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Schwarz waveform relaxation algorithms are designed for the linear Schrédinger equation with
potential. Two classes of algorithms are introduced: the quasi-optimal algorithm, based on the
transparent continuous or discrete boundary condition, and the optimized complex Robin
algorithm. We analyze their properties in one dimension. First, well-posedness and convergence
are studied, in the overlapping and the non-overlapping case, for constant or non-constant
potentials. Then discrete algorithms are established, for which convergence is proved through
discrete energies or Fourier transforms, as in the continuous case. Numerical results illustrate the
efficiency of the methods, for various types of potentials and any number of subdomains.
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1. Introduction

The transient Schrodinger equation is the basic model in quantum mechanics. It is
also the “parabolic approximation” of the wave equation, used in underwater
acoustics, or in the so-called migration process, an imaging method to search for
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hydrocarbons. The design of optical fibers, or new semiconductor devices is based on
numerical simulations of a variety of such equations, linear with a potential, or
nonlinear, or even part of a system, in large domains.? Resolution is memory and time-
consuming, therefore raising in a natural manner the need for domain decomposition.
Even more important, discontinuities in the coefficients can be present, as in the earth
for instance, or in semiconductors, and it would be useful to split the domain into
different homogeneous subdomains, or even to couple different models.

New space-time domain decomposition algorithms for wave propagation or
advection-diffusion problems have been developed recently, using two concepts:
waveform relaxation, and optimized absorbing boundary conditions. This approach
leads to efficient algorithms which solve the problem iteratively in each subdomain on
the whole time interval (with possibly time windows), and exchange information on
the boundary at the end of the time interval. At an early stage, Dirichlet transmission
conditions were used with overlapping subdomains,” but the convergence depends
heavily on the overlap. Then it was realized that optimal convergence can be
obtained when using transparent boundary operators as transmission operators
between the subdomains. However, these operators are not available for general
geometries and/or equations with variable coeflicients. Therefore absorbing bound-
ary conditions, with coefficients optimizing the convergence factor, have been used
with or without overlap to improve this exchange of information, thus accelerating
significantly the convergence. This idea was first developed for elliptic problems by
Engquist and Zhao,” and Nataf and co-authors.'® The optimization strategy in the
frequency domain goes back to Japhet’s thesis.'® For evolution problems, coupling
these ideas with waveform relaxation leads to optimized Schwarz Waveform
Relaxation (OSWR) algorithms.'”* They can be used in a sequential or parallel way,
and enable different space-time discretization in different subdomains. They also
open potentiality for space-time refinement,'! and act as preconditioners® for the
resolution of the original problem in an implicit time-discretization setting.

Here we intend to design fast Schwarz waveform relaxation algorithms for
Schrodinger equations with a potential. A new formulation relies on the transparent
boundary operator.! Since an exact representation of the transparent operator is
available in one dimension as a convolution in time only, we restrict ourselves to the
one-dimensional case. This case will give hints for the comparison between this
“quasi-optimal” algorithm, and a more classical form with complex Robin trans-
mission conditions, and contains nontrivial convergence proofs for the continuous
and discrete algorithms. The reader interested in the setting of the algorithm with
Dirichlet transmission conditions is referred to Halpern and Szeftel.!?

After some preliminary results on Sobolev spaces in Sec. 2, optimal and quasi-
optimal algorithms are introduced in Sec. 3. For a constant potential, we show that
the overlapping and non-overlapping algorithms converge in two iterations for two
subdomains. For a non-constant potential, we prove the convergence of the non-
overlapping algorithm with energy estimates, following an idea of Despres,® which
has widely been used since (see Nataf et al.'” for steady problems, Gander et al.'” for
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evolution equations). Here, for the first time, it is extended to complex problems and
pseudo-differential operators.

In Sec. 4, we introduce complex Robin type transmission conditions, and inves-
tigate the behavior of the corresponding algorithm. Such transmission conditions
were first proposed by Lions'® for elliptic problems. We first prove the algorithms to
be well-posed. For overlapping subdomains, we prove convergence of the algorithms
for a constant potential, by Fourier transform in time and exact resolution of the
equation in space. For non-overlapping subdomains, the proof involves energy esti-
mates, and holds for a non-constant potential. We also study the optimization of the
convergence factor for a constant potential.

In Sec. 5, the complex Robin algorithm is discretized with Finite Volumes. In the
interior, it reduces to the Crank—Nicolson scheme, widely used in the linear and
nonlinear computations for the Schrédinger equation, where the complex Robin
transmission conditions are naturally taken into account. We also introduce a dis-
cretization of the quasi-optimal algorithm using the Crank—Nicolson scheme in the
interior and the discrete transparent boundary condition designed by Arnold and
Ehrhardt! precisely for the Crank—Nicolson scheme.

In Sec. 6, which is the most technical one, we tackle convergence issues. Using a
discrete Laplace transform in time, we study the overlapping discrete algorithm with
Robin type exchange of data, for a constant potential, for which the quasi-optimal
algorithm converges in two iterations. The convergence of the non-overlapping
complex Robin algorithm is proved with discrete energy estimates and holds for non-
constant potentials.

In Sec. 7, we finally illustrate and extend the results through numerical simu-
lations, for various types of potential, like constant, barrier or parabolic. For two
subdomains, we show how slow the convergence is with Dirichlet transmission con-
ditions, and how the optimized Schwarz waveform relaxation improves the conver-
gence. We also show that the minimal number of iterations by far is obtained by the
discrete quasi-optimal algorithm. To conclude, we show that convergence properties
are preserved for any number of subdomains, and we discuss complexity issues.

Due to the complexity of the analysis, we restrain ourselves to the one-dimensional
case. The multidimensional study contains additional difficulties due to the geometry
and will be the heart of a forthcoming paper.

2. Model Problem and Function Spaces
Let V be a real potential in L>(R). We consider here the Schrodinger equation

Lu =10+ Opu — Vu = f, (2.1)
with the initial condition

w(z,0) = ug(x). (2.2)
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We first recall some definitions of functional spaces. Let €2 be an open subset of R.
The complex Hilbert space L?((Q) is equipped with the Hermitian product (f,g) =
Jo (f9)(z)dz and the corresponding norm || - ||. For ran integer, H"(£2) is the Sobolev
space of distributions in D’(£2), whose derivatives of order up to r are in L?(f2),
equipped with the norm [|v]|z ) = (3 jaj<, [D0]|?) V2. If 7 is not an integer, the
space H"(2) is defined by interpolation. For the time direction, we will use another
characterization. The Sobolev space H"(R) for real r is also the set of tempered
distributions u in &’(R), whose Fourier transform 1 is such that (1 + 72)7/24 is in
L%(R). The space H"(R) is equipped with the norm ||u|| &) = [|(1 + 72)"/?4|. Then
H"([0,T)) is the set of restrictions of elements in H"(R), and equipped with the
a0 = Ul grm), U = va.e.in(0,T)}. Note that if ris an
integer, the second definition is equivalent to the first one, see Ref. 14.

quotient norm ||u|

We recall two classical a priori estimates. If u is a smooth solution to (2.1), (2.2) in
R x (0,7, then it satisfies for any positive time ¢ the inequalities:

%IIU(%)II2 < FCOI? + llul, 0117, (2:3)
%II@U(%)IV < NFCAI + 2000, D1 + VI T llul-, )] (2.4)

There is an existence theorem in L2(0,7; H'(R)) under convenient assumptions
on uy and f, but the domain decomposition algorithms will require more regularity.
Therefore we introduce now for any domain Q C R the anisotropic Sobolev spaces'*

H™(Q % (0,T)) = L2(0,T; H'()) N H*(0, T; L*(2)). (2.5)

If the initial value u is in H?(R), if the real potential Vis in L>(R), and if the right-
hand side fis in H'(0,T; L?(R)), then there exists a unique solution u to (2.1), (2.2)
in H*1(R x (0,7)).

At the interfaces between subdomains, the Schwarz waveform relaxation algor-
ithm will need traces of the subdomain approximations to the solution. Necessary
trace and extension results can be found in the reference book, by Lions—Magenes.

3. Quasi-Optimal Schwarz Waveform Relaxation Algorithm

We decompose the spatial domain = R into two subdomains ©; = (—oc, L) and
0y = (0,00), with L > 0. The Schwarz waveform relaxation algorithm consists in
solving iteratively subproblems on €; x (0,7) and Q, x (0,7'), using as a boundary
condition at the interfaces I'y = {& = L} and T'y = {x = 0} values obtained from the
previous iteration in the neighboring subdomain. For any operators B; and B,, we
define the algorithm for £ > 1 by

Luf=f inQ x(0,7), Luk=f inQyx(0,T),
uf(-,0) =ug i Q, u3(-,0) = ug in Qy, (3.1)
Byt = Bukt onTy x (0,7), Bouk = Boub™t on T, x (0,7).
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An initial guess (gy, g») is given on the boundary, and the zero iterate is given by
BuY = g1, Byu? = g,. The case where both operators B; are the identity and the
transmission condition in domain 2 is u5 = u} has been defined in previous works as
classical or alternate Schwarz, referring to the seminal work by Schwarz?! on the
Poisson equation in a multiple domain. It has been used for numerical domain
decomposition for a long time, in the alternate or parallel version,'® and has been
analyzed in the context of Schwarz waveform relaxation for the advection-diffusion
by Gander and Zhao,” and for the wave equation in Gander and Halpern.® It is known
to converge if a certain amount of overlap is present, but the convergence is very slow.
For a study of that algorithm for the Schrodinger equation, we refer the interested
reader to Halpern and Szeftel.'> We will give some numerical comparisons in Sec. 7.

3.1. Optimal transmission conditions

We will search operators B; in a special class, related to the Dirichlet—Neumann map.
They are given by B; =0, +S,,j = 1,2, where the S;(0;) are pseudo-differential
operators in time, with symbol o; defined by the following formula, where ~ denotes the
Fourier transform in time.

S;o(t) = (27r)_1/2/ei7t0j(7)q3(7')d7'.

Theorem 3.1. Let V be a real constant. The sequence of iterates (uf, ub) in
algorithm (3.1) converges to the solution u to (2.1), (2.2) in two iterations for every
ingtial guess (g1, go), independently of the size of the overlap L > 0, if and only if the
operators S; and Sy have the corresponding symbols

g = (7—+ V)1/2, 09 = _(T + V)l/Q, (32)
with

vT+V if T+ V >0,
(r+ V)2 = (3.3)
—ivV—1-=V ift4+V <O.

Proof. We use the Fourier transform in time with parameter 7. By linearity it
suffices to prove the convergence to zero of the iterates associated with f =0 and
ug = 0. We can Fourier transform the equation in time and we get

o~

amu? —(r+ V);? =0,

which can be solved as

—

ulf(l',T) = a(T)e*(HV)l/z(sz), @(m,T) _ ﬂ(T)e,(TJrv)l/zz.
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With the general transmission conditions in (3.1), we can write

((r+ V)2 4 0)ud(L,7) = (= (7 + V)2 + 0y )ul(L, 7),
(=(7+ V)2 + 00)ud(0,7) = (7 + V)2 + 0,)ul (0, 7).

Now (UA%(L,T),U/\%(O,T)) vanish for any initial guess, if and only if —(7+ V)2 +
o= (1T+ V)2 40, =0. O

We call these operators optimal, since they lead to convergence in two iterations
for any initial guess. For variable potentials, the optimal operators are in general not
at hand. We present here and compare two approximations of those. The first one is a
“frozen coefficients” variant of these operators. The second one replaces them by a
constant, obtaining “Robin type” transmission conditions, and finds the constant by
minimizing the convergence factor.

3.2. The quasi-optimal algorithm

We use as transmission operators the optimal operators for the constant potential
equal to the value of V on the interface. The quasi-optimal algorithm is thus given by

SP ==, +V(L), Sy =-y=id,+V(0), BY=0,+8%, (3.4)

where \/—i0, + V() is the operator acting only in time with symbol (7 + V(z)) /2.
Though being not differential, this operator is still easy to use numerically.’

We call the algorithm with transmission operators (3.4) quasi-optimal, in the
sense that it is optimal for a constant potential, with or without overlap, according to
Theorem 3.1. For a constant potential, the proof of well-posedness relies on Fourier
transform in time and exact computation of the solution. We do not have a proof of
well-posedness in the case where V'is a variable potential. On the other hand, we are
able to prove the convergence of the non-overlapping algorithm, i.e. L = 0, and when
T = 400. The proof is based on energy estimates and follows an idea of Després,’
which has widely been used since. The first extension to time-dependent problems was
to the one-dimensional wave equations.!’ Here it is extended to pseudo-differential
operators for the first time.

Theorem 3.2. Let L = 0. Let the potential V be such that V and V' belong to L™= (R).
Then the iterates (u¥,u%) of algorithm (3.1) with transmission operators (3.4)
converge to the solution to (2.1), (2.2) in (HY*(0,T,L*(4))NHY40,T,
H'Y(M))) x (HY4(0,T, L*(Qy)) N H Y40, T, H' ().

Remark 3.1. The assumption V’ € L>(R) is very strong and not suitable for some
of the applications mentioned in the Introduction. In particular, such an assumption
forbids any slow tunnel effect for the Schrédinger equation (2.1). However, we believe
that this assumption is purely technical and that convergence should hold even
without it. This belief is supported by our numerical results (see Sec. 7) which exhibit
fast convergence even in the case of a potential barrier.
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Proof. By linearity it suffices to prove the convergence to zero of the iterates
associated with vanishing right-hand side and initial values. Since L = 0, we have
ST = -89, and we denote this operator by S. Consider the equation on the whole
range of times 0 < ¢ < 400 with the boundary conditions

(ar + S)u’f(O, ) - (am + S)u§—1(07 ')7 (ax - 8)”?(07 ) - (87' - S)ulf_l(()a )
(3.5)

We introduce n > 0 satisfying
2 3
n > VI (3.6)

Let Uk be the extension of e”’tulf to ©; x R vanishing on €2; x (—00,0). For any =,
we deﬁne the operator S, (z) = \/ 10, + V(x) — in. It satisfies

e MSe = §,.
Fork>1 Uk,j = 1,2, satisfy the equations
(104 0py =V +i)UF =0 in Q xR, ((i0;4 0pp —V +in)U¥ =0 in Q, xR,
{B1Uf(0, ) =BUy'(0,)) inR, {32(]5(07 ) =BU{7'(0,-) inR,
(3.7)

where the transmission operators B; are given by B; =d,+S,(0), and B, =

9, — 8,(0). For fixed z, 0, (x) = (7 + V(z) — in)*/? is the unique analytic determina-
tion of the square root with positive real part (and hence negative imaginary part).
Multiplying the equation for UF in (3.7) by Sn(z)Uf, taking the real part, integrating
in time, and integrating by parts in space yields

// D) UES, (2)UF dmdtJrRe// 2)9,UL9,UF dedt

(3.8)

By using the Plancherel identity in time and

Re(ab) =~ (|la+ b|? — |a — b|?)

NG

we obtain:

0 o~
/R / Re(o,(2))|oy(@) [T (7, 2)dedr

// Re(o,(2)) 0,0 (r, )| *dadr + /|a UE0,) — 8,(0) U0, )|2dt
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<1 [ 10010, + 5,00 U0, e
R

1 0 — —
+5WVlex [ [ loy(@I 0.0k ) [T (7, o

We have an upper bound for the last term by

0 —
3 || Reto@Io.Ukr.a) Pdnar
R J—o0

|Uk (1,) \2
—HV ||Lc>c/ / dzdrT.
Re(o. oy(x)]?

Now since
T x o, (z)] 2\ V2
Re(0, ) —( PV ot ) :
we get
Re(o,(x)) 2 Jlo ()],

which in turn yields

(Re(a,(2))]oy(x)|%)? > —Y 2

Therefore:

IV/lIZ- 1 v~
8 Re(oy(a))loy()]* ~  2n®

(3.9)

(3.10)

(3.11)

(3.12)

where we have used (3.6) to get the last inequality. Thus, using (3.9), (3.10)

and (3.12) we obtain:
[ | Reto@ioy @0k 0) Pasds
+2/ / Re(o |3 Uf(r,z)|?dedr

+5 [ 10 = 5,00,

<3 [ 10 +5,0)Uk0.) P

(3.13)
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Introducing the energy in domain §2;

(w) = e(o () o, ()2 w(r, z)|? dedT
J,(w) AL“’“”“”' (r, )| dad

+2 / / Re(a,(2))|0,w(T, z)|? dedr, (3.14)
RJQ,
we can rewrite (3.13) as
1 1
Jl(U{“)+—/ IB,UH 2dt g—/ B, UL 2dt. (3.15)
2 [ 2 Jx

Similarly, we obtain for U}
1 1
JQ(U§)+—/ B, US| 2dt g—/ |B,UY|2dt. (3.16)
2 Jr 2 Jr

Introducing the transmission conditions in the right-hand side of Egs. (3.15)
and (3.16), adding and summing in k, we find
< 1
Y (LU +5(U) +

/ (BUE 2 + |BUE )t
k=1 R

3
1
<3 [ UBU0? + 5,03 (3.17)

The sum of the energies over all the iterates remains bounded. Hence the energy
JL(UF) + Jo(U¥) needs to tend to zero.

Finally, using (3.11) and the definitions of J; and J,, we see that there exists a
constant C' > 0 depending on 7 and [|V||;~(r) such that

Jj(w) > C(”wH%Il/‘l(O,T,L?(Qj)) + ||azw||irw(o.,T,Lz(Qj)))'
Therefore, algorithm (3.4) convergesinIl;_; o L2((0,T') x ;) N\H~Y4(0,T, H(;)). O

Remark 3.2. The previous proof does not provide any convergence rate. Now, the
quasi-optimal algorithm (3.4) uses the optimal transmission conditions for a frozen
potential. Thus, to obtain such convergence rates, one may consider the particular
case of slowly varying potentials. After a unitary change of scale, the problem reduces
to the study of operators of type h20,, — V(x) for a small parameter h > 0, for which
one may use tools coming from the semiclassical analysis. We refer the reader to Nataf
and Nier'® for an application of the semiclassical calculus to domain decomposition
methods for advection-diffusion equations.

4. The Algorithm with Complex Robin Transmission Conditions

A simpler alternative to the previous approach is to use Robin transmission con-
ditions. This idea was first suggested by Lions'® in the context of elliptic problems.
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Since the Schrodinger equation has complex coefficients, we choose a complex Robin
algorithm rather than the usual Robin algorithm, i.e. we replace the optimal oper-
ators, for a real number p, by

1=-8y=—ipl, B;=0,+S8]. (4.1)

Remark 4.1. In the sequel, we will choose p > 0 to ensure well-posedness and
convergence of the algorithm (see Secs. 4.1—4.4).

4.1. Well-posedness of the algorithm

The algorithm is well-defined, provided the initial boundary value problems in each
subdomain are well-posed. Those are non-classical problems, which need a special
treatment. The following proposition gives existence, uniqueness and regularity of
the solution.

Proposition 4.1. Let the real potential V be in L>(£2). Suppose fisin H'(0,T; L?(£2)),
ug in H2(2), g1 and gy are in HY(0,T), with the compatibility conditions
Biug(L) = g1(0), 2o (0) = g2(0). (4.2)
Then, for p >0, the boundary value problems (3.1) with Robin transmission
operators (4.1) have unique solutions u; in H*'(Q; x (0,T)).
Furthermore, assume L = 0. Then u;(0,-) and 9,u;(0,-) are in H*(0,T) and the

following compatibility relation is satisfied:

tlilgl Biuy(0,t) = Bjugy(0), th%l Bluy(L,t) = Biug(L). (4.3)

The same conclusion holds when L >0 provided that V is constant, f is in
H%((0,T) x Q) and vy is in H*(Q).

Proof. Without loss of generality, we only study the well-posedness of the
subdomain problem in §2;.

(i) First a priori estimates. Multiplying the equation Lu; = f by @, integrating by
parts in space, using the boundary condition and taking the imaginary part, we
obtain
1d I
— —u
2dt" "
where we have used the fact that the potential V is real. By the Cauchy—Schwarz
inequality, we get after integration in time

('7t)||2 +p|u1(Lat)‘2 = Im((f('vt)vul('at)) - gl(t)ﬂl(Lvt))v (44)

t t 1 t
s (B2 4 p / g (L, )| 2ds < [Jug||® + / I8P+ / l91(s)2ds
0 0 0

t
+ [ )Pas
0
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Applying the Gronwall Lemma gives the first bounds for u,:

2 2
lutll T 0,020y + Pllur (L )l 22 0.1

1
< 6T<||U02 s + Engln%zm). (4.5)

We apply (4.5) to d,uq, with the initial condition d,u;(-,0) = —i(f(-,0) — Dpug +
Vaiy) in L2(©;). By the regularity assumptions on the data, and the Trace Theorem in
time for f, we obtain

10¢ual| Zx (0,722 (00 )) + 100t (L )| 7201

< CJ(H“OH%{?(QI) VI e ol 2o

1
+ ||fH§{l(0ﬁT;L2(Ql)) +;|91”%—11(0,T))- (4.6)

(ii) Second a priori estimates. We now multiply the equation by 9,4,, integrate by
parts in space, using the boundary condition, and take the real part. We obtain

d
n 10,us]1* + 2p Re(iuy (L, -) 0,y (L, -))
=-2 Re(glatal(Lv )) + 2R6(Vu1('7 t)a 8t17’1('a t))
+ 2Re(f('7t)7atﬂ1('at))a

which implies
1850y (-, 0)II* < plluy (Ly ) Ze0,) + (0 + DIOpur (Ls )| 220y
+2||8tu1“2L2((0,T)><521) + ”V”%OC(QI)HUQ”%2((0,T)><£21)
+ ||f||%2((O,T)><Ql) + ”91”%2(0,T) + [10,u0]l?,
and by (4.5), (4.6),

10201 (- Ol Fw 0200y < Ce™ (luoll Tz + VI @y 1ol 22y
+ ”f”%{l(o,T;LZ(Ql)) + ”ng%{l(O,T))' (4.7)
Finally, using the equation and (4.6), we have
100 ()| T 0.7:2000)) < CeT (ol Fraqy) + VI E o) ol 2,
+||f||H1 0.T:L2(9) +||91HH1 01))- (4.8)

By (4.5)—(4.8), we have a bound on u; in H2*1(Ql x (0,T)), and on u(L,-) in
H'(0,T). This is sufficient to obtain the existence and uniqueness in these spaces by
the Galerkin method. Furthermore, by the Trace Theorem in H2!(Q; x (0,7)), we
have u(0,-) in H%4(0,T).

(iii) Third a priori estimates. We assume now that L > 0 and that the potential V'is
constant. We prove that u;(0,-) is actually in H'(0,7). With the additional
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assumptions on the data, the solution u to (2.1), (2.2) is in H*2(€; x (0,7))."* We
introduce the auxiliary problem satisfied by z = e ~(u; — ) in Q4 x (0,T):

102+ 12+ 0ppz—Vz=0 in Q; x (0,7),

2(-,0) =0 in Q, (4.9)
with h(t) = e~*(g,(t) — Biu(L,t)). The boundary data h is in H'(0,7T). Due to the

compatibility conditions (4.2), we can extend hin H'(R) by H, vanishing for negative
t, and we have through Fourier transform in time,

5 _ H(r) —(r+V=i)V2(L—z)
Z($7T)_(T+V7i)l/27ipe , x<L. (4.10)

Since Zm(7 +V —i)1/2 <0 and p > 0, we have |2(0,7)| < 1|H(7)|, and

1
<1
|

which proves that u(0,-) is in H'(0,7), and

[l (0, ')H%Il(o.,T) < CeT(HuH%{‘LZ(QIX(O,T)) + ”91”?{1(0?))' (4.11)

To conclude the proof of the proposition, we need to prove (4.3). Since u is in
H*2(Q, x (0,T)), it satisfies

tlir(r)l Byu(0,t) = Bhugy(0).

1
2(0, )10, < > Al a1 0m),s

Therefore we only need to prove that

lim B%2(0,t) = 0.
t—0,

Since h(0) =0, using the boundary condition, this amounts to proving that
lim,_y, 2(0,) = 0. Since H,; is supported in R, H, is analytic in the half-plane
Im7 <0, and by (4.10) and Paley—Wiener Theorem,”” (0, -) is supported in R, .
Since we just proved that z(0, ) is in H*(0,T'), and since H'(0,T) C C([0,T7]), by the
Sobolev Embedding Theorem,'* we have lim,__z(0,t) = 0. O

Remark 4.2. Let us explain why the results of Proposition 4.1 are weaker in the
case L > 0. Indeed, the compatibility conditions (4.1) together with the energy
estimates (4.5) and (4.6) imply that u;(L, -) belongs to H'(0,T). This is sufficient to
conclude in the case L = 0. In the case L > 0, we still have to prove that u,(0,-)
belongs to H'(0,T). Now, the interior trace u(0,) is a priori less regular than the
boundary data wu;(L,-) since it is only in H3/4(0,T) by the Trace Theorem in
H*1(Q, x (0,T)). To overcome this problem, we consider the case of a constant
potential V in order to take advantage of explicit computations using the Fourier
transform (see part (iii) of the proof of Proposition 4.1).
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Theorem 4.1. Let L = 0 and let Vin L>(R). Let p > 0, and let g;, and gy be given in
HY(0,T). Then algorithm (3.1) with Robin transmission operators (4.1) defines a
sequence of iterates (uf,u%) in H>1(Q x (0,T)) x H21(Q, x (0,T)), with u%(0,-),
0,u¥(0,-),ub(L,-) and 0,ub(L,-) in HY(0,T).

The same conclusion holds when L > 0 provided V is a real constant and g;, and g,
satisfy the compatibility conditions

Oyug(L) — ipug(L) = gr(0),  95ug(0) + ipug(0) = go(0)- (4.12)

Proof. The proof is done by induction using Proposition 4.1. O

4.2. Convergence of the overlapping algorithm

Theorem 4.2. Let V be a real constant. Let an initial guess (g1, gs) in HY(0,T), with
the compatibility conditions (4.12). Forp > 0, the solution (uf,u%) of algorithm (3.1)
with complex Robin transmission conditions (4.1) converges in L*(Qy x (0,T)) x
L2(y x (0,T)) to the solution u in (2.1).

Proof. We define the errors ef uf—u 7=1,2, solving the homogeneous

algorithm, and introduce the interface functions h’c B'e k . The proof uses Fourier
analysis. Proceeding as in (4.9), we define the local convergence factor by

(T+V—l)1/2+2p C(r V)L

6(r, L) = C(r+ V=i

(4.13)

and obtain

Fle thf e ths) = 6(r, L)F (e th5™" e thi™).
Thus

(F(ethk e hE)| = 10(r, L)|FIF (e hy, e hy)|.

Since p > 0, |6(7, L)| is strictly smaller than 1 for all 7. Thus, Lebesgue convergence
theorem immediately yields:

lim (e ~*h1, e *h8) |l (02 = 0. (4.14)
k—+o0 ’
Now, using formula (4.10), we obtain:

—tp k-1
e D wvpvias por (015)

~tok -
-7:(6 61)('7777) - (T—I—V—i)l/?—ip ’

Thus, we have:

) et ()
2Re((T+V —)12)|(r+V —i)1/2 —ip|?”

IF (e eD) () Zagey) (4.16)
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Using (3.11) with n = 1, we deduce in each subdomain
lle~eflz2( 0T.L2(2) = le~thf 1||L2 or) = le~thf 1||H1 (0,1
which together with (4.14) yields:
kggloc ||6§HL2(ij(o,T)) =0, (4.17)
which completes the proof. O

Remark 4.3. The classical Schwarz algorithm has a convergence factor equal to
e~ (TtV='2L Therefore the complex Robin algorithm converges at least as fast as the
classical one. We will see that we can find p such as to minimize the convergence
factor.

4.3. Convergence of the non-overlapping algorithm

We now assume that there is no overlap, i.e. L = 0. We first analyze the convergence
of the algorithm in the appropriate Sobolev spaces. The proof, though much easier,
follows the same path as in Sec. 3.2.

Theorem 4.3. Without overlap, L =0, the compler Robin—Schwarz waveform
relazation algorithm (3.1) with transmission conditions (4.1) converges for p > 0 in
L>(0,T; L2(£2)) x L(0,T; L2(Qy)) to the solution u in (2.1), (2.2) for any initial
guess (g1, 90) in (H'(0,T))? and any real potential V in L>(R).

Proof. We use the energy estimate (4.4) in Q, for the error e}, and the corresponding
energy estimate in €, for the error ef,

1d
2dt

—lletll* +Zm(,e5(0)ef(0)) =0, 5 — lle5]]” — Zm(d,e5(0)e}(0)) = 0.

We rewrite the terms on the interface in the form Zm(0,e;(0,-)e;(0,-)) =
$(|B§ej(0, 1% = |Bje;(0,-)|?), for j # i, and we obtain the new energy estimates

d kHQ

o lle

) 1ok
*\3365?(0, )= %IBie?(O, 2.

Replacing the transmission conditions, we find

d 1 . .
%||€f||2+%|3j€f(0,')\ ffIB SN0 (6,5) = (1,2) or (2,1).

Adding the equations in €2; and €2,, and summing in k, we get finally
5 d k k K K
> G ek + lleb?) + - (B3t 2 + Bief )00,
k=1

(|B§€?|2+|BT 2%)(0, ). (4.18)
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We can now integrate in time, and since the initial values of the error vanish, the
sum of the energies over all the iterates remains bounded. Hence the energy in the
iterates needs to go to zero and the algorithm converges. O

4.4. Optimization of the algorithm with overlap

We suppose here the potential to be constant. The errors are given recursively by
}'ef*l =p(,p,L)Fe} onT;x (0,T), j+#l,

where p(7,p, L) is the convergence factor associated with complex Robin trans-

mission conditions,

_ip+ (T V)2 o (rHV)12L

p(Tapa L) - ip _ (T+ V)1/2 (419)

The smaller the convergence factor, the faster the algorithm. In practical compu-
tations, only a bounded range of frequencies are present: |T| € [Ty, Tmax)- FOT a
discretization with time-step At, we have 7., = 7/At, T, = 7/T. We define
D = (—Tmaxs —Tmin) Y (Tmins Tmax ), and for a given potential V, the evanescent region
Ey ={r € D,7 >V}, and the propagating region P, = {T € D,7 < V'}. The mod-
ulus of the convergence factor is given by:

e~ VT+VL = EV?

|p(7—apa L)| = ‘ p— VT + VvV (420)
p+VT+V

The overlap provides an exponential decay of the convergence factor in the eva-
nescent regime, whereas the parameter p is meant to accelerate the convergence in
the propagating regime. Notice that without overlap, the evanescent modes are not
damped, even if the algorithm converges (see Fig. 5).

The following min—max problem is the key of the minimization in P,. We
introduce the function

f(s,p) = ‘i;z

: (4.21)

and the best approximation problem: find p* > 0 such as to realize

inf sup  f(s,p). (4.22)

SE(Smin»Smax)
Problem (4.22) is quite simple and can be treated at hand.

Lemma 4.1. The best approzimation problem (4.22) has a unique solution p*,
defined by f(SwminsP*) = f(Smax: p*), and given by

* X 1/2 * __ . * __ x %) _ V Smax — Smin
- (smlnsmax) 9 $7 = Smin> f - f(S P ) - .
V Smax + V Smin

p
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Proof. It is easy to see that for any positive p,

Smax — P .
lf p S V SmaxSmin»
pD—S Smax + P
sup
S€(Smins Smax) | P TS P=Smin| oo
op-= SmaxSmin -
p + Smin
The function p +— sup,efs . s ] %| is decreasing on (0, 1/SaxSmin) and increasing on
(\/StmaxSmin, +00). It has a unique minimum, attained for p* = /s .S O

It is now very easy to find the optimal coefficient p, and the technical details can
be found in Halpern—Szeftel.'?

5. Construction of the Discrete Algorithms

The discretization parameters are Ax and At in space and time respectively, the
discrete points in space are denoted by z; = jAz, and in time t" = nAt, with
At =T/N. The discrete difference operators are defined by

U(]—|—1,n)—U(g,n) U(]?”)_U(]_lan)

D;U(jin) = D;U(j,n) =

Az ’ Az ’ 51)
DiU(,n) = LUt 1A)t_ U,n) F<n +%) = %(F(n) + F(n+1)).

We use the Crank—Nicolson scheme for the discretization of the equation in the
interior.

1 1
LU(j,n) =iD{U(j,n) + D;D;U(j,n +2> - V(j)U(j,n +2)

:F(j,n—f—%), (5.2)

which is unconditionally stable, second order in time and space. We assume that
L = ¢/Azx. The points in €; are numbered from —oc to ¢, and the points in Q, are
numbered from 0 to +o0c. We denote the numerical approximation to u¥(jAz, nAt)
in €, at iteration step k by UF(j,n). The discrete form of algorithm (3.1) is given by
an initial guess (GY,GY) and, for k > 1,

1

UF(4,0) = up(z;) for —oo < j<{, (5.3)

A 1
BUF,n) =GV (n) - TIFQn +§> for 0 <n < N,
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. 1
LUQI"(j,n)F<j,n+2> for 0 < j< +oo, 0<n<N,

U5(5,0) = up(z;) for 0 < j < +oo, (5.4)
k k-1 Az 1
B,U5(0,n) = Gy (n)+7F 0,n+§ for 0 <n < N.

The new values on the boundaries are:

. A 1
G%(n) = ByUS (4, n) —;F(@,n+§> for 0 <n <N,
(5.5)
& — Ax 1
G2(n):B2U1(O,n)+7F O,n+§ forOSnSN

5.1. The complex Robin discrete algorithm

For complex Robin transmission conditions, the discrete transmission operators B’;
=T .
and B are given below

1 1
BiU,(¢,n) = D, U, <£,n —|—§> —ipU; (E,n —|—§>

Az Az
—lTDTUl(& n) — >

V(U (g, n -+ ;) :

1 1

Az

—|-22

A 1
D{U,(0,n) +T$V(0)U2 (0771 +§>7
. . (5.6)
B3U,(0,n) = DU, <O,n+§) + ipU, (O,n+§>
Az 1

Az
—ZTDle(O,n) — 7V(0)Ul (0,71"‘5),

_, 1 1
BlUQ(& TL) = D;LUQ (f,n‘f'E) - ZpUQ (@,n +§>

A A 1

The previous formulas are useful for the practical implementation of the algorithm.
In the forthcoming convergence analysis, we shall use the transmission conditions in
the form

_, 1
BiUF(,n) = BIUS Y (4,n) — AzF <e, n+ 5) ,

. 1
BLyUY(0,n) = BoUF1(0,n) + AxF(O,n +§)
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The above boundary operators are obtained using a finite volume procedure which
is given in details in Halpern—Szeftel.'> This idea was first introduced in Gander
et al.*? for the wave equation in one dimension.

5.2. The quasi-optimal discrete algorithm

Arnold and Ehrhardt® designed discrete transparent boundary condition for the
Crank—Nicolson scheme, in the case of a constant potential outside the domain. They
use the operators

n+1

BYU(Ln) =U(l—1,n+1)+ Ul —1,n) = > Si(n—m+1)UE,m), (58)

m=1

B°U(0,n) =U(1l,n+1)+U(1l,n) — nZH So(n —m +1)U(0,m), (5.9)

m=1

where the coefficients S;(m) are defined in the following formulas:

R = 2E’ o; = V(z;)Az?,

o]

= (R + 0})(R? + (0 + 4)%) ",

B (R? +40; + 03)
M= (R + o) (R2 + (0, +4)%) 12

o+ 2
¢; = arctan <2R]—2>,

R? —do; - 0] (5.10)
S,(0) = 1—%+%—aj,
S;(1) =1 —&-%—&-%—&- e,
$(2) = Sre (3 ~ 1),
Si(m +2) = 2 pje” % S;(m + 1) SR vy m), w1

m—+1 m+1 J

Using these transparent boundary operators as transmission operator in the domain
decomposition process, we write, for k> 1,and 1 <n < N,

B‘fOU{“(f, n) = G’f_l(n), B%°U§(O,n) = GS_I(n), (5.11)
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and define, for 1 <n < N,

1 1
Gh(n) = 4U¥ <£,n+§> - 2U§(é+ L,n +§)

n+1
- Z Sy(n —m +1)U5(¢,m)
m=1

Az?

AL

(U3t +1) = Us(£,n))

1 1
— QAJ}?V(E)Ug (Z,n + 5) + 2Ax2F(€,n + 5) y
(5.12)

1 1
Gh(n) = 4U} <0,n +§> —2U} <—1,n +§>

n+1
_ZSU(”_m‘f' LU (0,m)
m=1
A 2
—2i Axt UF0,n+1) — UF0,n))

1 1
—2Az2V(0)U¥ (0, n+ 5) + 2Ax2F<O, n+ 5) .
Here, we do not find G} and G% through a finite volume procedure. Instead, we
simply choose them such that we obtain the Crank—Nicolson scheme (5.2) when
U =U, =U,, i.e. after the domain decomposition method has converged.

Remark 5.1. Other choices of discrete transparent boundary conditions could be
used to discretize the quasi-optimal algorithm.

6. Convergence of the Discrete Complex Robin Algorithm

For the overlapping algorithm, the convergence will be obtained by a normal mode
analysis, whereas energy estimates will prove the convergence in the non-overlapping
case. We start by studying the discrete Crank—Nicolson scheme.

6.1. The Crank— Nicolson scheme

In this section, Vis a real constant. We introduce the normal mode analysis.>”> The
discrete Laplace transform of a grid function w = {w, },,>¢ on a regular grid with time
step At is defined for n > 0 by
. 1 ,
Lus) = B(s) = —=At Yy e ", s=ntir, <z, (61)

V 27T n>0
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and the inversion formula is given by

1 -/A;t snAt’\( )d [ / n—1 ’\( )d
w, = —F/—— e w(s)aT = — z wlz)az.
Vo J - V21 J|z=enat

The corresponding norms are

Han,At = (Atzemmmlwnlz)

n>0

1
pid 2

o lall, = (/i|@(n+iT)|2dT> , (6.2

At

[

and we have Parseval’s equality
[wllyae = 1wl (6.3)

Suppose now W(j,n) to be a solution to the difference equation

1 1
iDfW(j,n) +DIDIW<j,n+§) —VW(j,n+§> =0, (6.4)

with initial condition W (j,0) = 0. We denote by W(j,s) the discrete Laplace
transform in time of W(j,n). Equation (6.4) becomes the difference equation in one
variable, s acting as a parameter

W(i—1,8) + 2(ivh(z) — 1 — Az2V)W(j,s) + W(i+1,s) =0, (6.5)

with z = 3 h(z) = 27 and v = Az?/At. Function h is a well-known homographic
transformation, whose properties we summarize now:

Lemma 6.1. (1) The function h maps the circle of center O and radius 1 onto the
line Re Z = 0.

(2) The function h maps the exterior of the closed disk of center O and radius 1 onto
the half-plane Re Z > 0.

(3) The function h maps any circle of center O and radius a > 1 onto the circle of
center (a®+1)/(a® — 1) and radius 2a/(a®> — 1).

We introduce the characteristic second-order equation
r? +2(ivh(z) — 1 — Az?V)r +1 = 0. (6.6)

The roots of (6.6) satisfy

ror_ =1, ro+r_=2(1+ Az?V —ivh(z)). (6.7)
Lemma 6.2. For |z| >1 (i.e. n>0), Eq. (6.6) has two distinct roots ry with
[r_| <1 < |ry|. Furthermore, these roots are not real.

Proof. Suppose |z| > 1. By (6.7), the first assertion in the lemma holds true, unless
|r_| = |ry| = 1. In that case we have r_ = 7, and therefore r, + r_ is real, which
implies by (6.7) that h(z) is pure imaginary. This last assertion is equivalent by
Lemma 6.1 to |z| = 1, hence the contradiction. O
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6.2. The overlapping complex Robin Schwarz relaxation algorithm

Now we consider algorithm (5.3)—(5.5) with transmission conditions (5.7). If Uis the
solution to the Crank—Nicolson scheme in N x {0,..., N}, it satisfies B{U(¢,n) =
BlU(¢,n) — AzF(¢,n +1), and B3U(0,n) = B5U(0,n) + AzF(0,n + 1). Therefore
the errors satisfy the algorithm with vanishing data, and we can use the results of
Sec. 6.1. We deduce from Lemma 6.2 that for n > 0, any solution to (6.5) is a linear

combination of the powers of 7, and r_, and there exist functions a(s) such that
=k, j—0 . =k j .
WiGs) =ai(s)ri™, j<b Walis)=ax(s)rl, j>0.  (68)

The transmission conditions in (5.7) impose

ai(s) = Rp(z.7.p, 0)as '(s), a5(s) = Rp(z,7,p,0)al ' (s), with

¢ 1+ Ax?V —r_ —iyh(2) + ipAzx
"1 Az 1 - ivh(z) — ipAx’

RR(Z’ 7 Ps [) = (69)

Lemma 6.3. For any s withn = Res > 0, for any p > 0, for any £ > 0, the discrete
convergence factor for the complex Robin transmission conditions satisfies

|RR(z,7,p,0)] < |r_|" < 1.
Proof. We define

14+ Az?V —r_ —iyh(z) +ipAx
1+ A2V —r_ —ivh(z) —ipAzx’

a(z,7,p)

The modulus of a(z,,p) is given by:

(2 )| = (1+ A2V — Re(r_) +yIm(h(2)))? + (~Im(r_) — yRe(h(2)) + pAz)?
7P (1 + Az?V — RG(T_) +’yZm(h(z)))2 + (Im(r_) JrvRe(h(z)) +pr)2 .

Since Reh(z) = Ejl—P and |z| > 1, we have Reh(z) > 0. Also, by Lemma 6.2

and (6.7), we compute

i) — 2B

|7"+‘2 -1

which yields Zm(r_) > 0. Therefore |a(z,v,p)| < 1 for any strictly positive p. Since
| Rzl = |a||r_|% and |r_| < 1 by Lemma 6.2, the lemma follows. O

The interested reader can find a proof of the following result in Halpern—Szeftel**:

Theorem 6.1. Let V be a real constant. Let Uzlf be the iterates of algorithm (5.3)—
(5.5). For positive p,nAt sufficiently small but nonzero, and Az sufficiently small, we
have

U5 = Ullo e S (1= 020?/2)4~ mace U .0
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6.3. The non-overlapping complex Robin Schwarz relaxation
algorithm

We consider now the case where ¢ = 0. For the complex Robin Schwarz relaxation
algorithm, the convergence factor is a(z,v,p). For n > 0 and p > 0, we have proved
that |a(z,7,p)| < 1. This shows the convergence of the non-overlapping complex
Robin Schwarz relaxation algorithm when V'is a real constant.

However, our numerical computations are implemented with non-constant
potentials. Thus, we introduce a proof of convergence based on energy estimates. It is
the discrete analog to the proof of Theorem 4.3. The errors Wf are solutions for k > 1
to Eq. (5.2) with F' = 0 and vanishing initial values. The transmission conditions are
for k> 2:

ByWE0,n) = ByW5 1 (0,n), ByWH(0,n) = B,WF1(0,n) for0<n<N,
(6.10)

where the discrete transmission operators B; and Bj are summarized in (5.6). The
algorithm is initialized on the boundary, for 0 < n < N, by

B, W (0,n) = % Gi(n) = %Gl(n) — <BlU(0,n) + AmF(O,n + %))
By,W3(n) = %éz(n) = % Gy(n) — (BZU(O, n) — AzF (o, n+ %))

Theorem 6.2. The discrete non-overlapping Schwarz waveform relaxation algo-
rithm (5.3)—(5.5) converges for p > 0, in 1>(0, N;1%(—00,0)) x 1>(0, N;1%(0, +00)),
to the solution U to (5.2), for any initial guess (G, Gr) and any positive p:

Vn,0<n<N, lim Az

k—+00

D WL =G+ (WS~ U)(J}n)ﬂ =0

Jj<0 j=0

(6.11)

with the wusual notation Y ;- W; =Wo/2+> ;< W, and Y W; = Wy/2+
2iz1 Wi

Proof. We write energy estimates, using a discrete analogous to (2.3). We start with
the left subdomain. We multiply Eq. (5.2) in €, by W§(j,n + 1), take the imaginary
part, and sum for j < —1. The third term vanishes due to the fact that V is real-
valued. The first term becomes

1

AL Y (Wi n+DIP = Wi(in)).

Jj<-1
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As for the second term, we perform a discrete integration by parts:
1
Z Wk<j,n+ >D+D wi (],n+ )
2
j<-1
e 1 i 1
:—Z D, Wy ]7n+§ +—W 0n+ D, Wilon+=).

i<0 2

Thus we can write

s 0 (WEGn+ DP — WG]
1 1 1
—_ k — n k — =
—|—AxImW1(O,n+2>Dw Wi <O,n—|—2> 0,

which we rewrite as

1 . .
Jj<0

1 1 A
Wk (0,n+§> (DZW{“ (0,n+§> — iTxD;W{“(o,n)ﬂ =0.

We now introduce the operators B; defined in (5.6). We obtain:

1 / k. 9 ko - 9 1 D k 2
—_— E W +1)|° —|W +——I|By;W
IAL — (| 1(3771 )| | 1(%”)\) Ap | 2 1(0,n)|

1
—7
+Am m

-5 A ——[BW(0,n)|%. (6.12)

We obtain in the same way the estimates on the right:

L / k(s 2 _ k(. 2 L 7 k 9
sar X WG+ DF WGP + B

=1 A ——|B,W3(0,n)|%. (6.13)

We now add (6.12) to (6.13), use the transmission conditions (6.10) for k > 2:

1 / . .
s S WG+ D2 = WG w)?)
J<0

1

+9A Z (W5G.n+ D = (WG, n)[?)

1
+ g (BIVAQm + |BWEm)l)
1

= pag (BT O + B3 (0,m)). (6.14)
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We now sum in time, for 0 <n < g —1:

SAT (ZI LGl + Y Wilig )I)

J=0
q

> (IBWL(0,n)|* + [B,W5(0,n)|?)
1

q

1 » - - >
= dpAx > (B0, )| + [ ByWSH(0,m)|?). (6.15)
n=1

We finally sum (6.15) in k, for 1 < k < K, multiply by 2AtAz, and use the boundary
values for the initial guess:

AJfZ(Z WG al?+ > W3i.q )

— 3<0 j7>0
At < - K )
t5 Z(lB Wi (0,n)[2 + B, W3 (0,n)[%)
n=1
q 2
2p 2 (‘ )+ 2sz1 (0,n)
Az

+ ‘762(71) — 2ipW3(0,n)

2). (6.16)

The sum of the discrete L2 norm over all iterates remains bounded. Thus:

. i k- 2 ! ki 2| _
Jim Az (Z WG a2+ Wh.q) ) 0. (6.17)

J<0 J=0

7. Numerical Results

We study the actual efficiency of the algorithms: rate of convergence, robustness with
respect to the length of the time interval, and to the mesh size.

In Sec. 7.1, we treat the free Schrodinger equation. We first show briefly the
behavior of the classical Schwarz algorithm on the computation of a Gaussian tra-
veling wave. Thereafter, and for the rest of the numerical analysis, we consider zero
initial value, which is sufficient since the equation is linear. A random initial guess is
used, in order to make sure that all frequencies are present in the analysis. We
compare the classical and the complex Robin algorithms in case of two subdomains.
We also study the efficiency of the complex Robin, as a function of the parameter p, in
the overlapping and non-overlapping cases.

Then we turn to non-constant potential, like the potential barrier and perform a
similar analysis.
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In Sec. 7.3, we introduce the quasi-optimal algorithm.

Finally we explore in Sec. 7.4 the extension to several subdomains.

The physical domain is (a,b) = (=5,45). It is divided into two subdomains of
equal size. Since no parallelism is involved yet, our algorithms are implemented the
alternate way, i.e. we compute U; with g;, then deduce g, and transmit it to the right
domain for the computation of U,. Thus iteration #k in this section corresponds to
the computation of U1, U2¥ in the previous setting.

7.1. The free Schrodinger equation

We first study the properties of the classical Schwarz algorithm with Dirichlet trans-
mission conditions, then those of the complex Robin algorithm, and compare their
efficiency. We also present the efficiency of the latter without overlap. In the case of the
free Schrodinger equation, the quasi-optimal algorithm coincides with the optimal one
and converges in two iterations as expected by the theory (see Theorem 3.1).

7.1.1. The classical Schwarz algorithm

The mesh Ax and At are fixed, equal to Ax = 0.1 and At = 0.01. The overlap is
equal to eight gridpoints, i.e. to 0.8. We compute a Gaussian traveling wave

e~im/4 ix? — kx — k%t
t) = 7.1
) =S e (T (71)

with k= 6, using the Crank—Nicolson scheme on (a,b) with the exact values as
Dirichlet and initial data (transparent boundary conditions could be considered as
well, but would give the exact discrete solution for constant potential only). We
study in Fig. 1 the variation of the discrete L2 error on the internal boundary of €,
3. [W5(0,n)|? as a function of the iteration number, for various final times 7.

We notice two parts in the convergence curve: in the first iteration, the error decays
very slowly. This is due to the Dirichlet boundary conditions which create fictitious
walls. High amplitude waves are created by erroneous boundary data, and the
maximum of the amplitude is reached at the end of the time interval. At each iteration,
the error is small on a longer time interval. At some iteration (which increases with T'),
the error is small on the whole time interval, which makes the total error small.

In Table 1, we choose T' = 1, and give the number of iterations needed to reach a
precision equal to 1076 for various sizes of the overlap from two to 16 gridpoints. As
expected, the larger the overlap, the faster the algorithm. Furthermore, the
numerical convergence factor is a linear function of the overlap.

7.1.2. The optimized complex Robin algorithm with overlap

From now on, we consider the convergence to zero, with a random initial datum on the
interface. The final time is T = 1, the mesh sizes are equal to Az = 0.1, At = 0.01, and
thereafter divided by two, the overlap is equal to 4Az. The optimal p given by the
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Fig. 1. Convergence history of the classical Schwarz algorithm for various values of the final time.

Table 1. Number of iterations to achieve a 1076
accuracy as a function of size of the overlap for the
classical Schwarz algorithm with 7" = 1.

Overlap 2Ax  4Az  8Ax  10Ax
Number of iterations 54 27 14 7

theory is pp = (T’T—Azt) 1/4 ~ 5.6. We draw on Fig. 2 the L? error in Q) at step 10 as a
function of p. The star corresponds to pp. This drawing shows that the efficiency of
the complex Robin algorithm depends drastically on the parameter p, that the theor-
etical estimate is perfectly relevant, and that it is better to overestimate p than to
underestimate. Figure 3 shows the equivalues of the log of the discrete L? error in time
and space, for a range of values of Re p and Zm p. It shows that adding an imaginary
part to p does not improve the efficiency of the algorithm.

7.1.3. Comparison

We now compare the efficiency of the classical and optimized complex Robin
algorithm for T = 1, Az = 0.1 and At = 0.01. The error is the L? norm of the error
on the boundary of £2,. The overlap is 4% or 8%, with the same data as in Fig. 3. The
convergence of the optimized complex Robin algorithm is linear, and the improve-
ment over the classical Schwarz algorithm is striking.
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Fig. 2. Variation of the discrete L2 error in time and space in € as a function of p, logarithmic scale. The
overlap is 1%. The star corresponds to the theoretical optimal value py.
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Fig. 3. Variation of the discrete L2 error in time and space as a function of p, logarithmic scale. The
overlap is 4%. The star corresponds to the theoretical optimal value py.

7.1.4. The optimized complex Robin algorithm without overlap

We now analyze the efficiency of the non-overlapping complex Robin algorithm. For
the same data as before (T'=1, Az = 0.1 and At = 0.01), Fig. 5 shows on the left
the discrete L? error in time and space in €, after ten iterations as a function of p.
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Fig. 4. Convergence history: Comparison of the Dirichlet (solid) and optimized complex Robin algorithm
(dashed). The overlap is L = 8 Az on the left, L = 4Axz on the right.
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(a) Error at iteration 10 as a function of p, (b) error history in logarithmic scale for the optimal
theoretical parameter p*.

a L b

Fig. 6. Description of the data: Interval of computation, overlap, and potential.

The error is much larger than in the overlapping case, and much less sensitive to p.
However, the optimal theoretical parameter p* is included in the “best” region. We
show on the right the variation of the error at the interface as a function of the iteration
for p = p*. The Jacobi algorithm damps rapidly the propagating modes first, and then
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slows down. The convergence is therefore slower than in the overlapping case. This is
due to the fact that there is no overlap to dampen the evanescent modes. As in the
overlapping case, the convergence is linear, adding an imaginary part to p does
not improve the convergence. If possible, a small overlap is preferable for improved
convergence.

7.2. The potential barrier

We consider again the interval (—5,5), with a final time T = 1, discretized with
Az = 0.1 and At = 0.01. The size of the overlap is 4Ax. The potential is 20 times the
characteristic function of the interval (—1,1).

We use the optimization process of Sec. 4.4, for a constant potential V equal to 20.
The theoretical formula in Halpern—Szeftel'? gives a theoretical parameter p* equal
to 4.64.

In the experiment, again the initial data is zero, and the initial guess on the
boundary is random. We draw in Fig. 7 on the left the error at iteration 5 as a function
of p. The star corresponds to the theoretical optimal value p*. The numerical best
value is p; = 4.93. We see that the numerical result fits very well with the theoretical
analysis. Figure 7 on the right compares the convergence history for Dirichlet and
complex Robin transmission with parameter p*. In this case, the improvement pro-
duced by the optimized complex Robin condition is even larger than in the case of the
free Schrodinger equation in Fig. 4 on the right.

We tried various types of potential, like parabolic profiles and the results are the
same: The complex Robin algorithm behaves much better than the classical Schwarz,
and the optimal complex Robin is obtained for a value of the parameter of the same
order of magnitude as the theoretical one.

7.3. The quasi-optimal algorithm

The quasi-optimal algorithm is by far the most efficient. In all cases, even when the
potential is not constant, the precision 10~!2 is reached in at most five iterations with
or without overlap. As an example, we show in Fig. 8 the convergence history with an
overlap of four gridpoints, for a parabolic potential, for various mesh sizes. When
refining the mesh, the first two iterations reduce the error less, but after four iter-
ations the error is about 107'2. In that sense we can say that the convergence is
almost independent of the mesh size. In Fig. 9, we show the first few iterations, at the
end of the time interval, of the quasi-optimal algorithm with a parabolic potential, in
the case where Az = 0.05 and Az = 0.005.

7.4. The case of many subdomains

Although the mathematical analysis was carried out in the simplified case of two
semi-infinite intervals, the proofs of convergence remain unchanged for an arbitrary
number of subdomains in the non-overlapping case.
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Fig. 7. (a) Error at iteration 5 for the complex Robin algorithm as a function of p. (b) Convergence
history for Dirichlet (solid) and complex optimized Robin (dashed) algorithms. Potential barrier.
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Fig. 8. Convergence history for the quasi-optimal algorithm in the presence of a parabolic potential.

In Figs. 10 and 11 are two sets of experiments, carried on the time interval (0, 1),
for four to 20 subdomains of same size equal to ten gridpoints. The numerical data are
Axz = 0.1, At = 0.01. The error is the sum of the errors on the interfaces. In Fig. 10
the potential is zero. The convergence does not depend on the number of subdomains.
In Fig. 11, the potential is 1022. The convergence curves are parallel in each case,
there is a factor ten in the error between the extreme curves. For 20 subdomains, we
need eight iterations to reach 1070 with the complex Robin algorithm, and only five
iterations with the quasi-optimal. The quasi-optimal algorithm is therefore the most
effective in all cases. However, we must keep in mind that it is global in time on
the boundary, and therefore each iteration involves the computation of N coefficients.
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Fig. 9. From left to right, the iterates u}(z, T) and uf!(z,T) (dashed) at the end of the time interval
t =T for k=1,3,5, together with the exact solution (solid), for the quasi-optimal algorithm. Top: real
part, bottom: imaginary part. Parabolic potential.
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As an example, in MATLAB, without any optimization of the code, in the case of two
subdomains and T' = 1, we found that for Az = 0.1, At = 0.01, the Robin algorithm
and the quasi-optimal algorithm have about the same cost, whereas for Ax = 0.025,
the quasi-optimal algorithm is three times more costly than the Robin algorithm.
However, optimal implementations of the Transparent Boundary Conditions can be
used, like the one of Lubich and Schidle.'”

8. Conclusion

We presented a general approach to design optimized Robin and quasi-optimal
domain decomposition algorithms for the linear Schrodinger equation, with a potential
in one dimension. We established a complete analysis of those, and showed numerical
examples with various types of potential, which enhance the efficiency of the methods.
These algorithms can be used with or without overlap. This work is a first step towards
the extension to the two-dimensional case, and to the nonlinear Schrodinger equation.
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