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Abstract

We introduce a new non-overlapping optimized Schwarz method for
fully anisotropic diffusion problems. Optimized Schwarz methods take
into account the underlying physical properties of the problem at hand
in the transmission conditions, and are thus ideally suited for solving
anisotropic diffusion problems. We first study the new method at the
continuous level for two subdomains, prove its convergence for general
transmission conditions of Ventcell type using energy estimates, and also
derive convergence factors to determine the optimal choice of parame-
ters in the transmission conditions. We then derive optimized Robin and
Ventcell parameters at the continuous level for fully anisotropic diffusion,
both for the case of unbounded and bounded domains. We next present a
discretization of the algorithm using discrete duality finite volumes, which
are ideally suited for fully anisotropic diffusion on very general meshes.
We prove a new convergence result for the discretized optimized Schwarz
method with two subdomains using energy estimates for general Vent-
cell transmission conditions. We finally study the convergence of the new
optimized Schwarz method numerically using parameters obtained from
the continuous analysis. We find that the predicted optimized parame-
ters work very well in practice, and that for certain anisotropies which we
characterize, our new bounded domain analysis is important.
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martin.gander@unige.ch
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1 Introduction

Optimized Schwarz methods are a modern class of Schwarz methods which use
instead of the classical Dirichlet transmission conditions at the interfaces more
effective transmission conditions, which can take the physics of the problem at
hand into account, see [18, 19] and references therein. This property is especially
important for anisotropic diffusion problems, which behave very differently at
interfaces depending on the orientation of the diffusion, see for example [24],
[14, Section 5], and the very recent reference [35]; for classical Schwarz methods
applied to anisotropic diffusion, see [36, 8, 11], and for a specific earlier two level
preconditioner [32]. Similarly when discretizing anisotropic diffusion problems,
the numerical scheme must be suitable for high anisotropy, and discrete duality
finite volume (DDFV) methods have this property, even in the case of discon-
tinuous anisotropic diffusion, see [27, 5, 26, 6, 9, 15, 2], and in particular [16,
Part II] which is dedicated especially to anisotropic diffusion. We are therefore
interested in optimized Schwarz methods which are discretized using DDFV
schemes. DDFV schemes belong to the class of discretization methods which
preserve certain geometric properties of the underlying differential operators,
like mimetic finite difference methods [28, 7], gradient methods [13], or discrete
variational derivative methods [17], see also finite element exterior calculus [3].
DDFV methods are thus part of the effort to lead the field of geometric nu-
merical integration, which reached a certain maturity for ordinary differential
equations [25] to the area of partial differential equations.

Our paper is organized as follows: in Section 2, we present a class of non-
overlapping optimized Schwarz methods for fully anisotropic diffusion at the
continuous level, prove well posedness of the subdomain problems and give a
convergence analysis using energy estimates for general Ventcell transmission
conditions. We use an (arbitrary) two subdomain decomposition, but the gen-
eralization to the many subdomain case without cross points presents no diffi-
culty1. We then derive a convergence factor for the method, which is classically
done for optimized Schwarz methods in the specific case of two unbounded or
rectangular subdomains using Fourier analysis. We define the associated best
approximation problem, and present a general theory for such problems which
allows us to solve it, leading to our main results of closed form asymptotic formu-
las for the best choice of parameters of Robin and Ventcell type in Corollary 2.8
for unbounded domains, and in Theorem 2.9 for the case of bounded domains,
where we used for the first time semi-asymptotic techniques. In Section 3 we
then present a Discrete Duality Finite Volume discretization of the optimized
Schwarz method, which naturally also allows the use of non-matching grids;
note that this requires usually special techniques, see for example the cement
method in the finite element case in [29, 30]. We prove well-posedness of the
discrete subdomain problems, and convergence of the algorithm using discrete
energy estimates for general Ventcell transmission conditions. For simplicity
of notation, we show the results again for a two subdomain decomposition, but

1Cross points need special treatment and are beyond the scope of the present analysis, see
the conclusions for more information.
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the generalization to the many subdomain case for decompositions without cross
points is straightforward. In Section 4, we first test our new optimized Schwarz
algorithms for anisotropic diffusion in the case covered by our analysis, i.e. on a
rectangle decomposed into two rectangular subdomains, and investigate numer-
ically for which kinds of anisotropic diffusion our new bounded domain analysis
is important for the choice of the optimized parameters. We then also test the
algorithm in situations not covered by the analysis, i.e. non-rectangular subdo-
mains and for the many subdomain case. We present our conclusions and an
outlook for further work in Section 5.

2 Analysis at the Continuous Level

We are interested in solving anisotropic diffusion problems of the form

Lu := −div(A∇u) + ηu = f in Ω,
u = 0 on ∂Ω,

(2.1)

where A is a symmetric positive definite matrix with W 1,∞ coefficients,

(x, y) ∈ Ω 7→ A(x, y) =

(
Axx(x, y) Axy(x, y)
Axy(x, y) Ayy(x, y)

)
,

and (x, y) ∈ Ω 7→ η(x, y) ≥ 0 is a given non-negative function in L∞(Ω). To
solve such problems on a computer, they have to be discretized, and we will use
DDFV methods to do so in Section 3. Schwarz algorithms are however most
naturally formulated and studied at the continuous level, and we will thus work
first without discretization.

2.1 Schwarz Algorithm for Anisotropic Diffusion

For simplicity, we consider a decomposition of the domain Ω into two non-
overlapping subdomains Ωj , j = 1, 2 with interface Γ. A parallel optimized
Schwarz algorithm for the anisotropic diffusion problem (2.1) then solves for
` = 1, 2, . . .

Lu`j = f in Ωj ,
u`j = 0 on ∂Ωj ∩ ∂Ω,

A∇u`j · nj + Λu`j = −A∇u`−1
i ni + Λu`−1

i on Γ = ∂Ω1 ∩ ∂Ω2,

(2.2)

where j = 1, 2, i = 2, 1, and nj denotes the unit outer normal in Ωj . The
transverse operator Λ depends on two optimization coefficients p and q, and is
given by

Λu := pu− q∂y(Ayy∂yu), (2.3)

which represents a so called Ventcell or second order transmission condition.
The coefficient p is strictly positive, since Ventcell conditions with p = 0 would
lead to less efficient transmission conditions. In the case q = 0 we obtain a
Robin transmission condition.
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We first show that the subdomain problems of the form

Lu = f in Ω,
u = 0 on ∂ΩD,

(A∇u, n) + Λu = g on ∂ΩV ,
(2.4)

which appear in algorithm (2.2) are well posed. An analysis of the Ventcell
problem when ∂Ω = ∂ΩV is a regular curve in R2 can be found in [31].

Theorem 2.1 (Well-posedness of Subdomain Problems). Suppose Ω is convex,
A is in W 1,∞(Ω), η ≥ 0 in L∞(Ω) and (A(x)ξ, ξ) ≥ Ā > 0 for all x in Ω, and
p > 0 and q ≥ 0. For any (f, g) ∈ L2(Ω) × L2(∂Ω), problem (2.4) admits a
unique solution u. If q = 0, u is in H1(Ω), and if q 6= 0, u is in

W(Ω) =
{
u ∈ H2(Ω), u = 0 on ∂ΩD, γ∂ΩV

u ∈ H2(∂ΩV ) ∩H1
0 (∂ΩV )

}
, (2.5)

where γ∂ΩV
stands for the trace of u on ∂ΩV .

Proof. The proof is based on a variational formulation in H1
1,#(Ω) := {u ∈

H1(Ω), u = 0 on ΓD, γ∂ΩV
u ∈ H1

0 (∂ΩV )}, which is obtained by multiplying
(2.4) by v and integrating by parts. We introduce the bilinear forms

aΩ(u, v) :=
∫

Ω
A∇u∇v dx dy +

∫
Ω
ηuv dx dy,

a(u, v) := aΩ(u, v) + 〈Λu, v〉∂ΩV
,

(2.6)

where the last term must be understood as a duality product in H1
0 (Γ), which

can be rewritten in variational form as

〈Λu, v〉∂ΩV
= p

∫
∂ΩV

uv dy + q

∫
∂ΩV

Ayy∂yu ∂yv dy.

Λ is a self-adjoint continuous coercive operator from H1
0 (∂ΩV ) onto H−1(∂ΩV ).

It has a continuous self-adjoint inverse, defining a scalar product on H−1(∂ΩV )
by

〈u, v〉Λ−1 := 〈v,Λ−1u〉∂ΩV
. (2.7)

Computing

a(u, u) =

∫
Ω

A|∇u|2 dx dy +

∫
Ω

ηu2 dx dy + p

∫
∂ΩV

u2 dy + q

∫
∂ΩV

Ayy(∂yu)2 dy,

we see that a is a bilinear continuous coercive form on H1
1,#(Ω), equipped with

the scalar product

(w, v)H1
1,#(Ω) = (∇w,∇v)L2(Ω) + 〈∂yw, ∂yv〉∂ΩV

. (2.8)

This gives existence and uniqueness of a weak solution inH1
1,#(Ω), i.e. a solution

of
a(u, v) = (f, v)L2(Ω) + 〈g, v〉∂ΩV

.
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If q = 0, the proof holds in H1(Ω).
For regularity results, u is such that ∆u ∈ L2(Ω), γ∂ΩD

u = 0 and (∂x −
∂yy)γ∂ΩV

u ∈ L2(∂ΩV ). Such a regularity result was proved in [37] for a regular
boundary with Ventcell boundary condition all around, but due to the convexity
of the domain, the result applies here.

2.2 Convergence Analysis Using Energy Estimates

We now prove that the optimized Schwarz algorithm (2.2) converges when ap-
plied to the anisotropic diffusion problem (2.1).

Theorem 2.2 (Convergence of the Optimized Schwarz Algorithm). For any
initial guess (u0

1, u
0
2) in W(Ω1) × W(Ω2), (2.2) defines a sequence of iterates

in W(Ω1) × W(Ω2). If the solution u of (2.1) is such that Λu ∈ L2(Γ), the
sequence converges in H1(Ω1)×H1(Ω2) to u.

Proof. The existence of the iterates is a consequence of Theorem 2.1. The
solution u of the boundary value problem (2.1) satisfies the continuity of the
trace of u and the flux F := A∇u · n on the interface. Therefore by linearity,
with the assumption stated in the theorem, only the convergence to the zero
solution of the sequences of iterates with f = 0 has to be proved. Defining the
continuous flux F `j := −A∇u`j · nj , the transmission condition on Γ takes the
form

−F `j + Λu`j = F `−1
i + Λu`−1

i . (2.9)

Multiplying the PDE in (2.2) by u`j and integrating yields

aΩj
(u`j , u

`
j) +R`,j = 0, R`,j := 〈F `j , u`j〉Γ. (2.10)

The essential step now in the proof is that, using the scalar product defined
by Λ−1 in (2.7), the boundary term R`,j can be rewritten as the difference of
squares,

R`,j = 〈F `j ,Λ−1Λu`j〉Γ = 〈F `j ,Λu`j〉Λ−1 =
1

4
‖F `j + Λu`j‖2Λ−1 −

1

4
‖F `j − Λu`j‖2Λ−1 .

Inserting this last expression into (2.10), we obtain

aΩj
(u`j , u

`
j) +

1

4
‖F `j + Λu`j‖2Λ−1 =

1

4
‖F `j − Λu`j‖2Λ−1 .

We can now replace the right hand side using the transmission condition (2.9),
and get

aΩj
(u`j , u

`
j) +

1

4
‖F `j + Λu`j‖2Λ−1 =

1

4
‖F `−1

i + Λu`−1
i ‖2Λ−1 .

Summing this equality over the subdomains and the iterations, we obtain for
any `max ≥ 1, due to the telescopic sum, that

`max∑
`=1

2∑
j=1

aΩj (u`j , u
`
j) +

1

4

2∑
j=1

‖F `max
j + Λu`max

j ‖2Λ−1 =
1

4

2∑
j=1

‖F 0
j + Λu0

j‖2Λ−1 .
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Since the right hand side is a fixed quantity, the left hand side must remain
bounded for all `max, and thus the iterates u`j tend to zero in H1(Ωj) as ` goes
to infinity.

2.3 Convergence Factor at the Continuous Level

The convergence proof by energy estimates from Theorem 2.2 does not tell us
anything about how to choose the parameters p and q to obtain fast conver-
gence. In order to obtain such information, a technique in optimized Schwarz
methods is to study the algorithm on specific, simpler domains with constant
coefficients using Fourier techniques [18]. We therefore choose now the domain
Ω := (−L,L)×R with subdomains Ω1 := (−L, 0)×R and Ω2 := (0, L)×R and
suppose that the matrix A and function η are constant. A Fourier transform in
the y direction with Fourier parameter k of (2.1) then leads in the homogeneous
case for the error we are interested in to solve the ordinary differential equation

−Axx
∂2û

∂x2
− 2ikAxy

∂û

∂x
+ (η + k2Ayy)û = 0, (2.11)

where û = û(x, k) corresponds to the Fourier transformed solution of (2.1) with
f = 0. The characteristic equation of (2.11) is

Axxr
2 + 2ikAxyr − (η + k2Ayy) = 0.

Since A is positive definite, there are two complex anti-conjugate roots

r±(k) =
−ikAxy ±D(k)

Axx
, D(k) :=

√
ηAxx + k2 detA > 0. (2.12)

The transmission conditions in (2.2) then take the form

(Axx∂x + ikAxy + Λ(ik))û`1 = (Axx∂x + ikAxy + Λ(ik))û`−1
2

(−Axx∂x − ikAxy + Λ(ik))û`2 = (−Axx∂x − ikAxy + Λ(ik))û`−1
1 .

(2.13)

In the case when the subdomains are half spaces, L = +∞, in order for the
subdomain solutions u`j to be temperate distributions, we must have

û`1(x, k) = C`1(k)er+(k)x, û`2(x, k) = C`2(k)er−(k)x, (2.14)

and the transmission conditions in (2.13) give

(P (k) +D(k))C`1(k) = (P (k)−D(k))C`−1
2 (k),

(P (k) +D(k))C`2(k) = (P (k)−D(k))C`−1
1 (k),

with P (k) := Λ(ik). The convergence factor in this case is therefore

ρ(P, k) :=
P (k)−D(k)

P (k) +D(k)
, P (k) = p+ qAyyk

2, (2.15)
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characterizing the contraction of the functions C`j (k) in the subdomain solutions
(2.14),

C`j (k) = (ρ(P (k), k))2 C`−2
j (k) = (ρ(P (k), k))2b `2 c C

mod (`,2)
j (k).

The smaller the convergence factor, the faster the convergence of the algorithm.
Suppose now that the subdomains are strips, and L > 0 is a fixed quantity.

Then the subdomain solutions are of the form

û`1(x, k) = C`1(k) er+(k)(L+x) +D`
1(k) er−(k)(L+x),

û`2(x, k) = C`2(k) er−(k)(−L+x) +D`
2(k) er+(k)(−L+x).

(2.16)

The outer boundary conditions for the error we consider here are û`1(−L, k) = 0
and û`2(L, k) = 0, which implies that D`

1(k) = −C`1(k) and D`
2(k) = −C`2(k),

and therefore

û`1(x, k) = C`1(k)
(
er+(k)(L+x) − er−(k)(L+x)

)
,

û`2(x, k) = C`2(k)
(
er−(k)(−L+x) − er+(k)(−L+x)

)
.

The transmission conditions in (2.13) then give(
er+(k)L(P (k) +D(k) )− er−(k)L(P (k)−D(k) )

)
C`1(k)

=
(
e−r−(k)L(P (k)−D(k) )− e−r+(k)L(P (k) +D(k) )

)
C`−1

2 (k),(
e−r−(k)L(P (k) +D(k))− e−r+(k)L(P (k)−D(k))

)
C`2(k)

=
(
er+(k)L(P (k)−D(k))− er−(k)L(P (k) +D(k))

)
C`−1

1 (k),

There are therefore two components forming the convergence factor, one from
domain 1 to domain 2 and one from domain 2 to domain 1,

ρ1→2 =
P (k)

(
e−r−(k)L − e−r+(k)L

)
−D(k)

(
e−r−(k)L + e−r+(k)L

)
P (k)

(
er+(k)L − er−(k)L

)
+D(k)

(
er+(k)L + er−(k)L

) ,

ρ2→1 =
P (k)

(
er+(k)L − er−(k)L

)
−D(k)

(
er+(k)L + er−(k)L

)
P (k)

(
e−r−(k)L − e−r+(k)L

)
+D(k)

(
e−r−(k)L + e−r+(k)L

) .
Dividing their product by the factors multiplying P (k), we obtain

ρ1→2ρ2→1 =
P (k)−D(k)

e−r−(k)L + e−r+(k)L

e−r−(k)L − e−r+(k)L

P (k) +D(k)
er+(k)L + er−(k)L

er+(k)L − er−(k)L

P (k)−D(k)
er+(k)L + er−(k)L

er+(k)L − er−(k)L

P (k) +D(k)
e−r−(k)L + e−r+(k)L

e−r−(k)L − e−r+(k)L

.

A direct calculation shows that

e−r−(k)L + e−r+(k)L

e−r−(k)L − e−r+(k)L
=
er+(k)L + er−(k)L

er+(k)L − er−(k)L
= coth(

L

Axx
D(k)),

and we therefore obtain ρ1→2ρ2→1 = ρ2
b , with the convergence factor

ρb(P, k) =
P (k)−D(k) coth( L

Axx
D(k))

P (k) +D(k) coth( L
Axx

D(k))
. (2.17)
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We see that the convergence factor ρb(P, k) for the bounded domain case is very
similar to the convergence factor ρ(P, k) in (2.15) for the unbounded domain
case, and converges to it for fixed k as L goes to infinity.

We however also notice that both convergence factors tend to 1 for high
frequencies for any fixed parameter choice p and q, and convergence for high
frequencies can thus be arbitrarily slow. Fortunately, in a discrete setting, only
frequencies smaller than the largest eigenvalue of the discrete transverse opera-
tor ∂yy intervene. Therefore it is of great importance to find coefficients p and
q which minimize the maximum of the convergence factor over a set of bounded
frequencies, k ∈ [kmin, kmax], that is to find parameters p and q which minimize
the maximum norm of |ρ(P (·), ·)|, a best approximation problem we study next.

2.4 Best Approximation Problem and General Results

Since D(k) defined in (2.12) and P (k) depend on k2 only, we define µ := k2,
and on the unbounded domain the function

f∞(µ) := D(k) =
√
µdetA+ ηAxx, (2.18)

and the corresponding function on the bounded domain,

fL(µ) := D(k) coth

(
L

Axx
D(k)

)
= f∞(µ) coth

(
L

Axx
f∞(µ)

)
. (2.19)

Then the corresponding convergence factors become with Q(µ) := p+ qAyyµ

ρ(Q,µ) =
Q(µ)− f∞(µ)

Q(µ) + f∞(µ)
and ρL(Q,µ) = e2ik

Axy
Axx

LQ(µ)− fL(µ)

Q(µ) + fL(µ)
.

Let M be a segment in R∗+, M := [µmin, µmax] = [k2
min, k

2
max]. f∞ and fL are

positive functions on M , the term e2ik
Axy
Axx

L in ρb(Q,µ) has modulus equal to 1,
and can be omitted in what follows, giving rise to two real best approximation
problems which are of the form:

for F (Q,µ) := Q(µ)−f(µ)
Q(µ)+f(µ) and G(Q) := supµ∈M |F (Q(µ), µ)|,

find Q∗n ∈ Pn such that δ∗n := G(Q∗n) = infQ∈Pn
G(Q),

(2.20)

where Pn is the space of polynomials of degree smaller or equal to n.

Definition 2.1 (Alternating sequence). Let Q ∈ Pn. An alternating sequence
of length m for F (Q(·), ·) is a sequence of points (µ1 < · · · < µm) in M such
that

|F (Q(µi), µi)| = ‖F (Q(·), ·)‖∞ , F (Q(µi), µi) = −F (Q(µi+1), µi+1).

Theorem 2.3. Let M be a segment in R, n ≥ 0, and f be a continuous positive
function on M . Then δ∗n < 1, and problem (2.20) has a unique solution Q∗n, for
which F (Q∗n(·), ·) has an alternating sequence of at least n+ 2 points.
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Proof. Existence, uniqueness and the alternation property are a consequence of
a more general analysis in C, see [4].

Theorem 2.4 (Homographic De la Vallée Poussin). Let M be a segment in R,
n ≥ 0, and f be a continuous positive function on M . Then any polynomial
Q for which F (Q(·), ·) has an alternating sequence µ1 < · · · < µn+2 of length
n+ 2, and δ = ‖F (Q(·), ·)‖∞ < 1, is the global minimum Q∗n of G.

Proof. By the uniqueness theorem it suffices to prove that δ = δ∗n. The proof is
then by contradiction: assuming that δ > δ∗n, we write for each i

F (Q(µi), µi)︸ ︷︷ ︸
±δ

−F (Q∗n(µi), µi)︸ ︷︷ ︸
| |≤δ∗n<δ

= 2
f(µi)(Q(µi)−Q∗n(µi))

(f(µi) +Q(µi))(f(µi) +Q∗n(µi))
. (2.21)

Note first that δ < 1 if and only if Q is positive on the interval. The denominator
in the right hand side is therefore positive. Since f(µi) > 0 and since the
left-hand side has the sign of F (Q(µi), µi), Q(µi) − Q∗n(µi) has the sign of
F (Q(µi), µi). Thus the polynomial Q−Q∗n alternates in sign at the n+2 points
µi. It must therefore have at least n + 1 roots, and being of degree n it must
vanish identically, which implies Q = Q∗n and δ = δ∗n.

We now use the general results in Theorem 2.3 and 2.4 for the concrete case
of n = 0 and n = 1, which correspond to the Robin and Ventcell transmission
conditions in the optimized Schwarz method.

Theorem 2.5 (Solution for n = 0). If f is positive and monotonic, problem
(2.20) for n = 0 has a unique solution Q∗0. The alternation points of F (Q∗0, ·)
are the endpoints of the interval, µmin and µmax, and

Q∗0 =
√
f(µmax)f(µmin),

δ∗0 = |F (Q∗0, µmin)| =
∣∣∣∣√f(µmax)−

√
f(µmin)√

f(µmax)+
√
f(µmin)

∣∣∣∣ . (2.22)

Proof. By Theorem 2.3, there is a unique solution Q∗0, and it alternates at
least twice. Since δ∗0 < 1, Q∗0 is positive, and since f is monotonic, µ 7→
F (Q,µ) is monotonic as well, and the extrema can only be at the endpoints.
Alternation at those points, F (Q,µmin) = −F (Q,µmax) is equivalent to Q =√
f(µmin)f(µmax). By uniqueness, we then obtain that Q∗0 = Q.

Theorem 2.6 (Solution for n = 1). If f is positive, problem (2.20) for n = 1
has a unique solution Q∗1. Furthermore, if f is twice continuously differentiable,
monotonic, with f ′′ of constant sign, there exists a unique µ̄ ∈ (µmin, µmax)
solution of

g(µ̄) :=
f(µ̄)

f ′(µ̄)
− µ̄ = s, s :=

µmaxf(µmin)− µminf(µmax)

f(µmax)− f(µmin)
, (2.23)
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such that F (Q∗1, ·) alternates at µmin, µ̄ and µmax. If Q∗1(µ) = p∗1 + q̃∗1µ, then
the coefficients are given by

q̃∗1 =

√
f(µmin)f(µ̄)

(s+ µmin)(s+ µ̄)
, p∗1 = sq̃∗1 , (2.24)

and we obtain δ∗1 = |F (Q∗1, µmin)|.

Proof. The assumptions in the Theorem imply that f is strictly monotonic, and
hence s is well defined, since the denominator can not vanish, and also f ′ never
vanishes. By Theorem 2.3, there exists a unique polynomial Q∗1 with at least
three alternation points for µ→ F (Q(µ), µ), with Q(µ) = p+q̃µ. The extremum
points can only be endpoints, or µ̄ such that ∂µF (Q(µ), µ) = 0. Fixing p and
q̃, we compute

∂µF (Q(µ), µ) =
f(µ)q̃ − f ′(µ)(p+ q̃µ)

(Q(µ) + f(µ))2
= q̃ f ′(µ)

g(µ)− s
(Q(µ) + f(µ))2

. (2.25)

Since f ′ never vanishes, ∂µF (Q(µ), µ) vanishes if and only if the numerator
vanishes, which leads to the first equation in (2.23). Since

g′(µ) = −f(µ)f ′′(µ)

f ′2(µ)
,

under the assumptions of the theorem, g is monotonic, and so is the numerator
in (2.25) which shows that the derivative in µ vanishes at most once. Therefore
the alternations are at (µmin, µ̄, µmax), and the alternation property is expressed
by

Q(µmin)− f(µmin)

Q(µmin) + f(µmin)
=
Q(µmax)− f(µmax)

Q(µmax) + f(µmax)
= −Q(µ̄)− f(µ̄)

Q(µ̄) + f(µ̄)
, (2.26)

where µ̄ is defined from s by the first equation in (2.23). The system can be
rewritten in the form

Q(µmin)

f(µmin)
=
Q(µmax)

f(µmax)
=
f(µ̄)

Q(µ̄)
.

The first equality can be solved for s in (2.23), and the second equality gives a
relation between q̃ and µ̄,

q̃2(s+ µmin)(s+ µ̄) = f(µmin)f(µ̄).

With p∗1, q̃∗1 and µ̄ defined in (2.23, 2.24), we thus have three alternations with
‖G(p∗1 + q̃∗1µ)‖∞ < 1, and hence by Theorem 2.4, this is the unique solution.

2.5 Optimized Parameters for the Schwarz Methods

According to the definition of the convergence factor in (2.15), the analysis of
the best approximation problem above applies in the case of an unbounded
domain Ω with µ := k2, f(µ) := D(k), and Q(µ) = p+ q̃µ = p+ qAyyµ.
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Theorem 2.7 (Best parameters for unbounded Ω). Let D(k) =:
√
ηAxx + k2 detA.

The coefficient leading to the best convergence for the Robin Schwarz algorithm
on the unbounded domain Ω is

p∗,∞0 =
√
D(kmax)D(kmin), (2.27)

with associated optimized convergence factor

ρ∗,∞0 =

∣∣∣∣∣
√
D(kmax)−

√
D(kmin)√

D(kmax)+
√
D(kmin)

∣∣∣∣∣ . (2.28)

The coefficients leading to the best convergence for the Ventcell Schwarz algo-
rithm are

p∗,∞1 =
√

detA
k2
max D(kmin)−k2

minD(kmax)√
2(k2

max−k2
min) (D(kmax)−D(kmin)) (D(kmin)D(kmax))

1
4
,

q∗,∞1 =
√

detA
Ayy

√
D(kmax)−D(kmin)√

2(k2
max−k2

min) (D(kmin)D(kmax))
1
4
,

(2.29)

with the even smaller optimized convergence factor

ρ∗,∞1 =

∣∣∣∣p∗,∞1 + q∗,∞1 Ayyk
2
min −D(kmin)

p∗,∞1 + q∗,∞1 Ayyk2
min +D(kmin)

∣∣∣∣ .
Proof. This result has already been obtained using a different analysis and a
transformation in [14, Section 5], and has even been extended to the case of
discontinuous coefficients. We use here Theorem 2.5 and 2.6 with f = f∞
to give a different proof. First, for the case of Robin conditions, it suffices to
replace the definition of f into (2.22) from Theorem 2.5 to get (2.27) and (2.28).
For the Ventcell conditions, let r∞ be as defined in (2.23); then the solution of
(2.23) can be obtained in closed form,

µ̄∞ =
1

r∞
− 2

ηAxx
detA

. (2.30)

To obtain the coefficients, we compute first the terms in p∗1 defined in (2.24),

f2
∞(µ̄∞) =

detA

r∞
−ηAxx, 1+r∞µ̄∞ = 2(1−ηAxxr∞

detA
) = 2

r∞
detA

(
detA

r∞
−ηAxx),

(2.31)
and a direct computation shows that the common term can be expressed as

detA

r∞
− ηAxx = f∞(µmin)f∞(µmax).

Substituting this into the the terms in (2.31) and inserting them into the formula
for p∗1 defined in (2.24), we obtain p∗,∞1 in (2.29) when replacing µ by k2 and
f∞ by D(k), and the corresponding expression for q∗,∞1 = q̃∗,∞1 /Ayy in (2.29)
follows using q̃∗,∞1 = r∞p

∗,∞
1 from (2.24).
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As mentioned earlier, the upper bound on the frequency kmax is related to
the largest eigenvalue of the discrete transverse operator ∂yy, that is kmax ∼ π

h ,
where h is the mesh size along the interface [18], and we obtain the following
asymptotic result.

Corollary 2.8 (Asymptotic performance on unbounded Ω). For small mesh
size h, i.e. large kmax = π

h , the best Robin parameter and associated convergence
factor behaves like

p∗,∞0 =
√
D(kmin) 4

√
detAk

1
2
max +O(k

− 3
2

max),

ρ∗,∞0 = 1− 2

√
D(kmin)
4√

detA
k
− 1

2
max +O(k−1

max),
(2.32)

and in the Ventcell case we obtain

p∗,∞1 =
D(kmin)

3
4

√
2detA

3
8

k
1
4
max +O(k

− 3
4

max),

q∗,∞1 =
detA

5
8

√
2AyyD(kmin)

1
4

k
− 3

4
max +O(k

− 7
4

max),

ρ∗,∞1 = 1− 2
√

2D(kmin)
1
4 detA

3
8 k
− 1

4
max +O(k

− 1
2

max).

(2.33)

Proof. It suffices to insert D(kmax) = kmax
√

detA(1+O(k−2
max)) into the closed

form solutions of Theorem 2.7 and to expand then for kmax large.

In the case of a bounded domain, it is unfortunately not possible to solve
(2.23) in closed form, and we first use an auxiliary asymptotic approximation
of the coth term in fL to obtain a very good approximation of the coefficients,
in closed form:

Theorem 2.9 (Semi-asymptotic performance on bounded Ω). Let f∞ and fL
be the functions defined in (2.18,2.19). The best Robin parameter and associated
convergence factor on a bounded domain of size 2L are in the Robin case

p∗,L0 =
√
fL(k2

min)fL(k2
max), ρ∗,L0 =

∣∣∣∣∣
√
fL(k2

max)−
√
fL(k2

min)√
fL(k2

max) +
√
fL(k2

min)

∣∣∣∣∣ . (2.34)

In the Ventcell case, we obtain

p∗,L1 =
√

detA(k2
maxfL(k2

min)−k2
minf∞(k2

max))√
2(k2

max−k2
min)
√
f∞(k2

max) (f∞(k2
max)fL(k2

min)−f2
∞(k2

min)) (f∞(k2
max)−fL(k2

min))

+O(e−k
2
max),

q∗,L1 = 1
Ayy

√
detA(f∞(k2

max)−fL(k2
min))

3
4√

2(k2
max−k2

min)
√
f∞(k2

max) (f∞(k2
max)fL(k2

min)−f2
∞(k2

min))
+O(e−k

2
max),

(2.35)
with associated convergence factor

ρ∗,L1 =

∣∣∣∣∣ p∗,L1 + q∗,L1 Ayyk
2
min − fL(k2

min)

p∗,∞1 + q∗,∞1 Ayyk2
min + fL(k2

min)

∣∣∣∣∣ .
12



Proof. In the case of a bounded domain Ω, where fL(µ) = f∞(µ) coth
(

L
Axx

f∞(µ)
)

,

Theorem 2.5 still applies, since fL is positive and strictly increasing, and we eas-
ily obtain (2.34) for the Robin case. For the Ventcell case, to use Theorem 2.6,
we need to solve equation (2.23) with f replaced by fL, i.e. with

gL(µ) :=
fL(µ)

f ′L(µ)
− µ. (2.36)

To see that equation (2.23) still has a unique solution, we compute

f ′′L(µ) =
a2

4f3
L(µ)

(2Y 2 coshY − sinh2 Y coshY − Y sinhY ), Y =
L

Axx
f∞(µ).

A series expansion in Y of the function in the parentheses gives

∑
n≥1

anY
2n, an =

4n(n− 1) + 1
4 −

32n

4

(2n)!
,

and for n ≥ 1, all coefficients an are negative. Therefore gL is strictly increasing,
and the equation gL(µ) = 1

r from (2.23) has a unique solution, which is however
not available in closed form. We thus use exponential asymptotics for large
µmax and fixed L,

fL(µmax) = f∞(µmax)(1 +O(e−µmax)),

rL = f∞(µmax)−fL(µmin)
µmaxfL(µmin)−µminf∞(µmax) +O(e−µmax).

Then 1
rL

= O(µ
1
2
max), and since the function gL is increasing, we can see that

the solution µ̄L of (2.23) with g = gL from (2.36) must increase at infinity as
well. Furthermore for large µ

gL(µ) =
fL(µ)

f ′L(µ)
− µ =

f∞(µ)

f ′∞(µ)
(1 +O(e−µ))− µ = µ+ 2

ηAxx
detA

+O(e−µ).

Therefore, we obtain instead of µ̄∞ from the unbounded domain case in (2.30)

µ̄L =
1

rL
− 2

ηAxx
detA

+O(e−µmax)

=
µmaxfL(µmin)− µminf∞(µmax)

f∞(µmax)− fL(µmin)
− 2

ηAxx
detA

+O(e−µmax),

and for the terms in p∗1 we get instead of (2.31)

f2
L(µ̄L) = f2

∞(µ̄L) +O(e−µmax) =
detA

rL
(1− rLηAxx

detA
) +O(e−µmax),

and

1 + rLµ̄L = 2(1− rLηAxx
detA

) +O(e−µmax).
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We now simplify asymptotically the common term,

1− rLηAxx
detA

=
f∞(µmax)

detA

f∞(µmax)fL(µmin)− f2
∞(µmin)

µmaxfL(µmin)− µminf∞(µmax)
+O(e−µmax),

and also the last remaining term in p∗1 from (2.24),

1 + µminrL =
(µmax − µmin)fL(µmin)

µmaxfL(µmin)− µminf∞(µmax)
+O(e−µmax).

Inserting these results into (2.24) and simplifying, we obtain (2.35).

Corollary 2.10 (Asymptotic performance on bounded Ω). For small mesh size
h, i.e. large kmax = π

h , the best Robin parameter and associated convergence
factor behave like

p∗,L0 =
√
kmax

4
√

detA
√
fLmin +O(k

− 3
2

max),

ρ∗,L0 = 1− 2

√
fLmin

4
√

detA

1√
kmax

+O(k−1
max),

(2.37)

where fLmin :=
√

∆(kmin) coth
(

L
Axx

√
∆(kmin)

)
, and in the Ventcell case we

obtain

p∗,L1 =
fL

3
4
min√

2detA
3
8

k
1
4
max +O(k

− 3
4

max),

q∗,L1 =
detA

5
8

√
2AyyfL

1
4
min

k
− 3

4
max +O(k

− 7
4

max),

ρ∗,L1 = 1− 2
√

2fL
1
4
mindetA

3
8 k
− 1

4
max +O(k

− 1
2

max).

(2.38)

Proof. It suffices to use in (2.35) the approximation

f∞(k2
max) = kmax

√
detA(1 +O(k−2

max)).

From our asymptotic analyses in Corollary 2.8 for the unbounded domain
case and Corollary 2.10 for the bounded domain case, we can see that with Robin
transmission conditions, the convergence factor behaves like 1− C

4√
detA

√
h, where

h is the mesh size along the interface, with a slightly different constant C that
has an extra dependence on the ratio L

Axx
in the bounded domain case, and thus

the ratio of the domain size compared to the diffusion in the x-direction will
influence the performance of the method on bounded domains. With Ventcell
transmission conditions, the convergence factor behaves like 1 − C detA

3
8h

1
4 ,

again with a slightly different constant with the same extra dependence on the
ratio L

Axx
as in the Robin case. So Ventcell conditions will always lead to a

much faster algorithm than Robin conditions, and a large or small ratio L
Axx

will require the bounded domain analysis for accurate best parameter prediction.
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The boundary dual cell k∗

Node xk∗ of the boundary dual cell
Interior node xk∗ of the dual cell

Primal node xk

Primal control volumes
Interior dual cell k∗

Figure 1: The mesh T

3 Analysis at the Discrete Level

We now present the discrete duality finite volume discretization (DDFV) for
anisotropic diffusion problems applied to the optimized Schwarz algorithms
presented in Section 2. The algorithm is built on the equation with variable
diffusion matrix A.

3.1 Discrete Duality Finite Volumes (DDFV)

DDFV discretizations need a certain amount of notation for which we follow
[1]. A DDFV mesh T consists of a primal mesh M and a dual mesh M∗ ∪∂M∗,
see Figure 1 for an illustration. The primal mesh M is a set of disjoint open
polygonal control volumes k ⊂ Ω such that ∪k = Ω. We denote by ∂M the
set of edges of the control volumes in M included in ∂Ω, which we consider
as degenerate control volumes. To each control volume and degenerate control
volume k ∈ M ∪ ∂M, we associate a point xk ∈ k. This family of points is
denoted by X = {xk, k ∈M ∪ ∂M}.

Let X∗ denote the set of the vertices xk∗ of the primal control volumes in M.
We split this set into X∗ = X∗int ∪X∗ext where X∗int ∩ ∂Ω = ∅ and X∗ext ⊂ ∂Ω.
For all neighbor control volumes k and l, we assume that ∂k∩ ∂l is an edge of
the primal mesh denoted by σ = k|l. We note by E the set of such edges.

Given the families of points X and X∗, we define the diamond cells D to
be the quadrangles whose diagonals are a primal edge σ = k|l = (xk∗ , xl∗) and
the line (xk, xl), see Figure 2. We call the set of diamond cells D. A diamond
cell D is an interior diamond cell, D ∈ Dint, if [xk∗ , xl∗ ] 6⊂ ∂Ω, and an exterior
diamond cell D ∈ Dext otherwise, and we have Ω = ∪

D∈D
D. To each diamond

D ∈ D, we associate a point xD ∈ [xk∗ , xl∗ ]. Any interior diamond cell can
thus be split into four triangles D = TD

kk∗ ∪ TD
kl∗ ∪ TD

lk∗ ∪ TD
ll∗ , and any exterior

diamond cell into two triangles D = TD
kk∗ ∪ TD

kl∗ , see Figure 2. Let Dk be the
set of diamonds with xk as vertices and Dk∗ the set of diamonds with xk∗ as

15
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kl∗
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kk∗
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kl∗
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lk∗
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ll∗

xl

xl∗

xk∗

mσ

mσk∗

mσk

Figure 2: Notation in the diamond cells. Left: interior cell. Right: boundary
dual and diamond cells.

vertices. We then observe that any primal cell can be described as

k = ∪D∈Dk(TD
kk∗ ∪ TD

kl∗).

To any point xk∗ ∈ X∗, we associate in a similar way the polygon k∗ defined by

k∗ := ∪
D∈Dk∗∩Dint

(TD
kk∗ ∪ TD

lk∗)
⋃

∪
D∈Dk∗∩Dext

TD
kk∗ . (3.1)

This defines the set M∗∪∂M∗ of dual control volumes that forms a partition of
Ω consisting of a family of disjoint polygonal control volumes. The dual edges
are denoted by σ∗ = k∗|l∗, and E∗ is the set of dual edges.

For any primal control volume k ∈M ∪ ∂M, we denote by mk its Lebesgue
measure, and the corresponding dual notation is mk∗ . For a diamond cell D
whose vertices are (xk, xk∗ , xl, xl∗), we denote by

• mD its measure,

• mσ the length of the primal edge σ,

• mσ∗ the length of the dual edge σ∗,

• mσk∗ the measure of ∂k∗ ∩ Γ.

In DDFV, an unknown value uk is associated with all primal control volumes
k ∈ M ∪ ∂M, and an unknown value uk∗ is associated with all dual control
volumes k∗ ∈M∗ ∪ ∂M∗. We denote the approximate solution on the mesh T
by uT ∈ RT where

uT =
(

(uk)k∈(M∪∂M) , (uk∗)k∗∈(M∗∪∂M∗)

)
.

Following [10, 27, 12], we define a consistent approximation of the gradient
operator denoted by ∇D : uT ∈ RT 7→

(
∇DuT

)
D∈D ∈ (R2)D,

∇DuT :=
1

2mD
[(ul − uk)Nkl + (ul∗ − uk∗)Nk∗l∗ ] , ∀D ∈ D, (3.2)
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with Nkl = (xl∗ − xk∗)⊥ and Nk∗l∗ = (xl − xk)⊥ with the convention ((xl∗ −
xk∗) ∧ (xl − xk), ez) > 0.

As in [27, 12], we also define a consistent approximation of the divergence
operator denoted by divT : ξD = (ξD)D∈D 7→ divT ξD ∈ RT with

divkξD :=
1

mk

∑
D∈Dk

(ξD,Nkl), ∀k ∈M, (3.3a)

divk∗ξD :=
1

mk∗

∑
D∈Dk∗

(ξD,Nk∗l∗), ∀k∗ ∈M∗. (3.3b)

The DDFV approximation uT ∈ RT of (2.1) is then solution to the linear system

−divk
(
AD∇DuT

)
+ ηkuk = fk, ∀ k ∈M, (3.4a)

−divk∗
(
AD∇DuT

)
+ ηk∗uk∗ = fk∗ , ∀ k∗ ∈M∗, (3.4b)

uk = 0, ∀ k ∈ ∂M, uk∗ = 0, ∀ k∗ ∈ ∂M∗. (3.4c)

where

AD = (AD)D∈D , AD = A(xD),

fT =
(

(fk)k∈(M∪∂M) , (fk∗)k∗∈(M∗∪∂M∗)

)
, fk = f(xk), fk∗ = f(xk∗),

ηT =
(

(ηk)k∈(M∪∂M) , (ηk∗)k∗∈(M∗∪∂M∗)

)
, ηk = η(xk), ηk∗ = η(xk∗)

in case of smooth functions A, f and η. Otherwise, mean values of the functions
can be used.

3.2 DDFV on Composite Meshes

In the case of a domain decomposition into two subdomains Ω = Ω1 ∪ Ω2,
we need to consider for each subdomain Ωj of Ω, j = 1, 2, a DDFV mesh
Tj = (Mj ∪ ∂Mj ,M

∗
j ∪ ∂M∗j ), and the associated diamond mesh Dj . Letting Γ

be the interface between Ω1 and Ω2, we denote by

Dj,Γ := {D ∈ Dj , D ∩ Γ 6= ∅} the diamond cells intersecting Γ,
∂Mj,Γ := {k ∈ ∂Mj , k ∩ Γ 6= ∅} the boundary primal cells intersecting Γ,
∂M∗j,Γ := {k∗ ∈ ∂M∗j , k∗ ∩ Γ 6= ∅} the boundary dual cells intersecting Γ,

∂Mj,D := {k ∈ ∂Mj , k ∩ ∂Ω 6= ∅} the boundary primal cells intersecting ∂Ω,
∂M∗j,D := {k∗ ∈ ∂M∗j , k∗ ∩ ∂Ω 6= ∅} the boundary dual cells intersecting ∂Ω.

For an example, see Figures 3 and 4. We will assume that the two meshes are
compatible in the following sense:

1. The two meshes have the same vertices on Γ. This implies in particular
that the two meshes have the same degenerate control volumes on Γ, that
is ∂M1,Γ = ∂M2,Γ. Let N be the number of edges on Γ. For the sake of
clarity, we sort these edges σ1, · · · , σN in such a way that σs ∩ σs+1 6= ∅.
We refer to xk∗s , xk∗s+1

for the vertices of σs. Note that xk∗s = σs ∩ σs−1.
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Figure 3: From a DDFV mesh T of the whole domain Ω to the Tj on Ωj .
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Figure 4: From a Nonconforming DDFV mesh T of the whole domain Ω to the
Tj on Ωj .
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2. The edges σs, whose center is denoted by xls , can be assimilated to a
primal degenerated boundary control volume for both meshes, i.e. ls ⊂
∂M1 ∩ ∂M2.

Remark 3.1 (Non conforming meshes). In the definition of general finite vol-
ume meshes, the intersections of two neighboring control volumes are called
edges of the mesh. Figure 4 (left) shows in the case of a non conforming mesh
that a square volume may have more than 4 vertices. To create a compatible
composite mesh from two a priori non conformal meshes, it is thus natural to
add additional vertices on Γ as shown in Figure 4 (right) in such a way that
edges of ∂M1,Γ coincide with edges of ∂M2,Γ.

We next define the DDFV discretization for the transmission conditions of Vent-
cell type. We associate one unknown per interior and exterior primal and dual
cell uT j

∈ RTj and one flux unknown ψk∗ for j = 1, 2, per interface dual cell

k∗ ∈ ∂M∗j,Γ. We denote by ψT j ∈ R∂M
∗
j,Γ the collection of all flux unknowns

ψk∗ , see Figure 5. For uT j ∈ RTj , ψT j ∈ R∂M
∗
j,Γ , fT j ∈ RMj∪M∗j∪∂M

∗
j and

hT j ∈ R∂Mj,Γ∪∂M∗j,Γ , we refer by

LT j

Ωj ,Γ
(uT j

, ψT j
, fT j

, hT j
) = 0

to the linear system

−divk
(
AD∇DuT j

)
+ ηkuk = fk, ∀ k ∈Mj , (3.5a)

−divk∗
(
AD∇DuT j

)
+ ηk∗uk∗ = fk∗ , ∀ k∗ ∈M∗j , (3.5b)

− 1

mk∗

 ∑
D∈Dk∗

(
AD∇DuT j ,Nk∗l∗

)
+mσk∗ψk∗

 +ηk∗uk∗ = fk∗ , ∀ k∗∈∂M∗j,Γ,

(3.5c)(
AD∇DuT j ,Nkl

)
+mσΛ

∂Mj,Γ
l (u∂Mj,Γ) = mσhl, ∀ l ∈ ∂Mj,Γ, (3.5d)

ψk∗ + Λ
∂M∗j,Γ
k∗ (u∂M∗j,Γ) = hk∗ , ∀ k∗ ∈ ∂M∗j,Γ, (3.5e)

uk = 0, ∀ k ∈ ∂Mj,D, uk∗ = 0, ∀ k∗ ∈ ∂M∗j,D, (3.5f)

with for s = 1, · · · , N

Λ
∂Mj,Γ
ls (u∂Mj,Γ

) = puls −
q

mσs

(
As
∗+1
yy

uls+1
− uls

mσk∗
s+1

−As
∗

yy

uls − uls−1

mσk∗s

)
(3.6)

and for s = 2, . . . , N

Λ
∂M∗j,Γ
k∗s

(u∂M∗j,Γ) = p∗uk∗s −
q∗

mσk∗s

(
Asyy

uk∗s+1
− uk∗s

mσs

−As−1
yy

uk∗s − uk∗s−1

mσs−1

)
.

(3.7)
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where Asyy and As
∗

yy are the values of Ayy at the points xls and xk∗s . Note that
ul0 = ulN+1

= 0 and uk∗1 = uk∗N+1
= 0 because of the boundary condition on

∂Ω.
Equations (3.5a)-(3.5c) correspond to an approximation of the equation after

integration on Mj , M
∗
j and ∂M∗j . Equations (3.5d) and (3.5e) are related to the

Ventcell transmission conditions on ∂Mj,Γ and ∂M∗j,Γ. Finally, equation (3.5f)
corresponds to the homogeneous Dirichlet boundary condition on ∂Ω.

3.3 DDFV Schwarz Algorithm for Anisotropic Diffusion

We can now present the optimized Schwarz algorithm discretized by DDFV:
for an arbitrary initial guess h0

T j
∈ R∂Mj,Γ∪∂M∗j,Γ , j ∈ {1, 2}, the algorithm

performs for iteration index ` = 0, 1, 2, . . . and i, j ∈ {1, 2}, j 6= i the two steps:

1. Compute (u`+1
T j

, ψ`+1
T j

) ∈ RTj × R∂M
∗
j,Γ solution to

LT j

Ωj ,Γ
(u`+1
T j

, ψ`+1
T j

, fT j
, h`T j

) = 0. (3.8)

2. Compute the new values of h`+1
T j

by

h`+1
l = − 1

mσ

(
AD∇Du`+1

T i
,Nkl

)
+ Λ

∂Mi,Γ
l (u`+1

∂Mi,Γ
), ∀l ∈ ∂Mj,Γ, (3.9a)

h`+1
k∗ = −ψ`+1

l∗ + Λ
∂M∗i,Γ
l∗ (u`+1

∂M∗i,Γ
), ∀k∗ ∈ ∂M∗j,Γ and l∗ ∈ ∂M∗i,Γ s. t. xk∗ = xl∗ .

(3.9b)

To prove that this algorithm is well posed, we will need the following two
Lemmas:

Lemma 3.1 (Properties of Λ∂Mj,Γ and Λ∂M
∗
j,Γ). The operators Λ∂Mj,Γ and

Λ∂M
∗
j,Γ are symmetric and positive definite. The operators Λ∂Mj,Γ−1 and Λ∂M

∗
j,Γ−1

are also symmetric and positive definite, and induce a norm.

Proof. Using the weighted product on ∂MΓ, (u∂MΓ
, v∂MΓ

) =
∑N
s=1mσs

ulsvls ,
we show using (3.6) that

(Λ∂Mj,Γ(u∂Mj,Γ
), v∂Mj,Γ

) =p

N∑
s=1

mσs
ulsvls

+ q

N∑
s=0

mσk∗
s+1

As
∗+1
yy

uls+1 − uls
mσk∗

s+1

vls+1
− vls

mσk∗
s+1

,

and we see the symmetry between u and v, and this also implies the other
properties of Λ∂Mj,Γ and Λ∂Mj,Γ−1. Similarly, one can also obtain the properties
of Λ∂M

∗
j,Γ and Λ∂M

∗
j,Γ−1.
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Lemma 3.2 (Variational form of the DDFV scheme). The vector (uT j , ψT j ) ∈
RTj ×R∂Mj,Γ∪∂M∗j,Γ is a solution of the linear system

LT j

Ωj ,Γ
(uT j , ψT j , fT j , hT j ) = 0

if and only if for all vT j
∈ RTj we have

2
∑

D∈Dj

mD(AD∇DuT j ,∇DvT j )+(Λ∂Mj,Γ(u∂Mj,Γ), v∂Mj,Γ)+(Λ∂M
∗
j,Γ(u∂M∗j,Γ), v∂M∗j,Γ)

+
∑

k∈Mj

mkηkukvk +
∑

k∗∈M∗j∪∂M∗j,Γ

mk∗ηk∗uk∗vk∗

=
∑

k∈Mj

mkfkvk +
∑

k∗∈M∗j∪∂M∗j,Γ

mk∗fk∗vk∗

+
∑

l∈∂Mj,Γ

mσhlvl +
∑

k∗∈∂M∗j,Γ

mσk∗hk∗vk∗ . (3.10)

Proof. We multiply equation (3.5a) by mkvk and equations (3.5b)-(3.5c) by
mk∗vk∗ and sum theses identities over all the control volumes in Mj and M∗j ∪
∂M∗j . Reordering the different contributions over all diamond cells, we obtain

2
∑

D∈Dj

mD(AD∇DuT j
,∇DvT j

)−
∑

l∈∂Mj,Γ

(AD∇DuT j
,Nkl)vl

−
∑

k∗∈∂M∗j,Γ

mσk∗ψk∗vk∗ +
∑

k∈Mj

mkηkukvk +
∑

k∗∈M∗j∪∂M∗j,Γ

mk∗ηk∗uk∗vk∗

=
∑

k∈Mj

mkfkvk +
∑

k∗∈M∗j∪∂M∗j,Γ

mk∗fk∗vk∗ . (3.11)

Introducing now the Ventcell transmission conditions (3.5d) and (3.5e), we ob-
tain (3.10).

We can now prove that the subdomain problems discretized by DDFV are
well posed:

Theorem 3.1 (Well-posedness of the DDFV Subdomain Problems). For any
fT j ∈ RMj∪M∗j∪∂M

∗
j and hT j ∈ R∂Mj,Γ∪∂M∗j,Γ , there exists a unique solution

(uT j
, ψT j

) ∈ RTj × R∂Mj,Γ∪∂M∗j,Γ of the linear system

LT j

Ωj ,Γ
(uT j

, ψT j
, fT j

, hT j
) = 0.

Proof. By linearity, it is sufficient to prove that if LT j

Ωj ,Γ
(uT j

, ψT j
, 0, 0) = 0, then

uT j
= 0 and ψT j

= 0. We just use (3.10) with vT j
= uT j

, fT j
= 0, hT j

= 0 to
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Figure 5: Notation around a diamond. The new unknowns needed to describe
the DDFV scheme on Ω as the limit of the Schwarz algorithm.

obtain that

2
∑
D∈D

mD(AD∇DuT j
,∇DuT j

) + (Λ∂Mj,Γ(u∂Mj,Γ
), u∂Mj,Γ

)

+ (Λ∂M
∗
j,Γ(u∂M∗j,Γ), u∂M∗j,Γ) +

∑
k∈Mj

mkηkuk
2 +

∑
k∗∈M∗j∪∂M∗j,Γ

mk∗ηk∗uk∗
2 = 0,

(3.12)

which implies with Lemma 3.1 due to the non-negativity of all terms that both
primal and dual unknowns are all identically zero.

3.4 DDFV Convergence Analysis Using Energy Estimates

We now show how the technique of energy estimates we have used at the contin-
uous level to prove convergence of the optimized Schwarz algorithm in Theorem
2.2 can be adapted to also prove convergence of the algorithm discretized by
DDFV.

Theorem 3.2 (Convergence of the DDFV Schwarz algorithm). The iterates
of the optimized Schwarz algorithm discretized by DDFV defined by (3.8)-(3.9)
converge as ` tends to infinity to the solution uT of the DDFV scheme (3.4) on
Ω.

Proof. We first rewrite the classical DDFV scheme (3.4) on Ω as the limit of the
Schwarz algorithm. To this end, we introduce new unknowns near the boundary
Γ, see Figure 5:

� for all k ∈Mj and k∗ ∈M∗j , we set u∞k = uk and u∞k∗ = uk∗ ,

� for all k ∈ ∂Mj,D and k∗ ∈ ∂M∗j,D, we set u∞k = 0 and u∞k∗ = 0,
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� for all lj ∈ ∂Mj,Γ and li ∈ ∂Mi,Γ such that lj = li, we have kj ∈ Mj

such that lj ∈ ∂kj , we define mσkj
to be the distance between xkj and

xD. We also have ki ∈Mi such that li ∈ ∂ki and choose

u∞lj = u∞li =
mσki

ukj +mσkj
uki

mσkj
+mσki

,

in such a way that
(
ADj∇Dju∞T j

,Nkjl

)
= −

(
ADi∇Diu∞T i

,Nkil

)
, with

Dj ∈ Dj,Γ and Di,Γ ∈ Di such that xDj
= xlj = xDi

= xli .

� for all k∗ ∈M∗ such that k∗ = k∗i ∪k∗j with k∗j ∈ ∂M∗j,Γ and k∗i ∈ ∂M∗i,Γ,
choose u∞k∗j = u∞k∗i = uk∗ and

ψ∞k∗j=−ψ∞k∗i = − 1

mσk∗

∑
D∈Dk∗

j

(
Ad∇Du∞T j

,Nk∗j l
∗
j

)
+

mk∗j

mσk∗
(ηk∗uk∗ − fk∗)

=
1

mσk∗

∑
D∈Dk∗

i

(
Ad∇Du∞T i

,Nk∗i l
∗
i

)
−

mk∗i

mσk∗
(ηk∗uk∗ − fk∗).

By linearity, it suffices to prove convergence of the DDFV optimized Schwarz
algorithm (3.5) to 0. We have constructed (u∞T j

, ψ∞T j
) from the solution uT of

the DDFV scheme (3.4) on Ω such that

LT j

Ωj ,Γ
(u∞T j

, ψ∞T j
, fT j , h

∞
T j

) = 0.

Observe that the errors e`+1
T j

= u`+1
T j
− u∞T j

, Ψ`+1
T j

= ψ`+1
T j
− ψ∞T j

satisfy

LT j

Ωj ,Γ
(e`+1
T j

,Ψ`+1
T j

, 0, H`
T j

) = 0,

with

H`
k∗= −Ψ`

l∗ + Λ
∂M∗i,Γ
l∗ (e`∂M∗i,Γ), ∀k∗ ∈ ∂M∗j,Γ and l∗ ∈ ∂M∗i,Γ s. t. xk∗ = xl∗ ,

H`
l= − 1

mσ
(AD∇De`T i

,Nkl) + Λ
∂Mi,Γ
l (e`∂Mi,Γ

), ∀ l ∈ ∂Mi,Γ.

An a priori estimate using discrete duality leads to

2
∑

D∈Dj

mD(AD∇De`+1
Tj ,∇De`+1

Tj )

−
∑

l∈∂Mj,Γ

(AD∇De`+1
Tj ,Nkl)e

`+1
l −

∑
k∗∈∂M∗j,Γ

mσk∗Ψ`+1
k∗ e

`+1
k∗

+
∑

k∈Mj

mkηk(e`+1
k )2 +

∑
k∗∈M∗j∪∂M∗j,Γ

mk∗ηk∗(e
`+1
k∗ )2 = 0. (3.13)

23



Using the scalar product defined by (Λ∂Mj,Γ)−1, we get

−
∑

l∈∂Mj,Γ

(AD∇De`+1
Tj ,Nkl)e

`+1
l =

(
(AD∇De`+1

Tj ,nj), e
`+1
∂Mj,Γ

)
=
(

(AD∇De`+1
Tj ,nj), (Λ

∂Mj,Γ)−1
(

Λ∂Mj,Γ(e`+1
∂Mj,Γ

)
))

=
(

(AD∇De`+1
Tj ,nj),Λ

∂Mj,Γ(e`+1
∂Mj,Γ

)
)

(Λ∂Mj,Γ )−1
.

Using the same trick as at the continuous level, the formula−ab =
1

4

(
(a− b)2 − (a+ b)2

)
implies

−
∑

l∈∂Mj,Γ

(AD∇De`+1
Tj ,Nkl)e

`+1
l =

1

4

∥∥∥−(AD∇De`+1
Tj ,nj) + Λ∂Mj,Γ(e`+1

∂Mj,Γ
)
∥∥∥2

(Λ
∂Mj,Γ)−1

− 1

4

∥∥∥(AD∇De`+1
Tj ,nj) + Λ∂Mj,Γ(e`+1

∂Mj,Γ
)
∥∥∥2

(Λ
∂Mj,Γ)−1

.

We can now use the Ventcell transmission conditions to replace the last term,

−
∑

l∈∂Mj,Γ

(AD∇De`+1
Tj ,Nkl)e

`+1
l =

1

4

∥∥∥−(AD∇De`+1
Tj ,nj) + Λ∂Mj,Γ(e`+1

∂Mj,Γ
)
∥∥∥2

(Λ
∂Mj,Γ)−1

− 1

4

∥∥∥−(AD∇De`Ti ,nj) + Λ∂Mj,Γ(e`∂Mi,Γ
)
∥∥∥2

(Λ
∂Mj,Γ)−1

.

Similarly, we also obtain on the dual mesh

−
∑

k∗∈∂M∗j,Γ

mσk∗Ψ`+1
k∗ e

`+1
k∗ =

1

4

∥∥∥−Ψ`+1
Tj + Λ∂M

∗
j,Γ(e`+1

∂M∗j,Γ
)
∥∥∥2

(Λ
∂M∗

j,Γ )−1

−1

4

∥∥∥−Ψ`
Ti + Λ∂M

∗
j,Γ(e`∂M∗i,Γ)

∥∥∥2

(Λ
∂M∗

j,Γ )−1
.
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Summing over ` = 0, · · · , `max − 1 and j = 1, 2, we get

2

`max−1∑
`=0

∑
j=1,2

∑
D∈Dj

mD(AD∇De`+1
Tj ,∇De`+1

Tj )

+

`max−1∑
`=0

∑
j=1,2

∑
k∈Mj

mkηk(e`+1
k )2 +

`max−1∑
`=0

∑
j=1,2

∑
k∗∈M∗j∪∂M∗j,Γ

mk∗ηk∗(e
`+1
k∗ )2

+
1

4

∑
j=1,2

∥∥∥−(AD∇De`max

Tj ,nj) + Λ∂Mj,Γ(e`max

∂Mj,Γ
)
∥∥∥2

(Λ∂Mj,Γ )−1

+
∑
j=1,2

1

4

∥∥∥−Ψ`max

Tj + Λ∂M
∗
j,Γ(e`max

∂M∗j,Γ
)
∥∥∥2

(Λ
∂M∗

j,Γ )−1

=
∑
j=1,2

1

4

∥∥∥−(AD∇De0
Tj ,nj) + Λ∂Mj,Γ(e0

∂Mj,Γ
)
∥∥∥2

(Λ∂Mj,Γ )−1

+
∑
j=1,2

1

4

∥∥∥−Ψ0
Tj + Λ∂M

∗
j,Γ(e0

∂M∗j,Γ
)
∥∥∥2

(Λ
∂M∗

j,Γ )−1
.

This shows that also in the discrete case, the total energy stays bounded as the
iteration index ` goes to infinity, and hence the algorithm converges.

4 Numerical Experiments

We now investigate the influence of the anisotropy on the optimized Schwarz
algorithm discretized by DDFV (3.8,3.9) numerically. We start with numerical
experiments for a rectangular domain decomposed into two rectangular subdo-
mains, which corresponds precisely to our analysis, and allows us to illustrate
when the bounded domain analysis is important, and why it is essential for per-
formance to have the appropriate optimized choice of the Robin parameter in
the anisotropic case. We then also investigate cases not covered by our analysis,
namely domains which are not rectangular, and also decompositions into more
than two subdomains.

4.1 Rectangular Domain with Two Subdomains

We consider the domain Ω = (−1, 1) × (0, 1) with the two subdomains Ω1 =
(−1, 0) × (0, 1) and Ω2 = (0, 1) × (0, 1). We first compare the convergence on
conforming Cartesian meshes using the mesh size h = 1

8 for η = 1 and Axx =
Ayy = 1, Axy = 0 (the Laplacian), to the anisotropic cases with Axx = 16,
Ayy = 1, Axy = 0, and Axx = 1, Ayy = 16, Axy = 0. We simulate directly
the error equations, measure the error in the discrete L2 norm over primal
and dual unknowns, and start using a random initial guess, which is important
to test the algorithm using all possible frequencies in the error, for a detailed
explanation, see [19, Section 5.1, last paragraph]. We show in Figure 6 how
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Figure 6: Convergence of the DDFV Schwarz algorithm for various parameter
choices p with h = 2−3 and random initial guess. Left: Axx = Ayy = 1, Axy = 0.
Middle: Axx = 16, Ayy = 1, Axy = 0. Right: Axx = 1, Ayy = 16, Axy = 0.

the error decreases over the iterations for different choices of the optimization
parameter p. We see that in all cases a good choice of p leads to fast convergence,
and the value of the best p is influenced by the anisotropy. We also observe that
the anisotropic case is harder to solve for the method than the Laplacian case
for the generic parameter choice p = 1, but good convergence is restored for
a well chosen parameter. We show in Table 1 a detailed comparison of our
asymptotically predicted optimized Robin parameters p∗∞ for the unbounded
domain analysis, p∗L from the bounded domain analysis, and p∗num that worked
numerically best, i.e. reaching the very small tolerance of 1e−12 in the smallest
number of iterations. We also show the corresponding number of iterations to
achieve this tolerance for each parameter choice. There are two interesting
observations: first, in the case of the Laplacian, the unbounded domain analysis
gives a Robin parameter p∗∞ which is very similar to the bounded domain Robin
parameter p∗L, and the same holds also for the anisotropic case Axx = 1 and
Ayy = 16. However, when Axx = 16 and Ayy = 1, this is not the case any more,
because due to the strong diffusion in the x direction, the homogeneous Dirichlet
boundary conditions at x = −1 and x = 1 influence the solution substantially,
and thus the boundedness needs to be taken into account to determine the
optimized parameter p∗L, which is different from p∗∞. Second, in the case of
the Laplacian, the analysis also predicts well the parameter p∗num that works
best, but in the anisotropic cases, even though the asymptotic behavior of the
optimized parameter is well captured, in the case Axx = 16 and Ayy = 1 the
continuous prediction is a bit too large, and the bounded continuous analysis
which should be more accurate is actually less accurate. In the case Axx = 1
and Ayy = 16 the prediction of the continuous analysis is a bit too small. To
quantify this, one would need a fully discrete analysis, which is beyond the scope
of the present paper and will be the subject of further studies.

We show next in Table 2 the corresponding results for the optimized Vent-
cell parameters. We observe again as in the case of the Robin parameters that
the asymptotically best parameters are predicted well, and the bounded do-
main analysis is important if Axx is large. For strong anisotropies, as in the
Robin case, there is a certain difference in the constants that could only be
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p∗∞ iter p∗L iter p∗num iter
Mesh A =Id
2−3 9.11 43 9.12 43 8.34 39
2−4 12.87 60 12.89 60 11.81 55
2−5 18.21 85 18.23 85 16.43 76
2−6 25.75 120 25.78 120 22.42 105

Axx = 16, Ayy = 1
2−3 36.43 28 44.26 35 35.17 27
2−4 51.50 40 62.57 49 49.62 39
2−5 72.82 59 88.48 72 69.46 56
2−6 102.99 82 125.13 100 96.33 77

Axx = 1, Ayy = 16
2−3 35.60 95 35.60 95 49.09 73
2−4 50.34 136 50.34 136 74.44 95
2−5 71.20 186 71.20 186 104.99 129
2−6 100.69 254 100.69 254 140.51 185

Table 1: Optimized Robin parameters p∗∞ and p∗L using kmin = π and kmax = π
h ,

and p∗num performing best in numerical experiments, together with the corre-
sponding number of iterations to reach an error reduction of 1e− 12.

p∗∞ q∗∞ iter p∗L q∗L iter p∗num q∗num iter
Mesh A =Id
2−3 3.6870 0.0439 19 3.6959 0.0439 19 4.0220 0.04699 18
2−4 4.4898 0.0269 20 4.4998 0.0269 20 4.5815 0.02878 20
2−5 5.4069 0.0163 24 5.4185 0.0163 24 5.3173 0.01745 24
2−6 6.4718 0.0097 29 6.4853 0.0097 29 6.1922 0.01063 27

Axx = 16, Ayy = 1
2−3 14.7479 0.1757 16 20.7545 0.1693 14 19.1678 0.18871 11
2−4 17.9591 0.1077 20 24.6158 0.1059 17 22.1708 0.1249 15
2−5 21.6275 0.0651 24 29.2925 0.0645 22 26.2975 0.07849 19
2−6 25.8870 0.0390 30 34.8627 0.0388 27 30.8763 0.04811 24

Axx = 1, Ayy = 16
2−3 14.1316 0.0111 59 14.1316 0.0111 59 35.9474 0.00699 55
2−4 17.2871 0.0068 56 17.2871 0.0068 56 42.0509 0.00542 55
2−5 20.8638 0.0041 56 20.8638 0.0041 56 44.7826 0.00330 55
2−6 24.9996 0.0025 66 24.9996 0.0025 66 44.8830 0.00184 54

Table 2: Optimized Ventcell parameters p∗∞, q∗∞, p∗L and q∗L for kmin = π
and kmax = π

h , and p∗num, q∗num performing best in numerical experiments,
together with the corresponding number of iterations to reach an error reduction
of 1e− 12.
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Figure 7: First and third iteration of the DDFV optimized Schwarz method with
Ventcell transmission conditions. Left: Nonconforming mesh with diagonal A.
Right. Irregular domain and mesh with a fully anisotropic A.

explained with a fully discrete analysis, which would then however be limited
to a particular mesh.

4.2 Non-Rectangular Domains with Non-Matching Grids

We now show that the continuous analysis allows us to determine optimized
parameters that work well also in more realistic situations, where we have non-
matching grids and non-rectangular geometries and meshes, namely the two
experiments shown in Figure 7. We start with a zero initial guess. For the
problem on the left, we use a diagonal diffusion matrix with Axx = 16 and
Ayy = 1 and the source function f(x, y) = e−(x+0.5)2−(y−0.5)2

. We show in
Table 3 how many iterations our code needs to converge to an accuracy of
1% with respect to a converged solution when using p = 1, q = 0, p = 300,
q = 0, compared to using the optimized Robin parameter p∗∞ = 63.07 and
Ventcell parameters p∗∞ = 20.04 and q∗∞ = 0.0803, which we obtained from our
continuous analysis using the smaller mesh size in the estimate for kmax = π/h.
We clearly see that using the parameters predicted by the continuous analysis
leads to great savings in the number of iterations needed, and this without
changing the computational cost per iteration. Similar results we obtained also
for the example on the right in Figure 7, where we now used the fully anisotropic

diffusion matrix A =
[

16 0.5
0.5 1

]
and the same source function as before, see
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Problem p = 1, q = 0 p = 300, q = 0 p = p∗∞, q = 0 p = p∗∞, q = q∗∞
left 33 35 8 3

right 37 34 7 3

Table 3: Number of iterations needed when solving the left and right problem
in Figure 7 using the DDFV Schwarz algorithm.

0 1 2 3 4 5 6 7 8

x

0

1

y

Figure 8: Layer domain for the many subdomain decomposition and source term
for our experiments.

Table 3. The optimized parameters predicted by our continuous analysis were
p∗∞ = 51.5 for the Robin case, and p∗∞ = 17.96 and q∗∞ = 0.1077 for the Ventcell
case. Again the predicted parameters lead to important savings.

4.3 Layered Multidomain Decompositions

We finally show an experiment where we decompose a layer of variable anisotropic
diffusion into many subdomains. The domain, together with the source term
e−1.25(0.1(x−4.0)2+(y−0.5)2), is shown in Figure 8, and we use η = 1 in the fol-
lowing experiments. The variable diffusion matrix A is defined as follows: we
first define the Lagrange interpolation polynomial φ(x) of degree 8 shown in red
in Figure 9, which passes through the 9 points (xi, yi), i = 0, 1, . . . , 8 on the 9
boundaries of the subdomains, xi = i, y0 = 0.5, y1 = 0.9, y2 = 0.65, y3 = 1.05,
y4 = 0.91, y5 = 0.89, y6 = 0.69, y7 = 0.99, y8 = 0.59, also shown in Figure 9.

0 1 2 3 4 5 6 7 8

x

0

0.5

1

1.5

y

Figure 9: Decomposition of the layer domain into 8 subdomains, and the La-
grange interpolation polynomial φ(x).
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Figure 10: Coefficients a1 and a2 to determine the diffusion strength.
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Figure 11: Vector fields a1n and a2t to build the anisotropic diffusion matrix.

We then define for each point of the curve given by the Lagrange interpolation
polynomial the normalized gradient and tangent vector

n(x) :=
1√

1 + (φ′(x))
2

(1, φ′(x))T , t(x) :=
1√

1 + (φ′(x))
2

(−φ′(x), 1)T .

We also define two coefficients a1 and a2 dependent on x by

a1(x) := 1.0(0.5 tanh(12− 4x) + 0.45 tanh(4x− 20) + 1),
a2(x) := 0.9(0.5 tanh(20− 4x) + 0.45 tanh(4x− 12) + 0.1),

which are shown in Figure 10 and will be used to determine the diffusion strength
in the normal and tangential direction of the Lagrange interpolation polynomial.
We now build the diffusion matrix A such that the diffusion equals a1(x) in the
direction n(x) and a2(x) in the direction t(x) for any point x, and A is constant
in y, see Figure 11. The anisotropic diffusion matrix is thus given by the formula

A(x) := a1(x)n(x)n(x)T + a2(x)t(x)t(x)T .

We show the solution of this problem in Figure 12, where one can clearly see that
the anisotropic diffusion generates two maxima, even though the source had only
one. The solution was obtained using our new algorithm and 8 subdomains as
indicated in Figure 9, with the optimized parameters from our two subdomain
analysis shown in Table 4, starting with a zero initial guess. We show in Figure
13 the iterates ` = 1, 4, 6, 8, 12, 20 to illustrate how the algorithm converges. We
can see how the method first generates maxima in each subdomain, but very
quickly identifies the true location of the maxima of the solution, and converges
rapidly, without Krylov acceleration. We next also run our algorithm using only
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Figure 12: DDFV solution on the full domain: maximum solution value is 0.2958

interface p q
1 2.099499 5.38921E-002
2 2.301869 4.77629E-002
3 2.454977 2.06458E-002
4 1.451507 6.15922E-003
5 2.535083 1.98993E-002
6 2.160908 5.18254E-002
7 2.099499 5.38921E-002

Table 4: Optimized Ventcell parameters for the layered multidomain decompo-
sition used locally on the interfaces.

(a) ` = 1, max=0.1695 (b) ` = 2, max=0.2443

(c) ` = 3, max=0.279 (d) ` = 4, max=0.2889

(e) ` = 5, max=0.2935 (f) ` = 10, max=0.2958

Figure 13: Iterations ` = 1, 2, 3, 4, 5, 10 for the 8 subdomain case, and maxima
attained by the iterates.
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(a) ` = 1, max=0.2242 (b) ` = 2, max=0.2699

(c) ` = 3, max=0.2907 (d) ` = 4, max=0.2942

(e) ` = 5, max=0.2955 (f) ` = 7, max=0.2958

Figure 14: Iterations ` = 1, 2, 3, 4, 5, 7 for the 4 subdomain case, and maxima
attained by the iterates.

(a) ` = 1, max=0.2958 (b) ` = 2, max=0.2958

(c) ` = 3, max=0.2958 (d) ` = 4, max=0.2958

Figure 15: Iterations ` = 1, 2, 3, 4 for the 2 subdomain case, and maxima at-
tained by the iterates.

four subdomains, see Figure 14, and finally only two subdomains, see Figure 15.
As expected, convergence is faster using less subdomains since we are just using
a one level method, but we observe also that when cutting through the fast
diffusion region in the middle only, the two maxima in the underlying solution
are identified very rapidly.

5 Conclusions

We introduced a new, optimized DDFV Schwarz algorithm with general Ventcell
transmission conditions for fully anisotropic diffusion, and showed that it is well
posed and convergent using energy estimates and two subdomain decomposi-
tion. We also determined optimized Robin and Ventcell transmission conditions
at the continuous level, both using the by now classical unbounded domain
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analysis, and a new technique which takes into account the boundedness of the
domain. Our optimized transmission conditions lead to low iteration counts for
the algorithm, and for certain types of anisotropic diffusion, we showed that
the bounded domain analysis is important. We also observed an interesting
discrepancy in the case of large anisotropies between our continuous analysis
and the discrete performance of the algorithm: while the asymptotically best
parameter choice is well captured, there is a difference in the constants. We
conjecture that this difference is related to the isotropic mesh size we use for
the anisotropic diffusion model problems we solved, and to gain more insight
into this phenomenon, we will have to embark on a fully discrete analysis.

While our analysis provides for the first time optimized transmission con-
ditions for Schwarz methods for fully anisotropic diffusion problems with an
appropriate discretization for such problems, this is only a first step in the de-
velopment of scalable solvers for such problems. Two further main ingredients
are needed for a scalable solver: the definition and analysis of the transmission
conditions at cross points, and an adapted coarse space for anisotropic diffu-
sion. For the simpler case of isotropic diffusion, an algorithm with Ventcell
transmission conditions and cross points has been studied at the continuous
level using energy estimates for rectangular decompositions in [34]. At the dis-
crete level, a condition number estimate for a finite element discretizations of
isotropic diffusion problems and Robin transmission conditions can be found in
[33]. Two different consistent discretizations at cross points for finite element
discretizations were derived and analyzed in [22], and optimized Robin param-
eters at cross points at the algebraic level were derived in [20], but classical
energy estimates can not directly be used in the presence of cross points [21].
There is also to the best of the authors knowledge no study so far on efficient
coarse spaces for anisotropic diffusion problems. In the case of the Poisson
equation, very recently the combination of optimized transmission conditions
with an adapted coarse space for optimized Schwarz methods led in an imple-
mentation in PETSc to substantially faster Schwarz methods than the default
two level Schwarz solver in PETSc [23], and wall clock times are comparable
to the multigrid solver implemented in PETSc. We are currently working on
developing similar techniques also for the anisotropic diffusion case.
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conditions aux limites absorbantes et des propriétés qualitatives des EDP
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