One-way operators, absorbing boundary conditions
and domain decomposition for wave propagation

Laurence HALPERN
and
Adib RAHMOUNI

Département de Mathématiques, Institut Galilée
Université Paris 13
93430 Villetaneuse
France

Abstract

We present, the notion of paraxial operators and applications to absorbing boundary
conditions and domain decomposition for hyperbolic problems. We also describe the new
concept of perfectly matched layers.

1 Introduction

We treat here the question of computing the solution of a problem in a large, possibly infinite,
domain. The applications are numerous: geophysics, aeronautics, oceanography ... The tool
for large problems is domain decomposition, where different problems with different scales
and/or different numerical discretization methods can be used in different subdomains. Many
of these problems are also posed in infinite domains. In some cases the equation in the do-
main is replaced by a simpler one which for instance represents the propagation in a preferred
direction: this leads to the notion of paraxial equations. In any case, the computational
domain has to be bounded in all directions. One has to introduce fictitious boundaries with
so-called absorbing or farfield boundary conditions. There is a strong connection between
these notions, as a transparent boundary operator is a paraxial operator, as we shall demon-
strate here. We shall also demonstrate that the optimal transmission condition between two
subdomains in domain decomposition is produced by the paraxial operator. This will provide
the link between these three notions.

The guiding line here is the notion of wave propagation. In Section 2 we start with
the transport equation, where we introduce the notions of finite speed of propagation, well-
posedness, numerical schemes, and the necessity of adding extra boundary conditions. In
Section 3 we turn to the one-dimensional wave equation, where we introduce the concepts
of paraxial operators, absorbing boundary conditions and optimal transmission conditions
for domain decomposition. A numerical scheme is described, and a domain decomposition
procedure is applied to heterogeneous media. In Section 4 we give precise definitions for the
three notions for the wave equation in two dimensions, and we highlight the links between
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them. We give some preliminary results on domain decomposition with optimal transmission

conditions in this case.

In the last five years, there has been a tremendous activity about a new notion of perfectly
matched layers, which is very competitive to absorbing boundary conditions for linear constant
coefficient hyperbolic models. Therefore the last section is devoted to the description of this

notion, and several improvements.
All the references are to be found in the body of the text.
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2 The one-dimensional transport equation

2.1 The continuous problem

Let us consider the scalar transport equation

0 0

a_:: + a(x)a—z —f on Rx(0,T), (2.1)
where a is a continuous function of z with a definite sign: « is either positive or negative in
the domain. We can write (2.1) as

d

%u(ﬂi(t),t) = f(llj(t),t), (22)
where z(t) is defined as the characteristic curve
dx
gr _ 2.3
il (2.3)

This expresses the fact that the solution propagates along the characteristics curves. If the
velocity a is a constant, they are straight lines as described in Fig. 1.

If a is a constant, there are special solutions of this equation, the plane waves. They are
given by

u(x,t) _ ei(kx—wt)'

Such a function is a solution of the equation if and only if w and k are related through the
dispersion relation
w = ak.

For general waves, the function v,(k) = w/k is called the phase velocity. Here the dispersion
relation is a linear function of k: the model is non-dispersive.
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a>0 a<0

r — at x — at

Figure 1: Characteristic lines for a constant velocity a.

2.1.1 The Cauchy problem
We introduce now the Cauchy problem by adding initial data
u(z,0) =u®(z) on R (2.4)
We define the well-posedness in the sense of Hadamard: a problem is well-posed if
e it has a smooth solution;
e the solution is unique;
e the solution depends continuously on the data.

The following theorem asserts that the Cauchy problem for the transport equation is well-
posed:

2.1 Theorem Assume that the initial velocity u(®) is in L?(R) and the right-hand side f is in

L?(0,T; L*(R)). Then problem (2.1), (2.4) has a unique solution u in L*(0,T; L?(R)). This
solution is given on the characteristic curves (2.3) by

Mﬂﬁﬂ:um@®»+lf@@£M& (2.5)

In particular, if a is constant we have

t
w(z,t) = ul®(z — at) + /0 flzx—a(t—s),s)ds.

Proof Using (2.2) and the theory of differential equations, a unique characteristic exists
through any given point (z,t) and we obtain (2.5). O

This result shows that the solution u at a point (x,t) depends only on the values of the
data along the characteristic curve. It proves that the solution propagates with speed a: if at
time O the solution vanishes outside the interval [e, 3], then at any time ¢ the solution for
f := 0 vanishes outside the interval [ + a.t, B + a.t] with a, = sup,cg a(z).
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2.1.2 The initial boundary value problem

We shall suppose here the velocity a to be constant, and introduce the convection equation
on the half-line R :

ou ou : +
5 —l—a% =f in R" x(0,T), (2.6)
with the initial data
u(z,0) =u’(z) in RT, (2.7)

If a is negative, the characteristics leave the domain, the solution travels to the left, so we do
not need a condition on the boundary & = 0. In the case where @ is positive, the characteristics
enter the domain, the solution travels to the right, so we need a boundary condition at z = 0.
This is illustrated in Fig. 2.

($7t) a<0

z T — at T

Tz —at
Figure 2: Propagation on the half-line.
The simplest boundary condition is to prescribe the solution on the boundary, that is,
u(0,t) =g(t) on (0,T), (2.8)
and the related wnitial boundary value problem is well-posed:
2.2 Theorem If a is negative, Problem (2.6), (2.7) admits a unique solution

u(z,t) = u’(z — at).

If a is positive, Problem (2.6), (2.7) with boundary condition (2.8) has a unique solution

(o, t) = u(x —at)  for z > at,
" gt —x/a)  for x < at.

The initial boundary value problem is well-posed in L*(0,T;L?*(R,)). Furthermore, if the
compatibility condition
u’(0) = g(0)

is satisfied, then it is well-posed in the space of continuous functions.
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2.2 The discrete algorithm

We are given a mesh in time and space, with size At and Az; the mesh points in space are
z; = jAz, and in time they are ¢{" = nAt. As usual we denote by u] an approximation of
u(zj,t").

2.2.1 Examples
The simplest scheme is the upwind scheme (Fig. 3) given by

u Tt — u? —ul_

J J J J
NN

It is of order one in time and in space. For a better accuracy in time and space, the leap-frog
scheme is very classical (Fig. 4). It is of order 2 in time and space, but it is centered, which
can alter the dispersion properties,

= 0. (2.9)

n+1 n—1
o e A = Sl (2.10)
2At 2Ax ) '
t
Y
Az T

Figure 3: Upwind scheme (2.9).

At

Azx T

Figure 4: Leap-frog scheme (2.10).

2.2.2 The Cauchy problem. Propagation, stability, convergence

In Fig. 5, the solid line represents the numerical cone of dependence for the upwind scheme
(2.9), while the dashed lined represents the characteristic line. Taking an initial value vanish-
ing at every point but one on the grid shows that in the case where a is larger than Ax/At,
the scheme cannot converge.
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t t

> X < X%

Figure 5: Cone of dependence for the upwind scheme (2.9) (dashed) together with the char-
acteristic line for the equation (solid).

So we have the following:

2.3 Theorem If a three-points numerical scheme converges, then the following CFL condition

holds :
At
= |a|— < 1. 2.11
v =lal5 S (2.11)

Here CFL is the classical shorthand for the three mathematicians Courant-Friedrichs-Lewy
[35]. As for stability, we have the following definition. We shall call uj the sequence (ul);er.

2.4 Definition The scheme is stable if there exists a real number « such that, for every
meshsize in time At, and space Az, we have, for any time step n, that

luplliz < Ce®™lup 2.

A simple characterization is given by a discrete Fourier transform in space: for any real
number x we consider simple waves of the type

uf =" e, (2.12)
Inserting (2.12) into the scheme, we get for a one step method in time
4"t = g(y, xAz)a". (2.13)

The function g is the amplification factor, and as (2.13) suggests, it depends only on two
quantities, v and xAz. For the upwind scheme (2.9), for instance, we have

9(7,¢) =1—~(1 —e).

For a second order scheme like the leapfrog scheme (2.10), there is an amplification matrix

,an+1 "

For instance, for the leapfrog scheme we have

6= (1 ).
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Then the scheme is stable for step sizes At and Az if and only if there exists a real number
0 such that for any ¢ we have
IG (7, Q) < &2,

where || - || is the usual euclidian norm on the space of matrices. This leads to a condition
on 7. For instance, for the two schemes above, the scheme is stable under the strict CFL
condition. If we go to higher orders in time and space, the stability condition becomes more
restrictive. For details on these notions see [35].

Stability and consistency (i.e. order greater than one) are the key notions for a linear
scheme, due to the Lax theorem:

Stability + consistency <= convergence.

2.2.3 The initial boundary value problem

We consider a scheme with homogeneous data and initial values, and a discrete inhomogeneous
boundary condition.

We insert u} = az"rJ into the homogeneous equation. Then we get the dispersion relation
between z and 7, which we solve as an equation in the variable r as a function of z. We now
insert u} into the heterogeneous boundary condition. We get an equation like £ (z,7)a = g.
If the preceding equation is invertible for all z such that |z| > 1, it is called GKS stable (for
Gustafsson, Kreiss and Sundstrom). These notions of stability are explained in detail in the
book by Strikwerda [35].

This notion of stability is stronger than the usual L? stability, because it implies estimates
on the boundary. Some boundary conditions can be L? stable, but not GKS stable. The
strength of the condition comes from the fact that it provides the algebraic criterium cited
above.

2.2.4 Transparent boundary conditions

We suppose here that a > 0, and we consider the problem on the half-line > 0, with a
boundary condition g(¢) at z = 0. Suppose we want to compute the solution only on the
domain of interest 10, A[. Since the solution propagates to the right, Theorem 2.2 gives the
answer : we do not need any information on the boundary. We introduce now a discretized
problem. Suppose it is the upwind scheme (2.9). Fig. 6 shows that we do not need any
information on the boundary z = A either.

n+1 Py

=
1

A=JAz
Figure 6: Upwind scheme (2.9) on a right boundary.

The situation is totally different if we deal with centered schemes, as illustrated in Fig. 7:
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n+1

n Dl e

A=JAx
Figure 7: Leap-frog scheme (2.10) on the right boundary.
At time n+ 1, we do not have enough information to compute u?“. The usual procedures
are either to use an upwind scheme on the boundary, to extrapolate, or to create fictitious
points outside the domain [18]. The constraints are the stability of the discrete initial bound-

ary value problem, and the consistency with the equation. Apart from the important work by
B. Gustafsson in [18] on the stability, we do not know of a general analysis of this problem.

3 The one-dimensional wave equation

3.1 The homogeneous case
Consider the one-dimensional wave equation with a constant velocity c:

1 %0 o

C_QW — 8;52 = f in Rx (O,T) (31)

3.1.1 Propagation properties

If the right-hand side vanishes, f = 0, the general solution is given by
u(z,t) = F(z + ct) + G(z — ct), (3.2)

where F' and G are arbitrary functions. The first term (x,t) — F(x + ct) propagates to the
left, along the characteristics with slope —c:

(12 - 2) Flo+et) =0, (33)

while the second term (z,t) — G(x — ct) propagates to the right, along the characteristics
with slope +c:

10 0
(E& + %> G(IL‘ - Ct) =0. (34)
Let us now introduce the plane waves
u(ac,t) — ez'(kmfwt).

The dispersion relation is given by
w? = k2.
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3.1.2 The Cauchy problem

We now add initial data, given by an initial displacement and an initial velocity,

ou

u(xﬂo) = U(O)(w)’ E

(z,0) = uV(2) (3.5)

The solution of (3.1), (3.5) can be given explicitely by the d’Alembert formula (3.6),

u(z, t) = ;[ © )($+ct) +ul®(z — ct)]
1 [otet (3.6)

+— ¢)d¢ + = / f(¢,T)d¢dr.
czt

2c r—ct

Fig. 8 represents the cone of dependence for the solution. It shows that the solution at
time ¢ and point « depends only on the data in the cone Cy ;.

x —ct T+ ct

Figure 8: Cone of dependence for point (z,t).

Fig. 9 illustrates the propagation for zero right-hand side f and uY and initial values
given by a gaussian function

uw(z) =e® (3.7)

The velocity is equal to 1. In the beginning the signal splits, and then each part goes its own
way.
A direct consequence of the d’Alembert formula (3.6) is the

3.1 Theorem The solution of the wave equation propagates with speed c: if the initial data
vanish outside [a,b], for any time t the solution u(.,t) vanishes outside [a — ct,b + ct].

An illustration is given by the domain of influence D in Fig. 10.

3.1.3 The initial boundary value problem

We consider the wave equation on the half-line (X, 4-co[ with initial values u(®) and u(!) and
vanishing right-hand side. The diagram in Fig. 11 is very illuminating. It shows the modified
cone of dependence.
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t=2 t=4 t=6 t=1
Figure 9: Evolution of the data (3.7).
t
a— ct - b -b+ct
D
x
a b
Figure 10: Domain of influence.
t
X<z<X+ct
r=X+ct
x>X+ct
x
X

Figure 11: Domain of dependence for the problem on (X, +oc[.

Asin the case of the transport equation, the need for a boundary condition appears clearly.
It is given for instance by an inhomogeneous Dirichlet boundary condition at z = X, which
amounts to fixing the displacement of the rope at the extremity,

u(X,t) =g(t) for te(0,T).
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The initial boundary value problem is given by

1 0%u  0%u .
C_QW_@_O mn (X,+OO)X(0,T),
u('7 0) = u(O), %(7 0) = u(l) on (Xv —|—OO), (38)
u(X,t) =g(t) for te (0,7).
3.2 Theorem Problem (3.8) has a unique solution given by the formula
( 1 T+ct
§[u(0)(m +ct) + u®(z — ct)] + % / uM(C)d¢  if z—ct> X,
CJx—ct
w(z,t) = 4 %[u“’) (z + ct) — uV(2X — (z — ct))] (3.9)
z+ct _ if$—Ct<X.
L u(l)(C)dC—l—g(t—i-X x)
L 2c 2X —(z—ct)

In Fig. 12 we illustrate the principle of images: the Dirichlet boundary condition plays
the role of a mirror.

t
(@,%) r=X+ct

P e x

T —ct X 2X—-(x—ct) z+ct

Figure 12: Principle of images on (X, +00).

Fig. 13 represents the reflection by a homogeneous Dirichlet boundary condition on the
left for the same shape of initial value u(®(z) = e=3(#=2° Of course we can write the same
formulae for the problems on (—o0, X) and (X,Y).

Consider now another boundary condition, which is closely related to domain decomposi-
tion and transparent boundary conditions, and will be useful in the sequel. We consider the
half-line (X, +o00), with boundary condition at z = X given by

ou Ou

<a§ + %> (X, 1) = g(2). (3.10)

In order to make the notations lighter, we shall consider here the initial data to be zero. With
the same techniques as before we obtain

u(z,t) = F(z + ct) + G(z — ct),
with, on the one hand,

F'(z) =G'(z) =0 forall z> X, (3.11)
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LN\

Figure 13: Complete reflection by a Dirichlet boundary condition.

and, on the other hand,
(ac+ 1)F'(X +ct) + (—ac+ 1)G'(X —ct) = g(t) forall t>0
which by (3.11) gives
(—ac+1)G'"(X —ct) =g(t) forall t>0.

If « is different from 1/¢, this equation can be solved modulo an additive constant :

X _
G(z) = L / g(%) dn+C forall z < X.

ac—1

The solution of the initial boundary value problem with boundary condition (3.10) is defined
modulo an additive constant C' by

0, x—ct> X,
u(z,t) = 1 X X —
(1) / g(—n> dn+C, z—ct<X.
—ct C

ac—1
The constant C' is determined if we require the solution to be continuous

0, z—ct>X,

u(z,t) = 1 X X —
(1) / g(—n>dn, x —ct < X.
T—ct c

ac—1

In the same way, the continuous solution of the wave equation on (—oo, X) with boundary
condition at x = X given by

(95 +52) (X0 =0
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u(z,t) = 1
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Tz +ct <X,
z+ct > X.

T+ct - X
/ b2 dn,
Be+1 Jx c

On an interval (a,b) with boundary conditions

the continuous solution with zero initial values is

(0, z—ct>aand z+ct <b,
ac171 ;Ctg(a ”)dn, x—ct<aandz+ct <D,
unt) = ﬁc_l_lf:”d — b) dn, x—ct>aand x +ct > b,
(o o 9(5 d77+,3c+1 SRy dn, o —ct < aand  +ct > b.

3.1.4 Transparent boundary condition

Suppose the initial data are compactly supported in (a,b). Due to (3.2)-(3.4), we have

10u Ou
(cg— 8_95) (a,t) =0,

10u Ou
(08t+8 >(bt)

We now introduce the reflection coefficient. A plane wave propagating to the right is given
by Ul = e@@=¢t)  For a given boundary condition BC at z = 0, the reflected wave is
UR = Re™(@+ct) if the sum satisfies the boundary condition BC:

(3.12)

(3.13)

BC(U' +U®) =o.

Table 1 gives the reflection coefficient for various boundary conditions. It shows that Neumann
and Dirichlet are perfectly reflecting, and the transparent boundary condition (3.13) is actually
not reflecting at all. It also shows a family of absorbing boundary conditions (i.e. such that
the reflection coefficient is smaller than 1) with positive parameter £.

3.1.5 Domain decomposition

For evolution problems, classical methods are based either on explicit schemes, which implies
communication at every time step, or on implicit schemes, which gives an elliptic equation to
solve at every time step [29, 25]. In both cases it is difficult to use a varying time step for
different parts of the domain. However, for the wave equation it is often desirable to choose
different time steps in different physical domains. The goals of our strategy are the following:
to reduce the communications (and thus the costs), to use non-conformal discretization, and to
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Dirichlet boundary condition u =20 R=-1
. ou
Neumann boundary condition 9 = 0 R=1
x
1—
Absorbing boundary condition g% % =0| R= %
10 0
Transparent boundary condition el + g _ 0 R=0
cot O

Table 1: Reflection coefficient for various boundary conditions.

be able to couple different codes. We will build a domain decomposition algorithm such that
it works with or without overlap, is global in time, easy to implement, and the convergence
is optimal. As we now show, the tool is the transparent boundary condition. For details in
this section see [17, 16].

The straightforward extension of the Schwarz algorithm We present the algorithm
in the case of two subdomains, ; = (—o0, L) and Q9 = (0,400). At step n, we solve two
subproblems in ; x (0,7), with Dirichlet data on the boundary given by the previous step
in the other domain. The solution in €; x (0,7") at step n is called u}'. The classical Schwarz
algorithm extended to space-time domains is then given by:

1 2 2 \
( o _9 >u?:finQiX(O,T)fori:1,2,

2ot da?
with initial data for ¢ = 1,2:
n
ul(.,0) = w9 in Q;, 88%(.,0) —uW in 0, 3 (3.14)

and transmission conditions:

uM(L,.) = ul NL,.), u3(0,.) =u} 0,.) in (0,T).

V

3.3 Theorem For the straightforward extension (3.14) of the Schwarz algorithm, convergence
is achieved in a finite number of iterations, n > Tc/L.

Proof The proof can be found in [15], but we describe it here for clarity. Consider the errors
U» = u’ — u. They satisfy the system (3.14) with zero data f and zero initial values. Using

formula (3.9), we have

for z —ct > 0, U;“(x,t) =0,
3.15
for x — ct <0, U§+1($,t):U{1 (t—§>, ( )
and

for x +ct < L, UPtH(z,t) =0,

L — 3.16
for x +ct > L, UMYz, t) = U (t— $> (3.16)
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U3 =0 /
S Us =0~
U =0 /U/22: T =ct
rz+ct =1L \>\/
1 TN 1
0 L

Figure 14: Evolution of the Schwarz algorithm with Dirichlet transmission conditions.

We can now read the end of the proof on Fig. 14 using (3.15) and (3.16). O

We illustrate this behaviour by an example (¢ = 1, T' = 3). Fig. 15 shows the exact
solution, Figs. 16—-18 the first five iterates for L = 0.4.

Fig. 19 presents the convergence history in this example for two values of the overlap L =
0.4 and L = 0.2. According to Theorem 3.3, the convergence is achieved for n > 3/0.4 = 7.5,

resp. n > 3/0.2 = 15.

t=8/3

t=10/3

Figure 15: Exact solution.
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. . .
. - -
. - .
- - -
- . -
—— s ]
t=2/3 t=4/3 t=2
. . .
; ; M
. . .
. . .
m m m
/’ 7
. | . | .
0.2 -0.2| “ 0.2
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™ 04 H 04 \
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Figure 16: First iteration (dash-dot) u} and second iteration (dashed) w2 for the Dirichlet
transmission conditions together with the exact solution (solid).

. . .

; ; ;

: : :

§ § §

. . . / \

U U

. . .

N i i

i N i

; N ;

. N .

T
t=2/3 t=4/3 t=2

. . .

. . .

: : :

§ § §

. . .

. . .

02| 02| 4 02|

03] -03 Y 03]

0.4 -0.4] k 0.4

. N .

T
t=8/3 t=10/3 t=4

Figure 17: Third iteration (dash-dot) u$ and fourth iteration (dashed) uj for the Dirichlet
transmission conditions together with the exact solution (solid).
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o 1 2 s s

t=8/3

2 3

t=10/3

Figure 18: Fifth iteration (dash-dot) u} and sixth iteration (dashed) u§ for the Dirichlet

transmission conditions together with the exact solution (solid).

Error

18 20

Figure 19: Convergence history for the Schwarz algorithm applied to the wave equation: error

versus number of iterations.
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3.1.6 The optimal Schwarz algorithm: transparent transmission condition

Note that by (3.15) and (3.16), for any transmission conditions, the error U* on the left is a
function of x — ct, while the error U3’ on the right is a function of  + ¢t. This in turn implies
the following identities for n > 1 and any positive time:

1
(5 + 33 ) VB (ED =0,

ox cOot
0 10 n B

This observation leads to the following important

3.4 Theorem The transmission conditions defined by

o 10\ , o 10\
(8_m+5§> uf M (L, 1) = (&Jrza) uy (L, t),
o 19\ , o 19\ ,
(% _E&> ust(0,4) = (@ - E&) ut (0,2),

lead to well-posed initial boundary value problems even without overlap and they are optimal:
convergence in the Schwarz algorithm with these transmission conditions is achieved in two
iterations, i.e., uf is identical to u in ;.

An example without overlap The next example shows the convergence to the accuracy
of the numerical scheme without overlap. The velocity is ¢ = 1, the computation is done on
(0,7) with 7' = 2. The initial data are u(z,0) = 0, du(z,0) = —100(0.5 — z)e 00-5-2)*,
The domain (0,2) is divided into two subdomains (0,1) and (1,2). The initial guess (u)),
1 = 1,2, is naturally chosen to be 0. The scheme is a second order finite volume scheme.

grid error after 2 iterations | discretization error
50 x 50 2.6128e — 04 2.1515e — 02
100 x 100 2.7305e — 05 4.9472e — 03
200 x 200 3.2361e — 06 1.2218e — 03
400 x 400 3.9852e — 07 3.0321e — 04
800 x 800 4.9532e — 08 7.5567e — 05

Table 2: Convergence in two iterations to the accuracy of the numerical scheme.

3.2 The heterogeneous case

We consider now a variable velocity ¢(x). We suppose ¢ to be positive, and such that there
exist two positive real numbers ¢, and ¢* satisfying

. <c(z) <c*, ae in R
The wave equation is now

1 0%u  O%*u

WW_W:f in R x (0,7T). (3.17)
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3.2.1 Energy estimates and well-posedness

We first give an existence result in Sobolev spaces :

3.5 Theorem If u(® is in H'(R), u(V) is in L?(R) and f is in L%(0,T; L?(R)), then there
exists a unique solution u in H'(0,T; L*(R)) N L?(0,T; H'(R)) to (3.5), (3.17). Moreover u
is in C°(0,T; L?(R)).

The complete proof of the theorem is beyond the scope of these lectures. It relies on the
use of a finite difference scheme, through energy estimates:

3.6 Lemma Let u be a smooth solution of (3.17). Defining the total energy at time t by

£(t) :/Re(x,t)dx, ez, 1) :% (%)2 %(%)2,

we have the energy identity
0
t) = t)—d
)= [ G ds

In particular, without external forces (i.e. f =0), the energy is preserved in time.

In order to obtain the energy, we multiply the equation by du/0t and integrate in space
on R.

3.7 Remark The solution of the wave equation is in L?(0,T) for any finite time T but not
in L2(0, 400).

3.2.2 Propagation properties

In a heterogeneous medium there is no explicit formula like the d’Alembert formula. However,
one can still give a result for the finite speed of propagation:

3.8 Theorem The solution of (3.17) with zero right-hand side propagates with at most the
velocity ¢* = sup,cg c(z); if the initial conditions vanish outside [a,b], then for any time t the
solution vanishes outside [a — c*t,b + c*t].

Proof Let V be a positive real number. We introduce the energy on the moving half-line
(b+ Vi, +00)

+o0
Ev(t) = /b e(z,t)dz.

+Vi

Taking the derivative in time we get

L. /mﬁ( ) dz — Ve(b+ Vi, 1)
&V JrVtaea: x e )

We handle the first time by using the equation:

/+ooa( t)d _/+oo 1 %@4_%82“ p
T = Josve le@?2 0t 02 " 9z otox | M
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By Green’s formula this transforms to

o9 oo 1 0%u  0%u\ Ou ou ou
/bv+Vt &e(x,t) dr = /b+Vt <—c(x)2 W - W) . E dr — E(b—i_ Vt,t) . %(b—F Vt,t)
And finally we obtain

d 1 du\? 1 [0u\? ou Ou

&)= -V |—— = (=) | -= =V b+vte).

v ) { 202(b+Vt)(8t> +2(8x>] ot 3$}( VY
The right-hand side is a quadratic form in the two variables du/0t and Ou/0z, whose dis-
criminant is 1 — (V/e(b + Vt))2. Thus, for any V such that V' > ¢*, we have

d
—&v(t) <0
dt V( ) )
which can be rewritten as
“+00 +00
/ e(z,t)dr S/ e(z,0) dx.
b+Vt b

The quantity on the right vanishes, thus the quantity on the left vanishes as well. The same
proof can be done on (—o00,a), which concludes the proof of the theorem. O

3.2.3 Transparent boundary condition

Here the decomposition of the solution in a part propagating to the right and a part propa-
gating to the left becomes much more intricate. One has to introduce the theory of pseudo-
differential operators, which is a very powerful but heavy tool. Instead, we shall use a PDE
approach to the transparent boundary condition. We assume the data to be compactly sup-
ported in R_. Then the problem

1 0%u  O%*u .
—02($)W—w:f mn RX(O,T),
u(-,0) = u® ,%(-,0) =u) in R

is equivalent to

(1 0%u  Q%u .
mw—@:f in R_ X(O,T),

u(.,0) = w0, %( ,0) = u in R,
ou ou _
L %(Oat) - K+(0)E(O,t) =0 in (OaT)’

where the transparent operator at point 0, K (0), is defined using the exterior problem

(1 9w  *w

c2(z) ot  Ox?
0

§ w(-0)=0, 22

ot
ow .
E(O’ J)=g in (0,7).

=0 in Ry x(0,7),

(,0)=0 in Ry, (3.18)

\
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Then the operator K, (0) is defined in a unique fashion by

K. (0) zg—Z(o,-) in (0,7). (3.19)

For general velocities, this operator cannot be written explicitly. However, when used in the
context of absorbing boundary conditions, the velocity is constant in Ry, equal to ¢, and
the operator reduces to the local operator (—1/ct)(9/8t). In this case we get the transparent
boundary as

ou 1 ou
3_$(0’t) + c—+§(0,t) = 0.

3.2.4 Domain decomposition

We cut the spatial domain R into I numerical domains §; = (a;,aiy1), 1 <@ <1, aj < a; for

j <t1and ag = —o0, aj41 = oo as described in Fig. 20.
t
9%
a; i1 €T
By B

Figure 20: Decomposition into numerical domains.

We introduce the Schwarz algorithm with general transmission conditions

(Wlx)att o aﬁl') (U;H_l) = f(xat)a S Qi, te (O,T),
Bi(un‘kl) — l’)’f(ur’;l)7 r=a; t€ (0,T)7 (320)

1 7
Z+1)7 $:az+1, tE(O,T)

The optimal choice for Bii is the transparent boundary operators:

3.9 Theorem The algorithm converges in I iterations on (0,T) if the operators are given by

BT = (8, — K4 (a:)dy),
B:_ = (6,5 — K_(ai+1)8t).

where the K1 (a;) are the transparent operators defined in (3.18) and (3.19).

In the case of a physical medium consisting of two media with constant velocities as in
Fig. 21, O = R_ with velocity ¢;, Oy = R, with velocity ¢z, the operators can be written
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explicitly. For example,

1
_g(t)v xo € 01
‘1 cot
Ko =1 | 32
= g(t) +2 Z rRg(t — 2kzo/c2)), xo € Os.
2 k=1

Figure 21: Physical and numerical domains.

We show now an example of convergence in three iterations for three numerical subdo-
mains. The data are given in Table 3.

Initial data u(z,0) = 0, %(m, 0) = —20(4 — z)e 0(4—2)*,

Physical domains: (7 = R_ with velocity ¢; = 2, Oy = Ry with velocity co = 1.
Numerical domains: 1 = (—o00,1), Q9 = (1,3), Q3 = (3, +00).

Time domain (0, 8).

Table 3: An example with global transmission conditions.

Fig. 22 shows the convergence history.

10°

o'

Error

[

Figure 22: Error history for the optimal global transmission conditions.

Fig. 23 describes the iterates in the algorithm.
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T
Al

T

first iteration second iteration third iteration

Figure 23: Convergence in three iterations for the example in Table 3.

One can actually prove that for sufficiently small time, the optimal transmission is pre-
served with local operators:

3.10 Theorem If the discontinuities lie strictly inside the domains, the algorithm converges
in I iterations for

with local transmission conditions

1 1
—0y, Bf =9, + ——
c(a;) ° 7 c(aivr)

(2
In Fig. 24, we show the same example as before, except that T' is chosen equal to 2. One
can see that the convergence is actually achieved in two iterations.

B =0, —

2

o (3.21)

Figure 24: Error history for the local transmission conditions (3.21).

3.11 Theorem If the velocities are constant in the numerical domains, the convergence is
achieved in two iterations for

) lair1 — ail
T < min
1<i<I ¢((@ir1 + ai)/2)
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with the transmission operators given by

1
¢ (ai)
The proofs of Theorems 3.10 and 3.11 use the finite speed of propagation and can be found
in [17].
The next example in Table 4 illustrates Theorem 3.11.

1

ct(aiy1)

B = (8I - 8t), B+ = (8¢ + 8t)

Physical domain (0, 6).
Physical subdomains with velocity ¢; € {1,2/3,1/2,3/4,4/5}.
Numerical domains aligned with discontinuities.

Time domain (0,1).

Table 4: An example with six layers and a non-uniform grid.

Since we use a finite volumes scheme, there is a CFL condition (2.11). It varies with the
velocity in each subdomain. The space step is the same everywhere, Az; = 1/50, the time
step is chosen so that in each subdomain the CFL is close to 1.

10'

o’ b

Error

o't

Figure 25: Convergence in two iterations with local transmission conditions on [0, 1].

If we summarize the last two examples, we see convergence in two iterations with local
transmission conditions on [0, 1], and convergence in six iterations with local transmission
conditions on [0,6]. This suggests as a conclusion to use local transmission operators as
in Theorem 3.11 with subdomain boundaries aligned with physical discontinuities and time
windows of length

min |ait1 — a
1<i<I c((aj41 + a;)/2)

Variable wave speed and local transmission conditions

In the case of variable wave speed there is still convergence in I iterations with the transparent
transmission condition defined from the transparent operator (3.19), but this operator is non-
local. With local transmission conditions (3.21), we still have a convergence result:
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3.12 Theorem Suppose the velocity is continuous at the interfaces a;. Then on any time
interval [0,T], algorithm (3.20) with local transmission conditions (3.21) is well posed and
converges in the energy norm,

I
> Elapar) (@) =0 as k= oo (3.22)
=1

Proof We introduce the forward and backward transport operators

10 0 10 0
Ti=ceta, Ta=cm -
adt  Ox adt Oz
where « is a positive real number. The standard energy estimate becomes in this case for

positive « and [

4
dt

p
1

By ) (8)] + ST, 0P + 207 b, ) = ST a0 + 275 (b, 1)
By writing the energy identity in every subdomain, using the transmission conditions and

adding the corresponding equations in ¢ and n we obtain (3.22). O

We now give an example. The velocity profile, which is a typical underwater profile, was
obtained from [27] and it is given as a function of depth by

300 m/s z <0 (above ground)
1500 — z /12 0 120
o(z) = z/12m/s 0<z< (3.23)
1320 + /12 m/s 120 < z < 240
1505 m/s x > 240.

The numerical domains are ; = [0,300] and Q9 = [300,600]. We start with the errors in
Table 5. Fig. 26 shows the first ans second iteration.

Iteration 0 1 2 3
|lu — ug|loo | 5e +00 | 5e +00 | 9.9¢ — 03 | 6.2e — 04

Table 5: Convergence behavior of the algorithm for the variable sound speed profile (3.23).

The algorithm converges again to the accuracy of the scheme in two iterations, even though
the sound speed is variable in this example. This is because the variation is small in scale and
thus the local approximations to the transmission conditions are sufficiently accurate to lead
to the convergence in two steps. Note also that, continuing the iteration, the error is further
reduced.

3.3 The discrete domain decomposition algorithm

We first decribe the scheme, and then give a convergence result.
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x x

first iteration second iteration

Figure 26: Convergence in two iterations for the underwater example (3.23).

3.3.1 Description of the scheme

In order to take the transmission conditions into account, we use a vertex-centered finite
volume method [14], as described in Fig. 27. We discretize the wave equation (3.17) on
each subdomain €; x (0,T), i = 1,...,1, separately, using a finite volume discretization on
rectangular grids. For simplicity of the exposition we set f = 0. We allow non-matching
grids on different subdomains, with J; + 2 points in space numbered from 0 up to J; + 1 and
Az; = (aj+1 —ai)/(J;+1), and N;+ 1 grid points in time with At; = T'/N;, numbered from 0
up to N;. Note that for the exposition here we choose uniform spacing in time per subdomain,
but the techniques developed are not limited to this special case. We denote the numerical
approximation to u¥(a; + jAz;,nAt;) on ; at iteration step k by UF(4,n).

(z,t+At)
(z,t+At)
/aD b
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, K
| D D
(r—Az,t) (z,t) §($+A$:t) (x,t) (z+Awx,t)
(z,t—At) (z,t—At)
interior point boundary point

Figure 27: Control volumes for the scheme.

In the interior of the domains, this leads to the leapfrog scheme

1 - _ . .
<%Dﬁ)t —D;Dz> UF Y (G,m) =0 1<j<J;, 1<n<N;,
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with the usual notations

D (U)(j,n) = A7 :
D (U)(j, ) U(]7 ) ;(j7n_1),
Do — D/} + Dy

2 Y
and the same for the variable 2. C;(j) is a discrete function approximating ¢(a; + jAz;). The
discrete transmission conditions are obtained by integrating the equation on the half-cell, and
using the continuous transmission condition.

We first glue together the grids on two neighbouring domains. Let I,, =]t,,t,11] be a

sequence of intervals such that Ufj:o I, = [0,T]. The space RV*! is equipped with the scalar

product
N

(v,0) 541 = > | nlvawa,

n=0
where |I,,| is the length of the interval I,,. We define the map F from RY*! to L2(0,T) which
maps v to the function f equal to v, in I, for 0 <n < N and the operator E from L?(0,T)
to RN which maps f to the sequence v, = 1/|L,| [, f(t)dt.
We denote by F; and E; the operators corresponding to the grid in €;, and we define the
operator I; ; : RNi Tl — RNi 1 a5

P;;:=E; o ;. (3.24)
The discrete algorithm is now defined by

1
( D, D; — DjD;) UFYG,m) =0 1<j<J;, 1<n<N;,

C?(j)
Az AtA:L“ ) Ax ) .

B;(Ui’““)(o, ) =Pi 1By (UE)(Ji1 +1,4),
B (U™ (J; + 1,-) = Piy1: B} (UF1)(0,),

where the operators P;1; ; are defined in (3.24), the discrete transmission operators Bii are
for n > 1 given by

Ax; 1
BHU)(J; +1,n) = | =5 ——D;D; + Dy + ——D? ) (U;)(J; + 1
FOIU+ L) = (e D4 D7 + D5 + gy ) (G0 + L), .
Az 1 ’
B (U;)(0 " D/D; — D} + ———————D} ) (U;)(0
P00 = (55 o) @),
and the extraction operators BZ-'JE are for n > 1
~ Az ,
B (Ui41)(0,n :( —tl _pip; + D+ D0> Ui1)(0,n),
z( +1)( ) 207,2+1() t it z Cz-l—l(o) t ( +1)( )
By (Ui 1)(Jio1 +1,n) = (3.27)
A:I?;l _ _ 1
— : DD —D. +———— DY (U;_1)(J—1 + 1,n).
( 2Ci2_1(Ji—1+1) t 't T +Ci71(t]i71+1) t>( [ 1)( i—1+ ’n)
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The transmission conditions for n = 0 are obtained by replacing DY by D; and D;" D, /2 by
D;" /At, and introducing the initial velocity. Note that in contrast to the continuous case, the
transmission and extraction operators are different. In addition, for non-matching grids, we
introduced projection operators which are non-linear. The four operators involved in (3.26),
(3.27) are Lax-Wendroff type approximations of the continuous operators (they correspond
to the discrete absorbing boundary conditions described in [19]).

3.3.2 Stability and convergence

All the proofs here are very long and intricate, so we refer to [17] for details. For continuous
velocities on the interfaces, we have a first convergence result using discrete energy estimates.

3.13 Theorem Assume that the wvelocity is continuous on the interfaces a;. If the CFL
condition is satisfied by the discretization in each subdomain, then the non-overlapping discrete
Schwarz algorithm with projections (3.25) converges on any time interval [0,T] in the energy
norm:

I
ZENi(Uik)%O as k — +oo.
i=1

Let us recall that in the case of piecewise continuous velocities we recommended that the
numerical domain be aligned with the physical discontinuities. In the case of two velocities,
when the time step is constant, we have a partial result using the discrete Laplace transform,
or z transform (see [35]),

k(: _ k.n._Jj _ (ntiw)At
Ui (j,n) = a;2"r], z = e(Mtw)AL,

3.14 Theorem If (c; —co)(y1 —y2) > 0, there exists a positive real constant C' > 0 such that
for nAt < 1, we have

ITF G )l mae < (1= Cna) P2 max(07 (G m)lloymae), 6= 1,2

In particular, there is an interface wave: if z = 2!, for sin?(wAt/2) > =;, there is a
solution

Ui2k (0, TL) — DeiwAt(n—l—Vk)’

where V' depends on 71, 72, and ¢1/ca.

4 Paraxial operators and applications in two dimensions

We mainly concentrate here on the techniques stemming from the theory of pseudodifferential
operators [12, 13, 4], but we shall also call on other theories leading to useful absorbing
boundary conditions.
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4.1 The paraxial problem

The goal is to approximate the equation by a simpler one whose solution propagates in a
particular direction. There are many applications, like for instance electromagnetic waves
in atmospherical layers, acoustic waves in the ocean, techniques of migration in oil recovery,
and the computation of guided waves in optical fibers. We start with the homogeneous wave
equation in two dimensions

We look at the functions of the form
w= ei(k-mfwt) (41)
which is a plane wave solution if and only if the frequency w and the wave vector k = (k1, k2)
are linked through the dispersion relation
2
w
— = k> =k} + k3.
c
If we introduce the angle 0 defined by

k1 2
sinf = c—, cosf = c—,
w w

we get the slowness curve depicted in Fig. 28.
ko
w

Figure 28: Slowness curve for the wave equation.

4.1.1 The paraxial approximation

Suppose we want to approximate as well as possible the waves propagating upwards, i.e. in
the xo > 0 direction (in geophysics it is usually the depth direction). The dispersion relation
of the waves propagating upwards is

L (’i) (12)

w
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which corresponds to the upper half of the slowness plane. We want to approximate the square
root in (4.2) by a function of ck;/w which can be, modulo a denominator, the dispersion
relation of a partial differential operator. The only way is to use rational fractions 28|

_ Pm (X)
gn(X)’
where p,, and ¢, are polynomials in z of degree m and n, respectively. The classical approx-

imations [8, 13, 4] are the Taylor or Padé expansion of low order for small 6.

k
Taylor of order 0 : 2 ~ 1,
w

(1-X)2 ~r(X)

k 1 k)
Taylor of order 1 : PACIPO [ <0—1> ,
w
ky 1-— 3/4(cky Jw)?
w  1—1/4(cky Jw)?’

To recover the partial differential equations, we clear the denominators, and get the following
table, where on the right we put the usual name of these equations.

Padé of order 1: ¢

10 0
Ea_ttt + 3—::2 =0, transport equation, (4.3)
102 0? 0?
E—Btg + —zegt _ g—axg =0, parabolic or 15° equation, (4.4)
19° o? 3¢ 03 S
i i cdu ¢ Yo _o, 45° equation. (4.5)

OB 00,02 40201 4 020w

These equations were called 15° (resp. 45°) because the geophysicists considered them to be
accurate for propagation angles up to 15° (resp. 45°) [8]. This strategy can be generalized to
higher degrees [13, 4, 28, 20| by introducing the approximate equation

k2 2y _ Pm((ch1/w)?) .
c w ’T‘((C 1/0)) ) qn((ck_l/w)g) (Z 1’“‘)) ( )
Let d = max(2m,2n + 1) be the total order. By clearing the denominators we obtain a

dispersion relation
W'  kaqn((cky /w)?) — whpm((cky /w)?) = 0,
which is of the general form L£(—iw,ik;,iks) = 0 with d°L = d. It is the dispersion relation of
L(0, Oy, Opy)u = 0. (4.7)

Note that the operator £ is of first order in the zg-direction. The absorbing boundary con-
ditions obtained by Taylor approximations of order three or more lead to ill-posed problems
[13]. Various strategies can be applied to approximate the symbol (4.2) depending on the
applications, for instance:

o Padé: \/1—y? —r(y?) = O(y>™+>"+1)  [13],
e Tchebyshev: minimize ||v/1 —y2 —r(y?)|loo  [20],
e Least squares: minimize ||\/1 — 32 —r(y?)]2  [28],

e Interpolation at arbitrary points  [20, 22].



186 L. Halpern and A. Rahmouni

4.1.2 The paraxial problem

The physical problem we start with is the wave equation in two dimensions with given initial
conditions

10 P

— =0 in R%x(0,T),
2 ot>  9x? Ozl (4.8)

u(0,.) = u(®, %(0,.) =« in R

The paraxial operator (4.7) related to the paraxial approximation is of order d in time. If d is
greater than 3 we need more initial values. They can be obtained by differentiating the wave
equation. This can be expressed by

Lu=0 in R%x(0,T)
Pc

oPu

4,
= —u(0,)=u"® in R’ 0<p<d-—1. (49)

In fact, these operators are never used as high degree operators, but rather as a system of
second degree operators, as we will see in Section 4.3.1.

4.2 Absorbing boundary conditions

As we saw in Section 3, the goal here is to truncate the computational domain : suppose we
want to compute the solution of the wave equation only in a part Qe of R2. We introduce a
computational domain Q¢omp and boundary conditions on the boundary 0Q¢omp of Qcomp such
that the waves can leave the computational domain with as low reflection as possible, which
in turn implies that we can place the computational domain close to the reference domain
Qrer. The applications are countless in engineering like geophysics, aeronautics, radars, etc.

4.2.1 Absorbing boundary conditions for a half-plane

We consider waves propagating in the half-plane x2 < 0. The waves propagating upwards

are given by (4.2), of the form e'*®-9)  with cky/w = ++/1 — (ck1 /w)?. Suppose a general
boundary condition is given at o = 0. We isolate the derivative in the zo-direction,

M(By, D D)t = 2 & B(D, O Y = 0.
8:132

Let a wave U™ be impinging on the boundary. By the Snell or Descartes law shown in
Fig. 29, the reflected wave is URef = Ret(-F1z1thkaz2—wt) quch that

M(Ulnc + URef) _ 07
which can be rewritten as
ikQ + B(—iu}, ikl) + R(—ikQ + B(—iw, Zk‘l)) =0.

Thus the boundary condition Mw = 0 is a transparent boundary condition if its symbol
is given by

and the transparent boundary operator is the exact paraxial operator. As absorbing boundary
condition we will impose the approximations £ derived in Section 4.1.1.
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Figure 29: Reflection on the boundary z2 = 0.

4.2.2 The initial boundary value problem

We suppose that the initial data are compactly supported in the half-plane R2 = R_ x R,
and we replace the Cauchy problem (4.8) by the initial boundary value problem

10%u 0*u 0%

?W_a_z%_a_zgzo in R? x(0,7),
ou
At
Lu(t,0) =0 in (0,7),

0,)=u in R?, (4.10)

where £ is any of the paraxial approximations defined in Section 4.1.1, as for instance in (4.3),
(4.4) or (4.5). The quality of the approximation is measured by the reflection coefficient. It has
been shown that for the absorbing boundary conditions cited above the reflection coefficient

is equal to
0—1\"
R= (22222
cosf +1
This is a general result for Padé approximation of type (n,n) [13].
Fig. 30 shows the historical example given by R. W. Clayton and B. Engquist in 1977
[9]. The initial value is a spherical compressional wave. On the first line the second order

absorbing boundary condition (4.4) is imposed , and on the second line the perfectly reflecting
Dirichlet boundary condition is imposed.

Absorbing

Raflecting

Figure 30: A historical example from [9].
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4.3 Well-posedness results

We consider the paraxial problem P defined in (4.9) and the half-plane problem Pz, defined
in (4.10). L is the operator L£L(0t, dx1,dx2). Its symbol is l(w, k) = L(iw,ik).
4.1 Remark This is the sign choice made by the analysts. It differs from the convention

chosen by the physicists in (4.1).

We first give a classical result on well-posedness for Cauchy problems (for all these basic
results see for instance [26]):

Pc well-posed

0

L hyperbolic

0

VEER?, l(wk)=0=weER
There is also a characterisation of well-posed initial boundary value problems:

Pr, well-posed

i
Vki1 € R, Vky € (C, Sko > 0,
l(w,k) =0
= (w,k) =(0,0)
W=k} +k3 Rw<O

The following results have been proved in [20]:

4.2 Theorem Problem Pc is well-posed if and only if the rational fraction r(X) in (4.6) can
be expanded as

(4.11)

where the coefficients a, By are such that a >0, 8>0, B >0 for 1 <k <n.

4.3 Theorem Problem Py, is well-posed if and only if we have property (4.11), and further-
more for all X in [—1,1], the value of the function r(X) defined in (4.11) is positive.

These results give a necessary condition for well-posedness:

4.4 Corollary If problems Pr, and Pc are well-posed, then n <m < n + 1.

The well-posedness for the two problems are related by the following result:

4.5 Corollary If problem Pr, is well-posed, then problem Pc is well-posed.
In the same paper the following useful criterium is also derived:
Pr, well-posed

)
n<m<n+1 and
r(y) — 1 —9y? has 2(m +n + 1) roots in C—] — oo, —1] — [1, +oo].
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4.3.1 Writing the operator as a system

As mentioned before, the expression £(0y, 0y, , 0z, )u = 0 is not very easy to handle, especially
when it comes to discretization. Instead, following [28], we turn back to the formula

kQ n ,3]602]6% ]
P o SNV i P
2 _ o212 ’
[ w = W — M k1
and we introduce auxiliary unknowns ¢y by their Fourier transforms

2k?

—_—u =
w? — ypc2k?
k m
2 . R
—c211)a—- E =0,
( Cw + )u k,lﬁk(pk

which leads to the system of partial differential equations

~

Pk

1 0%y 26%% 0%u
il — =—, 1<k<
2 gz k ox? ox?’ =6=

with initial conditions on the functions ¢y:
Pk (07 (II) =0.

Notice that the new unknowns ¢y are active only in the transverse direction, which makes
this formula very easy to discretize [6].

There is an alternative theory by Higdon on absorbing boundary conditions [22]. He writes
any well-posed absorbing boundary condition as a product of first-order transport operators,
which makes the discretization even easier. But this involves a high order operator in the
To-direction.

4.3.2 Bayliss and Turkel operators

We describe here another approach of absorbing boundary conditions, relying on a far-field
expansion of the solution of the wave equation in three dimensions [5],

o0

u(r, 0, p,t) = r~ ekl Z r "un (0, p). (4.12)
n=0

Defining the Sommerfeld operator S by

0 10
S‘(EJFE&)’

we note, using (4.12), that we have in the three-dimensional case
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ou 10u
li —+-——=1]=0
rl>nolor<87“+cat> ’

and more generally in dimension d

lim p(d-1)/2 (@ N l@) _o

r—00 or ¢ ot

A. Bayliss and E. Turkel [5] proposed an iterative improvement of the Sommerfeld condi-
tion, in the following way. For the Sommerfeld operator we have Su = O(r~2). Introducing
an “augmented” version of the Sommerfeld operator

1
Br=8+ -,
r

1

The operator B is the first order Bayliss and Turkel operator. Following the same approach,
Bayliss and Turkel define a hierarchy of operators

2k — 1
B, = <S + ., ) Bi_1.

A short calculation shows that for any k& we have

we have by (4.12)

o0
Bku — Z azunr_(n"‘k),

n=1
with the recursion relation

ik(r—ct)

Uy = € Up—1, af = (=1)f(n—1)--- (n—k).

Thus By, absorbs the first & terms of the expansion (4.12):

1

4.4 Domain decomposition method

This part is work in progress, see [16], and we sketch ideas only. Let R? be divided into two
subdomains ) = R x (—o0, L) and Q2 = R X (0,00) with an overlap as depicted in Fig. 31.
The boundaries are I'j = R x {L} and I'y = R x {0}.

The natural extension of the classical Schwarz algorithm is then
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L m

i |

T
! ! ! !
i R R e
i
i R A e B

Z2

Figure 31: Domain decomposition in two half-planes.

2, n+l 2, n+l 2, n+l )
LOum T U g im0 (0,T),
c2  Ot? 8$% 8:1:%
with the initial conditions

0

u0,.) = u(), EU?H(O’ J=u® in Qi > (4.13)
and the transmission conditions
™ =wul on Ty x(0,T), uhy™ =ul on Tgx (0,T). )

The following result is a straightforward consequence of the finite speed of propagation:

4.6 Theorem The Schwarz algorithm converges for a number of iterations n > T¢/L with
€ 1= SUPyeq €(X).

1072 L L L L L L L L

L
0 2 4 6 8 Ih 12 14 16 18 20

Figure 32: Convergence history for the Schwarz algorithm.
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Fig. 32 shows the curve of convergence for the wave equation with speed 1 on the square
0 < z,y < 1, for the time interval 0 < ¢ < T = 1.2. We have two subdomains and the overlap

is L = 0.08. The theory predicts convergence after 15 iterations.

4.7 Remark The result in Theorem 4.6 is very general. The difficulty with many subdomains
is the construction of the subdomains. In Figs. 33 and 34 we illustrate the strategy we suggest
from classical Schwarz methods: first we divide the domain into squares without overlap, and

then we add layers.

Ql Qs

Qy Q3

Figure 33: Non-overlapping domains.

Figure 34: Overlapping domains.

4.4.1 Optimal transmission conditions

We introduce the algorithm with general transmission conditions

P i P i
(6—@ + Al(at,3$1)> U1+1 = (6—@ + Al(at,am1)> Uy , 9 — L,
i+A(aa) ot = £+A(88) n =0
81‘2 2\Uty Uz, 'LL2 - 81‘2 2\Ut, Uxy Uy, T2 = U,

and we use a plane wave analysis. The error (U]") is given by

Un anei(ki~x—wt)
i

(3 )

with the dispersion relations

2 2\ 2
c’f_zz 1_<cﬁ>, k2 = ki, k2 = —kJ,
w
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and the relation between the coefficients over a double iteration is
1 1
= thy + A1 —iky + Ao +2ik3 L -1
! —iky+ M kS + X !

We define the convergence rate of the algorithm by

—iwy/1 = (chf/w)® + A iwy/1 = (chi/w)® +cho N = YR

(4.14)
1 — (cki/w)? +chi —iwy/1 — (cki/w)? + chg

p(k,w) =

and the coefficients are now related by
1 -1
attt = p(k,w)} .

It is evident from (4.14) that by choosing

. 1\ 2 : 1\ 2
AL = - (cﬁ> and Mg = .y (cﬁ> ,
c w c w

the algorithm converges in two iterations. Furthermore the result is general: for these trans-
mission conditions, with I subdomains, the convergence is achieved in I iterations. Thus:
The optimal transmission conditions correspond to the transparent operator.

4.4.2 Approximations of the optimal transmission conditions

We approximate the symbols A; and Ay at normal incidence, i.e. for small values of ck{ /w, by
+iw/c, and we obtain

Ao~ +——

12 c 6t’

which gives as transmission conditions

9 10\ .. [0 10\,
= nrl— [ - =L
<8x2 * c@t) 1 <8x2 + c@t) 2, 2 ’

9 10\, (0 10\,
(8;172 06t>u2 _<8x2 c@t)ul’ #2=0.

We show in Fig. 35 the curve of convergence for this algorithm, compared to the classical
Schwarz algorithm. The data are the same as in Fig. 32.

With this kind of transmission conditions, it is also possible to work without overlap. For
further developments on this issue we refer to [16].

We have already seen some links between the three related topics: the paraxial approxi-
mation, the absorbing boundary conditions and domain decomposition. We summarize these
in the next subsection.

(4.15)

4.5 Links between paraxial operators, absorbing boundary conditions and
optimal domain decomposition algorithms

We start with the wave equation in the plane
1 0%u
c2 ot?

We introduce a rational function R(ik1,iw) = r(ki/w) and the problems:

—Au=0, in R®x(0,T).
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107H

— algrithm 443 |

L L L L L
0 2 4 6 8 10 12 14 16 18

n

Figure 35: Convergence of the algorithm with transmission conditions (4.13) and (4.15).

(i) The parazial equation in the xo > 0 direction:

O, 4+ R(0;,0,)u=0 in R? x(0,T)

(ii) The absorbing boundary conditions:
1 9%u

c? ot?

Opyt + R(Op, 0 Ju =0, 22=0

—Au=f in R® x(0,T),

(iii) The domain decomposition algorithm without overlap:

2 o2 2 o2
(Dy + R(Op, 0y ) )T = (O, + R(Opy Oy, ))ul; a9 =0,
(82132 - R(at’ axl))ug-i-l = (85132 - R(at’ al'l))u?7 z2 = 0.

2 2
(18——A>u?+1:fin]R2_ x (0,T), (1 0 —A>u§+1:finR2+x(o,T),

The error is measured in the three cases for z in [0, 1] as follows:

(i) Parazial equation: the error
err(z) = V1 — 22 — r(x)

(ii) Absorbing boundary conditions: the reflection coefficient

V1—22 - r(x)
V1—22 +r(z)

(iii) Domain decomposition algorithm: the convergence rate

V1 — 22 —r(x)
V1—22 +r(z)
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5 Classical layers and perfectly matched layers for hyperbolic
problems

The layer or sponge methods consist of surrounding the domain of interest by a layer. This
layer should be designed in such a way that it produces as low reflection as possible and the
waves are absorbed in the layer. Furthermore, to save computation, it should be made thin.

In practice, defining the layer can be very involved as it depends very much on the fre-
quency of the incoming signal. This explains why layer methods have not been very much
used. More evolved models have been proposed (coupling layers and absorbing boundary
conditions) [24], but the increase in complexity lessens the interest of these methods.

Bérenger’s work [7] has renewed the interest in these layer methods; the Bérenger perfectly
matched layer, PML, has many attractive features: it absorbs waves of any wavelength and
any frequency without spurious reflection; moreover, the corner problem is easily solved by
a wise choice of the layer parameters. Finally, it is very easy to integrate into an existing
code. Unfortunately, as applied to the Maxwell system, the original method leads to a system
which has lost the most important properties of the Maxwell system: strong hyperbolicity
and symmetry.

In the last part of this section we propose an algebraic technique leading to a new PML
model which is strongly well-posed and preserves the symmetry. We start however with the
classical methods.

5.1 The classical layers

The layers techniques are often inspired by well-known physical models (soundproof rooms of
acoustics laboratories). As an example, we first present some models for the wave equation
in two dimensions. These examples, although simple, highlight the power and the limitations
of the classical approach. We summarize here some of the results by M. Israeli and S. Orszag
in [24].
We consider the wave equation in two dimensions:
0%u

A simple model can be obtained by adding a friction term

0%u ou
— +o(x)— —Au=0
oz Ty, ’
where o is a positive function of . In such a medium the energy is decreasing: it is a lossy
medium.

More precisely, we consider the case of a propagation in the half-space 1 < 0, and we
build the layer of width § on the right of the domain

2
gu —i—a(x)% —Au=0, (z1,72)€ (—00,0) xR
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with o(x) = 0 for 77 < 0. The initial data are supported in R2 .
The choice of the damping factor o is crucial. First, the reflection at the boundary of
the layer must be maintained as small as possible. Second, the decay in the layer must be
sufficiently significant so that the Dirichlet condition imposed on the exterior boundary of the
layer does not produce reflection. The plane wave analysis gives a more precise idea of the
best choice of the damping factor.
We call »~ the solution in R? and u™ the solution in ]0, §[xR. They are given by
- = ei(/ﬂxl-l-k)z:vg—wt) + Rei(—k1x1+k2x2—wt)

?

U+ — Tlei(k‘ffvl +k2x2—wt) + TQei(—k‘ffvl-I—kz:Eg —wt).

The dispersion relations are
B2+ k2 =w? (K] =k +iwo;

ki and kY are defined by

k RET
El>0; kY € C, !

>0,

such that e!(broithkaza—wt) apq eilkf1tkema—wl) Hropagate to the left. For any w the imag-
inary part of kY is positive, and we have the following process: the incident wave ul =
¢ilk121+k22=wt) peflocts at z; = 0 into Roe!(—F@1tkar2=wt) anq transmits in the layer into
Tyetkfoitkar2—wl)  Thig wave is in turn reflected at the end of the layer z; = 4 into
RyToel(—k{z1+k2z2-0t) an{ then reflected, and so on for ever. The coefficients are given by

k1 — k]
_kl‘i‘ki‘,

Ry Ty, =1+ Ry, Ry = —e*79,

For the full process, the coefficients are given by

_R0+R5 T 1+R

— —, =, T:RT
1+ RoR;s " 11R; 27 Tl

It is easy to see that if o is large then |Rp| is close to 1. On the other hand, if o is small, |Ry|
is small and Rys is close to 1, unless ¢ is large. The tuning of the coefficients is thus difficult.
Other attempts have been made to improve the results: adding a term —pu(x)33u/0tdz2, or
replacing the term du/0t by du/0t + 0u/0z1[24]. In the latter case, the reflection coefficient
is small for low angles of incidence which considerably improves the results and has made this
strategy attractive. However, the breakthrough came later with the PML we describe now.

5.2 The PML approach of Bérenger

In the mid-90s, Bérenger [7] proposed a new layer method for Maxwell’s equation, namely the
perfectly matched layer or PML. The strength of this new method is that the layer absorbs
waves regardless of their frequency and angle of incidence.

For simplicity we describe the method for the two-dimensional Maxwell equations in the
transverse electric mode (TE), although all the developments in [7] have been made in the
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three-dimensional case. The Maxwell system then has only three unknowns, (Fi, E2, H3),
related as follows:

( 8E1 8H3
T oE — 2B
€ 8t +o 1 81‘2 0,
0FE, 0Hj;
— E — =0 5.2
e Tob+ o ; (5.2)
8H3 6E2 8121
e P At i )
( H o T T o0 T o

The coefficients € and p are the permittivity and permeability of the medium, o is the electric
conductivity and ¢* the magnetic conductivity. To establish a PML model in the region 2, =
{z1 > 0}, we split the magnetic field into two non-physical subcomponents Hs = Hs; + Hsa,
and we introduce damping factors o; and o7, for i = 1,2, with 0y = 09 = 0 and 0] = 05 = o~
in Q_ =R? — Q, (the domain of interest).

We then write a modified version of (5.2) in a form where only one spatial derivative
appears in each equation:

( OF, (9(H31 + H32)
I B ——= = —
o T . :
O0(H H.
e—2 +01FEy+ (Hs1 + Hs) =0,
< ot (9:51 (5 3)
at 1 31 (9:51 - Y
3H32 aEl
*H [

The Bérenger medium is characterized by the fictitious conductivities. We call the system
PML(o1, 07, 02,05). The Maxwell system appears as a particular case of the PML equations.
It corresponds to PML(o, 0%, 0,0%):

PML(o0,0%,0,0") — absorbing medium,
PML(0,0,0,0) — vacuum.

5.1 Remark The original equations are recovered by adding the equations for the split fields.

We describe now the important features of this model [7]. Suppose the conductivities
satisfy the matching conditions

: (5.4)

|
= |3,

Then for harmonic fields, the amplitudes decays exponentially. They are of the form

W exp (iw (t — 1:1: . C>> exp (— Ulcl:m) exp (—02C2x2>
c c ec

where c is the speed of light, ¢ = 1/,/€u, and C'is the unitary wave vector, C = (cos 6, sin6).
Consider now two PML media PML(o},01*, 03, 03*) and PML(0?,0%*,03,03*). The
reflection coefficient between these media vanishes provided
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(i) their conductivities satisfy the matching conditions (5.4);
(i) B'-7=%2.7 with ¥ = (01, 02) and T is tangent to the interface.

These results lead to the now famous diagram 36 extracted from [7] which provides the
complete strategy for PML, including the question of corners, which has never been satisfac-
torily solved for absorbing boundary conditions :

2 2% 2 2%
PML(Ulaal 309,03 )
|

PML(0,0,03,03*) ' - PML (62, 02%,0,0)
PML(0,0,0,0)

= PML(0,0,04,0%")

PML(o},0!%,0,0) —H

§
PML(o},01*, 03,05")
Figure 36: The PML technique |7].

In the harmonic case, the model PML(o, 0, 0,0) becomes:

( . O(Hzi + Hzp)

iewEl — ) = 0,
T2
R . O(Hy + H
jewEy + o By + O(Hz + Hso) 31@: 32) _ 0,
q b (5.5)
.o - 0Fs
tpwHsy + cHsy + 8—171 =0,
N OF
ipwHzy — =1 = 0.
\ 0xa

We can add the last two equations and keep only one unknown ﬂg = ﬁgl + ﬂ32 :
. . 2
i 0 ( i ng) +028—2H3 +w2H3 = 0.

O3

iwp + o(z) 0z, \iwe + o(z) Oz,

In [10], Collino and Monk show that this problem is well posed except for a discrete set of
exceptional frequencies (which may be empty), and that the PML formulation amounts to
the continuation of the Green’s function into the complex plane. As a matter of fact, making
the complex change of variables

m’lzml—i/olo(s)ds,

w

we retrieve the Helmholtz equation, so that the PML model can be viewed as a complex
change of variables applied to the original system [34].
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More generally, we consider a general first order system written in the form

¢ dp dp
+A +A
ot Y ox, 1 281172
where ¢ lives in RV . In order to obtain the PML model we split the unknown ¢ into two
non-physical parts ¢ = @1 + @2, and we write the system in a form where only one spatial
derivation appears in each equation:

=0, (5.6)

Jdp1 Oy

Ay =0

8t + 8:131 ’
O Op

—= + Ay =0

ot T g, D

then we introduce damping factors o1 (z1) and oy(z2), and the PML system becomes :

01 oy

— + A= =

5 T D + o1(z1)p1 =0,

0 oy

50152+A28 + o9(x2)p2 =0, (5.7)
Y =1+ Pa.

5.2.1 Propagation properties

We start with the propagation in free space. From a plane wave solution of the original system
(5.6), we can construct a plane wave solution of (5.7). To this end let

P — Cboei(k'm_“)t)

be a solution of (5.6). Then we obtain a solution of (5.7) as
i(k-&(2)—wt)

Pi = Qi€
with
5= /Ox] (1 _ @) dé (5.8)
and
k.

a; = —ZAi‘1>0.
w

Thus if o; is chosen such that it vanishes in the domain of interest, and is strictly positive in
the layer wich is orthogonal to x;, the plane wave solutions of (5.7) coincide with those of the
original system (5.6) in the domain of interest, and the amplitude of the wave is exponentially
decaying in the layer.

Consider now a PML of thickness § orthogonal to the z;-direction. Imposing a homo-
geneous Dirichlet condition ¢; = 0 at the external boundary of the PML (at z; = ¢) and
writing @jinc + R@jref = 0 at £ = J, we find the amplitude of the reflected wave

R=—exp (—Zikl /0 ' (1 wi@) dg)

Since ki /w > 0, the reflection coefficient is exponentially small and it can be made as small
as desired by increasing the thickness of the layer; in the numerical application it is necessary
to find a good compromise between the thickness of the layer and the “acceptable” error.
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5.2.2 Well-posedness

The time-domain PML model is mainly designed for propagation models, i.e. hyperbolic
equations. In this respect, Bérenger’s approach presents some inconveniences: even if the
original model is strongly well-posed, the PML model becomes weakly well-posed. This is the
case for most systems, which are in fact symmetric, as for instance the Maxwell system, the
Euler system, the wave equation and the elastodynamics system. The weak well-posedness
can generate instabilities in the numerical schemes, and spurious reflection at the external
boundary. The loss of symmetry is a disadvantage for storage reasons.

To make these notions more precise (for details see [26]), let P(9/0x) be a constant-
coefficient operator. We introduce the Cauchy problem:

o1 — P(0/02)p = 0
{ o(z,0) = po(z). (5.9)

We make the following definitions:

(1) Problem (5.9) is strongly well-posed if there is a real number a and a positive
real number K such that for any smooth initial data we have

le(,B)llzz < Ke™llgollr2, ¢ >0,

(2) Problem (5.9) is weakly well-posed if there is a strictly positive g, a real number
«a and a positive real number K such that for any smooth initial data

le( )l < Ke*llgolla, t>0.

There is an algebraic criterium for this definition of well-posedness. Let g be a positive
integer and « a real number. The following conditions are equivalent:

(i) There is K1 > 0 such that

P09 < K (1 + w]9)e®, weR™, t>0;

(ii) There is Ko such that

lo( )2 < Kae™lloollms, ¢20

for all g sufficiently smooth.

Suppose now the operator P to be of first order in space, P(0/0z) = 2?21 A;0/0x;. We
define the symbol P(i¢) =i 7 (jA;. System (5.9)) is called:
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(i) weakly hyperbolic if for any ¢ in RY the eigenvalues of P(i¢) are purely imag-
inary;

(ii) strongly hyperbolic if for any ¢ in RV, |¢| = 1, the eigenvalues of P(i¢) are
purely imaginary, and furthermore there is a uniform transformation to diag-
onal form,;

(iii) symmetric hyperbolic if A; = A} for any j

(iv) strictly hyperbolic if for any ¢ in RN, ¢ # 0, the eigenvalues of P(i¢) are purely
imaginary and distinct.

We have the following relations between well-posedness and hyperbolicity:

(i) strongly hyperbolic <= strongly well-posed;

(ii) weakly hyperbolic <= weakly well-posed,

(iii) symmetric hyperbolic = strongly hyperbolic = strongly well-posed;
)

(iv) strictly hyperbolic = strongly hyperbolic = strongly well-posed.

As an example, the Maxwell system in general and the (TE) system (5.2) in particular
are symmetric hyperbolic. The eigenvalues are simple: 0, +i|¢|. However, the Bérenger
system (5.3) is not symmetric nor even strongly well-posed: 0 is a double eigenvalue, and
the dimension of the corresponding eigenspace is still 1. This inconvenience is inherent in
the decomposition. One can prove for this system that if (¢1,p2) is a solution of the related
Cauchy problem, then

(1, p2)llz2 < Ce||(1,02)(0, )| 1

Moreover, this estimate is optimal [33].

5.2.3 Some examples

The Bérenger technique has been used for various hyperbolic problems [33, 32, 31, 30, 3, 2].
We focus here on the two-dimensional Euler system. The compressible Euler system linearized
at constant flow (U, R = ¢?) can be written as a symmetric system

dp 2 dp
§+;A387j_0

with
uy Ur 0 ¢ Up 0 0
p=fu2l, A= 0 U; O ; Ay = 0 U ¢
p c 0 U 0 ¢ Uy

We shall consider in the sequel the case where the linearization is made about velocity 0.
For the general case, a change of variables along the flow produces moving PMLs [33, 2]. The
simplest strategy is to split the density into p = p; + p2, and then the continuity equation
becomes:

Op;  Ou;

ot + Caxi

=0, i=1,2.
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Next, we introduce the damping factor o(x), with o(z) > 0 in the PML region {z; > 0}, and
zero elsewhere. The PML model is then given by

( Op1 ouy
E + ( )pl + Ca:L‘ =0
8t 8:132
< (5.10)
% + ( ) + @ 0
gt O T T
Ous dp
\ ot om0

Again, this problem is only weakly well-posed. We introduce now a new model, based on
(5.10), which will be symmetric hyperbolic and thus strongly well-posed.

5.2 Remark For the wave equation

we write the problem as a first order hyperbolic system using the Euler form, and we proceed
as before [32]. Another approach, used in [10], is based on the complex change of variables
(5.8) and a fast Fourier transform.

5.3 Remark For the system of isotropic elastodynamics in two dimensions, one can obtain
Berenger-type PMLs as well [11]|. The difficulty comes for anisotropic behaviors.

5.3 A well-posed PML model

Various improvements of PML models have been proposed to circumvent the problems men-
tioned in the previous section; in [21] and [2], the authors (following the approach developed
for electromagnetism in [1]) modify the Euler equations by introducing low-order terms only.
Thus by construction the resulting model is strongly well-posed. We describe here an alge-
braic technique leading to a new PML model in the primitive variables, which is symmetric
and preserves the propagation and absorption advantages of the Berenger model [31]. This
model is similar to the one obtained in [21]. However, the approaches are different since we
start from Bérenger’s model.
We consider the general harmonic PML model in the frequency domain

95

(tw+ o1(z1))p1 + A1 — Dy =0
0P

(iw + o2(x2)) P2 + AQai 0.

Adding these equations, we retrieve the physical unknowns

iwp+ (54,22 1 5,4,22) (5.11)
orq 0xo
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with S; = iw/(iw + oi(x;)).

A PML medium is thus characterized by (S1, S2) or (01, 02) . Here the matching conditions
of Bérenger are assumed from the beginning. One can prove that by choosing o1 and o9 as in
Fig. 36, one can ensure the exponential decay in the layer, and no reflection occurs between
two layers.

In order to retrieve a well-posed PML model in the time-domain, we make a change of
basis in the spatial operator ) S;A;0/0x; which relies on an algebraic lemma:

5.4 Lemma There exist two invertible operators M and N such that

0 0 0 0
A — Ayp— =M Ai— +As— | N 12
Sl 1(9:51 +S2 2(9:52 ( 1(9:51 + 26(1)2) (5 )
which satisfy
A2 N+ 42 NZ0 ad  lim N=1I (5.13)
1(9:51 2(9:52 N 01,02—0 - .

Proof The proof is constructive. We first seek invertible operators M and N such that

MAIN -S54, =0

(5.14)
MA;N — Sy Ay = 0.

Using the special form of the matrices A;, we find the general form of M and N solving (5.14)
to be:

S 0 0
S1S5'A 0 i "3 g
N = 0 A nos |, M= 0 22 o |,
0 0 n3s3 n33

_nizSy  ne3Sy Sy

)\77,33 )\77,33 A

where n13, no3, n33 are free parameters. We now choose N as simple as possible:

S,t 0 0 S 0 0
N=|o0o s7' o], M=|0 S 0 |,
0 0 1 0 0 515
and since S; depends only on z;, (5.13) is satisfied. O

With the above lemma, (5.11) becomes

o 0 0 .
zw(p—i—M (Al(?—xl +A26—(L‘2> (N(,O) = 0,

and the change of unknowns ¢ = N gives

~ o o ~
iwMTINTI o+ [Aj=— +4,— | o =0.
6351 6332
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In order to establish the time-domain model, we start by writing the operator iwM~'N~!
the form:

iwM™IN™! = jwl + C + R(U,) ™"

with
o1 — 09 0 0 o9(09 — 01) 0 0
C = 0 o9 — 01 0 , R= 0 o1(oc1 —o3) 0 ,
0 0 o1+ o9 0 0 0102
(iw + 0'2) 0 0
U, = 0 (iw+o1) O
0 0 W
Finally the time-harmonic model is reduced to
.o ~ 0 0\~
wp + Co + R(Uw) Al— + Ao— | o =0. (515)
(9 (9:52

5.5 Remark The new unknown ¢ is equal to the original one, ¢, in the domain of interest
(i.e. when 01 = 02 = 0). Moreover, when transmitted to the PML the new unknown ¢ does
not “see” a contrast between the two mediums (due to lim,, 5,0 N = I).

Finally, this change of unknowns can be interpreted as a complex change of basis (S14 =
MAN), thus generalizing the change of variables in [34].

By an inverse Fourier transform of (5.15), we would obtain a model which is not local
in time. Instead, we increase the number of unknowns (which is a classical technique when
studying dispersive materials [36]) and introduce a new vector-valued variable v such that

de; = 5 Back to the time domain we obtain

a5 ) 9
t+0 +R¢+(%——+A2 )@:m

0 0 0xo
O -
oD — =
ot * zf) »=0,
1/)(07):07
with
oo 0 O
D=0 o1 O
0O 0 O
or
00 0 0
§+(C+A<6—xl’8—x2>>®_o (5.16)
where we have set
0 0
(e _(C R 0 0 A —+A— O
<I>—(d)>, C_<—I D) and A(B:I:l 3$2 810 O0z9 . (5.17)

This model preserves the absorption and decay properties of the Bérenger model. Further-
more, it is hyperbolic symmetric, as shown by (5.16), (5.17). We summarize.
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5.6 Theorem The model given by (5.16), (5.17) is a PML model for the linearized Euler
equations. Moreover, the Cauchy problem associated to this model is strongly well-posed.

5.7 Remark For a layer starting at 1 = 0, if we choose o1 to be a constant (non-zero) in the
layer, the model is no longer perfectly matched. Indeed, in this case we cannot simultaneously
ensure the continuity of all fields since for this we must have 01(0) = 0. In practice it
is preferable to choose a damping factor o7 which does not become rapidly significant (for
example parabolic). This remark is also valid for all layer methods.

5.4 Numerical results

To verify the efficiency of our PML model, we present numerical results on a benchmark
problem in computational aeroacoustics [21, 23]. The initial condition is in the isentropic case
an acoustic pulse centered at point x,,

|z — 24 |?

Py = pp = exp (—(ln 2) 5

) ) ug = Vg = 0.

The computational domain is [—60,60] x [—60, 60], the domain of interest is [—50, 50] x
[—50, 50] surrounded by a layer of thickness N = 10. The damping factors o;(z;) are chosen
as 0;(z;) = oo(d;(z;)/D;)?, where D; is the thickness of the layer in the z;-direction and d;(z;)
is the distance from the interface to the point in the layer. According to the results observed
in 23], we take oo D/N = 8.

The scheme is fourth order Runge-Kutta in time, and a seven point finite difference scheme
in space. The contour plots of the pressure p are shown for several times in Fig. 37. We can
see that the field is well absorbed by the PML layer (the wave arrives at ¢ = 30 in the PML)
with no noticeable reflection. The Dirichlet condition imposed on the exterior boundary of
the PML does not generate spurious reflection, and the wave is totally absorbed after ¢ = 100.

5.5 Conclusion

The methods developed in this section are a very promising alternative to absorbing boundary
conditions for linear hyperbolic problems with constant coefficients. Progress needs to be made
for more complicated models, as for instance Euler models with non-constant mean flows, or
anisotropic elasticity models, and of course non-linear problems.

Acknowlegments The authors are very grateful to Martin Gander for his invitation to
Montreal and his contribution to this work.
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Figure 37: Pressure contours for the new PML model from [33].
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