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ARTIFICIAL BOUNDARY CONDITIONS FOR INCOMPLETELY
PARABOLIC PERTURBATIONS OF HYPERBOLIC SYSTEMS*

LAURENCE HALPERN"

Abstract. Artificial boundary conditions are devised for small incompletely parabolic perturbations of
hyperbolic systems, which are local, consistent with the hyperbolic equation, well posed, and produce weak
boundary layers. The general strategy is applied to the Navier-Stokes system.
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Introduction. A general model for a fluid motion is the following time-dependent
compressible Navier-Stokes system"

-’-+ div pv O,
Ot

Opv

Ot
+div (pv. v + pI) pg + div/x%

--+div(e+p)v=pg.v+div(K grad T+txv’’),
Ot

where p represents the density, p the pressure, T the temperature, and v the velocity
of the fluid. - is the momentum flux density tensor due to friction: r=

-I div v+grad v+(grad v)L /z and K are the coefficients of viscosity and heat
conductivity, respectively. An equation of state relating p, p, and T is added to close
the system. Those equations are a special case of a class of equations called incompletely
parabolic equations.

Although the mathematical analysis of these nonlinear equations is not entirely
satisfactory, and due to the increasing complexity of the physical problems involved,
the Navier-Stokes model is more and more widely used in today’s computational fluid
dynamics.

In many problems of interest, the computational domain is infinite, so that an
important task is the design and analysis of reliable numerical boundary conditions.
Very often the Euler equations have replaced the Navier-Stokes system in computations
(i.e., assuming the viscosity and heat conductivity coefficients negligible). In that case
stable boundary conditions are provided by prescribing the entering characteristic
quantities (see, for instance, [OS]). For better accuracy strategies were described in
[EM1], [EM2], and [BT1], [BT2], [BT3], which led to higher-order differential
operators on the boundary.

For the Navier-Stokes system, it is well known that more boundary conditions
are needed to ensure the well posedness. Considering the Navier-Stokes equation as
a perturbation of the Euler system, it has been suggested that extra boundary conditions
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be added to those derived for the Euler system [OS]. The artificial boundary is usually
set in a "smooth" region, where the equations can be linearized about a regular state
(in general, it is supposed to be constant). The derivation and analysis can then be
carried out for the linear equation. In [GS] boundary conditions were built by adding
conditions on the normal derivatives to the "hyperbolic" boundary conditions to
produce dissipation. In [RS1 and [RS2] "hyperbolic" boundary conditions were tested
for a flow over a fiat plate to force the convergence to the steady state. More recently
in [ABL] Abarbanel, Bayliss, and Lustman worked directly on the Navier-Stokes
equation for the flow past an airplane. They decoupled the domain into the boundary
layer region and the hyperbolic region, and in the former region used a modal expansion
and an approximation of the solution. This approximation is made in the regime of
long wavelength.

We develop here a general strategy for the derivation of artificial boundary
conditions for incompletely parabolic perturbations of hyperbolic systems. Because of
the remark above we shall consider linear systems with constant coefficients. Using
the Fourier transform as an essential tool, we shall write artificial boundary conditions
for a half-space in such a way that the well posedness and the convergence to the
hyperbolic equation are ensured by the well posedness of a reduced hyperbolic problem.
The strategy has been introduced in [HI and [HS] for incompressible flows and consists
of expanding the modes in terms of the small parameter u. For the analysis of these
boundary conditions we shall rely on the results by Strikwerda in IS] on the well
posedness ofincompletely parabolic systems, and by Michelson in [M] on the boundary
layer expansion and convergence to the "inviscid" equation. This strategy theoretically
allows for a convergence up to any accuracy, but the well posedness is not guaranteed
(note that in the hyperbolic case, no well-posedness proof is available for general
artificial boundary condition; see [EM1]).

Consider an incomplete singular perturbation of a hyperbolic system, i.e.,
N N

(0.1)
Ow A(j) Ow 02w

+v p(k)+F(x,t),
Ot =1 OXj j,k=l OXj OXk

where the n x n matrices p(jk) are assumed of the form

(0.2) p(jk) ( "(jk)O )
with rank (k=r, (k is nonsingular, and p(k= p(k. The matrices A( are parti-
tioned in the same way:

(0.3) A(J)-- ( B(j) c(J))D() fi,()

A()OWe require the operator O,-Y to be hyperbolic, the partial operator
1]E= p(jk)Ojk to be Petrovski parabolic, and the reduced operator Ot --Eft----1 z(J)oj" to
be strictly hyperbolic. These assumptions ensure the well posedness of the Cauchy
problem. In order to consider an initial boundary value problem in a half-space Xl > 0
or Xl < O, we shall assume that the boundary F {Xl O} is noncharacteristic, i.e., that
A(1) is nonsingular. Its eigenvalues are denoted by /1,"" ", An where 1,"" ", Am are
negative and Am+l, ", A, are positive. The corresponding eigenveetors are A1, , An.
For convenience and simplicity, we shall assume that fi(1) is a diagonal matrix, with
p negative eigenvalues"

(0.4) (1) ()- (1)+



1258 LAURENCE HALPERN

where

z(1)- "’. <0, (1)+-- "’.
p+r

We further assume the existence of a symmetrizer S for the full operator

N a N O2
(0.5) Q= y A()+ , p(k)

j=l OXj j=l OXj OXk

which implies in particular that the symbol of Q,

N N

(0.6) Q(is) _, A()- Z P(k)k,
j=l j----1

is diagonalizable through a transformation analytic in s. S is a symmetric positive-
definite matrix. We shall denote by A( and (jk) the symmetrized matrices/( SA(,
fi(jk) sp(jk). Both the Navier-Stokes and shallow-water systems fulfill all the condi-
tions above.

In 1 we shall recall the modal analysis for the Cauchy problem. Most results in
this section are known (see, for instance, [YS] for Navier-Stokes, [S] for the general
case), but we need to set our notation clearly.

In 2 we derive the local and nonlocal boundary conditions for a half-space. The
transparent boundary condition is first written in terms of generalized eigenvalues and
eigenfunctions for the system. It is then approximated with respect to the small
parameter , we shall call viscosity for obvious reasons. This yields boundary conditions
that are differential of first order in the normal direction, but still integral in time and
the tangential derivatives (like the transparent boundary condition for the pure hyper-
bolic problem). Those boundary conditions are, in turn, approximated by differential
operators which are of order zero in time and one in the tangential direction, using
the strategy in [EM1].

In 3, necessary and sufficient conditions for the well posedness ofthe correspond-
ing initial boundary value problem are set. The same conditions ensure the convergence
to the unperturbed hyperbolic problem, with an error estimate. These results are a
direct application of the general analysis in [M].

In 4 the construction above is carried out explicitly for the two-dimensional
compressible Navier-Stokes system.

Finally in 5, we indicate how to produce more accurate boundary conditions.
For the sake of clarity, explicit calculations are made in the special case of the
two-dimensional linearized shallow water equation. Nevertheless, the construction
carries over to any incompletely parabolic system provided the diagonalizability
assumption (0.6) is fulfilled.

1. The Cauchy problem.
1.1. Normal modes for the Cauchy problem. The following analysis can be partly

found in [S], but we include it here in order to set our notation and to study more
particularly the eigenmodes as functions of the parameter ,.

The normal modes are the solutions of (0.1) with F---0, of the type

W eSt+x+i"Yt, Re s >_-- O,
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where

X---(Xl, ,XN) y (x2,’’’, xv).

They satisfy the equation

(1.1) Q(, iq sI)O O.

Here s and ir/are the independent variables and sc is considered as a function of (s, 7).
The equation in sc is of order n + r. By an abuse of notation, but for simplicity, we
shall often refer to : as a "generalized eigenvalue."

We shall first need a general lemma on matrices.
LEMMA 1.1. Let M and S be two matrices of same order n. IfM is nonnegative, if

S is symmetric positive definite, and moreover ifSM is symmetric, then SM is nonnegative.
Let us recall that a matrix M is nonnegative if for any u, (Mu, u) >- O, where (.,

denotes the usual scalar product. M is positive definite if there exists a constant ee > 0
such that for any u, (Mu, u)>= ol111,112,

Proof For convenience, we choose a basis where S is diagonal: S=
diag (Sl,"" ", s,), M (rn0). Using the identity SM= MrS, we can write (Mu, u)=
(Nv, v), where u Sv, and N is defined by

no =- SiSj 1 + mo,

no ji, >j.

On the other hand, we can express SM as

(SMu, u)= 2(Cu, u),

where

1
Co no

si + ss
We know that a matrix defines a nonnegative bilinear form if and only if all the
principal minors are nonnegative. For the matrix 1 / (si + s), they are equal for k _-< n to

Hi<j<=k (Si Sj)2

2kIIsi Hi<jk (Si "Jr- Sj)2"

We now use the following classical result" if A and B are two symmetric nonnegative
matrices, the matrix whose general term is aobo is also nonnegative. Hence C is
nonnegative and the proof is complete.

LEMMA 1.2. For Re s > 0, there are precisely r +p) generalized eigenvalues with
a negative real part, and n-p with a positive real part.

Proof We first prove that there are no purely imaginary generalized eigenvalues.
Let us assume that : i’, where " is a real number. We apply S to (1.1) and multiply
by . We now take the real part of the Hermitian product:

By assumption, the matrix P(qs is nonnegative, and so is /3(qfl by Lemma
1.1. If Re s >0, since (S, ) is positive, we obtain the contradiction.
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Now let N+ be the number of eigenvalues such that Re < 0, and N_ the number
of eigenvalues s such that Re > 0. We have N/ + N_ r + n, from above. N/ and N_
are constant functions of r/ and s. Furthermore, they are constant functions of A and
P, as long as, for instance, p(11) 0.

Let us choose =0 and B(1)= C(1)= D(1) =0. Equation (1.1) for reads

det ,p(l:2+ A(lsc sI] 0 or

det ,/5(11:2_ sI]. det [/(1s- sI] O.

N/ (respectively, N_) is then the number of solutions with positive real part (respec-
tively, negative) of the equations

det [/p(ll)2 sI] 0, det [/(1)__ sI] O.

The first equation is even in . Hence there are r solutions with positive real part and
r with negative real part. Moreover, the second equation reduces to : s/i, which
gives p values with a negative real part and n- r-p with a positive real part. So

N+ r+p, N-= r+n-r-p- n-p.

We now turn to the behavior of these generalized eigenvalues as the parameter
, tends to zero.

THEOREM 1.1. If Re s > 0, as u tends to zero, r values of tend to infinity as 1/u,
and n values have a finite limit.

Proof Let us write : a +0(u), where a is a solution to

(1.2) det [Aa+ iAJqj-sI] =0.
jl

By assumption this equation has n solutions, denoted by a(s, ), , a, (s, r/),
and

(1.3)
l<__j<__m, Re aJ__< 0,

S

m+l<_j<=n, Re a>_0
S

to any a is associated an eigenvector IF(s, r/), and 171,..., 17" span

(1.4) (A(1)Cek d- iA)rl-sI)Hk=o.jl

If now : 0/u + O(1), 0 is a solution of

(1.5) det (P(I)0 +A(1)) =0,
which is an equation of degree r in 0, and has r roots 01"’" Or, then 01," Or+p_
are such that Re 0j < 0, and Or+p-re+l, ", Or are such that Re 0 > 0. The corresponding
generalized eigenvectors 1... or are defined by

(1.6) (p(ll)oj -b A(I)o 0.

In summary, every solution (s, ) of (Q(, iq)- sI)d 0 for Re s > 0 is such that
either

(s, n, ) (s, n)+ o(), O(s, n, ) =n(s, n)+ o(),
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where

A(1)a+ irI.A(J)-sI]II=Ojl

or

1
(s, q, v)=- O+ O(1), (I)(s, n, v)=O+ O(v),

where

(p(ll)o+A(1))O--O.

We shall denote by rl. :m the values of : of the first form with negative real part,
i.e., corresponding to "propagating modes," and :m/l" :r/p the values of : of the
second form with negative real parts. We define ’j(s, r/) and Oj(s, r/) as follows:

(1.7)
l<=j<=m, (s, n, )= (s, n)+ o(),

m+l<=j<--_r+p, j(s, r/, v):1 (s, r/)+ 0(1)

(’j does not actually depend on s and r/ if j _-> m + 1) and

(1.8) l<-_j<-r+p, J(s, rl, v)= J(s, rl)+O(v),

so that

(1.9)
1 <--_j <--_ m, (s, rl) aj(s, rl), J(s, rl) IF(s, rl),

m+l<-j<-_r+p, j(s, r/)=0j_,, J(s, r/)=(R)j-’.

1.2. The transmission conditions. Let us first write a weak formulation of (0.1) in
a domain f with smooth boundary 0f. For any v sufficiently smooth, we multiply
(0.1) by S, apply it to v, and integrate on I. Using the Green formulas

l’( )Io(  )Ioow ov (,w, v)n,
n Ox

,= x ax ,= x

j,k n OXj

where n is the normal exterior to 0, we get

j.k=l OXj

+- () ov A() ow
2jl Oxj’

w
Oxj’

v

, v n + E A()w, v)n + Fv.
j,:l OXj j=l
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We define two bilinear forms a and p, by

a(v, w)=: , w , v dx,
= Ox Ox(1.10)

p(v, w)
j,k=l OX:’ OXk

where a is antisymmetric and p is symmetric, nonnegative (Lemma 1.1).
S being symmetric definite positive, defines a scalar product

(1.11) s(w, v)= . (Sw, v) dx

and we can write

(1.12) s v + ,p(v, w)+ a(v, w)- (Sg’w, v) d/= Fv,

where gw is the normal stress

( O___w 1A(k) )(1.13) g’w
k=l

1, j p(jk)OXjd__2 W nk.

Suppose now that

the orientation of n being from [2- to [l+. We define a-, a/, p-, p/, s-, s/ as we did
for a, p, s, but the integral being taken over fl- and lI+, respectively. Let v be compactly
supported in ll. We thus have

(1.14) s v + ’p(v, w) + a(v, w) Fv,

but

p(v, w):p+(v, w)+p-(v, w),

a(v, w)= a+(v, w)+ a-(v, w),

S ,’/) ,5 "-t-S- ,/5

and we can write

(1.15)+/- s+/-(Ow+/- v)+up+/-( w+/- = F
Ot

w ,v)+a( ,v)-
a
(Sw v) d7 v,

where F=F/ and w= w/O, so that adding (1.15)+ and (1.15)-, and subtracting
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from (1.14) we get

(Sw, v) dy+ Io (Sw, v) dy=O.
fl fl-

Since v is compactly supported in 1, 01 reduces to F and (w)-= (gw-)]r if w is
defined in 1-, (gw)+= (w+)lv if w is defined in 1+, and the normal on F is exterior
to f- (thus interior to f+). The transmission conditions then read

(1.16)
(w)-=(w)+

on F,
W---W+

or

(1.17) k=lE u Ej p(jk)
Ox --2 w- nk

=1

u E p(k)O___+_0x2 nk.

In particular, if f/=R", 1-= {Xl<0}, f/+= {Xl>0}, so that F= {Xl=0}, then the
transmission conditions are

N N OW+

(1.18)
v E p(jl)OW /(jl)
j=l OXj j=l OXj on F.

W---W+

Condition (1.18) is equivalent to (1.16). The Green formula with the constraints is
more useful when we want to prove the well posedness through energy estimates, and
it is the reason we include it here. Again, (1.18) can also be written

+ OW-I OW+I
(1.19) w--w -,

OX OX

where (wI, wn) corresponds to the decomposition of the matrices p(jk), i.e.,

(1.20) w’ (Wl, Wr) W
II (Wr+l, Wn)

but we prefer to use the form (1.18), which seems more fitted to the multidimensional
case.

2. Derivation of the artificial boundary conditions. We shall use the transmission
conditions we wrote above to derive the transparent boundary condition. Let F and
w be compactly supported in -; consider the Cauchy problem:

N NOw A(j) Ow

(2.1) - j’=l OXj-1
t- U

.k=l
] p(k)

w(0) w.
It is equivalent to the transmission problem

(2.2) -Qw- F(x, t)

w-(O) w,
(2.3)

OXj OXk
+ F(x, t),

in

ow

lw+(0)=0
=0 in 1+,
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with the transmission conditions

(2.4)
v p(jl)

oxj
W---W+

N +

v ’ ow
Ox on F.

2.1. The transparent boundary condition. We introduce the initial boundary value
problem in f+"

(2.5a)
OW
--Qw=O in lq+,

(2.5b) w(t 0) =0,

(2.5c) g on F.
Wr+p

THEOREM 2.1. The boundary value problem (2.5) is strongly well posed. The solution
is given in Fourier variables (rt, s) by

r+p

(2.6) l(Xl, r/, s) Y A, e’X’ ’,
i=1

where (,) are defined in (1.1) and the coefficients A are determined by the boundary
conditions.

Proof According to Strikwerda [S], the problem is strongly well posed if and
only if the two initial boundary value problems

OW
I N oZwI

Ot j,k=l OXj OXk
W gI on ,

and

OWII N OWH

Zcgt =
on F

Wr+p \gr+p

are strongly well posed. The first problem is a strongly parabolic problem with a
Dirichlet boundary condition, and hence is strongly well posed. As for the second one,
since J) is diagonal, the boundary condition reduces to specifying the entering
characteristics which is, again, a strongly well posed problem.

Let us now consider Fourier-Laplace transform (2.5a) with respect to and y.
The corresponding variables are (s, r/), with Re s>0. We then get a second-order
ordinary differential equation, whose solution is

Y Z Ai e’X’aPi,
where (:i, cI)i) are given in (1.1), since we supposed that Q(is) was diagonalizable. In
order for to be in L2, the coefficients Ai must vanish when Re :i -> 0. We thus are
led to (2.6).

,)1 is aRemark. We have assumed that Q was diagonalizable, so the
nonsingular matrix and thus the boundary condition determines the Ai’s.
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THEOREM 2.2. The transparent boundary condition at F for the half-space - is

N 0 I r+p r+p

(2.7a) v 2 p(lj) -/, 2 p(ll) 2 iMlt wj-4-1 2 ill(11)1I,
j=l OXj j=l i=1 11

r+p r+p
k r+ +1,’. ,n,(2.7b) Wk Mlj(k, P

i=1 j=l

where Mq is the r +p) x r +p) matrix defined by

(2.8) Mq =cI), and M-1 is the inverse of M.

Proof. w+ is the solution in fl+ of the initial boundary problem (2.5) with gk W-,
+1 <-- k - r+p. Theorem 2.1 then enables us to calculate explicitly Wk, r+p+ 1 -- k - n

and Ow+’/Oxj. The transmission conditions then give the result

N tI tI /(lj)
j=l OXj OX1 jl

From (2.6) we deduce that

Y q) on F,
03Xl i=1

so that

/ O+I

// 2 p(lj)
j=l 0Xj

r+p
^q-w ,,

i=1

r+p r+p

j=l j#l i=1

k= r+p+ 1, , n.

The coefficients Aj are determined by

r+p

i=l

j=l,. .,r+p.

So, if the matrix M is defined by (2.8), we have

r+p

j=l

and finally - satisfies (2.7a), (2.7b): (2.7a), (2.7b) is actually the transparent boundary
condition.

Remark. If (1) were not diagonal, the same study could be carried over, by
choosing an admissible boundary condition (2.5c).

Remark. If n r+p, the transparent boundary condition reduces to (2.7a)" the
"hyperbolic" part does not require any boundary conditions. (It is the case for instance
for Navier-Stokes equation when the flow is supersonic and the boundary is on the
outflow.)

2.2. Nonlocal approximate boundary condition. Since we are seeking boundary
conditions that are consistent with the hyperbolic problem (i.e., v=0), we shall
approximate the transparent boundary condition (2.7) with respect to the parameter
v. We thus shall obtain boundary condition relating w and Owx/oxl, whose kernel is
a nonrational function of s and r/, and thus integral in the time variable and the
boundary variables. This boundary condition will eventually be approximated by local
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boundary conditions in 2.3, using the techniques in [EM1] for hyperbolic problems.
Let us consider the limits as v tends to zero of the various terms in the right-hand

side of (2.7). By (1.8) the vectors i tend to the corresponding i, and hence the
matrix M tends to N, where

(2.9) No l <= i,j <- r+p.

As for the coefficients ui, by (1.9) if 1 -< m, ui tends to zero, and if m + 1 =< =< n,
u:i tends to a finite limit ’i(s, ) (which actually does not depend on s, /). Taking the
limits in the right-hand side of (2.7) as described, we are led to the boundary condition

N r+p

(2.10a) u E p(1,j) 01I
r+p

Z P’I E iNl’ff’twjI’,
j=l OXj i=m+l j=l

r+p r+p

(2.lOb) Wk Z Z Nlk, r+p+l <= k<= n.
i=1 j=l

We shall see in the next section how this boundary condition leads to a well-posed
problem in the left half-space -, whose solution converges as , tends to zero toward
the restriction to fl- of the solution of the full hyperbolic problem in R". The latter
will be done using a boundary layer expansion and the criterion in [M]. Before carrying
over the analysis we shall write local boundary conditions. In order to make the
mechanisms clear, and since we shall need it later, we shall first recall the derivation
of transparent and approximate boundary conditions for the hyperbolic problem.

2.3. Absorbing boundary conditions for the hyperbolic problem. Here we will follow
the lines drawn in [EM1]. We keep the notation and assumptions set in the first section.
The hyperbolic system is

N

(2.11)
Ow ., A(j) Ow/F.
Ot = Ox

By Laplace-Fourier transform in and y, the solutions of this equation in the full
space when F- 0 are given by

N

(2.12) k E Ai e’’’’IIi,
i=1

where (ai, II i) are the eigenvalues and eigenvectors defined in 1

(2.13) (A(1)tk / iA(g)qg-sI)Hk=O.
j#l

If (Re s Re aj)_-<0 (respectively, (Re s Re ag)_->_0), the corresponding mode in (2.12)
propagates in the (xl > 0)-direction (respectively, xl < 0).

The transparent boundary condition at x 0 for the half-space ll- expresses that
no wave can propagate from the boundary toward the interior of fU, i.e.,

(2.14) m + 1,. , n, hi O.

Let us define T as the matrix of the eigenvectors"

(2.15) T0(s n)= II(s, r/).

By (2.15), (2.14) can be rewritten as

(2.16) Vi rn + 1,. ., n T-t)i O.

This is the transparent boundary condition at xl 0 for the half-space ll-, i.e., the
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equivalent of (2.7) for u=0. We shall see in the next section that (2.7) (or (2.10))
actually reduces to (2.16) when v tends to zero, so that the solution of (0.1) coupled
with (2.7) (or (2.10)) tends to the solution of (2.11) with the boundary condition (2.16).
This boundary condition is nonlocal in time and space. Following [EM1], we shall
make an approximation with respect to the angle of incidence of the wave on the
boundary. This is easily achieved by letting r/=0 in (2.13), so that ak is nothing but
S/Ak where /k is an eigenvalue of A(1), and I-Ik= Ak.

Thus, the first absorbing boundary condition for (2.11) in - is

(2.17) Vi=m+l,...,n (-lw)i=0,
where

To A, l<-_i, j<-_n,

which is simply writing that the entering characteristics of the system are prescribed
the value zero on the boundary.

2.4. Local boundary conditions for the full problem. We thus want to make the
same kind of approximation in (2.10), and it is now clearer: for rn + 1 <-_j <= r+p, neither
’j nor J depends on (s, r/) and therefore both remain unchanged. For 1 =<j_-< m,
and are approximated by s/.A, and A, respectively.

We then define the vector J, 1 _-<j_-< r +p by

(2.18)

and the matrix N by

=A, l<--j<=m,

=, m+l<--_j<--r+p

(2.19) Nu , l <= i, j<= r+p.

The approximate boundary condition takes the form

(2.20)

N ,.q I r+p r+p

j=l OA,j i=m+l j=l

r+p r+p

Wk
"--1 r+p+ 1 <-- k<-_ n.,E jZ Nij 21’ k Wj

This is our local boundary condition. It is of first order in x, and zero order in time.
For (2.7) and (2.16), we shall see that it converges to (2.17) when u tends to zero, so
that the solution of (0.1) coupled with (2.20) tends to the solution of (2.11) coupled
with the first absorbing boundary condition (2.17).

We shall discuss in 5 further approximations to these boundary conditions, with
respect to either parameters u or the angle of incidence on the boundary. These
boundary conditions will involve higher derivatives in time and the tangential variables.

3. Analysis of the approximate boundary conditions. We shall use here the analysis
by Michelson [M] of the well posedness and boundary layer for initial boundary value
problems related to parabolic perturbations of hyperbolic equations.

3.1. Well posedness of the boundary value problems. As already pointed out by
Strikwerda IS], the well posedness of the initial boundary value problem for (0.1) is
equivalent to the well posedness of the purely parabolic problem for P and purely
hyperbolic problem for A, provided the boundary conditions satisfy certain decoupling
conditions, which are automatically satisfied for boundary conditions of the form (2.7).



1268 LAURENCE HALPERN

Furthermore, if the problem satisfies a uniform Lopatinski condition stated by Michel-
son in [M], then we can get estimates uniform in v. Let us define in f- the weighted
norms:

(3 1) Ilull = E II(,D, v’rl)’(xD, Drml ,/2, ’i"/

Ilm=

where X(Xl) is a fixed smooth nondecreasing function of X such that (X1)= X

for [x[ <, and X(x) 1 for [x[ > 1. Denote by [u(x,. ),,, the obvious restriction
ofthe above norm to the hyperplane Xl const. Let be the pseudodifferential operator
with symbol Re(l+vs+Jv]2)l/2(s=iw+n). If w is paitioned in the natural way
mentioned before w (wW,), we define v by

H Dxw(3. v el

We sta by writing the decoupled problems
The parabolic problem is

(3.3a)
O ,= Ox Ox
N

2 (0 o on r,
(3.3b) = Ox

(t=0)=0,
and the hyperbolic problem is

(3.4a)
Own Own

Ot

r+p r+p

k=r+p+l,.., n onF,w= E E *,
i:1 j:r+l

(3.4b)
w"(t=O) =0,

for the boundarconditions (2.10). For the boundary conditions (2.20) N and must
be replaced by N and , respectively.

Then we have Theorem 3.1.
THnOgM 3.1. e boundary value problem (0.1) coupled with either boundary

condition (2.10) or (2.20) is well posed ifand only if the reduced hyperbolic problem (3.4)
is well posed. Furthermore, if (3.4) is well posed in the sense of Kreiss, let integers
m m 0 be such that m-m 1. en there exist positive constants k, o, o such
that for all > o and 0 < o the following a priori estimate holds"

wll + lIDxwll + I(0,. )l + [1/(0, )l,,ml ,m2, ml ,m2

(3.5) + sup (]W(Xl
x1

<k-llIFll ,m2

Proof The first asseion is a mere consequence of the result by Strikwerda in IS].
As for the second a priori estimate, it follows directly from the general theory on
parabolic peurbations for hyperbolic systems by Michelson in [M].

The a priori estimate justifies the boundary layer expansion and proves the
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convergence of the initial boundary value problems (0.1) coupled with either of the
boundary conditions (2.10) or (2.11) as described in 3.2.

3.2. Boundary layer; Convergence results. A physical phenomenon related to
incompletely parabolic approximations of hyperbolic equations with a small parameter
u is the formation of a boundary layer. It is mathematically represented by a formal
expansion

The functions w represent the smooth pa of the solution, while the functions w
represent the boundary layer: they are exponentially decreasing in x/. Michelson
proved in [M] that under the same hypothesis as in Theorem 3.1, the expansion (3.6)
was actually valid. We shall apply this result to our paicular case.

THEOREM 3.2. Let w(x, t, ) be the solution of (0.1), (2.10) (respectively, (2.20))
with a suciently smooth F. Suppose, as in eorem 3.2, that the reduced hyperbolic
problem (3.4) is well posed. en, as tends to zero, w converges to the solution u of the
hyperbolicproblem (2.11), (2.16) (respectively, (2.17)). Moreprecisely, ifml mE m3 0
and m- m2 1, we have

c(+ 3/-)(3.7) [[w(x, t, v)-u(x, t)[[m,m2,m3,
where the norm above is defined by

(3.8) Ilull = E =
ml ,m2 ,m3 ,

i=0

Remarks. (1) This result tells even more about the boundary layer" it says that
in expansion (3.6) the first term w1 is indeed the solution of the associated hyperbolic
problem, and the first term w2 vanishes: the boundary layer is "weak."

(2) Boundary condition (2.16) is actually the transparent boundary condition for
the hyperbolic problem, so that the solution of (0.1), (2.10) converges to the solution
of the Cauchy problem for (2.1).

Proofof eorem 3.2. According to Michelson [M], the following estimate holds:

< C( U + U(3/2)--m3).3.9 IIw, t, wg), t- wg)l/, y. tll.m...
We merely need to check that w) is u and w2 is zero. These terms are obtained

by substituting the expansion (3.6) into the equation and the boundary condition,
separating the scales Xl and Xl/u, and equating to zero the successive coefficients of
the resulting series"

From the equation we deduce that w1) and w2 are solutions of the following
equations:

(3.10) A(1)W(o2) + p(11)0W(o:Z-----) 0,
t(Xl//

N tgW(01)
(3.11)

Ow(l)
A(j) + F,

O Ox
and W1) and w2) are solutions of

(1).
(3.12) y. A(j) O

+ , p(jk)
Ot j=l OXj j,k=l OXj OXk
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02 (2)

A(1) 0W2) p(ll) wi

o(x,l) o(x,l)
(3.13)

02Ow{2--)l
Y A(j) Ow2--)l

2 , p(lj) 02w{)l p{jk) W
Ot j#l OXj j#l O(Xl/P)OXj j,k#l OXj OXk

with the convention thatw 0 if 1. We shall assume here the boundary conditions
(2.10) are imposed. The calculations are the same for (2.20). For Xl =0 we have

02)I r+p r+p

’o,j + ’o,j)(3 14)
O(Xl/) ,==+S=l

r+p

(3.15) :,(1}+ ,*(2} (,*(1 ,*(2}
,O,k "O,k Na "’o,j + ,,od), r+p+ 1 k n.

i,j=l

For >_- 1,

P"> LO;) /=m+l j=l

(3.16) /(1) )1 1)+ E lO,l-+ + =0,
j Xj Xj ] X

r+p

(3.17) ,+ ,2
,l. N( + r+ +1 =n.

i,j=

Let us sta with (3.10). From this form, we deduce that w2 is a linear combination
of the "exponential modes" defined in (1.6). Here w is supposed to be exponentially
decreasing in -, so that

W2) joJ e1, x 0.
j=r+p-m+l

We substitute into (3.14), remembering that for m + 1, , r+p, (,) is actually
(0_, O-). We thus get

W0,1 Wo,
j=r+p-m+l j=l i=1

This amounts to stating that there exist coecients a such that g= agoI =0. It
implies that k= agO =0, for equation (1.6) can be written

fi(loO’ + B(}Og’ + C(1O" =0,

D(O’ + g(1}O" 0.

And if aOg’
=0, then aD(}O’ =0, so that a(}Og’*

=0, and since ( is
nonsingular, the result follows. From the assumptions (0.5) on the operator Q, the
Og’s are independent, and hence the ag’s vanish for any k.

Then h =0 for r+p-m + 1 j r, and thus w2 vanishes identically in -. We
substitute into (3.14) and (3.15), which indicates that w1) is a solution of the following
problem in

Ot
A( Ou
+F,

j=l OXj

with the boundary conditions
r+p

(3.18a) Y Nltj 0,
j=l

i= re+l, , r+p,
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r+p

(3.18b) /k E N VkUj, k- r+p+ 1,. , n.
i,j

We will now prove that (3.18) implies the transparent boundary condition (2.16)
(T-lt)i- 0, m+l<_i<=n

r+p
T -la)i T’aj 2 T ij’aj + T ij’ aj.

j=l j=l j=r+p+l

In the second term of the right-hand side we substitute (3.18b)"
r+p r+p

Tlk T i-k1 E E NjlxIIkaj,
k=r+p+l k=r+p+l 1=1 j--1

k=r+p+l

r+p r+p r+p r+p r+p

Tik tik= E 2 2 Nj’T’p’Iku)- E ’. 2 Nj’Tilxlta),
k=l I=1 j=l k=l 1=1 j=l

but

r+p r+p r+p r+p r+p

Njltlk=tkj and F , NjlitkTi-klj= TIj,
1=1 k=l 1=1 j=l j=l

so that

(T-1/)i
r+p r+p., E Nj Tlataj

k=l /=1 j=l

On account of (3.18), the latter reduces to

r+p

(T-la)i E E Njlaj E TI*
l=l j=l k=l

For 1 m, corresponds to the hyperbolic pa of Q, so that=T and

(T-) =0 form+lNiNn. S

4. Application to Navier-Stokes equations. We consider here the two-dimensional
compressible Navier-Stokes equations:

(4.1a) /x \x+--0x,3 ’ div u i= 1, 2,

(4.1b) pd=-pdivu+. k+----8odivu --+ k0
,= Ox 3 Ox = Ox Ox /

do(4.1c) --p div u.
dt

Here p is the density, ui is the velocity component, p is the pressure, T is the temperature,
/ and k are the coefficients of viscosity and heat conductivity, respectively, and cv is
the specific heat at constant volume. The pressure p is related to p and T by p pRT,
where R is the gas constant. We shall introduce y as the ratio of specific heats, i.e.,
y Cp/co (recall that R =Cp- co), and the Prandtl number of the gas Pr ia,Cp/k. Pr is
supposed to be constant here. As usual d/dt=O/Ot+Ul(O/Ox)+u2(O/Ox2). We shall
assume that the artificial boundary is sufficiently far from any turbulent regime, so
that we can consider (u, p, T, p) as a small perturbation of a smooth regime (u, p, T, p).
Since in our analysis the lower-order derivatives are not of much importance, and the
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results of Michelson carry over to variable coefficients as well by freezing the coefficients,
we shall concentrate here on the case where the reference regime is constant as a
function of time and space Let us call (,/, T,/) the perturbation. It is a solution of
the following problem:

dffl+ O [ 02f1 02f1 1 02f2 ](4.2a) P dt
RT OP +pR=

OX OX OX + OX 3 0X10X2

dT
(4.2c) p+(- 1)pT div =
(4.2d) + p div 0.

dt

We shall normalize these equations by redefining / as /p and introducing the
undisturbed kinematic viscosity u I/p. So that the equations can be written in the
form (0.1)

2/
(4.3) 0U_ A(1) 0___U+A(2) 0___U+ v p(jk)-t- F(x, t),

at t)x1 Ox2 j,k=l OXj OXk

where U (/.,1 /2, )

A(1)=

i/,/2

A(2) 0

0

0

p(ll) 0

0

0

1

p(22) 0

0

0

0

p(12)
0

0

--U 0 --R
0 --//1 0

(y-1)T 0 --U

-1 0 0

0 0

-u2 -R
-(y- 1)r -u2

-1 0

0 0 0

1 0 0

0 yP71 0

0 0 0

0 0 0

i0 yP7
0 0

o o
0 0 0

0 0 0

0 0 0

They satisfy all the assumptions we made in the Introduction. We shall write here the
precise formulation for the local boundary conditions (2.20). We shall start by studying
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the eigenvalues of A(1), and recalling the corresponding boundary conditions for the
Euler equations (cf., for instance, [EM1]).

4.1. The Euler system. It is well known that the eigenvalues of A(1) are

(4.4) A=-u-c, 2 --/3 -Ul, /4 -Ul -- c.

The corresponding eigenvectors are

c 0

A 0
A2 1

(3,-1) 0

1 0
(4.5)

0 c

A3
0

A4
0

T -(-1)
-1 -1

So that A(1) is diagonalizable and the matrix " in (2.17) is

c 0 0 c

(4.6)
0 1 0 0

3,-1)T 0 T -(3,-1)T
1 0 -1 -1

and

0
A()= . A2 .-.

0
’4

The number of boundary conditions required by the system at xl 0 in 12- depends
on whether the flow is super or subsonic and the boundary is inflow or outflow, as
summarized below.

The subsonic case" lull < c.
inflow: ux<0.

A1 <0, A2, A3, A4>O, m 1:

(’-lu) O, i=2,3,4.

outflow: Ul>O.
A1, A2, A3<O, A4>O,

(--lu)4= 0.

The supersonic case: lull > c.
inflow: ul <0.

A1, A2,/3, /4 >0, m =0:

ui O, 1, 2, 3, 4.

outflow: ul > O.

A1, A2, A3, A4>O, m=4:

m=3:

3 boundary conditions.

1 boundary condition.

4 boundary conditions.

0 boundary conditions.
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The matrix ’- is given by

(4.7) --1

/1
2c

0

1

1
0

2yT
1 0

1
0

yT
1

0
2yT

1

27
0

y-1

1

23,

so that the boundary conditions are as follows.
Subsonic inflow:

c yT yp
=0,

(4.8a) /2 -"0,

TT y p

Subsonic outflow"

(4.8b)
c yT yp

Supersonic inflow"

(4.8c)

Supersonic outflow:
no boundary condition.

We reintroduced here the density p for the sake of consistency. These boundary
conditions are stable in the sense of Kreiss (see [EM1]).

4.2. The Navier-Stokes system. Here the number of boundary conditions is n-p,
where p is the number of negative eigenvalues of ). fil) reduces to -u, so that we
must distinguish only between the inflow and the outflow cases"

Inflow boundary: u < 0.

p=0:

Outflow boundary: U > 0

4 boundary conditions.

of

p 1" 3 boundary conditions.

We must determine the other part of the family (J), i.e., the 0j and (R) solutions

[p(1,)O+A(1)]O--O.

The cubic equation for 0 has an immediate root we shall call 03

(4.9) 03=ul.
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The two other roots are solutions of the quadratic equation

(4.10) -Ul(-O Ul)(aO Ul)- RT(aO 3’Ul) 0,

where, for simplicity, we set

a TP-1.

We have

3
01-[-02

5/’/1](u2_c2) 3 [a(Ul-C2/7)+4 2

0102
4 1

4 aUl

with c2- 3,RT.
Recalling that 3’ > 1, we can determine the signs of the roots. We order 07 and 02

so that 01 < 02 (01 cannot be equal to 02).
Subsonic case: 01 < 0 < 02.

Inflow case: 03 < 0;
Outflow case: 03> 0.

Supersonic case.
Inflow case: 01 < 02 < 0, 03 < 0;
Outflow case: 0 < 07 < 02, 03 > 0.

The corresponding generalized eigenvalues are

Ul

(4.11) t9’= 0

T -1) TUl/ OzO, Ul

-1

We now have all the elements to (2.20).
Subsonic inflow: rn 1, p O, r +p 3.

i- 1,2,

0

03_. 1

0

0

1"--1, 1=A1, 2=01, --’O 1, 3---03

and

0 0 ]Q_, 1

(7-1)T U1
-det ]Q (/-O1)T

where Ui (7 1) Till/(aO Ul) det N (3, 1) Tu, Uc

0

det N

+-v
0X 8 0X2

01 (film c/ TeOm ill)

(4.12a)
O T_ (’y -1) T01 [/1 c

0X ’yP- 01 U C ’y 1

-1 [Ul(1- c/ TP-/ OI Ul)) "yP-;l Ol U

This system reduces to (4.8a) when v-0.
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Subsonic outflow" m 3, p 1, r +p 4.

i--Ai, ti-Ai, i=1,2,3,

c 0 0 u
0 1 0 0

N=
y-1)T 0 T U

1 0 -1 -1

T-U1 0 U u T
1_ 0 TZ 0 0

TZ U1-TT 0 Ul+C T(u1+c)-Z
+TT 0 -c -cT

where Z yul c( U1/ T- 1). Condition (2.20) reduces to

j=l OXj j=l

or

(4.12b) ate2+ 1

OX 6 OX2

OX Z T

Again, these equations reduce to (4.8b) when v =0.
Supersonic inflow: m O, p O, r +p 3.

i Oi, ti O i, i=1,’’’,3,

and

)r__ 0 0 )r-1 1

U1 U2
Ul(Ul_ U2 -- 0

0

Ul( U1 U2)

Ul /
The boundary conditions are

OX 8 OX2 4Ul
3C2

47 T’

(4.12c)

0/2 1 0/
/,,+--p Ult2,
OX 6 OX2

y-1OX

P Ul
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If v 0, the system reduces to 1 =/2-- " ----0.
Supersonic outflow: m 4, p 1, r 4- p 4.

so that the boundary condition is

O/2 1 O
4-- O,(4.12d)
Oxl 60x2
OT

OXl

The results in 3 apply to these equations as follows.
THEOREM 4.1. The initial boundary value problem for (4.2) and the zero-order

boundary conditions (4.12) is well posed in 1-. As the viscosity v tends to zero, the
solution converges to the solution of the Euler equation with the corresponding boundary
conditions (4.8), the L- norm of the error decreases linearly in v.

Proof. We merely need to check that the reduced hyperbolic problem is well
posed, which is extremely simple here since/(1) =-Hi. The boundary condition then
reduces to fi 0 (when there is a boundary condition for fi) and the following problem"

at; o at;
--Ul U2, X0,

Ot OX OX2

=0, X =0

for Ul < 0 is obviously well posed.
Remark. In [GS] the authors introduced for the Navier-Stokes compressible

equation artificial boundary conditions by requiring them to be dissipative. Further-
more, these boundary conditions produce a weak boundary layer. Therefore Theorem
4.1 also holds in that case. We have not been able to decide whether our boundary
conditions are dissipative or not. However for more general systems or higher
dimensions, it seems difficult to extend their techniques which consist of studying the
boundary form (w, w) and matching coefficients of the boundary condition to get
the right sign. It does not allow for higher-order boundary conditions either.

5. Higher-order boundary conditions. We discussed earlier the goals of our work:
provide boundary conditions which would be (1) local and (2) consistent with the
Euler equation. A first step was made in 3 by an approximation of order zero of the
right-hand side in (2.10). We now want to increase the accuracy of our boundary
conditions. This means, from our point of view, expand first the transparent boundary
condition (2.10) up to higher order in v. By doing this, we shall keep terms like ai(s, 7),
for 1 =<i_-< m, where ai is the traveling mode defined in (1.3). These will correspond
to pseudodifferential operators of order 1 on the boundary, which are, of course, far
from being local. We thus shall in turn approximate these modes with the techniques
described in [EM]. The first realistic approximation is similar to (2.17): we shall set

7 0, and approximate the quantities in (2.7) to first order in v.
We shall restrict ourselves here to the particular case of the viscous linearized

shallow-water system, though the procedure carries over without modification to more
general systems, provided they possess a symmetrizer. This property ensures that the
eigenvalues :i for the system have an expansion (s, *1, v) (s, q)+ vx(s, q)+ O(v2),
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1 --<_ <_-- m, and :i(s, r/, v) (sri + vXi + O(v2))/v, m + 1 <- <-_ r+p, with a corresponding
expansion for the eigenvectors .

Let us consider the shallow-water equations, linearized about the steady-state
(u, 0).

OW A(1) OW_FA(2) Ow (p(ll) 021’tl 02w( 1) -+- V p(22)
O OX Ox2 k Ox

-J- x22J
where w (Ul,//2, (4))"

U 0 -/U/(5.2) A(1)-- 0 -U
-c2 0

(5.3) A2)= 0

me2

(5.4) p(ll) p(22) 1

0

with c > 0.
In our notation of 0, r 2,/5(iJ) 6012 and/(1) U. The eigenvalues of A(1) are

(5.5a) ---U-c, t2--U i3---U---c
and the corresponding eigenvectors are

(5.5b) A1-- A2- A3- 0

The solutions of (P(a’I)O+A())O=O are

U2
C
2

(5.6a) 01 , 02 U,
U

and the corresponding generalized eigenvectors are

(5.6b) 1 12
---17

2

The signs of the A’s and O’s depend on whether the flow is sub or supersonic, and
ingoing or outgoing, as in the case of the full Navier-Stokes equations.

We shall approximate the generalized eigenvalues and eigenvectors :i(s, 0, v) and
(s, 0, v) up to first order in v.

(5.7a)
sC(s, v)= ffi(s) + vX,s2+ O(v2),

$

’(s)

’(s, , =*+ ,Zs+O(,,
(5.7b)

i= A.

For l<--_i<-m
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For m+l<-i<-r+p:

1
’(s. .)=- .+x._s+o(.).

(5.8a)
’i 0i_,,,

.’(s. ) ,’+ _’-s + o().
(5.8b) i .__oi-m

(in the formulas above, the variable r/, being zero, has been omitted).
The X’s and E’s are obtained by substitution of the expressions above in formula

(11) for r/=0:
(:A(1) + p2p(ll) sI)d O.

To h x, h2, h3 are associated three values of sc and vectors :
S /)S

2

" 1 2; o(,,,

S PS
2

(5.9a) 2-12 132
+O(v2),

S /2S
2

’- x 2x

()1= a’+ vs 0 + O( v2) 0 + O(v2),
0 c

(5.9b) 2 A2+ O(v2) + O(v2),

)3 A3 + vs 0 + O(/]2) 0 -- O(0 --c

and to 01, 02 are associated two values of s and (I)"

, U2- c2 U2..4y c2
1 --/.T"[- S

U( U2
C2)

-[- O(

: t /(5.10a) (I)1 01 -I" VS 0 + O(/,,2)
c2/(U-c2)

0 + O(v2),
-c2(1 vs/(U2-c2))

U s
=--+--+ 0(,,),

v U

(5.10b)
(2 02 + O( v2) + O(
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We cannot go any further without dividing the analysis into four cases: subsonic or
supersonic, inflow or outflow.

--Subsonic inflow case: -c < U O, p- O.

A (0, A2, A30" m 1,

01>0, 02<0.
p is equal to zero. We have three boundary conditions

=, =,1,

By a zero-order approximation of the ’s and ’s, we get the first set of approximated
boundary conditions:

Ox1

(5.11)o Ou
u- Uu2 =0,
OXl

CUl =0.

By a first-order approximation in u, we obtain a new set of boundary conditions, which
contains differentiation in time:

(5.11)1

OX U+ c Ot

OU2 1] OU2
v= Uu2+m
OX U Ot

(0 Clg

2(U+ c) Ot

--Subsonic outflow case: 0 < U < c, p 1.

A1,A2<O, A3>O: rn=2,

01 < 0, 02 > 0.

The generalized eigenvalues and eigenvectors with negative real parts (when Re s > 0)
are

The analogue to (5.11)o becomes

0U C- U
(5.12)o v (--CUl -- (9),

Oxl c

and the first-order boundary condition is

t9//1 C- U
1, (-- CU + 0)+
OX C

(5.12)1
0U2 / Oil2
OX U Ot

(I)3 $1

OU2
l O,
OXl

v 0

2c2(c U) O (-c2ul + Uo),
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In the supersonic case, the calculations are much easier.
--Supersonic inflow case" U <-c, p O.

A1, A2, A3>0" m=0,

01, 02<0.
We have three boundary conditions:

U2 20U --C
12
0X U

(5.13)o 12= Uu2,
OXl

2c
(= uUl,

and

(5.13)1

OU U2_c2

12 --Ul+ V
OX U

OU2 12 OU2

OXl U Ot

C
2

12C
2 0U

(4) --- U14 U( U2- c2) Ot

mSupersonic outflow case" U > c, p- 1.

A1, A2, A3 (0:

01, 02>0.
Here we have two boundary conditions:

(5.14)o

(5.14)1

in this case"

Subsonic inflow case:

(5.15) u2=0, (--CU

Subsonic outflow case:

(5.16) o-cul =0;

Supersonic inflow case:

(5.17) ul= u2= o =0;

Supersonic outflow case:

(5.18 no boundary conditions.

The analogue of Theorem 4.1 holds.

We shall not repeat here the calculations for the inviscid case, i.e., 12 0. They are
identical to those for the full Euler equations. The local boundary condition (2.17) is

0U 0U2v=O, v=O,

12 U2 c
(- UUl -]- ( ),

Oxl Ot

OU2 120U2

Oxl U Ot
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THEOREM 5.1. The initial boundary value problemfor (5.1) and any ofthe boundary
conditions (5.11 / i)o, 0, , 3 is well posed in 12-. As the viscosity 12 tends to zero,
the solution converges to the solution of the inviscid equation with the corresponding
boundary condition (5.14+ i), and the L2-norm of the error decreases as 0(12).

The proof is exactly the same as for Theorem 4.1.
Remark. In this case, the well posedness in the classical sense can be expressed

by energy estimates, using the variational formula (1.14). Let us denote by E(t) the
quantity defined by

(5.19) E(t) = _[c2(u21+u)+2] dx

and the analogue on F"

Er(t) = [c2(u+u)+2] dx2.

The energy equality then reads

dE

dt
+ v (Vu +Vu) dx

(5.21)
UEr(t) + c2 vu

Ox

It can be easily checked in each case that the quantity integrated on F is negative.
Unfortunately, the decoupling conditions prescribed in [M] to obtain the well

posedness and the error estimates do not apply to our higher-order boundary conditions
(5.11+ i)1. We have not been able to establish a priori estimates in this case either.
However, the formal expansion (3.6) is still available. It is an easy matter to check
that for the higher-order boundary conditions (5.11 + i)1, the next term in the expansion
vanishes. For instance, in the subsonic inflow case, it is due to the fact that (O/Oxl +
1/( U + c)O/Ot)(W(o1)) -’0. So the boundary layer is weaker than in the former case, and
the solution of the corresponding initial boundary value problem convergesformally to the
solution of the inviscid equation with boundary condition (5.14 + i), the error being O(u2).

Remark. Consider the boundary conditions derived from (5.11+ i)1 in the four
cases by neglecting certain terms:

Otl 12 OU

OX U+ c Ot

Oll C- U
(5.23) 12

0X C

(5.24)

0/,/1 U2- c2
12

Otl2 120U2

OXl U O

Oil2 12 O 2

OX U Ot

U2 -.]- C
2 OU

U U2 c2) 0

2
C

(, --’ 1,/1,

(5.25)
0/,/1

Ox
O tl2 120tl2

Ox U Ot
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These boundary conditions are well posed in the classical sense: we have neglected
the terms which could prevent the energy from decreasing in time. Furthermore, they
still give an approximation to the inviscid problem with boundary conditions (5.14 + i)
in O(,2)" the relevant equations are unchanged. However, the last statement remains
formal, since the decoupling conditions still do not hold.

So far we have considered approximations to the inviscid equations with the
"zero-order" boundary conditions (2.17), which are those used in practice. It is tempting
to try to approximate the Euler problem better. This adds new important difficulties:
as pointed out in [EM] the choice of the "good" boundary condition in the hyperbolic
case is not canonical, and furthermore, it is not clear whether or not it is well posed
in the sense of Kreiss. An analysis of such boundary conditions, together with numerical
experiments, will be presented in a forthcoming paper.
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