = 0; (13)while eux(kx; z; !) and euz(kx; z; !) are linked to ep(kx; z; !) by:( !~ux = � Ikxep�i!~uz = � I�z ~p (14)Funtions ~ux(kx; z; !), ~uz(kx; z; !) and ~p(kx; z; !) do not vanish, this is a spei�ityof the regime assoiated with a plane wave exitation, only for values of kx=! suh thatkx! = os �00 , so that equations (14) an be rewritten as:( ~ux = � I os �00 ep�i!~uz = � I�z ~pWe introdue the funtions ûx(x; z; !), ûz(x; z; !) and p̂(x; z; !), the inverse Fouriertransforms of funtions ~ux(kx; z; !), ~uz(kx; z; !) and ~p(kx; z; !), respetively. Byintegrating in the variable x the equations above, we obtain the equations( ûx(0; z; !) = � I os �00 p̂(0; z; !)�i!ûz(0; z; !) = � I�zp̂(0; z; !)and by dividing these two equations we obtain�z (ln p̂(0; z; !)) = �i! os �00 ûz(0; z; !)ûx(0; z; !) :In other words, our measurements yield funtion p̂(0; z; !) over the measurementinterval, this for whatever value of ! and of the illumination angle, but up to amultipliative onstant. Integrating equation (13) over kx yields:� !2I 0� 12 �  os �00 !21A p̂(0; z; !)� �z � I �zp̂� (0; z; !) = 0: (15)This equation allows us to understand the mehanism for the reonstrution of theimpedane pro�le from well-seismi data. Two ases are to be onsidered: the asez 2 [z1; zQ℄ and the ase z > zQ.In the former ase, for whatever pair (!; �0), I turns out to be solution of adi�erential equation (derived from (15) that an be expliited on the whole interval[z1; zQ℄ sine we know p̂(0; z; !) on this interval. As a result, the logarithmi derivative ofI (we thus assume here I to be di�erentiable) is determined up to an additive onstant or,



A 2D nonlinear inversion of well-seismi data 10in other words, I is determined up to a multipliative onstant. Having the informationfor a single ! and a single illumination angle is enough to reonstrut the impedanepro�le on this interval (up to a multipliative onstant). In this reasoning we haveassumed a ontinuum of reeivers whih is not realisti. However we easily realize that,if the distane between suessive reeivers is small, the reonstrution of the impedanepro�le will be aurate: the resolution (in the sense of separation power) is governed bythe vertial sampling between reeivers: we an obtain a high vertial resolution evenfor a small value of !. In pratie we reord bp on interval [z1; zQ℄ for a multitude ofvalues of ! and for several illumination angles: the great amount of redundany in theinformation will be very helpful when dealing with noise orrupted data. However thisredundany is of no help to remove the indetermination assoiated with the unknownmultipliative onstant sine there is one suh onstant for eah (!; �0) pair.The reonstrution of the impedane pro�le for z > zQ relies on a fully di�erentmehanism. Here the understanding of the reonstrution mehanism is to be foundin the wave equation formulated as an evolution equation in time (that is the equationsatis�ed by the inverse Fourier transform of bp), starting from zero initial onditions. Theimportant point onsists in realizing that our reordings provide us with the informationassoiated with both the Dirihlet and Neumann boundary onditions at z = zQ, thelatter up to a multipliative onstant sine the value of the impedane at z = zQ isunknown. The inverse problem whih onsists in retrieving the impedane pro�le forz > zQ from the two boundary onditions has been the objet of extensive studiesespeially the one by [1℄ and [2℄. We underline two important results:� in the ase of noise free data, the uniqueness of the solution (again here up toa multipliative onstant), a result obtained by di�erent authors using di�erentassumptions; we refer to [10℄ for a review of these results;� the stability of the solution of the inverse problem when the data are noise orrupted([2℄); in fat this stability strongly depends on the omplexity of the pro�le to beretrieved (this omplexity is quanti�ed by the total variation of the pro�le) and onthe wavelet smoothness; in partiular standard seismi wavelets, whose frequenyontent is negligible below 8 Hz are not appropriate to reover the low frequenytrend of the impedane pro�le.The results given above stand for a single illumination angle. In pratie the informationfor di�erent angles is available: again there is some redundany in the data. Again thisredundany will be very helpful when dealing with noise orrupted data but will be ofno help for removing the indetermination assoiated with the unknown multipliativeonstant and for the reovery of the low frequeny trend for depths larger than zQ.The results onerning the uniqueness are obtained by exhibiting an analytiexpression for the solution of the inverse problem. This analyti expression is of limitedinterest as soon as we deal with noise orrupted data. In pratie, least-squares basedmethods suh as the one proposed in 1D by [22℄ (whih an be easily generalized to thease of 1D media exited by an oblique plane wave) are better suited, in partiular for



A 2D nonlinear inversion of well-seismi data 11the separation of signal and noise using the information redundany. Our motivationfor reviewing the theoretial results above was to give elements for apprehending thebehavior of inversion softwares whatever they are based on an analyti or a least-squaresbased approah.2.4.2. The 2D inversion of walkaway data This setion aims at justifying the e�ienyof the regularization we have introdued to produe a reliable estimation of impedanedistributions with gentle lateral veloity variations by inversion of the slant stakedwalkaway data.We start by pointing out that our problem is hampered by the same indetermination(�up to some multipliative onstant�) as the problem studied in subsetion 2.4.1.Indeed, if we onsider the seismi response to parameters (I;H), we do not hangethis seismi response by multiplying the impedane distribution I by some onstant andeah of the bS pressure onditions by the same onstant. This leads us to introdueequivalene lasses and to de�ne a representative for eah equivalene lass by imposingthe ondition I(0; z1) = Iref , where Iref is a value to be hosen at our onveniene.We now hange the de�nition of pressure onditions: instead of onsidering theDirihlet boundary ondition (5) at z = z1, we impose the downgoing wave�eld at thatdepth by means of an outgoing boundary ondition (10) (that is a ondition that makesthe re�etion oe�ient small for a wide interval of inidene angles).For �xed positive real � and �, we introdue the set M�; � of equivalene lassrepresentatives that satisfy the inequalities8>><>>: k�xIk � �;bSXs=1 rĥs � s2 � �;where kk denotes various L2 norms (they have been previously expliited). We onsiderthe set E�; � of parameters in M�; � that math our well-seismi data (assumed hereto be noise free) and notie that this set has a single element if � = � = 0. Ourregularization tehnique should thus be e�etive if we admit that the �size� of the setE�; � does not rapidly inrease when � and � inrease. Note that the larger the numberof illuminating angles, the slower the inrease of the �size� of this set. From a formalstandpoint we an de�ne the �size� S(E�; �) of this set by onsidering the quantity de�nedby supI;I0 kI � I 0kL2(℄�a;a[�℄z1;zmax[. With this de�nition, we fous our attention on thereliability of the reonstruted impedane distributions onsidering pressure onditionsjust as intermediate unknowns. Also with this de�nition we impliitly onsider the L2norm as an appropriate measure of the auray for the reonstrution of the impedanedistribution. This is a subjetive but not unreasonable hoie. Thus our expetationonerning the stability of our inverse problem relies on the assumption of a ontinuousevolution of S(E�; �) with the (�; �) pair. Suh an assumption an only make senseif the uniqueness in the reovery of the impedane distribution for known pressureonditions is ensured. As far as we know, there is no proof of suh a result (exept for



A 2D nonlinear inversion of well-seismi data 12the 1D problem) and the nonlinearity involved in the forward map seems to be a majorobstale for the obtention of suh a result.However, in pratie, and eventhough the pressure ondition is spei�ed as aDirihlet boundary ondition (and not as the transparent boundary ondition (10)),provided that the regularization weights are strong enough, our regularization turns outto be e�etive for a stable reonstrution of the impedane as we will show in setion 4.3. The numerial method for the solution of the inverse problem3.1. The numerial solution of the forward problemThe PML tehnique we have used onsists in an extension to aousti wave propagationin heterogeneous media of the oneptual framework proposed by [6℄, [7℄: this authordealt with eletromagneti wave propagation in a homogeneous medium. Studying thestability of the forward problem formalized by equations (4)(5) is beyond the sopeof our paper. However the interested reader an refer to the work of [23℄, this workfollowing the one of [28℄.The numerial solution of the forward problem relies on a disretization of equations(4)(5). The aim of our tehnique is the improvement of the seismi resolution: a �nedisretization of domain 
 is then required. Using a high order �nite di�erene shemein this ontext would make the omputation heavier without improving the auray.We have used the expliit entered seond order sheme proposed by [34℄.3.2. The disrete inverse problemThe disrete inverse problem onsists in the minimization of the objetive funtionJ� (I;H) in whih the funtions have been replaed by disrete funtions, namelyvetors, the forward map by its disrete version based on Yee's �nite di�erene shemeand the regularization terms by their disrete version involving a �nite di�ereneapproximation of the gradients. In order to alleviate the formulas that will follow,we explain the solution of the inverse problem using the formalism of the original (notdisretized) problem.Let us underline the size of the disrete inverse problem: the example presented insetion 4 involves typially a million of unknowns. In addition the evaluation of the valueof the objetive funtion for some parameter requires the solution of bS wave equationsdisretized using a very �ne grid. If we want the omputation to be feasible, the solutionof the disrete inverse problem thus alls for an e�ient numerial implementation ona luster based superomputer.3.3. An original optimization methodThe minimization of a non quadrati objetive funtion that involves about a million ofunknowns is not a simple job !



A 2D nonlinear inversion of well-seismi data 13Great are has to be taken for the hoie of the minimization method to be used.Classially, for huge size non quadrati problems, we preferably attempt at using Quasi-Newton tehniques. Indeed, information about the Hessian of the objetive funtion,whih would be very ompliated, is not required. Suh methods only require theevaluation of the objetive funtion and of its gradient for some parameter.The adjoint state method ([21℄,[11℄) allows the omputation of the gradient of theobjetive funtion rJ� (I;H) at, pratially, the same ost as the evaluation of thisobjetive funtion. Note that presene of unknowns that are of di�erent physial nature(an impedane distribution and pressure onditions) and that at on the seismi responsein quite di�erent ways leads to an ill-onditioned optimisation problem. Pratiallyour attempts ([24℄) for a straightforward minimization of the objetive funtion usinga Quasi-Newton algorithm were led to failure (negligible derease of the objetivefuntion).3.3.1. An interloked optimization tehnique To overome the above mentioneddi�ulty, we have set up a tehnique exploiting the quadrati dependeny of theobjetive funtion in the pressure onditions. Preisely we are going to use a Quasi-Newton algorithm for the minimization of a new objetive funtion that only involvesthe impedane distribution as unknown. We explain below how we have proeeded.We introdue a new objetive funtion eJ�(I) de�ned byeJ�(I) = J�(I;H(I)); (16)with 8<: H(I) = argminH J�(I;H);H = �ĥ1; :::; ĥŜ� :We an easily realize that problem (8) is equivalent to problemminI eJ�(I): (17)Our idea is to use the Quasi-Newton proedure (spei�ally a l-BFGS algoritm, [26℄,[27℄) to minimize eJ�(I)). At eah iteration, this algorithm asks for the omputations ofthe objetive funtion and of its gradient. These omputations require the knowledgeof the pressure onditions that are the omponents of H(I). The omputation of thesepressure onditions is arried out using a onjugate gradient algorithm (spei�ally thealgorithm desribed in [18℄): indeed these pressure onditions are solution of a quadratiproblem.In addition, the gradient of the new objetive funtion is straightforwardly obtainedfrom the evaluation of rJ�(I;H), that is with no additional omplexity ompared witha straightforward minimization of the original objetive funtion using a Quasi-Newtonalgorithm.Indeed, a disturbane ÆI brought to I gives rise to a disturbane ÆH of H(I) andto a disturbane Æ eJ� of eJ�(I) given by:Æ eJ� = �J��I �I;H(I)� � ÆI + �J��H �I;H(I)� � ÆH:



A 2D nonlinear inversion of well-seismi data 14Sine �J��H �I;H(I)� = 0, we an avoid the ompliated omputation of ÆH and theomputation of r eJ� just requires the omputation of �J��I �I;H(I)�. However theomputation of H(I) requires the omputation of �J��H (I;H). In summary the kernel isthe omputation of rJ�(I;H) (the omputation of �J��H (I;H) is required to omputeH(I)).3.4. Parallel omputation of rJ�(I;H) by the adjoint state tehniqueThe gradients of the regularization terms R1 and R2 are straightforwardly obtained.But the gradient of J(I;H) is not trivial. The adjoint state tehnique yields the valueof this gradient at the expense of the solutions of two wave equations: one assoiatedwith the forward problem and one assoiated with the adjoint problem. We thus avoidthe omputation of the Jaobian matrix whih would require tremendous omputerresoures. This tehnique has been developed by Lions ([21℄) for the optimal ontrol ofsystems governed by PDEs and by Chavent ([11℄) for the identi�ation of distributedsystems. A review of its appliations to inverse problems in geophysis is given by [29℄.We give below a sketh of the adjoint state method. In order to alleviate thenotations, we have removed supersript s (we have done so previously when expliitingthe forward problem) but the alulations have to be applied for eah of the bS valuesof s. We thus onsider a vetor H involving a single pressure ondition h: H = fhg.Also, we only desribe the omputation of the gradient for an impedane distributionde�ned on the PML domain 
 and a pressure ondition de�ned on [�X;X℄: from thisomputation we easily obtain the gradient with respet to funtions assoiated with theoriginal domain O by appliation of the hain's rule.3.4.1. The adjoint state There are 8 dual variables orresponding to system (4)(5) forthe pressure ondition h(x,t). The �rst four are funtions of (x; z; t) while the others aretraes on hyperplanes that an be expressed as funtions of the �rst four. Let �i; i = 1; 4be the �rst four funtions. They are solution of the wave equations:8>>>>>>>>>>>><>>>>>>>>>>>>:
I�t�1 � �x�3 � �x I�1 = fx(x; z; t)I�t�2 � �z�4 � �z I�2 = fz(x; z; t)1I�t�3 � �x�1 � �x 1I�3 = 01I�t�4 � �z�2 � �z 1I�4 = 0; (18)



A 2D nonlinear inversion of well-seismi data 15to be integrated bakwards in time from zero �nal onditions a t = T , with the boundaryonditions 8>><>>: �3(�X; z; t) = 0; �3(X; z; t) = 0�4(x; z1; t) = 0; �4(x; Z; t) = 0 (19)and with 8>>>>>>>><>>>>>>>>: fx(x; z; t) = 2 QXq=1 (ux(0; zq; t)�Dqx(t)) ÆMq(x; z)fz(x; z; t) = 2 QXq=1 (uz(0; zq; t)�Dqz(t)) ÆMq(x; z): (20)In the equations above ÆMq(x; z) is the Dirat delta funtion entered at the oordinates(0; zq) of reeiver q.Aording to the geophysiist voabulary, the omputation of the adjoint stateamounts to bakpropagate the seismi residuals assoiated with the di�erent reeivers.3.4.2. Computation of the gradient. One the adjoint state has been omputed, it iseasy to obtain the gradient of the mis�t funtion. The formulas (see [24℄) that giverJ� (I;H) are, for (usx; usz; psx; psz) solution of (4)(5) for a pressure ondition hs(x; t),and (�s1; �s2; �s3; �s4) the orresponding adjoint state�IJ(I; fĥ1; : : : ; ĥŜg) = bSXs=1 Z T0 �s1 1I �x(psx + psz) + �s2 1I �z(psx + psz)dt� bSXs=1 Z T0 �s3 1I �xusx + �s4 1I �zuszdt: (21)On the other hand,�hsJ(I; fĥ1; : : : ; ĥŜg) = �I �s2(x; z1; t): (22)We refer to [24℄ for the expression of the gradient of the disrete objetive funtion.3.4.3. Parallelization of the omputations using domain deomposition. Use of parallelomputing is essential if we want to avoid an unaeptable elapsed time. The mostomputation intensive part of the algorithm onsists in the solution of the forward andadjoint equations. Here domain deomposition omes in. Domain 
 is subdivided into Psubdomains 
i. A dediated proessor is in harge of the omputations for the solutionof the forward and adjoint equations in domain 
i. Of ourse, if we leave aside theommuniations between proessors, the smaller the size of the subdomain, the smallerthe omputation time is. The parallelization tehnique is the same for the forward andadjoint equations: we expliit the tehnique for the forward equations only.



A 2D nonlinear inversion of well-seismi data 16Proessor i is in harge of the solution of equations (4) within subdomain 
i.The only notieable hange lies in the boundary ondition that px + pz has to meet.Indeed, domain deomposition introdues �titious boundaries within domain 
. These�titious boundaries separate adjaent subdomains. To speify the boundary onditionat these �titious boundaries, we have to make eah subdomain partly over itsneighbors. If we aept the idea of exhanging information between subdomains ateah time step, the domain deomposition tehnique beomes straightforward for theYee's sheme. The overing is onstituted of two rows (or two olumns), the pointsonstituting the boundary of one subdomain orresponding to the row (or olumn) ofthe nearest interior points of the neighbor subdomain.This domain deomposition method allows an e�ient parallelization of theomputations for solving the forward and adjoint equations. Communiation is requiredat eah time step but the volume of information to be exhanged at a spei� time stepis small sine only data within the overings are to be exhanged. So that we end upwith a good �saling�. Our numerial implementation allows an e�etive solution oflarge size 2D problems as shown in the next setion.In the ase of small subdomains, the memory of the omputation ores may allowthe storage of the solution of the forward problem. So that the omputation of thegradient (espeially omputation of the integral in (21)) is straightforward: there is noneed of reomputing this solution by a bakward integration in time (synhronous withthe solution of the adjoint equation) of the wave equation as it is usually done. Thissaves some 30% of the omputing time required for the omputation of the gradient.4. Evaluation of the methodThe goal of this setion is to evaluate the performane of the method using synthetidata. Speial attention will be paid to the resolution obtained.4.1. The test model and dataThe subsurfae model we have used (impedane and veloity distribution) is displayedin Figure 3. It is de�ned over a 720 m wide and 3400 m deep domain. The model showsgentle lateral variations. For the syntheti data generation, 100 reeivers were plaedin a vertial well (at x = 0) every 8 m from z = 1000 m. The seismi soures wereshot at the surfae from x=-360 m to x=360 m every 24 m. The seismi wavelet is aRiker funtion with 25 Hz entral frequeny (Figure 4). We then applied the originaldata (Figure 1) a Radon transform so as to obtain data orresponding to a pseudo-planewave exitation for illumination angles ranging, at z = 0, between -6�and 6�with a 1�sampling. The transformed data are displayed in Figure 5.Our aim is to invert for the impedane distribution given the 13 transformeddatasets and the veloity distribution, for z � z1 = 1000 m. In order to preserve seismiresolution we keep the �ne spatial disretization, namely �x = 12 m and �z = 8 m,



A 2D nonlinear inversion of well-seismi data 17used for modeling the seismi data.In all the experiments presented below the optimization algorithm is initiated usinga onstant impedane distribution and zero pressure onditions (exept for the situationwhere these pressure onditions are known).4.2. Inversion with known pressure onditionsWe start with an inversion with known pressure onditions: this experiment will serveas a referene for the test of our method in whih the pressure onditions also have to beretrieved. This referene is important sine we deal here with 2D nonlinear inversion, atopi in whih we lak of theoretial bakground.To arry out this arti�ial experiment we saved the pressure onditions at depthz1 (top of the overburden) when modeling the wave�elds generated by the shots. Wethen added these di�erent reordings after appliation of a shot dependent delay so asto simulate the slant staking proedure for the 13 onsidered illumination angles. Someof the so-obtained pressure onditions are displayed in Figure 2  and d.In this inversion experiment we want to make sure that the optimization algorithmyields a model that mathes the seismi data and, in ase of suess, to evaluate to whatextent the inversion allows a reovery of the impedane distribution. It should be notedthat� we do not regularize here; in other words we set �D=�I = �D=�H = 0;� we skip the inner loop of our interloked optimization tehnique (indeed there is noneed for omputing the pressure onditions sine they are known).The l-BFGS algorithm makes the seismi mis�t funtion derease by 6 orders ofmagnitude after 5000 iterations and by more than four orders of magnitude after1000 iterations. The omputed impedane distribution mathes the exat impedanedistribution pretty well in the upper target (Figure 6 right). However our inversion resulthas no quantitative value in the lower target. This is not surprising in view of setion 2.4:the low frequeny trend of the impedane distribution annot be retrieved in the lowertarget. Although the reonstruted impedane distribution has no quantitative value(Figure 6 left), we an however reognize some features present in the exat impedanedistribution. We will analyze in greater detail the reonstrution of the impedane in thelower target in the next subsetion. But let us highlight here the di�erene between ournonlinear inversion (Figure 6 left) and a migration-like imaging as displayed in Figure7. Leaving aside the quantitative aspets of the reonstrution, the vertial resolutionis obviously muh higher in our nonlinear inversion result than in the migration-likeresult. The vertial resolution in migration is governed by the frequeny bandwidthof the soure ([4℄) whereas, in our non linear inversion, it is governed by the samplingbetween reeivers in the upper target. In the lower target, the resolution aessibleby our nonlinear inversion annot be quanti�ed before hand. However, the fat thatit is muh enhaned ompared with migration an be understood as a kind of super-



A 2D nonlinear inversion of well-seismi data 18resolution phenomenon ([17℄) aused by multipled sattering ([14℄). We will pay muhattention to the vertial resolution in the next subsetion.4.3. Test of our method (unknown pressure onditions)Enouraged by the results presented in the previous setion, we aim here at reoveringsimultaneously the impedane distribution and the 13 pressure onditions from thewell data assoiated with the 13 illumination angles. Let us point out that, althoughwe deal with syntheti data, this experiment is far from an inversion rime (e.g.[30℄)ontrary to the experiment shown in the previous subsetion. Of ourse the questionis: to what extent the lak of information about the pressure onditions degrades thereonstrution of the impedane distribution. Speial attention will be paid to theresolution of the imaging tehnique. But, before adressing these important questions,we need to trust the optimization sheme whih onstruts the result. Figure 8 displaysthe behavior of the normalized objetive funtion (we normalize using the value of theobjetive funtion, whih is also here the seismi mis�t funtion, at iteration 0) duringthe �rst 1000 l-BFGS iterations (whih orrespond to some 30 hours CPU time using128 ores of our lusterk). We observe a derease of this normalized objetive funtionby almost 4 orders of magnitude, whih is omparable to the experiment with knownpressure onditions although we deal here with on�iting piees of information. Thisillustrates the e�etiveness of our interloked optimization sheme.4.3.1. An analysis of the resolution The omparison between the omputed and exatmodels (Figure 9 and 3, left ) shows that the prior information about the impedanedistribution has been aounted for while allowing some lateral variations. Figure9 right also displays the di�erenes between these two models: we observe that weobtain a reasonable estimation of the impedane distribution in the upper target andonly in this upper target. Again this is no surprise aording to what has beenexplained in subsetion 2.4. Also, by omparison with the experiment with knownpressure ondition, we observe negligible degradation eventhough the reliability of thequantitative estimation degrades a little when we move away from the well.In order to assess the vertial resolution of the method, we display, in Figure 10, theimpedane pro�les orresponding to di�erent horizontal loations. We observe the verygood reonstrution of the impedane in the upper target, even for loations as remoteas 200 m. In this upper target, the very �ne vertial variations of the impedane areretrieved: the vertial resolution is limited by the sampling interval we have hosen (weshould have hosen an even �ner interval...). In the lower target, eventhough the lowfrequeny trend is lost, the vertial variations of the impedane are reovered with greatdetail. In this part, our inversion seems to provide a vertial resolution muh better thanthe one provided by standard seismi imaging tehniques suh as migration. Again, theenhanement of the vertial resolution an be explained by the multiple illuminationk More spei�ally, we have used 8 nodes onstituted of 16 omputation ores



A 2D nonlinear inversion of well-seismi data 19of points in the subsurfae aused by multiple sattering ([14℄). This explanation ison�rmed by the relative degradation of vertial resolution for large depths. Thus oure�orts for solving a nonlinear inverse problem are rewarded by a signi�ant enhanementof the vertial resolution. However, if the vertial heterogeneity of the medium had beenless severe, the enhanement of the vertial resolution would have been less signi�ant.In order to analyze the lateral resolution we �rst display (Figure 11) horizontalimpedane pro�les orresponding to di�erent depths. For z = 1400 m or z = 1600 mthe pro�les show how good the estimation is. However the auray of the quantitativeestimation degrades as we move away from the well. At z = 2000 m, in spite of the lossof the low frequeny trend, we still reover, although with poor resolution, the horizontalvariations. However the horizontal resolution degrades very fast for larger depths. Inthe transition zone, that is in the depth range at the viinity of the boundary betweenthe upper and lower targets (z = 1800 m), the quality of the quantitative estimationdegrades very quikly as we move away from the well. This is not that surprising sinethis zone orresponds to the transition between two di�erent reonstrution mehanismsas explained in subsetion 2.4.1 for 1D models.4.4. Sensitivity to the veloity modelPratial use of our method requires the estimation of the distribution veloity. Atraveltime analysis of the seismi events seen on the reorded data allow an aurateestimation of the veloity pro�le at the well loation within the depth interval overedby reeivers. However, eventhough traveltime inversion of well-seismi data ([12℄) anbe of some help, we annot expet a very aurate estimation of the veloity at somehundred meters of the well. In this setion we address the problem of the sensitivity ofthe inversion result to an inaurate veloity model.In this aim we use a 1D veloity model suh that the veloity pro�le is the sameas the one of the exat model at the well within the interval overed by reeivers andis set to a onstant below (the onstant is the veloity at the deeper reeiver). Theobjetive funtion is dereased by almost 4 magnitudes: we math the data almost aswell as when using the exat veloity model. The reovered impedane distributionis displayed in Figure 12 and some vertial pro�les are shown in Figure 13. Thereonstruted impedane is still quite good. However we observe some degradationin the resolution along with, in the lower target, some depth varying shifts between theexat and reonstruted model. Those shifts are the onsequenes of an erroneous timeto depth onversion aused by the very erroneous onstant veloity model used in thelower target and the �t between the pro�les would have appeared muh better if theyhad been displayed in terms of a depth measured in traveltime.



A 2D nonlinear inversion of well-seismi data 205. Conlusion and perspetivesIn the framework of 2D aousti wave propagation, we have proposed a method thatattempts at reovering the impedane distribution from walkaway well-seismi datagiven the veloity distribution. This method is based on a nonlinear waveform inversion.From a physial standpoint, this amounts to aount for the multiple sattering ausedby the heterogeneity of sedimentary terrains.Basially our method is an extension of a lassial least-squares based 1D inversionof vertial seismi pro�les. Our 2D extension alls for an appropriate regularizationof the seismi mis�t funtion. This regularization only makes sense in the ase ofmedia with gentle lateral variations and is based on a preproessing that transformsthe reorded data into the seismi responses to quasi-plane waves exitations assoiatedwith di�erent illumination angles. Our method gets rid of the overburden, that is thepart of the subsurfae above the depth of the shallower reeiver, by reonstruting alsothe boundary onditions at that depth for the di�erent onsidered illumination angles.The so-formulated nonlinear inverse problem involves a tremendous number ofunknowns (typially one million), an ill-onditioned objetive funtion, and a forwardmap based on a numerial solution of the wave equation. Our quest for a high resolutionimaging tehnique led us to deal with �nely sampled impedane distributions. In thissituation a seond order �nite di�erene sheme is appropriate for the numerial solutionof the forward problem. The minimization of the objetive funtion alls for a dediatedoptimization method to overome the di�ulties arising from ill-onditioning. Thismethod is an extension of the l-BFGS optimization tehnique and makes use of agradient omputed by means of the adjoint state. On a problem of this omplexitya luster based superomputer is essential as well as an implementation based on adomain deomposition. Our implementation, although straightforward, turned out tobe very e�etive.Our method has been designed as a 2D extension of a well understood 1D nonlinearinversion. Based on this onnetion, an analysis of the stability of the impedanereonstrution would be possible if there were some theorem stating, for 2D aoustiwave propagation, the uniqueness of the impedane reonstrution for known boundaryondition. As far as we know, suh a theorem is not available today. Howeverif uniqueness annot be expeted, our problem then loses its sense. Thus we haveassumed this uniqueness and, by analogy with the 1D problem, foreseen the impedanereonstrution mehanism. It turns out that, in the upper target (the part orrespondingto the depth interval overed by reeivers) we obtain a quantitative estimation of theimpedane distribution (up to a multipliative onstant). The vertial resolution isgoverned by the sampling between reeivers. In the lower target we lose the lowfrequeny trend and this, of ourse, partly hampers the quantitative estimation. Ournumerial experiments on syntheti data on�rm and omplete the above mentionedresults. In partiular some lateral resolution an be expeted only in the upper target.Although the reliability of the quantitative estimation and the lateral resolution degrade



A 2D nonlinear inversion of well-seismi data 21as we move away from the well, our method yields a valuable result at about one hundredmeters away from the well. In the lower target, the reonstruted impedane, althoughwith poor lateral resolution, is still valuable. The vertial resolution is muh better thanthe one obtained by standard (linear) seismi imaging. This is a onsequene of themultiple illumination aused by multiple sattering and of our e�orts in aounting forthese nonlinear e�ets. These results were obtained using the exat veloity distribution.An important question is the sensitivity of the result in the hosen veloitydistribution. In pratie, the veloity pro�le an be identi�ed with very good aurayalong the well in the depth interval overed by reeivers. The di�ulty is the obtention ofthe veloity distribution around and below the well. We have arried out an experimentto mimi this situation. The onlusion is that the result is not very sensitive to theunknown features of the veloity distribution as long as we deal with a lose to 1Dmedium and with lose to vertial illuminations: we have mainly observed a slightdegradation of the resolution.Of ourse important work remains to be done. We have already mentioned theproblem onerning the uniqueness of the solution of the nonlinear inverse problem in2D. From a more pratial standpoint, a 3D extension, use of inhomogeneous trans-parent boundary ondition in replaement of our �pressure onditions� and update ofthe estimated veloity distribution during the inversion would be very interesting exten-sions. Also, how to design a seismi aquisition so as to optimize the reliability of thequantitative estimation and the spatial resolution at a given loation in the subsurfaeis a point on whih we have very limited answers and whih, basially, remains an openquestion.6. Referenes[1℄ A. Bamberger, 1978, Analyse, ontr�le et identi�ation de ertains systèmes, PhD Thesis Universitéde Paris VI, Frane..[2℄ A. Bamberger, G. Chavent, P. Lailly, 1979, About the stability of the inverse problem in the 1Dwave equation: appliation to the interpretation of seismi pro�les, J. Appl. Math. and Optim., 5,1-47.[3℄ A. Bamberger, B. Engquist, L. Halpern, P. Joly, 1988, Higher Order Paraxial Wave EquationApproximations in heterogeneous media, SIAM J. Appl. Math., 48, 1, 129-154.[4℄ A.J. Berkhout, 1985, Seismi resolution, Handbook of Geophysial Exploration, Geophysial Press,London.[5℄ A.J. Berkhout, 1985, Seismi migration, Elsevier Siene Publ. Co. In.[6℄ J.P. Bérenger, 1994, A perfetly mathed layer for the absorption of eletromagneti waves, J.Comput. Phys, 114, 185-200.[7℄ J.P. Bérenger, 1996, Three-dimensional perfetly mathed layer for the absorption of eletromagnetiwaves, J. Comput. Phys., 127, 363-379.[8℄ G. Beylkin, 1985, Imaging of disontinuities in the inverse sattering problem by inversion of aausal generalized Radon transform, J. Math.Phys., 26, 99-108.[9℄ N. Bleistein, 1987, On the imaging of re�etors in the earth, Geophysis, 52, 931-942.[10℄ R. Burridge, 1980, The Gelfand-Levitan, the Marhenko and the Gopinath-Sondhi integral
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