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Non 
onforming spa
e-time grids for the

wave equation : a new approa
h

Lauren
e Halpern

Abstra
t. We present a new method to design non-
onforming spa
e-time algorithms for the wave

equation. It relies on the use of the S
hwarz Waveform Relaxation method, and allows strong velo
ity


ontrasts, together with the use of weakly dispersive meshes.

x1. Introdu
tion

When solving evolution problems in heterogeneous media, it is often desirable to use non 
onforming grids

in spa
e and time, su
h a 
ase may be when di�erent time s
ales in di�erent media are present. When

dealing with wave propagation, this issue is most 
ru
ial, due to numeri
al dispersion. For example, let

us 
onsider the one dimensional wave equation
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In order to minimize the dispersion, the mesh sizes need to be 
lose to the CFL 
ondition everywhere.

When using the leap-frog s
heme for instan
e, the CFL number 
 = 
�t=�x must be smaller than 1.

For 
 = 1, the s
heme is exa
t.

The question of designing a mesh re�nement in time and spa
e arises in two ways. The �rst appli
ation

is when one wants to use a �ner spa
e dis
retisation in a small part 


1

, with a roughly 
onstant speed.

In order to keep 
 
lose to 1, one has to dis
retize time in the same fashion. The se
ond appli
ation is

when the velo
ity is larger in a part 


1

, if a 
onstant spa
e mesh is required, a �ner mesh in time is

needed in 


1

. We summarize and generalize with I domains 


i

su
h that

(I) either 
 is 
onstant in R, the spa
e meshes �x

i

are di�erent, 
�t

i

=�x

i

is a 
onstant ,

(II) or the speed in ea
h 


i

is a 
onstant 


i

, the spa
e mesh �x is a 
onstant, the time steps �t

i

are

su
h that 


i

�t

i

=�x is a 
onstant.

In both 
ases 
 has to be 
onstant, as large as possible, depending on the s
heme.

This problem has been widely studied in parti
ular for the transport equation, in 
onne
tion with problem

(I). The �rst paper is [1℄, where the Lax-Wendro� s
heme is proved to be stable with interpolatory

transmission 
onditions. In [2, 3℄, the leapfrog s
heme is studied. Stability problems for Diri
hlet

boundary data are reported. New transmission 
onditions using dis
rete energy estimates are proposed,

and proved to be stable.

Our approa
h is totally di�erent and addresses in parti
ular problems (I) and (II). It relies on the use

of S
hwarz waveform relaxation algorithms (SWR). The wave equation in R� (0; T ) is �rst written as

a 
olle
tion of wave equations in 


i

� (0; T ) with perfe
tly transmitting 
onditions on the boundaries

between neighboring subdomains. The solution is 
al
ulated through a S
hwarz algorithm. In the 
ase

of pie
ewise 
onstant velo
ities, it 
onverges in two iterations on appropriate time windows. We then

dis
retize in time and spa
e using �nite volumes, whi
h enables us to naturally take the transmission


onditions into a

ount. The spa
e and time steps are 
hosen independently and optimally in ea
h

subdomain, and the solution is transmitted to the neighbour by a proje
tion pro
edure. For the leapfrog

s
heme, the total pro
edure is stable and 
onvergent in both 
ases. The tools are energy estimates in


ase (I) and Lapla
e transform in 
ase (II). It is numeri
ally shown to keep the se
ond order a

ura
y.
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x2. About the S
hwarz Waveform relaxation method

We 
onsider the se
ond order , one dimensional wave equation with variable wave speed,

L(u) =

1
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2

u

�x

2

= 0 (1)

on the domain R � (0; T ) with initial 
onditions u(�; 0) = p and

�u

�t

(�; 0) = q.

We �rst de�ne the 
lassi
al S
hwarz waveform relaxation algorithm in the 
ase of two subdomains.

We introdu
e two overlapping subdomains 


1

= (�1; L) and 


2

= (0;+1). At step k, we solve two

subproblems in 


i

� (0; T ), with a Diri
hlet data on the boundary given by the previous step in the other

domain. The solution in 


i

� (0; T ) at step k is 
alled u

k

i

. The 
lassi
al S
hwarz algorithm extended to

spa
e-time domains is then given by:
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)u

k+1

i

= 0 in 


i

� (0; T ) for i = 1; 2;

u

k+1

i

(:; 0) = p in 


i

;

�u

k+1

i

�t

(:; 0) = q in 


i

;

u

k+1

1

(L; :) = u

k

2

(L; :); u

k+1

2

(0; :) = u

k

1

(0; :) in (0; T ):

(2)

Theorem 1. For the S
hwarz algorithm (2), 
onvergen
e is a
hieved in a �nite number of iterations,

k �

T sup 
(x)

L

.

Proof. The proof 
an be found in [5℄, and relies on the �nite speed of propagation. We des
ribe it here

in the 
ase of 
onstant velo
ity. Consider the errors U

k

i

= u

k

i

� u. They satisfy system (2) with zero

initial values. Using d'Alembert's formula, we have

for x� 
t > 0; U

k+1

2

(x; t) = 0;

for x� 
t < 0; U

k+1

2

(x; t) = U

k

1

(0; t�

x




);

(3)

and

for x+ 
t < L; U

k+1

1

(x; t) = 0;

for x+ 
t > L; U

k+1

1

(x; t) = U

k

2

(L; t�

L� x




):

(4)
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Figure 1: Evolution of the S
hwarz algorithm with Diri
hlet transmission 
onditions

We 
an now see the end of the proof on Figure 1 using (3) and (4) : at step k, U

k

1

vanishes for

x + 
t � kL and U

k

2

vanishes for x � 
t � �(k � 1)L. Thus U

k

1

and U

k

2

vanish identi
ally on the time

interval (0; T ) if T � kL=
.

This shows �rst that the 
lassi
al method, even with two subdomains, is extremely slow, and se
ondly

that it needs a large overlap to in
rease the 
onvergen
e speed. Note that for any transmission 
onditions,
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the error U

k

1

on the left is a fun
tion of x� 
t only, while on the right the error U

k

2

is a fun
tion of x+ 
t

only. This in turn implies the following identities for k � 1 and any positive time

8
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�
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�

�t

�

U

k

1

(0; t) = 0:

This observation leads to the following simple but important

Theorem 2. The transmission 
onditions de�ned by

�

�

�x

+

1




�

�t

�

u

k+1

1

(L; t) =

�

�

�x

+

1




�

�t

�

u

k

2

(L; t);

�

�

�x

�

1




�

�t

�

u

k+1

2

(0; t) =

�

�

�x

�

1




�

�t

�

u

k

1

(0; t);

(5)

lead to well-posed initial boundary value problems even without overlap and they are optimal: 
onvergen
e

in the S
hwarz algorithm with these transmission 
onditions is a
hieved in two iterations, i.e. u

2

i

is

identi
al to u in 


i

.

Table 1 shows the 
onvergen
e to the a

ura
y of the numeri
al s
heme of the algorithm with trans-

mission 
onditions (5), without overlap. The velo
ity is 
 = 1, the 
omputation is done on (0; T ) with

T = 2. The initial data are u(x; 0) = e

�50(0:5�x)

2

, �

t

u(x; 0) = 0. The domain (0; 2) is divided into two

subdomains (0; 1) and (1; 2). The initial guess (u

0

i

)

i=1;2

is 
hosen to be 0. We use the s
heme presented

in se
tion 3.

grid error after 2 iterations dis
retization error

50 x 50 2.6128e-04 2.1515e-02

100 x 100 2.7305e-05 4.9472e-03

200 x 200 3.2361e-60 1.2218e-03

400 x 400 3.9852e-07 3.0321e-04

800 x 800 4.9532e-08 7.5567e-05

Table 1: Convergen
e in two iterations to the a

ura
y of the numeri
al s
heme

In view of Theorem 2, we introdu
e now a general method on non overlapping subdomains.

2.1. The general method

We de
ompose the domain R into I non overlapping subdomains 


i

= (a

i

; a

i+1

), a

j

< a

i

for j < i and

a

1

= �1, a

I+1

=1 as given in Figure 2.
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Figure 2: Domain de
omposition into I non-overlapping subdomains.

We introdu
e a general non overlapping S
hwarz waveform relaxation algorithm

L(u

k+1

i

) = 0 in 


i

� (0; T )

B

�

i

(u

k+1

i

)(a

i

; t) = B

�

i

(u

k

i�1

)(a

i

; t) t 2 (0; T )

B

+

i

(u

k+1

i

)(a

i+1

; t) = B

+

i

(u

k

i+1

)(a

i+1

; t) t 2 (0; T )

u

k+1

i

(x; 0) = p(x) x 2 


i

�u

k+1

i

�t

(x; 0) = q(x) x 2 


i

(6)
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where B

�

i

are linear transmission operators whi
h we will determine to get optimal performan
e of the

algorithm. For ease of notation we de�ned here u

k

0

:= 0; u

k

I+1

:= 0, so that the index i in (6) ranges

from i = 1 to I .

De�nition 1. The Diri
hlet to Neumann operators for the wave equation S

�

(x

0

) and S

+

(x

0

) are de�ned

as follows. S

�

(x

0

)g(t) =

�v

�x

(x

0

; t), where v(x; t) is the solution of the exterior problem

L(v) = 0; in (�1; x

0

)� (0; T )

�v

�t

(x

0

; t) = g(t) t 2 (0; T )

(7)

with zero initial data, and S

+

(x

0

)g(t) =

�v

�x

(x

0

; t) where v(x; t) is the solution of the exterior problem

L(v) = 0; in (x

0

;1)� (0; T )

�v

�t

(x

0

; t) = g(t) t 2 (0; T )

(8)

with zero initial data.

The general result reads

Theorem 3. Algorithm (6) 
onverges in I iterations on [0; T ℄ to the solution u of the wave equation in

R su
h that �

t

u and �

x

u are 
ontinuous a
ross the numeri
al interfa
es, for the following 
hoi
e of the

operators B

�

i

:

B

�

i

= (�

x

� S

�

(a

i

)�

t

); B

+

i

= (�

x

+ S

+

(a

i+1

)�

t

):

Proof. The proof is general and goes as follows. We 
onsider vanishing initial data. At step 1, we have

L(u

1

i

) = 0 in 


i

= (a

i

; a

i+1

). Thus by de�nition we have on the left B

�

2

(u

1

1

)(a

2

; �) = 0. At step 2, the

problem in 


2

has as a left boundary 
ondition B

�

2

(u

2

2

)(a

2

; �) = 0. We de�ne

e




2

= (a

1

; a

3

) and ~u

2

2

in

e




2

as u

2

1

in 


1

and u

2

2

in 


2

. We de�ne likewise

e




I�1

and ~u

2

I�1

. We now have an equivalent domain

de
omposition with (

e




2

;


3

; � � � ;


I�2

;

e




I�1

), and the fun
tions (~u

2

2

; u

2

3

; � � � ; u

2

I�2

; ~u

2

I�1

). We pro
eed

until the problem is redu
ed to two or three domains, depending on I . Suppose I is even. After K = I=2

steps we are led to two domains

e




K

= (a

1

; a

K+1

) and

e




K+1

= (a

K+1

; a

I+1

), and two fun
tions ~u

K

K

and

~u

K

K+1

su
h that L(~u

K

i

) = 0 in

e




i

. Then due to the exa
t transmission 
onditions we have, at step K+1,

vanishing boundary 
onditions for ~u

K+1

K

and ~u

K+1

K+1

, thus ~u

K+1

K

and ~u

K+1

K+1

vanish. We now have to go

su

essively downwards with vanishing data to u

K+1

K�1

= 0; � � � ; u

2K

1

= 0 and the same upwards. Thus at

step I , the error vanishes in every subdomain.

2.2. The optimal method in a strati�ed medium and time windows

Suppose now the velo
ity to be 
onstant in ea
h subdomain : 
 � 


i

in 


i

. We then have

Theorem 4. Suppose the subdomains 
oin
ide with the dis
ontinuities. Then algorithm (6) 
onverges

in two iterations if

B

�

i

= (�

x

�

1




i�1

�

t

); B

+

i

= (�

x

+

1




i+1

�

t

)

(9)

and T < T

1

= min

1<i<I

ja

i+1

� a

i

j




i

.

This analysis suggests to use time windows on intervals [pT

1

; (p+1)T

1

℄ , where T

1

is given in theorem

4 and p takes integer values. In ea
h window the algorithm is exa
t in two iterations.

We now 
on
entrate on the dis
retization of algorithm (6), with lo
al transmission operators B

�

i

given by (9). In the 
ase of dis
ontinuous speed, we suppose that T � T

1

, whi
h implies by Theorem 3

that u

2

i

� u=




i

for 1 � i � I .
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x3. The numeri
al algorithm

Ea
h domain 


i

is dis
retized with a mesh �x

i

, the points are numbered from 0 to J

i

+ 1. The time

interval in 


i

is dis
retized with a mesh �t

i

, and the time steps are numbered from 0 to N

i

+ 1. The

dis
rete value in domain 


i

, at point j and time n is written U

i

(j; n).

In order to handle more easily the boundary 
onditions, we 
hoose a \vertex 
entered" �nite volume

s
heme [4℄. The displa
ement u is 
onsidered to be 
onstant on the shell ℄x � �x=2; x + �x=2[�℄t �

�t=2; t+�t=2[ and the derivatives are 
onstant on the dual mesh.

3.1. Des
ription of the s
heme

We 
onsider �rst the boundary value problem de�ned as the wave equation in ea
h domain 


i

, with

boundary 
onditions B

�

i

u

i

(a

i

) = g

�

i

(a

i

) and B

+

i

u

i

(a

i+1

) = g

+

i

(a

i+1

). We write the interior s
heme by

integrating the equation on (x

j

��x

i

=2; x

j

+�x

i

=2)� (t

n

��t

i

=2; t

n

+�t

i

=2), and approximating the

remaining derivatives by �nite di�eren
es. We obtain the 
lassi
al leapfrog s
heme. We now integrate

the equation on the half-shell (a

i

; a

i

=2; x

j

+�x

i

=2)� (t

n

��t

i

=2; t

n

+�t

i

=2). We get the same terms

as before, but a boundary term whi
h is the integral of �u=�x on (t

n

��t

i

=2; t

n

+�t

i

=2). It is handled

using the boundary 
ondition, and we obtain for example on the left.

B

�

i

(U

i

)(0; n) :=

�

�x

i

2C

2

i

D

+

t

D

�

t

�D

+

x

+

1

C

i�1

D

0

t

�

(U

i

)(0; n) = G

�

i

(n):

whereD

+

t

�(n) =

1

�t

i

(�(n+1)��(n)), D

�

t

�(n) =

1

�t

i

(�(n)��(n�1)), D

0

t

�(n) =

1

2�t

i

(�(n+1)��(n�1))

and the same for the x� derivatives. The right hand side is

G

�

i

(n) :=

1

�t

i

Z

t

n

+�t

i

=2

t

n

��t

i

=2

g

�

i

(�)d�;

Within the iterative algorithm, G

�

i

(n) is now a G

�;k

i

(n) , whose value is extra
ted from 


i�1

at step

k � 1 using the same pro
ess. We de�ne

e

B

�

i

(U

i�1

)(J

i�1

+ 1; n) :=

�

�

�x

i�1

2C

2

i�1

D

+

t

D

�

t

�D

�

x

+

1

C

i�1

D

0

t

�

(U

i�1

)(J

i�1

+1; n):

and

e

G

�;k�1

i�1

(n) =

e

B

�

i

(U

k�1

i�1

)(J

i�1

+1; n). If the time steps are the same in 


i

and 


i�1

, the transmission


ondition leads to G

�;k

i

=

e

G

�;k�1

i�1

. If we have di�erent time grids �t

i

in 


i

. G

�;k

i

is a ve
tor in R

N

i

+1

and

e

G

�;k�1

i

is a ve
tor in R

N

i�1

+1

. We need a proje
tion operator, de�ned as follows. Suppose we are given

a ve
tor v = (v

0

; : : : ; v

N

) 2 R

N+1

whi
h represents the values of a step fun
tion on the 
orresponding

intervals I

n

= (t

n

; t

n+1

) where t

0

= 0, t

N+1

= T and [

N

n=0

I

n

= [0; T ℄ and the intervals do not overlap.

Then we de�ne the s
alar produ
t on R

N+1

by

(v;w)

N+1

:=

N

X

n=0

jI

n

jv

n

w

n

where jI

n

j denotes the length of the interval I

n

. We thus obtain the indu
ed norm on R

N+1

jjvjj

2

N+1

:= (v;v)

N+1

:

We �rst de�ne the operator F : R

N+1

�! L

2

(0; T ) whi
h 
onstru
ts a pie
ewise 
onstant fun
tion on

the intervals I

n

from the ve
tor v,

F : v 7�! f(t) := v

n

; t 2 I

n

Then we de�ne the operator E : L

2

(0; T ) �! R

N+1

whi
h proje
ts a given fun
tion f(t) onto a ve
tor

v 2 R

N+1


orresponding to a pie
ewise 
onstant fun
tion in the intervals I

n

E : f(t) 7�! v

n

:=

1

jI

n

j

Z

I

n

f(t)dt:
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Denoting by F

i

and E

i

the 
orresponding operators using the grid of 


i

, we de�ne the operator P

i;j

:

R

N

i

+1

�! R

N

j

+1

by

P

i;j

:= E

j

Æ F

i

: (10)

The pre
ise implementation of the proje
tion pro
edure is des
ribed in [6℄. With these notations we have

on the left G

�;k

i

= P

i;i�1

e

G

�;k�1

i�1

, and the same on the right.

We obtain the dis
rete S
hwarz waveform relaxation algorithm on subdomains 


i

, 1 � i � I with

non-mat
hing grids:

De�nition 2. The dis
rete algorithm 
orresponding to (6,9) is given by

�

1

C

2

i

(j)

D

+

t

D

�

t

�D

+

x

D

�

x

�

(U

k+1

i

)(j; n) = 0; 1 � j � J

i

; 1 � n � N

i

; (11)

B

�

i

(U

k+1

i

)(0; �) = P

i�1;i

e

B

�

i

(U

k

i�1

)(J

i�1

+ 1; �); (12)

B

+

i

(U

k+1

i

)(J

i

+ 1; �) = P

i+1;i

e

B

+

i

(U

k

i+1

)(0; �); (13)

with the dis
rete operators

B

�

i

(U

i

)(0; n) =

�

�x

i

2C

2

i

D

+

t

D

�

t

�D

+

x

+

1

C

i�1

D

0

t

�

(U

i

)(0; n)

e

B

�

i

(U

i�1

)(J

i�1

+1; n) =

�

�

�x

i�1

2C

2

i�1

D

+

t

D

�

t

�D

�

x

+

1

C

i�1

D

0

t

�

(U

i�1

)(J

i�1

+1; n)

(14)

B

+

i

(U

i

)(J

i

+ 1; n) =

�

�x

i

2C

2

i

D

+

t

D

�

t

+D

�

x

+

1

C

i+1

D

0

t

�

(U

i

)(J

i

+ 1; n);

e

B

+

i

(U

i+1

)(0; n) =

�

�

�x

i+1

2C

2

i+1

D

+

t

D

�

t

+D

+

x

+

1

C

i+1

D

0

t

�

(U

i+1

)(0; n)

(15)

provided with initial values derived in the same way.

We note on formulae (14,15) that the transport operators B

�

i

are approximated by a Lax-Wendro�-

type s
heme, and that they are dis
retized di�erently depending on whether they apply to U

i

or to

U

i�1

.

3.2. The 
ase of 
ontinuous wave speed a
ross numeri
al interfa
es

We denote by V = fV (j)g

0�j�J+1

a sequen
e in R

J+2

, and we de�ne for V;W 2 R

J+2

a bilinear form

on R

J+2

by

a

h

(V;W ) =

�x

2

J+1

X

j=1

D

�

x

(V )(j) �D

�

x

(W )(j): (16)

A

ordingly, for any positive n, V (n) stands for the sequen
e fV (j; n)g

0�j�J+1

. The dis
rete energy E

n

at time step n, global in spa
e, is de�ned as the sum of a dis
rete kineti
 energy E

K;n

and a dis
rete

potential energy E

P;n

given by

E

K;n

=

�x

2

2

4

1

2C

2

(0)

(D

�

t

(V )(0;n))

2

+

J

X

j=1

1

C

2

(j)

(D

�

t

(V )(j;n))

2

+

1

2C

2

(J+1)

(D

�

t

(V )(J+1;n))

2

3

5

;

E

P;n

= a

h

(V (n); V (n� 1));

E

n

=E

K;n

+E

P;n

:

(17)

The quantity E

K;n

is 
learly a dis
rete kineti
 energy. E

n


an be identi�ed as an energy by the

Lemma 5. For any n � 1, we have

E

n

�

 

1�

�

C

�t

�x

�

2

!

E

K;n

; (18)

where C is de�ned by C = sup

1�j�J+1

C(j). Hen
e, under the CFL 
ondition

C

�t

�x

< 1; (19)

E

n

is bounded from below by an energy.
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This provides in ea
h subdomain an energy identity and we proved in [6℄ the following result.

Theorem 6. Assume that the velo
ity is 
ontinuous on the interfa
es a

i

. If the CFL 
ondition (19) is

satis�ed by the dis
retization in ea
h subdomain, then the non-overlapping dis
rete S
hwarz waveform

relaxation algorithm (11,...,15) is well-posed and 
onverges on any time interval [0; T ℄ to the solution of

�

1

C

2

i

(j)

D

+

t

D

�

t

�D

+

x

D

�

x

�

(U

i

)(j; n) = 0; 1 � j � J

i

; 1 � n � N

i

;

B

�

i

(U

i

)(0; �) = P

i�1;i

e

B

�

i

(U

i�1

)(J

i�1

+ 1; �);

B

+

i

(U

i

)(J

i

+ 1; �) = P

i+1;i

e

B

+

i

(U

i+1

)(0; �);

(20)

in the energy norm, i.e.

I

X

i=1

E

N

i

(U

k

i

� U

i

)! 0 as k !1:

The same 
al
ulations a
tually give a stability result for the limit

Theorem 7. With the same assumptions as in Theorem 6, the limit of the iterates given by (20) satis�es

the energy bounds, with a 
onstant C depending only on the L

2

norms of the initial 
onditions:

I

X

i=1

E

N

i

(U

i

) � C:

3.3. The 
ase of a strati�ed medium

We suppose again the velo
ity to be 
onstant in ea
h subdomain : 
 � 


i

in 


i

. We de�ne a lo
al

CFL number to be 


i

= 


i

�t

i

=�x

i

. The stability for the pure Cau
hy problem implies 


i

� 1 (see for

instan
e[7℄).

3.3.1. The 
ase 
 = 1

We suppose here that 


i

= 1 in every 


i

. The s
heme resumes to

U

i

(j; n+ 1) + U

i

(j; n� 1)� (U

i

(j + 1; n) + U

i

(j � 1; n)) = 0; (21)

and the dis
rete operators are given for any solution of (21) by

e

B

�

2

(U

1

)(J

1

+1; n) =

1

�x

1

(U

1

(J

1

; n)� U

1

(J

1

+ 1; n� 1));

e

B

+

1

(U

2

)(0; n) =

1

�x

2

(U

2

(1; n)� U

2

(0; n� 1)):

(22)

We 
onsider �rst two media 


1

= (�1; 0) and 


2

= (0;+1).

Theorem 8. In the 
ase of two media 


1

and 


2

with the same CFL number 


1

= 


2

= 1, the dis
rete

algorithm (11,...,15) 
onverges in two iterations to the solution of (20).

Proof. It is mimi
ked on the 
ontinuous 
ase. By (21, 22), we have

e

B

�

2

(U

1

)(J

1

+1; n) = U

1

(J

1

� n+ 1; 1)� U

1

(J

1

� n; 0);

e

B

+

1

(U

2

)(0; n) = U

2

(n; 1)� U

2

(n� 1; 0):

Let now the initial values be null. It implies that we have at step 1

e

B

�

2

(U

1

1

)(J

1

+1; �) � 0 and

e

B

+

2

(U

1

2

)(0; �) � 0. By linearity we have B

�

2

(U

2

2

)(0; �) � 0 and B

+

1

(U

2

1

)(J

1

+1; �) � 0. We 
on
lude

that U

2

i

� U

i

for i = 1; 2.

When 
 is equal to 1, the dis
rete velo
ity is equal to the 
ontinuous speed. Then Theorem 8 extends

easily to

Theorem 9. In the 
ase of I media 


i

with the same CFL number 


i

= 1, the dis
rete algorithm

(11,...,15) 
onverges in two iterations to the solution of (20) for T < T

1

.
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3.3.2. The 
ase 
 < 1

We 
onsider two media 


1

= (�1; 0) and 


2

= (0;+1), with velo
ities 


1

and 


2

= q


1

. The spa
e

mesh is 
onstant, �x

1

= �x

2

= �x, and �t

1

= q�t

2

. Therefore 


1

= 


2

= 
.

We analyze here the 
ase q = 2. The general 
ase for any integer q will be done in a forth
oming paper.

The dis
rete solution U

2

in 


2

is split into an even part fU

2P

(�; n)g

n2N

= fU

2

(�; 2n)g

n2N

and an odd

part fU

2I

(�; n)g = fU2(�; 2n+ 1)g

n2N

. We de�ne

V

k

1

= B

+

1

(U

k

1

)(J

1

+ 1; �) ; V

k

2

= B

�

2

(U

k

2

)(0; �);

e

V

k

1

=

e

B

�

2

(U

k

1

)(J

1

+ 1; �) ;

e

V

k

2

=

e

B

+

1

(U

k

2

)(0; �):

Hen
e the proje
tion operators P

i;j

have the very spe
ial form

(P

12

V

1

)

2P

= V

1

; (P

12

V

1

)

2I

= V

1

; P

21

V

2

=

1

2

(V

2P

+ V

2I

)

whi
h gives the transmission 
onditions as

V

k+1

2P

=

e

V

k

1

= V

k+1

2I

; V

k+1

1

=

1

2

(

e

V

k

2P

+

e

V

k

2I

) (23)

The dis
rete Lapla
e transform of a grid fun
tion v = fv

n

g

n�0

on a regular grid with time step Æt is

de�ned for � > 0 by (see for instan
e [7℄)

Lv(s) = v̂(s) = Æt

X

n�0

e

�snÆt

v

n

; s = � + i�; j� j �

�

Æt

; (24)

Using the Lapla
e transform of U

1

; U

2P

and U

2I

on the mesh Æt = 2�t, equation (11) be
omes the

di�eren
e equation

(e

2s�t

+ e

�2s�t

� 2)

^

U

1

� 


2

1

A

^

U

1

= 0; (25)

with operator A a
ting on the j� variables given by

Ag(j) = g(j + 1)� 2g(j) + g(j � 1);

System in 


2

using the Lapla
e transform 
an be written as

(1 + e

�2s�t

)

^

U

2I

(j; s)� 2

^

U

2P

(j; s)� 


2

2

A

^

U

2P

= 0;

(1 + e

2s�t

)

^

U

2P

(j; s)� 2

^

U

2I

(j; s)� 


2

2

A

^

U

2I

= 0:

(26)

A

ording to the results in [6℄, we denote by r

+

(z; 
) (resp.r

�

) the root whose modulus is > 1 (resp.< 1)

for stri
tly positive � of the 
hara
teristi
 equation




2

(r � 2 + 1=r) = (z + 1=z � 2): (27)

We then 
an solve (25) and (26) with Z = e

s�t

as (see [1℄ and [3℄)

b

U

k

1

(j; s) = a

k

1

(s)(r

+

(Z

2

; 


1

))

j

;

 

b

U

2I

(j; s)

b

U

2P

(j; s)

!

= a

k

2p

(s)(r

�

(Z; 


2

))

j

�

Z

1

�

+ a

k

2m

(s)(r

�

(�Z; 


2

))

j

�

�Z

1

�

:

(28)

The boundary terms

b

V

k

j

and

b

e

V

k

j

are given by

�x

1

b

V

k

1

= E(Z

2

; 
;




1




2

) a

k

1

;

�x

1

b

e

V

k

1

=

e

E(Z

2

; 
; 1) a

k

1

;

(29)
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�x

2

 

b

V

k

2I

(j; s)

b

V

k

2P

(j; s)

!

= a

k

2p

E(Z; 
;




2




1

)

�

Z

1

�

+ a

k

2m

E(�Z; 
;




2




1

)

�

�Z

1

�

�x

2

0

�

b

e

V

k

2I

(j; s)

b

e

V

k

2P

(j; s)

1

A

= a

k

2p

e

E(Z; 
; 1)

�

Z

1

�

+ a

k

2m

e

E(�Z; 
; 1)

�

�Z

1

�

(30)

with fa
tors E and

e

E given by

k(z) =

1

2

�

z �

1

z

�

; �(z; 
) =

1

2

(r

+

(z)� r

�

(z));

E(z; 
; q) = �(z; 
) +

q




k(z);

e

E(z; 
; q) = ��(z; 
) +

q




k(z)

(31)

Transmission 
onditions (23) be
ome

b

V

k+1

2P

=

b

V

k+1

2I

=

b

e

V

k

1

;

b

V

k+1

1

=

1

2

(

b

e

V

k

2P

+

b

e

V

k

2I

)

and thus we get the re
ursion relations

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

a

k

2m

=

Z � 1

Z + 1

E(�Z; 
;




2




1

)

E(Z; 
;




2




1

)

a

k

2p

;

a

k+1

2p

=

1

4

Z + 1

Z

e

E(Z

2

; 
; 1)

E(Z; 
;




2




1

)

a

k

1

;

a

k+1

1

=

1

Z + 1

E(Z; 
;




2




1

)

E(Z

2

; 
;




1




2

)

"

(Z + 1)

2

e

E(Z; 
; 1)

E(Z; 
;




2




1

)

� (Z � 1)

2

e

E(�Z; 
; 1)

E(�Z; 
;




2




1

)

#

a

k

2p

:

(32)

There is a two-level re
ursion formula for ea
h 
oeÆ
ient a

k+2

j

= Ra

k

j

, with a 
onvergen
e rate

R(Z; 
) =

1

4Z

e

E(Z

2

; 
; 1)

E(Z

2

; 
;




1




2

)

"

(Z + 1)

2

e

E(Z; 
; 1)

E(Z; 
;




2




1

)

� (Z � 1)

2

e

E(�Z; 
; 1)

E(�Z; 


2

;




2




1

)

#

: (33)

De�ning

�(z; 
; q) =

e

E(z; 
; 1)

E(z; 
; q)

; ~�(Z; 
) =

(Z + 1)

2

4Z

�(Z; 
;




1




2

) �(Z

2

; 
;




2




1

); (34)

we obtain for the 
onvergen
e rate of the dis
rete S
hwarz waveform relaxation algorithm

R(Z; 
) = ~�(Z; 
)� ~�(�Z; 
): (35)

The properties of the solutions r

�

(z) and of the fun
tions E and

e

E are given in great details in [6℄. In

parti
ular it is proved that for any z 6= 1, and 
 < 1, E(z; 
; q) 6= 0. Furthermore if z ! 1, we have

E(z; 
; q) = O(z � 1);

e

E(z; 
; 1) = O((z � 1)

3

);

Thus ~� is well-de�ned for jzj > 1, with ~�(1; 
) = 0, and so is R. The 
onvergen
e rate R(z; 
) is an

analyti
 fun
tion of z for jzj � 1, whi
h 
orresponds to � � 0. R satis�es a maximum prin
iple for � � 0

and hen
e attains its maximum on the boundary � = 0. It is therefore suÆ
ient to study the behavior

of R for � = 0 .



10 Lauren
e Halpern

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

PSfrag repla
ements

~�(�; 
)

~�(��; 
)

R(Z; 
)

Figure 3: variation of jR(e

i��t

; 
)j as a fun
tion of ��t for various values of 
.
 = 0:7, solid, 
 = 0:8,

dash, 
 = 0:9, dash-dot.

Lemma 10. There exists a stri
tly positive 
onstant K su
h that the 
onvergen
e rate satis�es

sup

jzj=1

jR(z; 
; 


1

=


2

)j � K < 1:

and we 
on
lude as in [6℄

Theorem 11. Let U

p

i

be the iterates of algorithm (11,...,15) with zero initial values. Then we have

kU

p

i

k




i

�(0;T )

� (K)

b

p

2




max

i=1;2







U

0

i










i

:

where kU

i

k

2




i

�(0;T )

= �t

i

�x

i

P

n

P

j

jU

i

(j; n)j

2

and kU

0

i

k

2




i

= �x

i

P

j

jU

0

i

(j)j

2

.

The same 
al
ulations, usig the GKS theory as in [1℄ prove the

Theorem 12. Let U

i

be the limit of the iterates of algorithm (11,...,15).Then U

i

is stable in the GKS

sense.

x4. Numeri
al results

We �rst 
ompare our method to two other re�nement methods. They do not involve domain de
omposi-

tion, and have been analyzed in the 
ase when the velo
ity is equal to 1 and one domain is a re�nement

of the neighbour.

4.1. Some 
omparisons in the 
ase of two half-spa
es

We restri
t ourselves to the 
ase where 
 = 1 and (�t

1

;�x

1

) = (2�t

2

; 2�x

2

) = (2�t; 2�x). The �rst

method, we 
all the I-method, 
onsists in de�ning three transmission 
onditions as follows. U

1

(0; n) is

obtained by the leapfrog s
heme on the dotted sten
il in Figure 4. Then 
ontinuity is enfor
ed on the even

points : U

2

(0; 2n) = U

1

(0; n), and interpolation at odd points: U

2

(0; 2n+1) =

1

2

(U

1

(0; n)+U

1

(0; n+1)).

A 
omplete analysis of stability for the Lax-Wendro� s
heme 
an be found in [1℄.
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Figure 4: the I-method

In the se
ond method, we 
all E-method developed in [2℄, three relations are written between U

1

and

U

2

whi
h preserve the energy in both domains. They are too 
ompli
ated to be written here.

The test 
ase is the same as in [3℄. 


1

= (0; 100) with transparent boundary 
ondition on the left, and




2

= (100; 110) with a transparent boundary 
ondition on the right. The initial 
ondition is drawn in

Figure 5.
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Figure 5: Initial value

The time T is equal to 200. The spa
e mesh is �xed equal to �x = 0:5, and we take various values

of �t.

We start with the 
ase 


1

= 


2

= 1 in table 2. In this 
ase a uniform mesh would produ
e an exa
t

s
heme as mentioned in the �rst paragraph. As noted by the authors in [2℄, the E-method produ
es

wrong results. In the 
oarse domain, the s
heme is exa
t. In the right domain, interpolation is better by

a fa
tor of 2.

max error in 


1

max error in 


2

s
heme error, �ne grid 1.6098e-15 1.4988e-15

D.D-method 1.8319e-15 0.0089

I-method 1.9429e-15 0.0046

E-method 1.9971e-04 0.4949

Table 2: error in L

1

(


i

� (0; T )) for 


1

= 


2

= 1

We now redu
e the 
oeÆ
ient 
, to 
 = 0:9091 in table 3. The three methods are 
omparable on

the left domain, in the right domain the interpolation method is the best, there is a fa
tor 2 with the

DD-method, and a fa
tor 16 with the E-method.
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max error in 


1

max error in 


2

s
heme error, �ne grid 0.0022 0.0006

s
heme error, 
oarse grid 0.009 0.003

D.D-method 0.0068 0.0064

I-method 0.0068 0.0027

E-method 0.0068 0.0437

Table 3: error in L

1

(


i

� (0; T )) for for 


1

= 


2

= 0:9091

We will not diminish 
 further, sin
e then the dispersion error would be too large.

In [2℄ is shown an example with a Diri
hlet boundary 
ondition on the right. In that 
ase the I-method

is unstable. We reprodu
e their example in Figure 6. The velo
ity is 
onstant equal to 1. The domains

are 


1

= (0; 100), 


2

= (100; 103:5), T = 1000. The spa
e meshes are the same in both domains equal

to 1,


1

= 


2

= 0:913.
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Figure 6: Solution of the I-method in 


1

[ 


2

for Diri
hlet boundary 
ondition after 400 timesteps

This phenomenon is also reported in [1℄ as a personal 
ommuni
ation of Oliger. No detailed proof is

avalaible so far. Another 
ase is where we modify 


2

and 
 a little, taking 


2

= (100; 110), 
 = 0:9524.

The numeri
al data are the same as before. The s
heme remains stable, and we have the errors in table

4.

max error in 


1

max error in 


2

s
heme error, �ne grid 0.0265 0.0265

s
heme error, 
oarse grid 0.1050 0.1050

D.D-method 0.0764 0.0693

I-method 0.0471 0.0425

E-method 0.0781 0.1062

Table 4: error in L

1

(


i

� (0; T )) for Diri
hlet boundary 
ondition, 


1

= 


2

= 0:9524

Here the I-method is the best, followed by the present method, espe
ially in the �ne grid.

In Figure 7 we draw the L

1

error in time and spa
e in both domains as a fun
tion of the mesh, for the

same data. We see that the present method is of order 2.
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Figure 7: error in L

1

(


i

�(0; T )) as a fun
tion of the time step, logarithmi
 s
ale. On the left the 
oarse

grid, on the right the �ne grid. Comparison between the three methods

4.2. A few more diÆ
ult 
ases

The domains are 


1

= (0; 1);


2

= (1; 2), T = 1. The velo
ity are 
=1 in 


1

, 
=1.7 in 


2

. The initial

data is as in Figure 5, supported in 


1

. We 
hoose �rst 11 points in spa
e in ea
h domain, and the

number of points in time su
h that 
 = 1 in both domains, that is 11 points in time in 


1

and 18 in 


2

.

Thereafter the meshes are divided by 2. In Figure 8 we draw the L

1

error in time and spa
e in both

domains as a fun
tion of the mesh, and we see that the method is still of order 2.
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Figure 8: error in L

1

(


i

�(0; T )) as a fun
tion of the time step, logarithmi
 s
ale. On the left the 
oarse

grid, on the right the �ne grid.

We 
onsider now the spa
e interval [0; 6℄ divided in 6 layers 


i

2 f1; 2=3; 1=2; 3=4; 4=5g. The six nu-

meri
al domains are aligned with the dis
ontinuities. We 
hose the same spa
e mesh in the subdomains,

�x

i

= 1=50, and the lo
al time steps are su
h that 


i

is 
lose to 1. The time interval is [0; 1℄.
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Figure 9: Convergen
e in 2 iterations with lo
al transmission 
onditions on time interval [0 1℄

x5. Con
lusions

We have proposed a new way of 
onsidering the mesh re�nement problem. Applied to the leapfrog

s
heme, we have proven it to be stable, and given numeri
al eviden
e of an order 2 in time. The pre
ise

study of the a

ura
y will be done in a forth
oming paper. Its 
exibility allows for the use of other

s
hemes, like �nite elements in time and spa
e for instan
e, and other equations. It is robust and will

extend to higher dimensions.
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