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a b s t r a c t

Domain decomposition methods which use different models in different subdomains are
called heterogeneous domain decomposition methods. We are interested here in the case
where there is an accurate but expensive model one should use in the entire domain, but
for computational savings we want to use a cheaper model in parts of the domain where
expensive features of the accurate model can be neglected. For the model problem of a
time dependent advection–reaction–diffusion equation in one spatial dimension, we study
approximate solutions of three different heterogeneous domain decomposition methods
with pure advection reaction approximation in parts of the domain. Using for the first time
a multiscale analysis to compare the approximate solutions to the solution of the accurate
expensive model in the entire domain, we show that a recent heterogeneous domain
decomposition method based on factorization of the underlying differential operator
has better approximation properties than more classical variational or non-variational
heterogeneous domain decomposition methods. We show with numerical experiments in
two spatial dimensions that the performance of the algorithms we study is well predicted
by our one dimensional multiscale analysis, and that our theoretical results can serve as
a guideline to compare the expected accuracy of heterogeneous domain decomposition
methods already for moderate values of the viscosity.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Heterogeneous domain decomposition methods are domain decomposition methods where different models are solved
in different subdomains. Models can be different because problems are heterogeneous, i.e. there are connected components
with different physical properties, see for example [1–4], or because one wants to approximate a homogeneous object
with different approximations, depending on their validity and cost, see for example [5–12]. In this second situation, there
is in general a complex, expensive model which would give the best possible solution, and the heterogeneous domain
decomposition methods try to give a good approximation to this best possible solution at a lower computational cost. It is
therefore possible in this second situation to quantify the quality of heterogeneous domain decomposition approximations in
a rigorousmathematical way, by comparing them to the expensive solution on the entire domain, as it was proposed in [13],
see also the earlier publication [14]. Using for the first timemultiscale analysis,we compare in this paper three heterogeneous
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domain decomposition methods to solve time dependent advection–reaction–diffusion equations, with advection reaction
approximations in parts of the domain: the method using variational and non-variational coupling conditions from [15,16],
see also [17] and [18], and the factorization method, which has its roots in [17], but was only fully developed in [19] for
one dimensional steady advection–reaction–diffusion problems. It was proved in [19] that the factorization method can
give approximate solutions in the viscous region which can be exponentially close to the monodomain viscous solution
for one dimensional steady problems. A factorization method for time dependent advection–reaction–diffusion problems
was proposed in [20], and its performance was studied using a priori error estimates. We present here for the first time a
multiscale analysis of the factorization method, together with the variational and non-variational ones, and we show with
numerical experiments that the results of this multiscale analysis also describe the behavior of the coupling algorithms very
well in higher spatial dimensions.

We present in Section 2 the three heterogeneous domain decomposition methods we will study in this paper for
time dependent advection–reaction–diffusion problems. In Section 3, we perform a multiscale analysis of the factorization
method, and give sharp error estimates as the viscosity goes to zero. In Section 4, we present the corresponding multiscale
analysis for the variational heterogeneous domain decomposition method, and in Section 5 the one for the non-variational
heterogeneous domain decomposition method. The error estimates we obtain allow us to compare the quality of the
coupled solutions obtained by these three methods, and the results differ, depending on the advection direction at the
interface. We then test in Section 6 the three heterogeneous domain decomposition algorithms numerically in a two
dimensional setting that goes beyond our theoretical analysis. Our results show that the one dimensionalmultiscale analysis
predicts nevertheless the performance very well also in two dimensions, and this already for moderate values of the
viscosity parameter. Our theoretical results are thus really useful to guide people in the choice of coupling conditions for
heterogeneous domain decomposition.We finally compare the numerical cost of the algorithms and summarize our findings
in Section 7.

2. Heterogeneous domain decomposition methods

We define the time dependent advection–reaction–diffusion operator Lad := ∂t − ν∂2
x + a∂x + c , ν > 0 and c ≥ 0, its

non-diffusive approximation La := ∂t + a∂x + c , and consider two model problems: for positive advection a > 0, we want
to approximate

Ladu = f in (−L1, L2) × (0, T ),
u(−L1, ·) = g1 on (0, T ),
Lau(L2, ·) = 0 on (0, T ),

u(·, 0) = h in (−L1, L2),

(2.1)

which represents the outflow from a regionwhere viscosity is important into an areawhere it is not. The boundary condition
at outflow is absorbing, see [21]. For negative advection, a < 0, we want to approximate

Ladu = f in (−L1, L2) × (0, T ),
u(−L1, ·) = g1 on (0, T ),
u(L2, ·) = g2 on (0, T ),
u(·, 0) = h in (−L1, L2),

(2.2)

which represents the inflow from a region where the viscosity is not important into an area where it is, i.e. a boundary
layer which is forming on the left. In both model problems (2.1) and (2.2), we want to approximate the solution by solving
an advection–reaction–diffusion equation in the domain Ω1 := (−L1, 0), and only an advection reaction equation in
Ω2 := (0, L2).

2.1. Variational coupling conditions

A heterogeneous domain decomposition method using variational coupling conditions was introduced in [15,16] for
stationary problems. The method was obtained in a variational framework, by fixing the viscosity in a subregion, and then
letting the viscosity go to zero in the remaining domain. The method is non-iterative, and when extended to our time
dependent setting, it consists for a > 0 in solving first the advection–reaction–diffusion problem

LaduV
ad = f in Ω1 × (0, T ),

uV
ad(−L1, ·) = g1 on (0, T ),

∂xuV
ad(0, ·) = 0 on (0, T ),

uV
ad(·, 0) = h in Ω1,

(2.3)

followed by solving the advection reaction problem

LauV
a = f in Ω2 × (0, T ),

uV
a (0, ·) = uV

ad(0, ·) on (0, T ),

uV
a (·, 0) = h in Ω2.

(2.4)
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If a < 0, one first solves an advection reaction problem,

LauV
a = f in Ω2 × (0, T ),

uV
a (L2, ·) = g2 on (0, T ),

uV
a (·, 0) = h in Ω2,

(2.5)

followed by the solution of an advection–reaction–diffusion problem

LaduV
ad = f in Ω1 × (0, T ),

uV
ad(−L1, ·) = g1 on (0, T ),

−ν∂xuV
ad(0, ·) + auV

ad(0, ·) = auV
a (0, ·) on (0, T ),

uV
ad(·, 0) = h in Ω1.

(2.6)

2.2. Non-variational coupling conditions

Non-variational coupling conditions were also considered in [15,16] for steady problems. The idea is to put transmission
conditions which lead to coupled solutions with good continuity across the interface, see also [17]. In our time dependent
setting, one can, for a > 0, enforce both continuity of the traces and the fluxes, which leads to the heterogeneous domain
decomposition method

LaduNV
ad = f in Ω1 × (0, T ),

uNV
ad (−L1, ·) = g1 on (0, T ),

∂xuNV
ad (0, ·) = ∂xuNV

a (0, ·) on (0, T ),
uNV
ad (·, 0) = h in Ω1,

(2.7)

LauNV
a = f in Ω2 × (0, T ),

uNV
a (0, ·) = uNV

ad (0, ·) on (0, T ),

uNV
a (·, 0) = h in Ω2.

(2.8)

The coupled solution defined by (2.7) and (2.8) is in general computed by an iteration, see [15,16], and Section 6, where we
also propose a heuristic for an optimal choice of the relaxation parameter in the iteration to obtain convergence.

If a < 0, one can only enforce continuity of the traces, and one first solves an advection reaction problem,

LauNV
a = f in Ω2 × (0, T ),

uNV
a (L2, ·) = g2 on (0, T ),

uNV
a (·, 0) = h in Ω2,

(2.9)

followed by the solution of an advection–reaction–diffusion problem

LaduNV
ad = f in Ω1 × (0, T ),

uNV
ad (−L1, ·) = g1 on (0, T ),

uNV
ad (0, ·) = uNV

a (0, ·) on (0, T ),

uNV
ad (·, 0) = h in Ω1.

(2.10)

2.3. The factorization algorithm

The idea of the factorization algorithm has its roots in the PhD thesis of Dubach [17], who was trying to find better
transmission conditions than the variational ones from Section 2.1 and the non-variational ones from Section 2.2. This led
him to study absorbing boundary conditions in this context. It is however a modified advection equation which becomes
key to improve the coupling, as it was pointed out in [19], and for steady one dimensional advection–reaction–diffusion
problems, exponentially small errors can be achieved in the viscosity ν, whereas the othermethods only lead to algebraically
small errors in ν. For time dependent problems, the factorization algorithmbelowwas developed in [20], and uses amodified
advection reaction operator, Lma := ∂t − a∂x + c +

a2
ν
. For positive advection, a > 0, the algorithm is also iterative: starting

with a given initial guess u0
ad(0, ·) = g0

ad, each iteration consists of three steps: first we solve a transport problem into the
positive x direction in Ω2,

Lauk
a = f in Ω2 × (0, T ),

uk
a(0, ·) = uk−1

ad (0, ·) on (0, T ),

uk
a(·, 0) = h in Ω2,

(2.11)



M.J. Gander et al. / Journal of Computational and Applied Mathematics 344 (2018) 904–924 907

followed by a modified transport problem into the negative x direction in Ω2 with the adapted source defined using the
operator R := (∂t + c)2,

Lmauk
ma =

a2

ν
f + R uk

a in Ω2 × (0, T ),

uk
ma(L2, ·) = 0 on (0, T ),

uk
ma(·, 0) = f (·, 0) + νd2xh in Ω2,

(2.12)

and finally an advection–reaction–diffusion problem in Ω1,

Laduk
ad = f in Ω1 × (0, T ),

uk
ad(−L1, ·) = g1 on (0, T ),

Lauk
ad(0, ·) = uk

ma(0, ·) on (0, T ),

uk
ad(·, 0) = h in Ω1.

(2.13)

If the advection is negative, a < 0, the factorization algorithm is non-iterative. It starts with an advection reaction problem
in Ω2,

Lau1
a = f in Ω2 × (0, T ),

u1
a(L2, ·) = g2 on (0, T ),

u1
a(·, 0) = h in Ω2,

(2.14)

followed by another advection reaction problem in the same domain,

Lau2
a =

a2

ν
f + R u1

a in Ω2 × (0, T ),

u2
a(L2, ·) = Lmau1

a(L2, ·) on (0, T ),

u2
a(·, 0) = Lmau1

a(·, 0) in Ω2,

(2.15)

and finally an advection–reaction–diffusion problem in Ω1,

Laduad = f in Ω1 × (0, T ),
uad(−L1, ·) = g1 on (0, T ),

Lmauad(0, ·) = u2
a(0, ·) on (0, T ),

uad(·, 0) = h in Ω1.

(2.16)

3. Multiscale analysis of the factorization algorithm

Themultiscale behavior of the advection–reaction–diffusion equation is well understood, see for example [22]; boundary
layers can be created near Dirichlet walls, and there can also be characteristic boundary layers if the data lacks compatibility,
see [23]. We consider here only regular and compatible data, and assume that the forcing term f is compactly supported in
(−L1, L2) × (0, T ], and the boundary data g1 and g2 is compactly supported in (0, T ]. Then, all the problems defined above
are well-posed, with C∞ solutions, see [20]. The formal expansions wewill obtain are fully justified by the a priori estimates
in [20].

3.1. The case of positive advection

We start with a > 0 and first perform a multiscale analysis of the advection–reaction–diffusion equation (2.1), before
studying the factorization algorithm in detail. When a > 0, we assume in addition that the initial data h is compactly
supported in Ω1.

3.1.1. Multiscale solution of the advection–reaction–diffusion equation
We seek a multiscale expansion of the solution u of (2.1) in the form

u(x, t) ≈

∑
j≥0

ν jUj(x,
L2 − x

ν
, t) =

∑
j≥0

ν juj(x, t) +

∑
j≥0

ν jU∗

j (
L2 − x

ν
, t),

where the functions Uj(x, y, t) belong to the space of functions split in the form

V (x, y, t) = v(x, t) + V ∗(y, t),

with smooth functions v ∈ C∞((0, T ) × Ω) and V ∗
∈ e−δyC∞((0, T ) × Ω) for some positive δ. The first series is the outer

expansion, which satisfies the equation and the boundary condition on the left. The second one is the inner expansion, which
is the corrector for the boundary condition on the right to be fulfilled.
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Lemma 3.1. There is a unique formal multiscale solution of the mixed Cauchy problem (2.1) in Ω × (0, T ), of the form

uout (x, t) + uin(x, t) =

∑
j≥0

ν juj(x, t) +

∑
j≥2

ν jU∗

j (
L2 − x

ν
, t). (3.1)

Each term in the outer expansion uout is solution of a transport equation,

Lau0 = f , u0(x, 0) = h(x), u0(−L1, t) = g1(t), (3.2)

Lauj = ∂2
x uj−1, uj(x, 0) = 0, uj(−L1, t) = 0, j ≥ 1. (3.3)

The first non vanishing term in the inner expansion uin is

U∗

2 (y, t) = −
1
a2

∂2
x u0(L2, t)e−ay. (3.4)

Proof. In the sense of formal series, since ∂x∂yUj = 0 for any j, we have with obvious notations

Lau ≈ −
a
ν
∂yU0 +

∑
j≥0

ν j(LaUj − a ∂yUj+1),

Ladu ≈ −
1
ν
(a∂y + ∂2

y )U0 − (a∂y + ∂2
y )U1 + LaU0

+

∑
j≥1

ν j (
−(a∂y + ∂2

y )Uj+1 + LaUj − ∂2
x Uj−1

)
.

Defining the operator in the y variableL := −(a∂y+∂2
y ), and collecting terms in ν, we have a formal solution of the advection–

reaction–diffusion equation if and only if

F−1 := LU0 = 0,
F0 := LU1 + LaU0 − f = 0,

Fj := LUj+1 + LaUj − ∂2
x Uj−1 = 0, j ≥ 1.

(3.5)

Since the initial data h in (2.1) does not depend explicitly on ν, the expansion of the initial condition simply is

∀x ∈ (−L1, L2), ∀y ∈ (0, +∞), U0(x, y, 0) = h(x), Uj(x, y, 0) = 0, for j ≥ 1. (3.6)

The boundary condition on the right in (2.1) is satisfied if and only if

G−1 := −a∂yU0(L2, 0, ·) = 0,
Gj := −a∂yUj+1(L2, 0, ·) + LaUj(L2, 0, ·) = 0, j ≥ 0.

(3.7)

We start with the zeroth order term U0. From F−1 = 0 we deduce that

∂yU∗

0 (y, t) = α0(t)e−ay,

and from G−1 = 0, that ∂yU∗

0 (y, t) ≡ 0. Hence in the zeroth order term, we only have U0(x, y, t) = u0(x, t).
We next split the higher order terms Fj = 0 into F j = 0 and F∗

j = 0, where F j := limy→∞Fj and F∗

j := Fj − F j, and obtain
the equations

F 0 := Lau0 − f = 0, F j := Lauj − ∂2
x uj−1 = 0,

F∗

0 := LU∗

1 = 0, F∗

j := LU∗

j+1 + (∂t + c)U∗

j = 0.
(3.8)

Similarly, we split the initial data into

u0(x, 0) = h(x), uj(x, 0) = 0, for j ≥ 1, U∗

j (y, 0) = 0, for j ≥ 0,

and the boundary data on the left as

u0(−L1, t) = g1(t), uj(−L1, t) = 0, for j ≥ 1.

The terms uj in the outer expansion are determined recursively by F j = 0, yielding the recursive sequence of well-posed
transport problems

Lau0 = f , u0(x, 0) = h(x), u0(−L1, t) = g1(t),

Lauj = ∂2
x uj−1, uj(x, 0) = 0, uj(−L1, t) = 0, j ≥ 1.

We now compute the correction given by the inner expansion: For the first order term, we obtain from F∗

0 = 0 in (3.8) the
general solution

∂yU∗

1 (y, t) = α1(t)e−ay,
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and the boundary condition is given by G0 = 0 in (3.7),

− a∂yU∗

1 (0, t) + f (L2, t) = 0 for all t.

Therefore we can determine α1(t) and obtain after integration

U∗

1 (y, t) = −
f (L2, t)

a2
e−ay,

where because of the initial condition the integration constant is zero. Since f is compactly supported in Ω × (0, T ], U∗

1
actually vanishes identically, and we compute the second order term: solving the corresponding equation F∗

1 = 0, we get

∂yU∗

2 (y, t) = α2(t)e−ay,

with the boundary condition given by G1 = 0,

a∂yU∗

2 (0, t) = LaU1(L2, 0, t) = Lau1(L2, t) = ∂2
x u0(L2, t).

We thus obtain again by integration, and using the homogeneous initial condition,

U∗

2 (y, t) = −
1
a2

∂2
x u0(L2, t)e−ay. □

3.1.2. Analysis of the factorization algorithm
In the first iteration of the factorization algorithm, the first step defined by (2.11) with suitable initial data gives an

infinitely smooth solution u1
a in Ω2 that does not depend on ν. We thus start with the expansion of the modified advection

solution u1
ma in Ω2, defined in (2.12), which is propagating to the left. We expect a boundary layer at x = L2, due to the lack

of compatibility.

Lemma 3.2. There is a unique formal multiscale approximation to u1
ma in Ω2 × (0, T ), defined by

u1,out
ma (x, t) + u1,in

ma (x, t) =

∑
j≥0

ν ju1
ma,j(x, t) +

∑
j≥1

ν jU1,∗
ma,j(

L2 − x
ν

, t). (3.9)

Each term in the outer expansion u1,out
ma is given by

u1
ma,0 = f , u1

ma,j =

(
−

L0
ma

a2

)j−1

∂2
x u

1
a for j ≥ 1, (3.10)

with L0
ma = ∂t + c − a∂x.

Remark 3.1. The factorization algorithm uses u1
ma only at x = 0, and the inner expansion is exponentially decaying away

from x = L2. We therefore do not need to compute the inner expansion to study the factorization algorithm.

Proof. We split the ν-dependent operator Lma into Lma = L0
ma +

a2
ν
. The outer expansion, which is valid in the entire domain

Ω2, is of the form

u1,out
ma (x, t) =

∑
j≥0

ν ju1
ma,j(x, t). (3.11)

Inserting (3.11) into the differential equation, we obtain

a2

ν
u1
ma,0 +

∑
j≥0

ν j(L0
mau

1
ma,j + a2u1

ma,j+1) =
a2

ν
f + R u1

a,

where R = (∂t + c)2. This yields, when collecting terms,

u1
ma,0 = f , L0

mau
1
ma,0 + a2u1

ma,1 = R u1
a, L0

mau
1
ma,j + a2u1

ma,j+1 = 0, j ≥ 1. (3.12)

By induction, we can thus determine u1
ma,j in Ω2 × (0, T ). Start with

R u1
a − L0

mau
1
ma,0 = R u1

a − L0
maf = R u1

a − L0
maLau1

a = (a∂x)2u1
a.

For the last equality, we have used the operator identity

L0
maLa = R − (a∂x)2, (3.13)
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whichwill be useful several times inwhat follows. Therefore u1
ma,1 = ∂2

x u
1
a , andwe thus get the terms of the outer expansion,

u1
ma,0 = f , u1

ma,j =

(
−

L0
ma

a2

)j−1

∂2
x u

1
a for j ≥ 1. (3.14)

However, the initial condition needs also to be satisfied in Ω2,

u1
ma(·, 0) = f (·, 0) + νd2xh,

which is equivalent to

u1
ma,0(·, 0) = f (·, 0), u1

ma,1(·, 0) = d2xh, u1
ma,j(·, 0) = 0 for j ≥ 2.

Since h vanishes in Ω2 and f vanishes for t ≤ 0, the initial conditions are satisfied by the functions defined in (3.14). The
boundary condition at inflow, u1

ma(L2, ·) = 0, is satisfied if and only if

f (L2, ·) = 0,
(

−
L0

ma

a2

)j

∂2
x u

1
a(L2, ·) = 0 for j ≥ 0.

The first equality is the trivial statement 0 = 0, but the second one is not satisfied, since ∂2
x u

1
a(L2, ·) has no reason to vanish.

Therefore there is a boundary layer of order 1 at x = L2. □

We now study the third step (2.13) in the first iteration of the factorization algorithm, which provides u1
ad in Ω1.

Lemma 3.3. There is a unique formal multiscale approximation to u1
ad in Ω1 × (0, T ), defined by

uout (x, t) + u1,in
ad (x, t) =

∑
j≥0

ν juj(x, t) +

∑
j≥2

ν jU1,∗
ad,j(

−x
ν

, t). (3.15)

The first non vanishing term in the inner expansion u1,in
ad is

U1,∗
ad,2(y, t) = −

1
a4

R (u0 − u1
a)(0, t)e

−ay. (3.16)

Proof. Themultiscale analysis is similar to the one given in Section 3.1.1, except that the domain is now (−L1, 0), and that the
vanishing right hand side in the boundary condition is replaced by u1

ma(0, ·), given by Lemma 3.2. Only the outer expansion in
u1
ma(0, ·) is taken into account, since the boundary layer is at x = L2. The outer expansion is the same as the outer expansion

of u, and we write

u1
ad(x, t) ≈ u1,out

ad (x, t) + u1,in
ad (x, t) =

∑
j≥0

ν jU1
ad,j(x, −

x
ν
, t),

with U1
ad,j(x, −

x
ν
, t) = u1

ad,j(x, t) + U1,∗
ad,j(−

x
ν
, t). Therefore Eqs. (3.5), (3.6) remain valid, only the boundary condition on the

right has to be changed into

G−1 := −a∂yU1
ad,0(0, 0, ·) = 0,

Gj := −a∂yU1
ad,j+1(0, 0, ·) + LaU

j
ad,j(0, 0, ·) − u1

ma,j(0, ·) = 0, j ≥ 0.
(3.17)

The zeroth order term is U1
ad,0(x, y, t) = u0(x, t) because of the homogeneous initial condition. The following terms in the

outer expansion can be computed recursively with the same data as for u, therefore u1,out
ad = uout . We now turn to the inner

expansion. The first order term is given by ∂yU
1,∗
ad,1 = α

1,∗
1 (t)e−ay. Using the boundary condition G0 = 0 leads to

aα
1,∗
1 (t) = Lau0(0, t) − u1

ma,0(0, t) = (Lau0 − f )(0, t) = 0.

This shows that, with the homogeneous initial conditions, U1,∗
ad,1 is zero. For the second order term, we obtain ∂yU

1,∗
ad,2(y, t) =

α
1,∗
2 (t)e−ay, and with the boundary condition G1 = 0, we get

aα
1,∗
2 (t) = Lau1(0, t) − u1

ma,1(0, t) = ∂2
x u0(0, t) − ∂2

x u
1
a(0, t).

Using furthermore (3.13), and that Lau0 = Lau1
a = f , we deduce that

R u0 − (a∂x)2u0 = L0
maf = R u1

a − (a∂x)2u1
a,

which implies

aα
1,∗
2 (t) =

1
a2

R (u0 − u1
a)(0, t).
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We thus obtain for the second order term of the inner expansion, since the initial condition is zero,

U1,∗
ad,2(y, t) = −

1
a4

R (u0 − u1
a)(0, t)e

−ay. □

This finishes the multiscale analysis of the first iteration of the factorization algorithm.
We now start the second iteration, with the first step (2.11), which requires the expansion of u2

a inΩ2. There is again only
an outer expansion, given by u2,out

a =
∑

jν
ju2

a,j, where the coefficients are solutions of transport problems. The first few are
given by

Order 0

⎧⎪⎨⎪⎩
Lau2

a,0 = f in Ω2 × (0, T ),

u2
a,0(0, ·) = u0(0, ·),

u2
a,0(·, 0) = h,

(3.18)

Order 1

⎧⎪⎨⎪⎩
Lau2

a,1 = 0 in Ω2 × (0, T ),

u2
a,1(0, ·) = u1(0, ·),

u2
a,1(·, 0) = 0,

(3.19)

Order 2

⎧⎪⎪⎨⎪⎪⎩
Lau2

a,2 = 0 in Ω2 × (0, T ),

u2
a,2(0, ·) = u2(0, ·) −

1
a4

R (u0(0, ·) − g0
ad),

u2
a,2(·, 0) = 0,

(3.20)

From (3.18), we see that

u2
a,0 = u0 in Ω2 × (0, T ). (3.21)

The second step (2.12) of the second iteration gives u2
ma in Ω2, from which we will only need the outer expansion, as for

the first iteration.

Lemma 3.4. There is a unique formal multiscale approximation to u2
ma in Ω2 × (0, T ), defined by

u2,out
ma (x, t) + u2,in

ma (x, t) =

∑
j≥0

ν ju2
ma,j(x, t) +

∑
j≥1

ν jU2,∗
ma,j(

L2 − x
ν

, t). (3.22)

The first terms in the outer expansion u2,out
ma are given at x = 0 by

u2
ma,0 = f , u2

ma,1 = Lau1, u2
ma,2 = Lau2,

u2
ma,3 = Lau3 −

1
a6

R2 (u0 − g0
ad) −

1
a4

R∂2
x u0.

(3.23)

Proof. We determine the outer expansion for u2
ma in the form

∑
j≥0ν

ju2
ma,j(x, t), by inserting it into the differential equation,

and obtain

u2
ma,0 = f , L0

mau
2
ma,j + a2u2

ma,j+1 = R u2
a,j , j ≥ 0. (3.24)

This determines by induction the value of u2
ma,j in Ω2 × (0, T ). First u2

ma,0 = u1
ma,0 = f , and by (3.19) and (3.21) we find

a2u2
ma,1 = R u2

a,0 − L0
maf

(3.2)
(3.21)
= R u0 − L0

maLau0
(3.13)
= a2∂2

x u0
(3.3)
= a2Lau1,

and

a2u2
ma,2 = R u2

a,1 − L0
maLau1

(3.13)
= R (u2

a,1 − u1) + a2∂2
x u1

(3.3)
= R (u2

a,1 − u1) + a2Lau2.

Due to the boundary condition at x = 0 for u2
a,1 in (3.19), the first term on the right hand side vanishes at x = 0, and we

obtain

u2
ma,2(0, ·) = Lau2(0, ·).

For the next term, we find

a2u2
ma,3 = R u2

a,2 − L0
mau

2
ma,2 = R u2

a,2 − L0
ma(

1
a2

R (u2
a,1 − u1) + Lau2)

= R u2
a,2 − L0

maLau2 −
1
a2

L0
maR (u2

a,1 − u1)

(3.13)
= R (u2

a,2 − u2 −
1
a2

L0
ma(u

2
a,1 − u1)) + (a∂x)2u2,
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which gives

a2(u2
ma,3 − Lau3) = R (u2

a,2 − u2 −
1
a2

L0
ma(u

2
a,1 − u1)). (3.25)

We can now evaluate the expression above at x = 0. Since L0
ma + La = 2(∂t + c), and since u2

a,1 and u1 coincide at x = 0,
we obtain

L0
ma(u

2
a,1 − u1)(0, ·) = −La(u2

a,1 − u1)(0, ·)
(3.3)
(3.19)
= ∂2

x u0(0, ·).

Inserting this last equality together with the boundary condition for u2
a,2 in (3.20) into (3.25), we obtain

a2(u2
ma,3 − Lau3)(0, ·) = −

1
a4

R2 (u0(0, ·) − g0
ad) −

1
a2

R∂2
x u0(0, ·). □

We finally arrive at the expansion of the third step (2.13) of the second iteration, i.e., u2
ad in Ω2.

Lemma 3.5. There is a unique formal multiscale approximation to u2
ad in Ω1 × (0, T ), defined by

uout (x, t) + u2,in
ad (x, t) =

∑
j≥0

ν juj(x, t) +

∑
j≥4

ν jU2,∗
ad,j(

−x
ν

, t). (3.26)

The first non vanishing term in the inner expansion u2,in
ad is

U2,∗
ad,4(y, ·) = −

1
a8

R(R (u0(0, ·) − g0
ad) + a2∂2

x u0(0, ·))e−ay. (3.27)

Proof. The proof is similar to the proof for the first iteration; we search an expansion of the form

u2
ad(x, t) ≈

∑
j≥0

ν jU2
ad,j(x, −

x
ν
, t) = uout

+

∑
j≥0

ν jU2,∗
ad,j(−

x
ν
, t).

The boundary condition for the second iteration gives the expansion

G−1 := −a∂yU
2,∗
ad,0(0, ·) = 0,

Gj := −a∂yU
2,∗
ad,j+1(0, ·) + Lauj(0, ·) + (∂t + c)U2,∗

ad,j(0, ·) − u2
ma,j(0, ·) = 0, j ≥ 0.

(3.28)

As before, the zeroth order term U2,∗
ad,0 and the first order term U2,∗

ad,1 vanish. For the second order term, we obtain by integration
∂yU

2,∗
ad,2(y, t) = α

2,∗
2 (t)e−ay, and using the boundary condition

a∂yU
2,∗
ad,2(0, ·) = (Lau1 − u2

ma,1)(0, ·) = 0 by (3.23)

gives U2,∗
ad,2 = 0. For the third order term, we get ∂yU

2,∗
ad,3 = α

2,∗
3 (t)e−ay and using the boundary condition gives

a∂yU
2,∗
ad,3(0, ·) = (Lau2 − u2

ma,2)(0, ·) = 0 by (3.23).

Finally, for the fourth order term, we get ∂yU
2,∗
ad,4 = α

2,∗
4 (t)e−ay, and with the boundary condition

a∂yU
2,∗
ad,4(0, ·) = (Lau3 − u2

ma,3)(0, ·) =
1
a6

R2 (u0(0, ·) − g0
ad) +

1
a4

R∂2
x u0(0, ·) by (3.23).

We thus obtain

U2,∗
ad,4(y, ·) = −

1
a8

R(R (u0(0, ·) − g0
ad) + a2∂2

x u0(0, ·))e−ay,

which completes the proof. □

We can now compare the expansions for u and the iterates to obtain a precise error estimate for the factorization
algorithm when ν becomes small:

Theorem 3.6. In the case of positive advection, the multiscale approximations of the solution u, and the approximations u1
a , u

1
ad,

u2
a and u2

ad obtained by the Factorization algorithm (2.11), (2.12), (2.13) are given by

u(x, t) ≈ uout (x, t) + uin(x, t) =

∑
j≥0

ν juj(x, t) +

∑
j≥2

ν jU∗

j (
L2 − x

ν
, t), x ∈ Ω,

u1
a(x, t) = u0(x, t), x ∈ Ω2,
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u2
a(x, t) ≈ uout

a (x, t) = u0(x, t) +

∑
j≥1

ν ju2
a,j(x, t), x ∈ Ω2,

u1
ad(x, t) ≈ uout (x, t) + u1,in

ad (x, t) =

∑
j≥0

ν juj(x, t) +

∑
j≥2

ν jU1,∗
ad,j(

−x
ν

, t), x ∈ Ω1,

u2
ad(x, t) ≈ uout (x, t) + u2,in

ad (x, t) =

∑
j≥0

ν juj(x, t) +

∑
j≥4

ν jU2,∗
ad,j(

−x
ν

, t), x ∈ Ω1,

with

U∗

2 (y, t) = −
1
a2

∂2
x u0(L2, t)e−ay,

U1,∗
ad,2(y, t) = −

1
a4

R (u0 − u1
a)(0, t)e

−ay, (3.29)

U2,∗
ad,4(y, t) = −

1
a8

R(R (u0(0, t) − g0
ad(t)) + a2∂2

x u0(0, t))e−ay.

We therefore have the error estimates

∥u − u2
a∥L2(Ω2×(0,T )) ∼ ν∥e2a,1∥L2(Ω2×(0,T )), (3.30)

∥u − u1
ad∥L2(Ω1×(0,T )) ∼

ν
5
2

√
2a9

∥R (u0(0, ·) − g0
ad)∥L2(0,T ), (3.31)

∥u − u2
ad∥L2(Ω1×(0,T )) ∼

ν
9
2

√
2a17

∥R(R (u0(0, ·) − g0
ad) + a2∂2

x u0(0, ·))∥L2(0,T ) (3.32)

with e2a,1 defined by

Lae2a,1 = ∂2
x u0, e2a,1(·, 0) = 0, e2a,1(0, ·) = 0. (3.33)

Proof. The multiscale expansions we have proved already in the corresponding lemmas. Using them to estimate u− u2
a , we

obtain

(u − u2
a)(x, t) ≈

∑
j≥1

ν j(uj − u2
a,j)(x, t) −

ν2

a
∂2
x u0(L2, t)e−a L2−x

ν +

∑
j≥3

ν jU∗

j (
L2 − x

ν
, t),

where we replaced already the term in U∗

2 using (3.29). For any j > 2, U∗

j is obtained from U∗

j−1 by integration of the
differential equation in the y variable F∗

j = 0, i.e. we have to solve the differential equation (see last equation in (3.8))

(a∂y + ∂2
y )U

∗

j = (∂t + c)U∗

j−1.

Since U∗

2 equals a constant times e−ay, see (3.29), each U∗

j , j > 2, is a polynomial of degree at most j − 2 in y with time
dependent coefficients, multiplied by e−ay. The L2 norm of U∗

j (
L2−x

ν
, t) is therefore a constant times

√
ν. Thus the inner

expansion is negligible and the leading term comes from the outer expansion,

(u − u2
a)(x, t) ∼ ν(u1(x, t) − u2

a,1(x, t)),

and we therefore obtain

∥u − u2
a∥L2(Ω2×(0,T )) ∼ ν∥u1 − u2

a,1∥L2(Ω2×(0,T )).

For the advection–reaction–diffusion expansion in Ω1, we get

(u − u1
ad)(x, t) ∼ −

ν2

a2
∂2
x u0(L2, t)e−a L2−x

ν +
ν2

a4
R (u0 − u1

a)(0, t)e
a x

ν .

In Ω1, the L2 norm of e−a L2−x
ν decays exponentially in ν, while the norm of ea

x
ν is equivalent to

√
ν
2a . Therefore

∥u − u1
ad∥L2(Ω1×(0,T )) ∼

√
ν

2a
ν2

a4
∥R (u0(0, ·) − u1

a(0, ·))∥L2(0,T ),

and similarly for the second step. □

Remark 3.2. Continuing this process, it is easy to see that u3
a ∼ u0, and hence no further improvement of the approximation

can be obtained.
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3.2. The case of negative advection

Wenow consider a < 0, and first perform amultiscale analysis of the advection–reaction–diffusion equation (2.2), before
studying the factorization algorithm in detail.

3.2.1. Multiscale analysis of the advection–reaction–diffusion equation
The details of this analysis can be found in [22], we just give an outline for completeness.

Lemma 3.7. There is a unique formal multiscale solution of the mixed Cauchy problem (2.2) in Ω × (0, T ), defined by

uout (x, t) + uin(x, t) =

∑
j≥0

ν juj(x, t) +

∑
j≥0

ν jU∗

j (
x + L1

ν
, t), (3.34)

where each term in the outer expansion is solution of a transport equation

Lau0 = f , u0(x, 0) = h(x), u0(L2, t) = g2, (3.35)

Lauj = ∂2
x uj−1, uj(x, 0) = 0, uj(L2, t) = 0. (3.36)

Each term U∗

j (y, t) of the inner expansion is a polynomial of degree j in y multiplied by eay, with coefficients depending on g1(t)
and of ui(−L1, t) for 0 ≤ i ≤ j. The first non vanishing term in the inner expansion is

U∗

0 (y, t) = (g1(t) − u0(−L1, t))eay. (3.37)

Proof. We seek a multiscale expansion of the solution u of (2.2) in (−L1, L2), in the form

u(x, t) ≈

∑
j≥0

ν jUj(x,
x + L1

ν
, t), Uj(x, y, t) = uj(x, t) + U∗

j (y, t).

In the sense of formal series, we thus obtain

Lau ≈
a
ν
∂yU0 +

∑
j≥0

ν j(LaUj + a ∂yUj+1),

Ladu ≈
1
ν
(a∂y − ∂2

y )U0 + (a∂y − ∂2
y )U1 + LaU0

+

∑
j≥1

ν j ((a∂y − ∂2
y )Uj+1 + LaUj − ∂2

x Uj−1
)
.

Defining the operator in the y variable L− := a∂y −∂2
y , and collecting terms in ν, we have a formal solution of the advection–

reaction–diffusion equation if and only if

F−1 := L−U0 = 0,
F0 := L−U1 + LaU0 − f = 0,

Fj := L−Uj+1 + LaUj − ∂2
x Uj−1 = 0, j ≥ 1.

(3.38)

Similarly to (3.6), the expansion of the initial condition is

U0(x, y, 0) = h(x), Uj(x, y, 0) = 0, ∀x ∈ (−L1, L2), ∀y ∈ (0, +∞), (3.39)

and for the boundary condition on the left, we get

U0(−L1, 0, t) = g1(t), Uj(−L1, 0, t) = 0, j ≥ 1. (3.40)

From F−1 = 0 in (3.38), we see that ∂yU∗

0 (y, t) = α0(t)eay, and with the same splitting of Fj = 0 we used in (3.8), we obtain

F 0 := Lau0 − f = 0, F j := Lauj − ∂2
x uj−1 = 0, j ≥ 1,

F∗

j := L−U∗

j+1 + (∂t + c)U∗

j = 0, j ≥ 0. (3.41)

The outer expansion is determined by transport equations into the negative x direction,

Lau0 = f , u0(x, 0) = h(x), u0(L2, t) = g2(t),

Lauj = ∂2
x uj−1, uj(x, 0) = 0, uj(L2, t) = 0, j ≥ 1.

As for the inner expansion, the functions U∗

j are computed recursively using F∗

j−1, with zero initial data, and boundary
condition at y = 0 given by

U∗

0 (0, ·) = g1 − u0(−L1, ·), U∗

j (0, ·) = −uj(−L1, ·) for j ≥ 1.
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To start the recursion, U∗

0 is given by

U∗

0 (y, t) = (g1(t) − u0(−L1, t))eay.

At step j, U∗

j is a polynomial of degree j in the y variable with coefficients depending on g1(t) and the boundary values
uj(−L1, t).

U∗

j (y, t) = eay
j∑

i=1

αi(t)yi. □

According to the lemma, close to x = L2, there is no boundary layer, and the outer expansion is valid. On the other hand,
the inner expansion U∗

j decays faster than any polynomial in ν at x = L2.

3.2.2. Analysis of the factorization algorithm
The first transport equation in (2.14) yields a solution u1

a in Ω2 × (0, T ) which is infinitely smooth, and not depending on
ν. We thus have

u1
a = u0 in Ω2 × (0, T ). (3.42)

We next compute a multiscale expansion of u2
a , defined by (2.15).

Lemma 3.8. The solution of the second advection equation (2.15) in Ω2 × (0, T ) in the factorization algorithm is

u2
a =

a2

ν
u0 + u2

a,1, (3.43)

where

u2
a,1 = a2u1 + L0

mau0. (3.44)

Proof. Replacing u1
a by u0 in (2.15), and inserting the regular expansion

1
ν

∑
j≥0

ν ju2
a,j(x, t)

into the differential equation (2.15) with Lma = L0
ma +

a2
ν
yields

Lau2
a,0 = a2f , u2

a,0(·, 0) = a2h, u2
a,0(L2, ·) = a2u0(L2, ·),

Lau2
a,1 = R u0, u2

a,1(·, 0) = L0
mau0(·, 0), u2

a,1(L2, ·) = L0
mau0(L2, ·),

Lau2
a,j = 0, u2

a,j(·, 0) = 0, u2
a,j(L2, ·) = 0, j ≥ 2.

(3.45)

This determines u2
a,0 = a2u0 and u2

a,j = 0 for j ≥ 2 in Ω2; for u2
a,1, we define v := u2

a,1 − L0
mau0, and compute

Lav = R u0 − LaL0
mau0 = a2∂2

x u0.

Since v vanishes at t = 0 and at L2 = 0, it is equal to a2u1 in Ω2 × (0, T ). □

We finally give a multiscale expansion of uad, solution of the advection–reaction–diffusion equation (2.16) in Ω1.

Lemma 3.9. There is a unique formal multiscale solution of the mixed Cauchy problem (2.16) in Ω1 × (0, T ), of the form

uout
ad (x, t) + uin

ad(x, t) =

∑
j≥0

ν juad,j(x, t) +

∑
j≥0

ν jU∗

ad,j(
x + L1

ν
, t), (3.46)

with uad,j = uj for j ≤ 1, and for j ≥ 2,

Lauad,j = ∂2
x uad,j−1, uad,j(x, 0) = 0, uad,j(0, t) = −

1
a2

L0
mauad,j−1(0, t).

Each term U∗

ad,j(y, t) of the inner expansion is a polynomial of degree j in y multiplied by eay, with coefficients depending on g1(t)
and of uad,i(−L1, t) for 0 ≤ i ≤ j. The first terms in the inner expansion are

U∗

ad,j = U∗

j for j ≤ 1.

Proof. Recall that Lma = L0
ma +

a2
ν
, with L0

ma = ∂t + c−a∂x. We have the same boundary layer at x = −L1 as in Section 3.2.1.
Therefore we will focus on what happens at x = 0. The boundary condition at x = 0 can be written as

Lmauad(0, ·) = u2
a(0, ·) = (

a2

ν
u0 + u2

a,1)(0, ·). (3.47)
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We seek an expansion of uad of the form

uout
ad (x, t) =

∑
j≥0

ν juad,j(x, t).

Inserting this expansion into the differential equation as before and collecting terms gives

Lauad,0 = f , Lauad,j = ∂2
x uad,j−1, j ≥ 1. (3.48)

The initial condition has the expansion

uad,0(x, 0) = h(x), uad,j(x, 0) = 0, j ≥ 1, (3.49)

and from the transmission condition at x = 0, Lmauad(0, ·) = u2
a(0, ·), we obtain

a2uad,0 = a2u0,

a2uad,1 + L0
mauad,0 = u2

a,1,

a2uad,j+1 + L0
mauad,j = 0, j ≥ 1.

(3.50)

From the zeroth order term equations, we obtain uad,0 by solving

Lauad,0 = f , uad,0(x, 0) = h(x), uad,0(0, ·) = u0(0, ·).

This shows that uad,0 = u0 in Ω1 × (0, T ). Moreover, for any (j, k), ∂ j
t∂

k
xuad,0(0, ·) = ∂

j
t∂

k
xu0(0, ·). For the first order term, we

get

Lauad,1 = ∂2
x u0, uad,1(x, 0) = 0, uad,1(0, ·) =

1
a2

(u2
a,1 − L0

mauad,0)(0, ·) = u1(0, ·).

Therefore,

uad,j ≡ uj for j ≤ 1 in Ω1.

At order 2, Lauad,2 = ∂2
x u1 in Ω1. We verify that uad,2 ̸= u2 by considering the boundary condition at x = 0, −L0

mauad,1/a2,
and showing that La(−L0

mauad,1/a2) = ∂2
x u1 − Ru1 ̸= ∂2

x u1.
The inner expansion is obtained as in the proof of Lemma 3.7 □

Using these lemmas we can now obtain the following error estimates:

Theorem 3.10. In the case of negative advection, we obtain for the factorization algorithm the error estimates

∥u − u1
a∥L2x,t

∼ ν∥u1∥L2x,t
, ∥u − uad∥L2x,t

∼ ν2
∥u2 − uad,2∥L2x,t

,

where ∥ · ∥L2x,t
stands for the L2 norm in the considered spatial domain and on the time interval (0, T ).

Proof. Since u1
a = u0, we have

u − u1
a ∼ νu1.

By the lemmas above, we obtain

u − uad ∼ ν2(u2 − uad,2) + ν2(U∗

2 − U∗

ad,2).

From the form of the coefficients of the outer and inner expansions, we deduce

∥u2 − uad,2∥L2x,t
= O(1), ∥U∗

2 − U∗

ad,2∥L2x,t
= O(ν).

Therefore

∥u − uad∥L2x,t
∼ ν2

∥u2 − uad,2∥L2x,t
. □

Remark 3.3. If the second advection equation (2.15) defining u2
a was replaced by⎧⎪⎪⎨⎪⎪⎩

Lau2
a =

a2

ν
f + R (u0 + νu1) in Ω2 × (0, T ),

u2
a(L2, ·) = 0,

u2
a(·, 0) = 0,

(3.51)

then the error would be O(ν3). This would add the solution of a third transport equation, that defining u1.
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4. Multiscale analysis of the variational algorithm

We will not give in this case the complete analysis, since it is very similar to the one above; we will only present the
dominant terms in the multiscale expansions. We have to study again the two cases for the advection direction separately.

4.1. Positive advection

We expect the advection–reaction–diffusion solution uV
ad of (2.3) to have the same outer expansion as u, and uV

a to have
only an outer expansion,

uV
ad(x, t) =

∑
j≥0

ν juj(x, t) +

∑
j≥0

ν jUV ,∗
ad,j (−

x
ν
, t), uV

a (x, t) =

∑
j≥0

ν juV
a,j(x, t).

The computations in the subdomains are decoupled in the variational algorithm. We start with uV
ad in Ω1. The boundary

condition ν∂xuV
ad = 0 at x = 0 yields boundary conditions for the inner expansion,

∂yU
V ,∗
ad,0(0, t) = 0, ∂yU

V ,∗
ad,j+1(0, t) = ∂xuj(0, t), j ≥ 0,

which allow us to compute

UV ,∗
ad,0 = 0, UV ,∗

ad,1(y, t) = −
1
a
∂xu0(0, t)e−ay.

The sequence of transport problems for Ω2 is

LauV
a,0 = f , LauV

a,j = 0, j ≥ 1,

with zero initial values, since h vanishes in Ω2. The transmission condition at x = 0, uV
a (0, ·) = uV

ad(0, ·) translates into a
sequence of conditions,

uV
a,j(0, ·) = uj(0, ·) + UV ,∗

ad,j (0, ·).

Therefore, uV
a,0 = u0, and from uV

a,1(0, ·) = u1(0, ·) −
1
a ∂xu0(0, ·), we conclude that

(uV
ad − u)(x, t) ∼

ν

a
∂xu0(0, t)ea

x
ν , uV

a − u ∼ νeVa,1,

with

LaeVa,1 = −∂2
x u0, eVa,1(0, ·) = −

1
a
∂xu0(0, ·), eVa,1(·, 0) = 0. (4.1)

Hence

∥uV
ad − u∥L2x,t

∼

√
ν3

2a3
∥∂xu0(0, ·)∥L2t

, ∥uV
a − u∥L2x,t

∼ ν∥eVa,1∥L2x,t
. (4.2)

Remark 4.1. Comparing with the result of the factorization algorithm in Theorem 3.6, we can see that the error in Ω1 is
O(ν

3
2 ) instead of O(ν

9
2 ), and the error in Ω2 is of the same order, the problems (3.47) and (4.1) are slightly different, due to

the boundary layer in Ω1 at x = 0.

4.2. Negative advection

We first note that ua does not depend on ν and coincides with u0 in Ω2. For uad, we expect as in Section 3.2.2 a boundary
layer at x = −L1, and an outer expansion

uV
ad(x, t) ≈

∑
j≥0

ν juV
ad,j(x, t).

Inserting this expansion into the differential equation as before gives

LauV
ad,0 = f , LauV

ad,j = ∂2
x u

V
ad,j−1, j ≥ 1. (4.3)

The expansion of the initial condition is

uV
ad,0(x, 0) = h(x), uV

ad,j(x, 0) = 0, j ≥ 1. (4.4)

The only difference with the analysis in Section 3.2.2 comes from the boundary data, which becomes

− ν∂xuV
ad(0, ·) + auV

ad(0, ·) = au0(0, ·),
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and is expanded as

uV
ad,0(0, ·) = u0(0, ·), −∂xuV

ad,j−1(0, ·) + auV
ad,j(0, ·) = 0, j ≥ 1. (4.5)

Therefore the zeroth order term uV
ad,0 coincides with u0. For the first order term, we get the equation

LauV
ad,1 = ∂2

x u0, uV
ad,1(·, 0) = 0, uV

ad,1(0, ·) =
1
a
∂xu0(0, ·),

which shows that eVad,1 = uV
ad,1 − u1 is solution of

LaeVad,1 = 0, eVad,1(0, ·) = (
1
a
∂xu0 − u1)(0, ·), (eVad,1)(·, 0) = 0, (4.6)

and

∥u − uV
ad∥L2x,t

∼ ν∥eVad,1∥L2x,t
, ∥u − uV

a ∥L2x,t
∼ ν∥u1∥L2x,t

. (4.7)

5. Algorithm with non variational conditions

As before, we proceed in two steps, depending on the advection direction.

5.1. The case of positive advection

We seek again a multiscale expansion of the form

uNV
ad (x, t) =

∑
j≥0

ν juj(x, t) +

∑
j≥0

ν jUNV ,∗
ad,j (−

x
ν
, t), ua(x, t) =

∑
j≥0

ν juNV
a,j (x, t).

Using similar arguments as before, we obtain the sequence of transport problems in Ω2 × (0, T ),

LauNV
a,0 = f , LauNV

a,j = 0, j ≥ 1,

with uNV
a,0 = h at time 0 and vanishing initial conditions for j ≥ 1. The transmission conditions translate into

∂yU
NV ,∗
ad,0 (0, t) = 0,

uj(0, t) + UNV ,∗
ad,j (0, t) = uNV

a,j (0, t),

∂xuj(0, t) − ∂yU
NV ,∗
ad,j+1(0, t) = ∂xuNV

a,j (0, t).

From this we see that UNV ,∗
ad,0 (0, t) = 0, therefore u0(0, t) = uNV

a,0(0, t) and uNV
a,0 = u0. Using the transport equation for uNV

a,0 and
u0, we deduce that ∂xu0(0, t) = ∂xuNV

a,0(0, t). Inserting this into the transmission condition yields ∂yU
NV ,∗
ad,1 (0, t) = 0, which

implies that UNV ,∗
ad,1 = 0. Then using the transport equations again, we get

∂xu1(0, t) − ∂xuNV
a,1(0, t) =

1
a
∂2
x u0(0, t).

Inserting this into the transmission condition yields

∂yU
NV ,∗
ad,2 (0, t) =

1
a
∂2
x u0(0, t),

and UNV ,∗
ad,2 (y, t) = −

1
a2

∂2
x u0(0, t)e−ay. Therefore we obtain that

(uNV
ad − u)(x, t) ∼ −

ν2

a2
∂2
x u0(0, t)ea

x
ν , uNV

a − u ∼ νeNVa,1,

where eNVa,1 = uNV
a,1 − u1 is solution in Ω2 × (0, T ) of

LaeNVa,1 = −∂2
x u0, ∂xeNVa,1(0, ·) = −

1
a
∂2
x u0(0, ·), (eNVad,1)(·, 0) = 0, (5.1)

which gives the estimates

∥uNV
ad − u∥L2x,t

∼

√
ν5

2a5
∥∂2

x u0(0, ·)∥L2t
, ∥uNV

a − u∥L2x,t
∼ Cν∥eNVa,1∥L2x,t

. (5.2)
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5.2. Negative advection

In this case the advective solution is the same as in the variational case,

uNV
a = uV

a = u0,

and the outer expansion of the advection–reaction–diffusion equation is defined by

uNV
ad (x, t) ≈

∑
j≥0

ν juNV
ad,j(x, t).

Inserting this expansion into the differential equation as before gives

LauNV
ad,0 = f , LauNV

ad,j = ∂2
x u

NV
ad,j−1, j ≥ 1. (5.3)

The expansion of the initial condition is

uNV
ad,0(x, 0) = h(x), uNV

ad,j(x, 0) = 0, j ≥ 1. (5.4)

The only difference with the analysis in the variational case comes from the transmission condition, which yields

uNV
ad (0, ·) = u0(0, ·),

and is expanded as

uNV
ad,0(0, ·) = u0(0, ·), uNV

ad,j(0, ·) = 0, j ≥ 1. (5.5)

Therefore the zeroth order term uNV
ad,0 coincides with u0. For the first order term, we get the equation

LauNV
ad,1 = ∂2

x u0, uNV
ad,1(0, ·) = 0, uNV

ad,1(·, 0) = 0,

which shows that eNVad,1 = uNV
ad,1 − u1 is solution of

LaeNVad,1 = 0, eNVad,1(0, ·) = −u1(0, ·), (eNVad,1)(·, 0) = 0, (5.6)

and

∥u − uNV
ad ∥L2x,t

∼ ν∥eNVad,1∥L2x,t
, ∥u − uNV

a ∥L2x,t
∼ ν∥u1∥L2x,t

. (5.7)

6. Numerical experiments

We start with a numerical experiment in 1D on the domain Ω := (−1, 1), to illustrate the asymptotic performance of
the various coupling methods predicted by our analysis. We use as our model problem⎧⎪⎪⎨⎪⎪⎩

ut + aux − νuxx + cu = f in Ω × (0, T ),
u = 0 on {−1} × (0, T ),
ut + aux + cu = 0 on {1} × (0, T ),
u(·, 0) = h in Ω,

with a = 1, c = 1, T = 0.5 and varying ν. We use as initial condition h(x) = e−100(x+0.5)2 , and as right hand side the function

f (x, t) = f1(t)f2(x),

f1(t) = 10sin4(4π (t − 0.05))χt>0.05,

f2(x) = −e−30(x−0.5)2
+ e−30(x+0.5)2 .

For the discretization, we use a Crank–Nicolson scheme for the advection–reaction–diffusion equation and an implicit
upwind scheme for the advection equation, with ∆t = ∆x = 1.5625 10−5. The viscous domain is Ω1 = (−1, 0) and
the inviscid one is Ω2 = (0, 1). For the non variational algorithm (2.7)–(2.8), we introduced a relaxation in the iteration to
obtain convergence, i.e.

(uNV
a )k(0, ·, ·) = θ (uNV

a )k−1(0, ·, ·) + (1 − θ )(uNV
ad )

k(0, ·, ·),

where we used θ = 1/(450
√

ν) based on a heuristic to ensure good convergence.
We show in Fig. 6.1 the asymptotic performance of the various coupling methods when ν becomes small.
We can clearly see the asymptotic behavior predicted by our analysis, and also the predicted hierarchy of quality of the

coupled solution. This hierarchy remains even when ν is not small, which our asymptotic analysis cannot predict, and thus
the new coupling method based on factorization is really giving a better coupled solution, also when ν is not small.
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Fig. 6.1. Asymptotic performance of the various coupling methods in 1D compared to our theoretical estimates.

Fig. 6.2. Snapshots of the right hand side function at times t = 10∆t , 12∆t , 15∆t and 24∆t .



M.J. Gander et al. / Journal of Computational and Applied Mathematics 344 (2018) 904–924 921

Fig. 6.3. From top to bottom: several snapshots at several time steps in the x–y plane. From left to right: viscous solution, solution of Algorithm (2.11)–
(2.12)-(2.13) at iteration k = 1, and at iteration k = 2.

We now want to compare the quality of the coupling methods numerically for a given viscosity and a two dimensional
problem, which also goes beyond our analysis, posed in the domain Ω = (−1, 1) × (0, 1),⎧⎪⎪⎨⎪⎪⎩

∂tu + a · ∇u − ν∆u + cu = f in Ω × (0, T ),
u = 0 on {−1} × (0, 1) × (0, T ),
∂tu + a · ∇u + cu = 0 on {1} × (0, 1) × (0, T ),
u(·, ·, 0) = h in Ω,

and we impose periodic boundary conditions in the y-direction. The physical parameters are a = (3, 1), c = 1, ν = 0.01 and
T = 0.5. We use as initial condition h(x, y) = e−100((x+0.5)2+(y−0.5)2), and as right hand side the function

f (x, y, t) = f1(t)f2(x, y),

f1(t) = 10sin4(4π (t − 0.05))χt>0.05,

f2(x, y) = −e−30((x−0.5)2+(y−0.5)2)
+ e−30((x+0.5)2+(y−0.5)2),

an illustration of which is shown in Fig. 6.2.
For the discretization, we use again a Crank–Nicolson scheme for the advection–reaction–diffusion equation and an

implicit upwind scheme for the advection equation, with spatial steps ∆x = ∆y = 10−2 and time step ∆t = ∆x. The
viscous domain is Ω1 = (−1, 0) × (0, 1) and the inviscid one is Ω2 = (0, 1) × (0, 1).

In the left column of Fig. 6.3, we show snapshots of the viscous solution at several instances in time. In the second and
third columns, we show the solution obtained with the factorization algorithm (2.11)–(2.12)–(2.13) at iteration one and
two. We see that with only one iteration, the coupled solution in the viscous region is already very good, and the second
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Fig. 6.4. Level sets of the error in Ω1 in the x-y plane for the different coupling methods at the final time.

Fig. 6.5. Error supx∈Ω1
|e(x, t)| as a function of time t , where e stands for the error between the viscous solution and the coupled one.

iteration advects this good solution through (2.11) into the inviscid region, and from this produces an even better solution
in the viscous region.

To get a quantitative comparison with the variational algorithm (2.3)–(2.4) and the non variational algorithm (2.7)–(2.8),
we computed the errors in the viscous region. We show in Fig. 6.4 the level sets of the errors at the end of the time interval,

and in Fig. 6.5 how the L∞ norm of the error in space evolves as a function of time.
We clearly see that also in two spatial dimensions the best results are obtained with the factorization method after two

iterations, as predicted by ourmultiscale analysis for the one dimensional problem. Even after one iteration, the factorization
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method gives smaller errors than the non variational method, and the variational method gives by far the largest error, two
orders of magnitude larger close to the interface than the factorization method. Our multiscale analysis in one dimension
thus reliably predicts the quality of the different coupling methods, also in higher space dimensions.

7. Conclusion

Using formal multiscale expansions, we have obtained error estimates for three heterogeneous domain decomposition
algorithms for the coupling of time dependent advection–reaction–diffusion equations with advection reaction equations.
Our error estimates show that in the case of positive advection, one can obtain with the factorization algorithm L2 errors in
the diffusive region which are O(ν9/2) after two iterations. The first iteration gives already O(ν5/2), a result which can only
be achieved with a fully converged non-variational heterogeneous domain decomposition method after many iterations.
The variational heterogeneous domain decomposition method only performs one iteration, but also gives a much larger
error of O(ν3/2) which cannot be improved any more. In the case of negative advection, the factorization method gives an
error of O(ν2) in the diffusive region, whereas the other algorithms only give errors O(ν) for comparable computational
cost, since each algorithm only solves one expensive diffusive problem in the same region. In the regions where the
diffusion is neglected, all the algorithms have the same error term O(ν). We showed with numerical experiments that
our one dimensional asymptotic results also predict very well the behavior of the three coupling algorithms in two spatial
dimensions; the factorization algorithm gave in our experiments for a fixed viscosity a one to two orders of magnitude
more accurate solution in the important viscous region. In the active research area of heterogeneous domain decomposition
methods, new coupling techniques continue to be developed, for example the recently proposed one based on interface
control [24], and it will be interesting to compare the quality of coupled solutions obtained with this new technique using
the multiscale approach we presented here.
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