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1 Introduction

When solving a partial differential equation in domains where small scales and
large scales are present, it is often desirable to use small meshes in some parts of
the domain. For stationary problems, domain decomposition methods with non-
matching grids have been developed, in connection with finite volumes or finite
elements discretization methods [3, 4, 13]. More recently, mortar element methods
have been coupled with optimized Schwarz algorithms [1].

When dealing with the wave equation, refinement in space implies a refinement
in time, as the coefficient c∆t/∆x has to be, for example for the leapfrog scheme,
close to 1 [15]. The key point is how to connect the schemes on the interfaces of
the numerical domains. This is often done by interpolation of the node values on
the interface [2]. A complete analysis of this procedure in the case of the leap-
frog scheme has been done, and new transmission conditions using discrete energy
estimates have been proposed [5, 6], which are stable, in the energy norm, with
respect to the right-hand side in the equation and the initial conditions. As far as
we know, no evaluation of the order of convergence is available . For non linear
conservation law, a refinement strategy leads to a convergence result [14].

Our approach is different and relies on the use of Schwarz waveform relaxation
algorithms [10]. The wave equation in R× (0, T ) is first written as a collection of
wave equations in Ωi× (0, T ) with perfectly transmitting conditions on the bound-
aries between neighboring subdomains. We then discretize in time and space using
finite volumes, which allows us to naturally take the transmission conditions into
account. In the interior of the subdomains, finite volumes produce the usual leap-
frog scheme. The transport operators on the interfaces are naturally discretized by
a Lax-Wendroff scheme. The space and time steps are chosen independently and
optimally in each subdomain, and the solution is transmitted to the neighbours by
a projection procedure. We proved the procedure to be stable for γ ≤ 1 in the L2

norm, for a constant time step [11] . Furthermore, we showed numerical evidence
that, for any type of mesh refinement, the scheme is overall second order in time
and space. This paper is devoted to proving this result.
We introduce here a new stability concept, including a perturbation on the inter-
face. In the case where the velocity is constant throughout the domain, we prove
the scheme to be stable in that sense. This relies on energy estimates, and an
extension lemma. As a consequence, we prove the scheme to be second order in
time and space on a sufficiently short time interval. This, together with the use of
time windows [10], produces on any time interval a second order scheme.
In Section 2, we introduce the continuous problem, and the concept of stability.
We prove the well-posedness through an extension lemma and energy estimates.
In Section 3, we study the discrete problem. We set the scheme, and give the a
priori estimates, which will be useful to study the well-posedness. We write the
transmission conditions, and prove the well-posedness, assuming an extension re-
sult, which is proved at the end of the Section. The order of convergence follows
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from the stability result.
So far, the proof is valid only for constant velocity, but the results should extend
to variable coefficients.

2 The continuous problem

2.1 Definitions

We consider the one dimensional wave equation with wave speed c,

� u :=
1

c2(x)

∂2u

∂t2
− ∂2u

∂x2
= f, (1)

on the domain R × (0, T ), with initial conditions u(·, 0) = p and ∂u
∂t

(·, 0) = q. If p
is in H1(Ω), q is in L2(Ω), and f is in L2(Ω× (0, T )), there exists a unique solution
u in C0(0, T ;H1(Ω))∩C1(0, T ;L2(Ω)). If furthermore p is in H2(Ω), q is in H1(Ω),
and f is in H1(0, T ;L2(Ω)), u is in V (Ω) := C0(0, T ;H2(Ω)) ∩ C1(0, T ;H1(Ω)) ∩
C2(0, T ;L2(Ω)) [7]. All throughout the paper, we will assume that it is the case.

2.2 The transmission problem

Suppose Ω = R is divided into connected subdomains Ωi = (ai, ai+1), i = 1, · · · , I,
aj < ai for j < i, and a1 = −∞, aI+1 = ∞ . Solving equation (1) in R × (0, T )
amounts to solving the equation in each subdomain Ωi with transmission conditions
on the interfaces Γi = {ai} × (0, T ) given by the continuity of u and its normal
derivative. We define the transmission operators

B−
i =

1

c−(ai)
∂t − ∂x, B+

i =
1

c+(ai+1)
∂t + ∂x, (2)

where c±(x) = limǫ→0 c(x ± ǫ), and solve in each subdomain Ωi

� ui = f in Ωi × (0, T ), (3)

with transmission conditions on Γi,

B−
i ui (ai, ·) = B−

i ui−1 (ai, ·) in (0, T ),
B+

i ui (ai+1, ·) = B+
i ui+1 (ai+1, ·) in (0, T ),

(4)

and initial conditions

ui(·, 0) = p,
∂ui

∂t
(·, 0) = q in Ωi. (5)

The transmission conditions together with initial conditions are equivalent to en-
forcing the continuity of the function and its normal derivative, so that for any i
we have ui = u/Ωi.
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2.3 The Schwarz waveform relaxation algorithm

We now define a Schwarz waveform relaxation algorithm by

� uk
i = f in Ωi × (0, T ),

B−
i uk

i (ai, ·) = B−
i uk−1

i−1 (ai, ·) in (0, T ),

B+
i uk

i (ai+1, ·) = B+
i uk−1

i+1 (ai+1, ·) in (0, T ),
uk

i (·, 0) = p in Ωi,
∂uk

i

∂t
(·, 0) = q in Ωi,

(6)

where by convention B−
i (u0

i−1)(ai, ·) = d−i and B+
i (u0

i+1)(ai+1, ·) = d+
i are arbitrary

initial guesses. For ease of notation, we defined here uk
0 := 0 and uk

I+1 := 0, so
that the index i in (6) ranges from i = 1 to i = I. In order to obtain sufficiently
smooth solutions, we introduce compatiblity conditions on the initial guess

1

c−(ai)
q(ai)−

∂p

∂x
(ai) = d−i ;

1

c+(ai+1)
q(ai+1)+

∂p

∂x
(ai+1) = d+

i ; 2 ≤ i ≤ I. (7)

Theorem 2.1 Problem (3), (4), (5) has a unique solution {ui}1≤i≤I in ∪iV (Ωi).
For any data d±i in H1(0, T ) satisfying the compatibility conditions (7), algorithm
(6) is well-posed in ∪iV (Ωi). If c is constant in each subdomain, equal to ci, the

algorithm converges in two iterations for T < T0 = min
1≤i≤I

ai+1 − ai

ci
, i.e. we have

u2
i ≡ ui in each subdomain. If c is continuous at the interfaces, uk

i converges to ui

in the energy norm. Furthermore we have the energy estimate

∑

i

EΩi
(ui)(t) ≤

1

2
eT (‖c‖2

L∞(Ω)‖f‖2
L2(Ω×(0,T )) + ‖∂xp‖2

L2(Ω) + ‖1

c
q‖2

L2(Ω)), (8)

where EΩ(u)(t) is the energy of u in Ω at time t,

EΩ(u)(t) =
1

2
[ ‖1

c
∂tu(·, t)‖2

L2(Ω) + ‖∂xu(·, t)‖2
L2(Ω) ]. (9)

Proof The existence and uniqueness for problem (3,4,5) follows from the
equivalence with problem (1). The well-posedness for the algorithm comes from
energy estimates and a Galerkin method [16]. The proof of the convergence in
the norm of energy is inspired by the analysis for Helmholtz equation [8], and we
show it here for completeness, although it was first given in our study on Schwarz
Waveform Relaxation [10]. For ui, solution of the wave equation in each subdomain
Ωi, the following equality holds:

EΩi
(ui)(t) +

1

4

∫ t

0
[c(ai)(B+

i−1ui(ai, s))
2 + c(ai+1)(B−

i+1ui(ai+1, s))
2] ds

=
1

4

∫ t

0
[c(ai)(B−

i ui(ai, s))
2 + c(ai+1)(B+

i ui(ai+1, s))
2] ds

+

∫ t

0
(f(·, s), ∂tui(·, s))L2(Ωi) + EΩi

(ui)(0).

(10)
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Consider first the convergence of the Schwarz waveform relaxation algorithm
(6): we define ek

i = uk
i − ui, and set the data to zero. We use the transmission

conditions and sum up on the subdomains. We obtain by a translation of the
indices

I∑

i=1

EΩi
(ek

i )(t) +
1

4

I∑

i=2

c(ai)

[∫ t

0
[(B+

i−1e
k
i (ai, s))

2 + (B−
i ek

i−1(ai, s))
2] ds

]

=
1

4

I∑

i=2

c(ai)

[∫ t

0
[(B−

i ek−1
i−1 (ai, s))

2 + (B+
i−1e

k−1
i (ai, s))

2] ds

]
.

This proves that, for any t, the sequence

αk =

I∑

i=2

c(ai)

[∫ t

0
[(B+

i−1e
k
i (ai, s))

2 + (B−
i ek

i−1(ai, s))
2] ds

]

is decreasing, and since it is positive, it converges. Then αk − αk−1 tends to zero,

and the energy

I∑

i=1

EΩi
(uk

i ) tends to zero in L∞(0, T ). Therefore, the Schwarz

waveform relaxation algorithm (6) converges. Turning back to the solution of the
coupled problem, we obtain in the same way,

∑

i

EΩi
(ui)(t) =

∑

i

∫ t

0
(f(·, s), ∂tui(·, s))L2(Ωi) +

∑

i

EΩi
(ui)(0).

Using the Cauchy Schwarz inequality and the Gronwall lemma, we get (8), which
completes the proof.

2.4 Well-posedness

We now study the stability of problem (3), (4), (5) with respect to the right-hand
side, initial conditions, and transmission conditions: we add a perturbation g−i on
the interface ai, and g+

i on the interface ai+1, and use the transmission conditions

B−
i ui (ai, ·) = B−

i ui−1 (ai, ·) + g−i in (0, T ),
B+

i ui (ai+1, ·) = B+
i ui+1 (ai+1, ·) + g+

i in (0, T ).
(11)

In order to obtain an energy estimate, we now build a special solution of the wave
equation:

Proposition 2.1 Suppose the velocity is constant in Ω = R. For T < T0 =
min1≤i≤I

ai+1−ai

c
, for any g−i in L2(0, T ), there exists w−

i−1 solution of the homoge-
neous wave equation in Ωi−1 × (0, T ), with zero final values, supported in the cone
C−

i = {(x, t) ∈ Ωi−1×(0, T ), c(T −t)+(x−ai) ≥ 0}, such that B−
i w−

i−1 (ai, ·) = g−i .
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Symmetrically, for any g+
i−1 in L2(0, T ), there exists w+

i solution of the homoge-
neous wave equation in Ωi × (0, T ), with zero final values, supported in the cone
C+

i = {(x, t) ∈ Ωi×(0, T ),−c(T−t)+(x−ai) ≥ 0}, such that B+
i−1 w+

i (ai, ·) = g+
i−1.

Furthermore we have

EΩi−1
(w−

i−1)(t) ≤
c

4
‖g−i ‖2

L2(0,T ), EΩi
(w+

i )(t) ≤ c

4
‖g+

i−1‖2
L2(0,T ). (12)

Proof Since the velocity is constant, w+
i is a function of x − c(T − t), and w−

i−1

is a function of x + c(T − t). They can be given explicitly, for instance

w+
i (x, t) =

c

2

∫ T

x−ai
c

+t

g+
i−1(s) ds.

Energy estimates analogous to (10), but backward in time, give for instance for
w+

i

EΩi
(w+

i )(t) +
c

4

∫ T

t

[(B−
i w+

i (ai, s))
2 + (B+

i w+
i (ai+1, s))

2] ds

=
c

4

∫ T

t

[(B+
i−1w

+
i (ai, s))

2 + (B−
i+1w

+
i (ai+1, s))

2] ds.

Since w+
i vanishes identically on ai+1×(0, T ), and since B−

i w+
i (ai, ·) = 0, we obtain

EΩi
(w+

i )(t) =
c

4

∫ T

t

|g+
i−1(s)|2 ds,

which has (12) as a consequence.
We deduce the well-posedness:

Theorem 2.2 For constant velocity, the transmission problem (3) with perturbed
transmission conditions (11) has a unique solution {ui}1≤i≤I , and there exists a
positive constant α such that the following estimate holds

∑

i

EΩi
(ui)(t) ≤ αeT [ ‖f‖2

L2(Ω×(0,T )) +‖∂xp‖2
L2(Ω) +‖q‖2

L2(Ω) +
∑

±

I∑

i=1

‖g±i ‖2
L2(0,T )].

(13)

Proof Using the construction in Proposition 2.1, we rewrite (11) as

B−
i ui (ai, ·) = B−

i (ui−1 + w−
i−1) (ai, ·) in (0, T ),

B+
i ui (ai+1, ·) = B+

i (ui+1 + w+
i+1) (ai+1, ·) in (0, T ).

Since w−
i and B−

i w+
i vanish identically on {ai} × (0, T ), we have

B−
i (ui + w−

i + w+
i ) (ai, ·) = B−

i (ui−1 + w−
i−1 + w+

i−1) (ai, ·) in (0, T ),
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and symmetrically at ai+1. We thus define wi = w−
i + w+

i in Ωi, and vi = ui + wi.
The transmission conditions on the vi are homogeneous, which gives the existence
of the ui. Furthermore we have, by estimates (8),

∑

i

EΩi
(vi)(t) ≤

1

2
eT (c2‖f‖2

L2(Ω×(0,T )) +
∑

i

EΩi
(wi)(0)+ ‖∂xp‖2

L2(Ω) + ‖1

c
q‖2

L2(Ω)),

and using the estimate in Proposition 2.1, we obtain (13), from which the unique-
ness follows.

Remark 2.3 The proof of the theorem could seem unnecessarily complicated, since
solutions in closed form are at hand. However, it is a first step in the understanding
of mesh refinement: the stability of the coupling involves perturbations on the
boundary. Furthermore, the proof in the discrete case will follow the same steps.

3 The discrete problem

3.1 The numerical scheme

Let Ω = (a, b) be discretized with a mesh ∆x. The mesh points xj , are numbered
from 0 to J + 1. The time interval is discretized with a mesh ∆t, and the time
steps tn are numbered from 0 to N + 1. The discrete value in domain Ω, at point
j and time n is denoted by U(j, n).
In order to handle more easily the boundary conditions, we choose a “vertex cen-
tered” finite volume scheme [9]. We denote by I(x) the interval (x − ∆x/2, x +
∆x/2) if x is in the interior of Ω, I(x) = (x, x + ∆x/2) if x = a, and I(x) =
(x − ∆x/2, x) if x = b. Accordingly the intervals in time are called J (t). The
displacement u is considered to be constant on the cell or finite volume S(x, t) :=
I(x) × J (t), and the scheme is obtained by integrating equation (1) on Sj,n =
S(xj , tn) . In the interior of Ω, this produces the usual leapfrog scheme

�d U(j, n) := (
1

C2(j)
D+

t D−
t −D+

x D−
x )U(j, n) = F (j, n), 1 ≤ j ≤ J, 1 ≤ n ≤ N,

(14)
where 1

C2(j)
is the mean value of 1

c2(x)
in I(xj), and F (j, n) is the mean value

of f in the cell Sj,n (the mean value of a function ϕ on a domain D in R
d is
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1
|D|

∫
D

ϕ(ξ) dξ). We use the notations for finite difference operators

D+
t U(j, n) :=

U(j, n + 1) − U(j, n)

∆t
, D−

t U(j, n) :=
U(j, n) − U(j, n − 1)

∆t
,

D+
x U(j, n) :=

U(j + 1, n) − U(j, n)

∆x
, D−

x U(j, n) :=
U(j, n) − U(j − 1, n)

∆x
,

D 0
t U(j, n) :=

U(j, n + 1) − U(j, n − 1)

2∆t
, D 0

x U(j, n) :=
U(j + 1, n) − U(j − 1, n)

2∆x
.

(15)
The initial conditions are

U(j, 0) = P (j), 0 ≤ j ≤ J + 1,

(
1

C2(j)
D+

t − ∆t

2
D+

x D−
x )U(j, 0) =

1

C2(j)
Q(j) +

∆t

2
F (j, 0), 1 ≤ j ≤ J,

(16)

where P (j) and Q(j) are the mean values of p and q on I(xj), and the second
equation is obtained by integrating equation (1) on the half-cell S(xj , 0) and using
the initial values.

3.2 A first energy estimate

We define a discrete energy.We consider sequences of the form V = {V (j)}0≤j≤J+1

in R
J+2, and we define a bilinear form on R

J+2 by

a(V,W ) = ∆x

J+1∑

j=1

D−
x (V )(j) · D−

x (W )(j). (17)

We also define a particular sum denoted by
∑

′, which is given in space by

J+1∑

j=0

′ V (j) =
1

2
V (0) +

J∑

j=1

V (j) +
1

2
V (J + 1),

and analogously in time. For a mesh function V of time and space, the discrete
energy E(V )(n) at time step n, is defined as the sum of a discrete kinetic energy
EK(V )(n), and a discrete potential energy EP (V )(n), and given by

EK(V )(n) = ∆x

J+1∑

j=0

′ 1

C2(j)
(D+

t V (j, n))2,

EP (V )(n) = a(V (·, n), V (·, n − 1)).
E = EK + EP .

(18)

The quantity EK is clearly a discrete kinetic energy. It is less evident to identify
EP as an energy. The following lemma gives a lower bound for E under a CFL
condition, and hence shows that E is then indeed an energy.
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Lemma 3.1 For any n ≥ 1, we have

E(V )(n) ≥
(

1 −
(

C
∆t

∆x

)2
)

EK(V )(n), (19)

where C is defined by C = sup1≤j≤J+1 C(j). Hence, under the CFL condition

C
∆t

∆x
< 1, (20)

E is bounded from below by an energy.

Proof The proof is classical [10].

We now obtain the basic energy estimate:

Lemma 3.2 Suppose the wave speed is constant. For any U solution of (14) in
Ω, we have for any n ≥ 1,

E(U)(n) − E(U)(n − 1) + c
∆t

2
[(B̃+U(0, n))2 + (B̃−U(J + 1, n))2]

= c
∆t

2
[(B−U(0, n))2 + (B+U(J + 1, n))2] + 2∆t∆x

J∑

j=1

F (j, n)D 0
t U(j, n),

(21)
and for n = 0,

EK(U)(0) +E(U)(0) + c
∆t

4
[(B̃+U(0, 0))2 + (B̃−U(J + 1, 0))2]

= c
∆t

4
[(B−U(0, 0))2 + (B+U(J + 1, 0))2] + a(P,P ) + 2

∆x

c2

J∑

j=1

Q(j)D+
t U(j, 0).

(22)
with the boundary operators defined for n ≥ 1 by

B− :=
1

c
D 0

t − D+
x +

∆x

2c2
D+

t D−
t , B̃− :=

1

c
D 0

t − D−
x − ∆x

2c2
D+

t D−
t ,

B+ :=
1

c
D 0

t + D−
x +

∆x

2c2
D+

t D−
t , B̃+ :=

1

c
D 0

t + D+
x − ∆x

2c2
D+

t D−
t ,

(23)
and for n = 0 by

B− :=
1

c
D+

t − D+
x +

∆x

c2∆t
D+

t , B̃− :=
1

c
D+

t − D−
x − ∆x

c2∆t
D+

t ,

B+ :=
1

c
D+

t + D−
x +

∆x

c2∆t
D+

t , B̃+ :=
1

c
D+

t + D+
x − ∆x

c2∆t
D+

t .

(24)

Proof The first estimate is obtained by multiplying (14) by D 0
t U(j, n) and dis-

crete integration by parts, whereas the second one is obtained by multiplying (16)
by D+

t U(j, 0) and integrating by part [10].
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3.3 The boundary value problem: stability and order

We now introduce the boundary value problem in Ω, with boundary conditions
given by

B−u(a, ·) = g− in (0, T ), B+u(b, ·) = g+ in (0, T ). (25)

By the same construction as before, integrating on the half-cells S(a, tn) and
S(b, tn), we obtain the discrete boundary conditions

B−U(0, n) =
∆x

2
F (0, n) + G−(n) = H−(n),

B+U(J + 1, n) =
∆x

2
F (J + 1, ·) + G+(n) = H+(n),

for n ≥ 1, (26)

B−U(0, 0) = G−(0) +
∆x

c2∆t
Q(0) +

∆x

4
F (0, 0) = H−(0),

B+U(J + 1, 0) = G+(0) − ∆x

c2∆t
Q(J + 1) +

∆x

4
F (J + 1, 0) = H+(0),

(27)

where G±(n) are the mean-values of g± on the interval J (tn). Comparing formulas
(2) and (23), we note that the transport operators B± are approximated by a Lax-
Wendroff scheme [12]. We define the discrete ℓ2 norms and the associated scalar
products by

‖Φ‖2
ℓ2x

= ∆x
J+1∑

j=0

Φ2(j); ‖Φ‖2
ℓ2t

= ∆t
N+1∑

n=0

Φ2(n); ‖Φ‖2
ℓ2x,t

= ∆x∆t
J+1∑

j=0

N+1∑

n=0

Φ2(j, n).

(28)
We will also make use of the equivalent norms

|||Φ|||2ℓ2x = ∆x
J+1∑

j=0

′ Φ2(j); |||Φ|||2
ℓ2t

= ∆t
N+1∑

n=0

′ Φ2(n); |||Φ|||2
ℓ2x,t

= ∆x∆t
J+1∑

j=0

′
N+1∑

n=0

′ Φ2(j, n).

(29)
Since we have an explicit scheme, problem (14), (16), (26), (27) has obviously a
unique solution. We prove below that this solution depends continuously of the
data.

Theorem 3.3 Let U be the solution of the discrete wave equation (14) with initial
conditions (16) and boundary conditions (26), (27). For constant wave speed c,
if γ = c∆t/∆x < 1, there exist positive constants α(T, γ) and ∆t0, such that for
∆t ≤ ∆t0, for any n, 1 ≤ n ≤ N , the following estimate holds:

|||D+
t U(·, n)|||2

ℓ2x
+

c∆t

2

n∑

p=0

′ [ |B̃+U(0, p)|2 + |B̃−U(J + 1, p)|2]

≤ α ( ‖H−‖2
ℓ2t

+ ‖H+‖2
ℓ2t

+ ‖D+
x P ‖2

ℓ2x
+ ‖Q‖2

ℓ2x
+ ‖F‖2

ℓ2x,t

).

(30)
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Proof Summing equation (23) in Lemma 3.2 in n, adding (24) and using Lemma
3.1, we get

(1 − γ2)
∆x

c2

J+1∑

j=0

′ |D+
t U(·, n)|2 +

∆x

c2

J+1∑

j=0

′ |D+
t U(·, 0)|2

+
c∆t

2

n∑

p=0

′ [ |B̃+U(0, p)|2 + |B̃−U(J + 1, p)|2]

≤ c∆t

2

n∑

p=0

′ [ |H−(p)|2 + |H+(p)|2] + 2

n∑

p=1

J∑

j=1

F (j, n)D 0
t U(j, n)

+ a(P,P ) + 2
∆x

c2

J∑

j=1

Q(j)D+
t U(j, 0).

Now applying the discrete Cauchy-Schwarz Lemma in the last two terms, together
with the notations introduced in (28) and (29), leads to

1 − γ2

c2
|||D+

t U(·, n)|||2ℓ2x+
1

2c2
|||D+

t U(·, 0)|||2ℓ2x +
c∆t

2

n∑

p=0

′ [ |B̃+U(0, p)|2 + |B̃−U(J + 1, p)|2]

≤ Φ + ∆t
1 − γ2

c2

n∑

p=0

|||D+
t U(·, p)|||2ℓ2x ,

with

Φ =
c

2
(|||H−|||2

ℓ2t
+ |||H+|||2

ℓ2t
) + |||D+

x P |||2ℓ2x +
1

2c2
|||Q|||2ℓ2x +

c2

1 − γ2
‖F‖2

ℓ2x,t
.

We now use a discrete Gronwall Lemma. We define Ψ(n) =
1 − γ2

c2

n∑

p=0

|||D+
t U(·, p)|||2ℓ2x ,

and rewrite the last inequality as

(1 − ∆t)Ψ(n) ≤ Φ + Ψ(n − 1),

where the recurrence can be solved,

Ψ(n) ≤ 1

(1 − ∆t)n
(

Φ

∆t
+ Ψ(0)).

We now use the inequality

1

1 − X
≤ e2X for sufficiently small X,

and obtain

1 − γ2

c2
|||D+

t U(·, n)|||2ℓ2x +
1

2c2
|||D+

t U(·, 0)|||2ℓ2x +
c∆t

2

n∑

p=0

′ [ |B̃+U(0, p)|2 + |B̃−U(J + 1, p)|2]

≤ Φ + e2n∆t(Φ + ∆t
1 − γ2

c2
|||D+

t U(·, 0)|||2ℓ2x)

≤ Φ + e2T (Φ + ∆t
1 − γ2

c2
|||D+

t U(·, 0)|||2ℓ2x).
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We can choose ∆t small enough, so that (1 − γ2)∆t e2T ≤ 1

4
, and hence obtain

1 − γ2

c2
|||D+

t U(·, n)|||2ℓ2x +
1

4c2
|||D+

t U(·, 0)|||2ℓ2x +
c∆t

2

n∑

p=0

′ [ |B̃+U(0, p)|2 + |B̃−U(J + 1, p)|2]

≤ (1 + e2T )Φ,

which leads to (30).
This result gives us the order of convergence for the scheme.

Theorem 3.4 Suppose the wave speed is constant, and γ = c∆t/∆x < 1. Let u
be the solution in V (Ω) of the wave equation (1) on the domain Ω × (0, T ), with
initial conditions u(·, 0) = p and ∂u

∂t
(·, 0) = q. Let Ud(j, n) be the mean value of

u on the cell Sj,n, and U be the solution of the discrete wave equation (14) with
initial conditions (16) and boundary conditions (26,27). Then there exist positive
constants α and ∆t0, such that for ∆t ≤ ∆t0 and for any n, 0 ≤ n ≤ N , the
following estimate holds:

‖D+
t (U − Ud)(·, n)‖ℓ2x

≤ αM∆t2,

max(‖B̃+(U − Ud)(0, ·)‖ℓ2t
, ‖B̃−(U − Ud)(J + 1, ·)‖ℓ2t

) ≤ αM∆t2,
(31)

with

M2 = ‖∂4
t u‖2

L2((a,b)×(0,T )) + ‖∂3
t u(x, ·)‖2

L2(Γ×(0,T )) + ‖∂2
t u(·, 0)‖2

L2(a,b).

Therefore, the scheme is second order in time and space.

Proof Let Ud(j, n) be the mean value of u on the finite volume Sj,n. By construc-
tion, the error e(j, n) = Ud(j, n)−U(j, n) is solution of the discrete wave equation
with data which is the truncation errors. These errors can be easily estimated by
Taylor expansions, we obtain

|�d e(j, n)| = | (�d Ud − F )(j, n)| ≤ β∆t2 sup
S(xj ,tn)

(|∂4
t u|),

e(j, 0) = 0; |( 1

C2(j)
D+

t − ∆t

2
D+

x D−
x )e(j, 0)| ≤ β∆x2 sup

S(xj ,0)
(|∂2

t u|),

|B±e(0, n)| ≤ β∆t2 sup
S(a,tn)

(|∂3
t u|).

Inserting these estimates into (30), we conclude the proof.

Remark 3.5 The case γ = 1 is excluded in Theorem 3.4. However in this case,
the scheme is exact in the interior and on the boundary.
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3.4 The discrete transmission problem: definition

Each domain Ωi is discretized with a mesh ∆xi, the points xi, are numbered from
0 to Ji + 1. The time interval is discretized in Ωi with a mesh ∆ti, and the time
steps tn are numbered from 0 to Ni +1. The discrete value in domain Ωi, at point
j in space and n in time, is denoted by Ui(j, n). The discrete transmission problem
corresponding to (3), (4, (5) is given by

(
1

C2
i (j)

D+
t D−

t − D+
x D−

x

)
Ui(j, n) = F (j, n), 1 ≤ j ≤ Ji, 1 ≤ n ≤ Ni,(32)

B−
i Ui (0, ·) = Pi,i−1 B̃−

i Ui−1 (Ji−1 + 1, ·), (33)

B+
i Ui (Ji + 1, ·) = Pi,i+1 B̃+

i Ui+1 (0, ·), (34)

with the discrete operators for n ≥ 1 given by

B−
i Ui(0, n) =

(
1

Ci−1
D 0

t − D+
x + ∆xi

2C2
i

D+
t D−

t

)
Ui(0, n),

B̃−
i Ui−1(Ji−1+1, n) =

(
1

Ci−1
D 0

t −D−
x −∆xi−1

2C2
i−1

D+
t D−

t

)
Ui−1(Ji−1+1, n),

(35)

B+
i Ui(Ji + 1, n) =

(
1

Ci+1
D 0

t + D−
x + ∆xi

2C2
i

D+
t D−

t

)
Ui(Ji + 1, n),

B̃+
i Ui+1(0, n) =

(
1

Ci+1
D 0

t + D+
x − ∆xi+1

2C2
i+1

D+
t D−

t

)
Ui+1(0, n),

(36)

and for n = 0 by

B−
i Ui(0, n) =

(
1

Ci−1
D+

t − D+
x + ∆xi

C2
i ∆ti

D+
t

)
Ui(0, n),

B̃−
i Ui−1(Ji−1+1, n) =

(
1

Ci−1
D+

t −D−
x − ∆xi−1

C2
i−1

∆ti−1
D+

t

)
Ui−1(Ji−1+1, n),

(37)

B+
i Ui(Ji + 1, n) =

(
1

Ci+1
D+

t + D−
x + ∆xi

C2
i ∆ti

D+
t

)
Ui(Ji + 1, n),

B̃+
i Ui+1(0, n) =

(
1

Ci+1
D+

t + D+
x − ∆xi+1

C2
i+1

∆ti+1
D+

t

)
Ui+1(0, n).

(38)

In the previous formulas, we used the conventions Ci−1 := Ci−1(Ji−1 + 1), Ci :=
Ci(0), and Ci+1 := Ci+1(0). We now define the projection operators Pi,j. When
applied to Ui, the divided difference operators operate with the meshes ∆ti and
∆xi. Thus, for instance in B−

i (Ui)(0, n), D 0
t Ui(0, n) = Ui(0,n+1)−Ui(0,n−1)

2∆ti
, whereas

in B̃−
i (Ui−1)(Ji−1+1, n), D 0

t Ui−1(Ji−1+1, n) = Ui−1(Ji−1+1,n+1)−Ui−1(Ji−1+1,n−1)
2∆ti−1

. The

vectors B−
i (Ui)(0, ·) and B+

i (Ui)(Ji + 1, ·) are in R
Ni+2, B̃−

i (Ui−1)(Ji−1+1, ·) is in

R
Ni−1+2 and B̃+

i (Ui+1)(0, ·) is in R
Ni+1+2 . Therefore, we need to introduce a

projection step in (33), (34) which we describe now. We denote by Vi the subspace
of L2(0, T ) ,whose elements are continuous on (0, T ) and affine on each interval
(n∆ti, (n + 1)∆ti) for 0 ≤ n ≤ Ni. The orthogonal projection in L2(0, T ) on
Vi is called Qi. The restriction of Qi to Vj is called Qi,j. Fi is the canonical
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isomorphism from R
Ni+2 onto Vi, which maps Ψ to the affine function which takes

the value Ψ(n) at point n∆ti. If R
Ni+2 is equipped with the norm

|||Ψ|||2i = ∆t

Ni+2∑

n=0

′ Ψ2(n),

we have for any Ψ in R
Ni+2, ‖FiΨ‖L2(0,T ) = |||Ψ|||

R
Ni+2 . The operator Pi,j is now

given by
Pi,j = (Fi)

−1 ◦ Qi,j ◦ Fj.

Since Qi,j is a projection operator, we have |||Pi,j ||| ≤ 1. To actually compute the
solution of this problem, we need to introduce the Schwarz waveform relaxation
algorithm [10] given by

(
1

C2
i (j)

D+
t D−

t − D+
x D−

x )Uk
i (j, n) = F (j, n), 1 ≤ j ≤ Ji, 1 ≤ n ≤ Ni,(39)

B−
i Uk

i (0, ·) = Pi,i−1 B̃−
i Uk−1

i−1 (Ji−1 + 1, ·), (40)

B+
i Uk

i (Ji + 1, ·) = Pi,i+1 B̃+
i Uk−1

i+1 (0, ·), (41)

with initial guesses B̃−
i U0

i−1 (Ji−1 + 1, ·) = d−i , and B̃+
i U0

i+1 = d+
i .

3.5 The discrete transmission problem: well-posedness

and order

Theorem 3.6 Suppose the velocity is constant in R. Suppose that, for 1 ≤ i ≤ I,
γi = c∆ti/∆xi < 1 and 2Ni ≤ Ji + 1. For any initial values P and Q, problem
(32), (33), (34) has a unique solution, which is the limit of the sequence Uk

i .
Furthermore there exists a positive α, depending only on T and the γi, such that

∑

i

‖D+
t Ui(·, Ni+1)‖2

ℓ2x
≤ α(‖D+

x P ‖2
ℓ2x

+ ‖Q‖2
ℓ2x

+ ‖F‖2
ℓ2x,t

). (42)

Proof We first introduce the energy estimate we need in the proof: for Ui solution
of the discrete wave equation (32) in each Ωi, we use (21), (22) in each domain Ωi,
and sum up on the time indices. We obtain

E(Ui)(Ni+1) + EK(Ui)(0) + c
∆ti
2

Ni+1∑

n=0

′[(B̃+
i−1Ui(0, n))2 + (B̃−

i+1Ui(Ji + 1, n))2]

= c
∆ti
2

Ni+1∑

n=0

′[(B−
i Ui(0, n))2 + (B+

i Ui(Ji + 1, n))2].

(43)
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Since we deal with a finite dimensional problem, which has been constructed to be
square, proving existence and uniqueness reduces to proving uniqueness. Suppos-
ing vanishing initial values and right-hand side, and using the boundary conditions
(33), (34), we obtain

|||B−
i Ui(0, ·)|||i ≤ |||B̃−

i Ui−1 (Ji−1+1, ·)|||i−1, |||B+
i Ui(Ji+1, ·)|||i ≤ |||B̃+

i Ui+1 (0, ·)|||i+1.

We now sum up on the subdomains, translate the indices in the right-hand side
and obtain
∑

i

E(Ui)(Ni+1) +
c

2

∑

i

[|||B̃+
i−1Ui(0, ·)|||2i + |||B̃−

i+1Ui(Ji + 1, ·)|||2i ]

≤ c

2

∑

i

[|||B̃−
i Ui−1 (Ji−1 + 1, ·)|||2i−1 + |||B̃+

i Ui+1 (0, ·)|||2i+1].

By a shift of indices, the boundary terms cancel out and we deduce that E(Ui)(Ni+1)
vanishes for each i. By Lemma 3.1, this implies that D+

t Ui(Ni+1, ·) = 0. With
the assumption 2Ni ≤ Ji + 1, since the initial values vanish, there exists a j, such
that Ui(j,Ni+1) = 0, with Ui(j − 1, Ni) = Ui(j,Ni) = Ui(j + 1, Ni) = 0. This
in turn implies that Ui(j − 1, Ni+1) = Ui(j,Ni+1) = Ui(j + 1, Ni+1) = 0. Using
the equation, we then have Ui(j − 2, Ni) = Ui(j + 2, Ni) = 0. We carry on the
process down and up until we have filled the grid with zero values. This proves
the uniqueness.
To prove the convergence of the sequence, we apply (43) to V k

i = Uk
i − Ui, with

vanishing data:

E(V k
i )(Ni+1) + c

∆ti
2

Ni+1∑

n=0

′[(B̃+
i−1V

k
i (0, n))2 + (B̃−

i+1V
k
i (Ji + 1, n))2]

= c
∆ti
2

Ni+1∑

n=0

′[(B−
i V k

i (0, n))2 + (B+
i V k

i (Ji + 1, n))2].

By (40), (41), we can estimate

|||B−
i V k

i (0, ·)|||i ≤ |||B̃−
i V k−1

i−1 (Ji−1+1, ·)|||i−1, |||B+
i V k

i (Ji+1, ·)|||i ≤ |||B̃+
i V k−1

i+1 (0, ·)|||i+1.

We now sum up on the subdomains and obtain
∑

i

E(V k
i )(Ni+1) +

c

2

∑

i

[|||B̃+
i−1V

k
i (0, ·)|||2i + |||B̃−

i+1V
k
i (Ji + 1, ·)|||2i ]

≤ c

2

∑

i

[|||B̃−
i V k−1

i−1 (Ji−1 + 1, ·)|||2i−1 + |||B̃+
i V k−1

i+1 (0, ·)|||2i+1].

Translating the indices in the right-hand side, we obtain
∑

i

E(V k
i )(Ni+1) +

c

2

∑

i

[|||B̃+
i−1V

k
i (0, ·)|||2i + |||B̃−

i+1V
k
i (Ji + 1, ·)|||2i ],

≤ c

2

∑

i

[|||B̃−
i+1 V k−1

i (Ji + 1, ·)|||2i + |||B̃+
i V k−1

i−1 (0, ·)|||2i ].
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The same argument as in the continuous case proves that
∑

i E(V k
i )(Ni +1) tends

to 0 as k tends to infinity, and we conclude as in the uniqueness proof that Uk
i

tends to a solution of problem (32), (33), (34). To prove energy estimate (42), we
do the same calculations as before, but including the data, and we conclude as in
Theorem 3.3.

Remark 3.7 Assumption 2Ni ≤ Ji + 1 is equivalent to 2T ≤ γi
ai+1−ai

c
.

We now consider the question of stability. By the previous results, we know that
the scheme is stable in each subdomain. There remains the most delicate question
of stability with respect to the transmission conditions. We consider zero initial
data and right-hand side, and boundary conditions of the form

,
B−

i Ui (0, ·) = Pi,i−1 B̃−
i Ui−1 (Ji−1 + 1, ·) + G−

i ,

B+
i Ui (Ji + 1, ·) = Pi,i+1 B̃+

i Ui+1 (0, ·) + G+
i .

(44)

To prove stability, we first need an extension result, analogous to Proposition 2.1
in the continous case:

Proposition 3.1 Suppose that for any i, ∆ti/∆ti−1 or ∆ti−1/∆ti is an integer.
Suppose c to be constant, γi < 1 and T < infi

γi

c
(ai+1 − ai). For any (G−

i , G+
i−1)

in R
Ni+2 × R

Ni−1+2, there exists W−
i−1 solution of the discrete wave equation in

Ωi−1 with final values W−
i−1(·, Ni−1 + 1) = W−

i−1(·, Ni−1) = 0, supported in the
cone C−

i = {(j, n), 0 ≤ j ≤ Ji−1 + 1, 0 ≤ n ≤ Ni−1 + 1, Ji−1 − j + n ≤ Ni−1} and
W+

i solution of the discrete wave equation in Ωi with final values W+
i (·, Ni + 1) =

W+
i (·, Ni) = 0, supported in the cone C+

i = {(j, n), 0 ≤ j ≤ Ji + 1, 0 ≤ n ≤
Ni−1 + 1, Ni + 1 − n + (Ji + 1) − j ≤ 0}, such that

B−
i W+

i (0, ·) − Pi,i−1 B̃−
i W−

i−1 (Ji−1 + 1, ·) − G−
i = Ri,i−1,

B+
i−1 W−

i−1 (Ji−1 + 1, ·) − Pi−1,i B̃
+
i−1 W+

i (0, ·) − G+
i−1 = Ri−1,i,

(45)

where Ri,i−1 is in the orthogonal of Im Pi,i−1 in Vi, and Ri−1,i is in the orthogonal
of Im Pi−1,i in Vi−1. Furtheremore there exists a positive constant α, independent
of the Ni, such that

E(W−
i−1)(0) + E(W+

i )(0) ≤ α(|||G−
i |||i + |||G+

i−1|||i−1),
|||Ri,i−1|||i + |||Ri−1,i|||i−1 ≤ α(|||G−

i |||i + |||G+
i−1|||i−1).

(46)

Before proving the proposition, we state the stability result which follows from
Proposition 3.1.

Theorem 3.8 Suppose that for any i, ∆ti/∆ti−1 or ∆ti−1/∆ti is an integer.
Suppose the velocity to be constant in R, and, for each i, suppose γi < 1 and
2T ≤ γi

ai+1−ai

c
. For any initial values P and Q, problem (32), (44) has a unique
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solution. Furthermore, there exists a positive α, depending only on T and the γi,
such that
∑

i

‖D+
t Ui(·, Ni+1)‖2

ℓ2x
≤ α(

∑

i

(|||G−
i |||2i +|||G+

i |||2i )+‖D+
x P ‖2

ℓ2x
+‖Q‖2

ℓ2x
+‖F‖2

ℓ2x,t
).

(47)

Proof To simplify the notation, the proof is given for F ≡ 0. It extends to general
F through Cauchy -Schwarz and the Gronwall lemma as in Theorem 3.3. We split
Vi and Vi−1 into orthogonal sums:

Vi = Im Pi,i−1 ⊕ Hi,i−1, Vi−1 = Im Pi−1,i ⊕ Hi−1,i. (48)

In each domain Ωi, Proposition 3.1 provides two retropropagating solutions of the
discrete wave equation W+

i and W−
i . We define Wi := W+

i + W−
i , and Ũi :=

Ui − Wi. In Ωi, Ũi is a solution of the discrete wave equation, with transmission
conditions

B−
i Ũi (0, ·) = Pi−1,i B̃−

i Ũi−1 (Ji−1 + 1, ·) + Ri,i−1,

B+
i−1 Ũi−1 (Ji−1 + 1, ·) = Pi,i−1 B̃+

i−1 Ũi (0, ·) + Ri−1,i,

where Ri,i−1 ∈ Hi,i−1 and Ri−1,i ∈ Hi−1,i. The initial conditions are Ũi(·, 0) =
−Wi(·, 0) and Ũi(·, 1) = −Wi(·, 1). We use energy estimate (21) in each subdomain,
and sum up in time in order to obtain

E(Ũi )(Ni + 1) − E(Ũi)(0) +
c

2
[|||B̃+

i−1Ui(0, ·)|||2i + |||B̃−
i+1Ui(Ji + 1, ·)|||2i ]

=
c

2
[|||Pi−1,i B̃−

i Ũi−1 (Ji−1 + 1, ·) + Ri,i−1|||2i + |||Pi,i−1 B̃+
i−1 Ũi (0, ·) + Ri−1,i|||2i ],

and by projection, using the Pythagorean Theorem,

E(Ũi )(Ni + 1) − E(Ũi)(0) +
c

2
[|||B̃+

i−1Ui(0, ·)|||2i + |||B̃−
i+1Ui(Ji + 1, ·)|||2i ]

≤ c

2
[|||B̃−

i Ũi−1 (Ji−1 + 1, ·)|||2i−1 + |||Ri,i−1|||2i + |||B̃+
i−1 Ũi (0, ·)|||2i+1 + |||Ri−1,i|||2i ].

Suming up in i, the boundary operators cancel, and only the Ri,i−1 and Ri−1,i

terms remain:
∑

i

E(Ũi)(Ni + 1) ≤ E(Wi)(0) +
∑

i

[|||Ri,i−1|||2i + |||Ri−1,i|||2i ].

Using now Proposition 3.1, we obtain estimate (47).

This gives us the final error estimates:

Theorem 3.9 Suppose that for any i, ∆ti/∆ti−1 or ∆ti−1/∆ti is an integer. Sup-
pose the velocity is constant in R, and, for each i, suppose γi < 1 and 2T ≤
γi

ai+1−ai

c
. Let u be a smooth solution of (1) with constant velocity c and initial
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conditions p and q. Let {Ui} be the discrete solution of the scheme (32), (33), (34)
with initial conditions (16). There exist positive constants α and ∆t0, depending
on T and u, such that for ∆t ≤ ∆t0, the following estimate holds:

∑

i

‖D+
t (Ui − Ud,i)(·, Ni + 1)‖2

ℓ2x
≤ α∆t2, (49)

with Ud,i(j, n) = u(ai + j∆xi, n∆ti), and ∆t = max(∆ti)1≤i≤I . Therefore, for
γi < 1, the scheme (32), (33), (34) is an overall second order approximation of
the wave equation.

Proof Since we know by Subsection 3.3 that the scheme is of order 2, we only
need to prove that the projection step is of order two. We apply Theorem 3.8 to
the error. In this case, G±

i represents the truncation error on the boundary, i.e.

G−
i = (B−

i Ud,i − Pi,i−1 B̃−
i Ud,i−1) (0, ·),

G+
i = (B+

i Ud,i − Pi,i+1 B̃+
i Ud,i+1) (Ji, ·).

Since in each subdomain ui = u/Ωi, we have, like in Theorem 3.4, the truncation
errors for n ≥ 1

|B−
i Ud,i(0, n) − B−

i (ai, tn)| ≤ β∆t2 sup
S(ai,tn)

(|∂3
t u|),

|B̃−
i Ud,i−1(Ji−1 + 1, n) − B−

i (ai, tn)| ≤ β∆t2 sup
S(ai,tn)

(|∂3
t u|),

|B+
i Ud,i(Ji + 1, n) − B+

i (ai+1, tn)| ≤ β∆t2 sup
S(ai+1,tn)

(|∂3
t u|),

|B̃+
i Ud,i+1(0, n) − B+

i (ai+1, tn)| ≤ β∆t2 sup
S(ai+1,tn)

(|∂3
t u|).

We treat now G−
i . Since the projection is a contraction, we obtain by the triangle

inequality

‖G−
i ‖ ≤ ‖B̃−

i Ud,i−1(Ji−1 + 1, ·) − B−
i (ai, ·∆ti−1)‖

+‖B−
i u(ai, ·∆ti−1) − Pi,i−1B−

i u(ai, ·∆ti)‖
+‖B−

i u(ai, ·∆ti) − B̃−
i Ud,i−1)(Ji−1 + 1, ·)‖.

The first and last terms on the right-hand side are treated by the truncation
estimates, the second one is estimated by the following lemma:

Lemma 3.10 For any regular function φ , we have

‖FiΦi − Qi,jFjΦj‖L2(0,T ) ≤
√

2Tmax(∆t2i ,∆t2j) ‖φ′′‖L∞(0,T ),

with Φi = {φ(n∆ti)}0≤n≤Ni+1.
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Proof By the triangle inequality, we have

‖FiΦi − Qi,jFjΦj‖ ≤ ‖FiΦi − φ‖ + ‖Qi φ − φ‖ + ‖Qi φ − Qi,jFjΦj‖,

‖FiΦi − Qi,jFjΦj‖ ≤ ‖FiΦi − φ‖ + ‖Qiφ − φ‖ + ‖φ − FjΦj‖.
Since Qi φ is the projection of φ on Vi, we have

‖Qi φ − φ‖ ≤ ‖FiΦi − φ‖,

and it only remains to estimate ‖FiΦi − φ‖. This is classical, through the identity

(φ − FiΦi)(t) =
(t − tn)(t − tn+1)

2
φ′′(ξ), ξ ∈ (tn, tn+1).

We write

‖FiΦi − φ‖2 =

Ni∑

n=0

∫ tn+1

tn

(FiΦi − φ)2(t) dt,

‖FiΦi − φ‖2 ≤ ‖φ′′‖2
L∞(0,T )

Ni∑

n=0

(∆ti)
5

∫ 1

0
s2(1 − s)2 ds ≤ T (∆ti)

4‖φ′′‖2
L∞(0,T ).

We now conclude the proof of the Theorem, applying Lemma 3.10 with φ =
B−u(ai, ·) and φ = B−u(ai+1, ·). We obtain for G±

i the estimates

‖G±
i ‖L2(0,T ) ≤ α max (∆t2i ,∆t2i−1).

Inserting these estimates into (47), we get (49).

3.6 Proof of the extension result (Proposition 3.1)

In this section, since the analysis is local, we omit the index i, and we define
the operators Q− := Qi,i−1, Q+ := Qi−1,i. We denote by Π− the orthogonal
projection in Vi on Im Q−, and Π+ the orthogonal projection in Vi−1 on Im Q+.
We now define a right inverse for the operators Q±.

Lemma 3.11 Suppose ∆ti/∆ti−1 or ∆ti−1/∆ti is an integer. Then there exist
linear operators Q̃− from Vi into Vi−1 (resp. Q̃+ from Vi−1 into Vi) , such that
Q−Q̃− = IdVi

on Im Q− (resp. Q+Q̃+ = IdVi−1
on Im Q+) , and for any W

in Im Q−, we have |||Q̃−W |||i−1 = |||W |||i (resp. for any W in Im Q+, we have
|||Q̃+W |||i = |||W |||i−1).
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Proof Suppose Vi−1 ⊂ Vi. In this case we have Q− = IdVi
and Im Q− = Vi−1,

so that Π− = Q+. So Q̃− can be defined by Q̃− = IdVi−1
. Then, for W in

Im Q− = Vi−1, Q−Q̃−W = Q−W = W and |||Q̃−W |||i−1 = |||W |||i−1. On the
other hand, we can choose Q̃+ = Q+, and for any W in Im Q+ ⊂ Vi−1, we
have Q̃+W = W , so that |||Q̃+W |||i = |||W |||i−1, and Q+Q̃+W = Q+W = W .
Reversing the roles of Vi and Vi−1 gives the lemma.

We set G̃−
i = Q̃−Π−G−

i ∈ Vi−1, and G̃+
i = Q̃+Π+G+

i−1 ∈ Vi. We now define two

local discrete extension operators A±: A− maps G̃− in Vi−1 to the discrete left
propagating solution W− supported in C−

i of

�d W−(j, n) = 0, 1 ≤ j ≤ Ji−1, 1 ≤ n ≤ Ni−1,

B̃−
i W− (Ji−1 + 1, ·) = G̃−,

(50)

with vanishing final data. A+ maps G̃+ in Vi to the discrete right propagating
solution W+ supported in C−

i of

�d W+(j, n) = 0, 1 ≤ j ≤ Ji, 1 ≤ n ≤ Ni,

B̃+
i−1 W+ (0, ·) = G̃+,

(51)

with vanishing final data. Since W− vanishes on the left boundary of Ωi−1, and
W+ vanishes on the right boundary of Ωi, we have the backward in time energy
estimates

E(W−)(0) +
c

2
|||B+

i−1W
−(Ji−1 + 1, ·)|||2

ℓ2t
=

c

2
|||B̃−

i W−(Ji−1 + 1, ·)|||2
ℓ2t

, (52)

E(W+)(0) +
c

2
|||B−

i W+(0, ·)|||2
ℓ2t

=
c

2
|||B̃+

i−1W
+(0, ·)|||2

ℓ2t
. (53)

Lemma 3.12 There exists a positive constant α depending only on T and γ, such
that

∀G̃− ∈ Vi−1, |||B+
i−1A

−G̃−|||ℓ2t ≤ α∆t |||G̃−|‖ℓ2t
,

∀G̃+ ∈ Vi, |||B−
i A+G̃+|||ℓ2t ≤ α∆t |||G̃+|||ℓ2t .

(54)

Proof We prove the result for W+, the proof for W− is similar . Let g+ be
the piecewise affine function g+ = FiG̃

+. Let w+ be the continuous solution
of the wave equation described in Proposition 2.1, associated to g+. It satisfies
B−

i w+(ai, ·) = 0. Let W̃+(j, n) be the mean-value of w+ on the finite volume Sj,n.

W̃+(j, n) is a solution of the discrete wave equation with right-hand side ǫ1(j, n),

with zero final values, and boundary conditions B̃+
i−1 W̃+ (0, ·) = G̃++ǫ2(n), where

ǫ1 and ǫ2 are truncation errors, which will be evaluated below. We now use the
estimates (30) in Theorem 3.3. The boundary data g+ is not sufficiently regular
to obtain the estimates (31). We get instead a weaker bound,

‖D+
t (W̃+ − W+)(·, n)‖ℓ2x

≤ α∆t‖g+‖L2(0,T ),

|||B−
i (W̃+ − W+)(0, ·)|||ℓ2t ≤ α∆t‖g+‖L2(0,T ),
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and since B−
i w+(ai, ·) = 0, we have

|||B−
i W̃+(0, ·)|||ℓ2t ≤ α∆t ‖g+‖L2(0,T ),

which proves that

|||B−
i W+(0, ·)|||ℓ2t ≤ α∆t ‖g+‖L2(0,T ),

which is equivalent to the second inequality in the lemma.

Let now (G̃−
i,0, G̃

+
i,0) = (G̃−

i , G̃+
i ) be given in Vi−1 × Vi, both non identically zero.

We describe an iterative procedure to define the W±
i in Proposition 3.1. For

∆t sufficiently small, we have α∆t ≤ µ < 1. We define W−
i,0 = A−G̃−

i,0 and

W+
i,0 = A+G̃+

i,0. By energy estimates (52) and (53), we have

|||B+
i−1W

−
i,0(Ji−1 + 1, ·)|||ℓ2t ≤ µ |||G̃−

i,0|||ℓ2t , |||B−
i W+

i,0(0, ·)|||ℓ2t ≤ µ ‖G̃+
i,0‖ℓ2t

. (55)

According to (48), we split B+
i−1W

−
i,0 and B+

i W+
i,0 on Im Q+ and Im Q− respec-

tively,

B+
i−1W

−
i,0 = Π+B+

i−1A
−G̃−

i,0 + R+
i,0, B−

i W+
i,0 = Π−B−

i A+G̃+
i,0 + R−

i,0,

with R+
i,0 in Hi−1,i and R−

i,0 in Hi,i−1. We now define G̃−
i,1 = Q̃−Π−B−

i A+G̃+
i,0

and G̃+
i,1 = Q̃+Π+B+

i−1A
−G̃−

i,0. The new extensions are W±
i,1 = A±G̃±

i,1. Since all
operators are contractions, we have by Lemma 3.12

|||G̃−
i,1|||ℓ2t = |||Q̃−Π−B−

i A+G̃+
i,0|||ℓ2t ≤ µ |||G̃+

i,0|||ℓ2t ,
|||G̃+

i,1|||ℓ2t = |||Q̃+Π+B+
i−1A

−G̃−
i,0|||ℓ2t ≤ µ |||G̃−

i,0|||ℓ2t ,

which gives

max(|||G̃−
i,1|||ℓ2t , |||G̃

+
i,1|||ℓ2t ) ≤ µ max(|||G̃−

i,0|||ℓ2t , |||G̃
+
i,0|||ℓ2t ).

Furthermore, we have by (53) that E(W±
i,1)(0) ≤ c

2‖G̃
±
i,1‖ℓ2t

. This leads to the
recursion

W−
i,k = A−G̃−

i,k, W+
i,k = A+G̃+

i,k,

B+
i−1W

−
i,k = Π−B+

i−1A
−G̃−

i,k + R+
i,k, B−

i W+
i,k = Π+B−

i A+G̃+
i,k + R−

i,k,

G̃−
i,k+1 = Q̃−Π−B−

i A+G̃+
i,k, G̃+

i,k+1 = Q̃+Π+B+
i−1A

−G̃−
i,k,

(56)

with the properties

|||G̃±
i,k|||ℓ2t ≤ µk

∑

±

|||G̃±
i,0|||ℓ2t ;E(W±

i,k)(0) ≤
c

2
|||G̃±

i,k|||ℓ2t ; |||R
±
i,k|||ℓ2t ≤ µk

∑

±

|||G̃±
i,0|||ℓ2t .

(57)
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By the estimates (57), the series
∑

G̃±
i,k converges in ℓ2

t . The series
∑

W±
i,k

converges in the energy norm, and the series
∑

R±
i,k converges in ℓ2

t . We set

G̃±
i =

∑+∞
k=0 G̃±

i,k, R±
i =

∑+∞
k=0 R±

i,k, W−
i−1 =

∑+∞
k=0 W−

i,k, and W+
i =

∑+∞
k=0 W+

i,k.

Then W−
i−1 is a solution of the discrete wave equation in Ωi−1 with support in the

cone C−
i , and W+

i is a solution of the discrete wave equation in Ωi with support
in the cone C+

i . By construction, we have

Q−B̃−
i W−

i−1 =

+∞∑

k=0

Q−G̃−
i,k,

Q−(B̃−
i W−

i−1 − G̃−
i ) =

+∞∑

k=1

Q−G̃−
i,k,

B−
i W+

i =
+∞∑

k=0

(Π+B−
i A+G̃+

i,k + R−
i,k),

but by (56) and the definition of Q̃−, we have Π+B−
i A+G̃+

i,k = Q−G̃+
i,k+1, and the

last equation can be rewritten as

B−
i W−

i =
+∞∑

k=1

Q−G̃+
i,k + R−

i .

Thus we have

B−
i W+

i − Q−B̃−
i W−

i−1 − G̃−
i = R−

i + Q−G̃−
i − G̃−

i = R̃i,i−1 ∈ Hi,i−1.

In the same fashion, we obtain

B+
i−1 W−

i−1 − Q+B̃+
i−1W

+
i − G̃+

i−1 = R+
i + Q+G̃+

i−1 − G̃+
i−1 = R̃i−1,i ∈ Hi−1,i.

We have ‖D+
t W−

i−1(·, 0)‖2
ℓ2x

≤ c
2(1−µ) (|||G̃

−
i |||ℓ2t +|||G̃+

i−1|||ℓ2t ), and the same for W+
i ,

and
‖R̃i,i−1‖ℓ2t

≤ ( 1
1−µ

+2)(|||G̃−
i |||ℓ2t + |||G̃+

i−1|||ℓ2t ), and the same for R̃i−1,i, which gives
estimate (46).
This concludes the proof of Proposition 3.1, which is the cornerstone of the well-
posedness theory.
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