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Purpose

Solve AX = b.

A is a squared matrix,

b is a given righthand side, or a family of given righthand sides
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Description

 1 3 1
1 1 −1
3 11 6


︸ ︷︷ ︸

A



9
1

36


︸ ︷︷ ︸

X

=

 9
1

36


︸ ︷︷ ︸

b

 1 3 1 9
1 1 −1 1
3 11 6 36

→
 1 3 1 9

0 −2 −2 −8
0 2 3 9

→
 1 3 1 9

0 −2 −2 −8
0 0 1 1


 1 0 0
−1 1 0
−3 1 1


︸ ︷︷ ︸

M

 1 3 1 9
1 1 −1 1
3 11 6 36


︸ ︷︷ ︸

(A|b)

=

 1 3 1 9
0 −2 −2 −8
0 0 1 1


︸ ︷︷ ︸

(U|Mb)
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Ax = b ⇐⇒ Ux : MAx = Mb

M is a preconditioner

M =

 1 0 0
−1 1 0
−3 1 1

 −→ L := M−1 =

 1 0 0
1 1 0
3 −1 1


U = MA ⇐⇒ A = LU,Ax = b ⇐⇒ LUx = b

1 LU decomposition O( 2n3

3 ) elementary operations.

2 Solve Ly = b O(n2) elementary operations.

3 Solve Ux = y O(n2) elementary operations.

For P values of the righthand side, Nop ∼ 2n3

3 + P × 2n2.
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Theoretical results

Theorem 1 Let A be an invertible matrix, with principal minors
6= 0. Then there exists a unique matrix L lower triangular with
lii = 1 for all i , and a unique matrix U upper triangular, such that
A = LU. Furthermore det (A) =

∏n
i=1 uii .

Theorem 2 Let A be an invertible matrix. There exist a
permutation matrix P, a matrix L lower triangular with lii = 1 for
all i , and a matrix U upper triangular, such that

PA = LU
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Sparse and banded matrices

A banded matrix, upper bandwidth p = 3 and lower bandwidth
q = 2, in total p + q + 1 nonzero diagonals.
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Sparse and banded matrices

L lowerbanded q = 2, and U upperbanded p = 3. 9 / 40
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Sparse and banded matrices with pivoting

L =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0.6 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

−0.5 −0.17 −0.05 −0.21 0.025 0.0027 1



U =



−4 2 3 0 0 0 0
0 −12 3 1 2 0 0
0 0 −40 0 5 1 4
0 0 0 4 −10 −0.6 −2.4
0 0 0 0 −60 6 −23
0 0 0 0 0 −84 0
0 0 0 0 0 0 0.275


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The permutation matrix

P =



0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0


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Stationary iterative methods

AX = b ; A = M − N ; MX = NX + b,

MXm+1 = NXm + b.

Use A = D - E - F.

1 Jacobi : M = D diagonal part of A.
2 Gauss-Seidel : M = D − E lower part of A.
3 Relaxation : Ûm+1 obtained by Gauss-Seidel,

Xm+1 = ωÛm+1 + (1− ω)Xm.

M =
1

ω
D − E , N = F +

1− ω
ω

D − E

4 Richardson algorithm

Xm+1 = Xm − ρrm = Xm − ρ(AXm − b)

M = 1
ρ I ρopt = 2

λ1+λn
13 / 40
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Stationary methods, continue

MXm+1 = NXm + b ⇐⇒ MXm+1 = (M − A)Xm + b
⇐⇒ Xm+1 = (I −M−1A)Xm + M−1b
⇐⇒ fixed point algorithm to solve M−1AX = M−1b

Preconditioning

AX = b ⇐⇒ M−1AX = M−1b
⇐⇒ X = (I −M−1A)X + M−1b
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Stationary methods, continue

Error em := X − Xm,
Residual rm := b − AXm = AX − AXm = Aem.

MXm+1 = NXm + b

MX = NX + b

Mem+1 = Nem

em+1 = M−1Nem

R = M−1N is the iteration matrix

Useful alternative formula R = I −M−1A.
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Fundamentals tools

Xm+1 = RXm + b̃, em+1 = Rem, R = M−1N.

Theorem The sequence is convergent for any initial guess X 0 if
and only if ρ(R) < 1.
ρ(R) = max{|λ|, λ eigenvalue of A} : convergence factor.
To reduce the initial error by a factor ε, we need

‖em‖
‖e0‖ ≤∼ (ρ(R))m ∼ ε

So we have M ∼ ln ε

ln ρ(R)
.

Convergence rate= − ln ρ(R) digits per iteration.
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Symmetric positive definite matrices

Householder-John theorem : Suppose A is positive. If
M + MT − A is positive definite, then ρ(R) < 1.

Corollary

1 If D + E + F is positive definite, then Jacobi converges.

2 If ω ∈ (0, 2), then SOR converges.
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Tridiagonale matrices

1 ρ(L1) = (ρ(J))2 : Jacobi Gauss-Seidel converge or diverge
simultaneously. If convergent, Gauss-Seidel is twice as fast.

2 Suppose the eigenvalues of J are real. Then Jacobi and SOR
convergent ou converge or diverge simultaneously for
ω ∈]0, 2[.

3 Same assumptions, SOR has an optimal parameter

ω∗ =
2

1 +
√

1− (ρ(J))2
, ρ(Lω∗) = ω∗ − 1.

|ρ(Lω)|

ω1

1

2ω∗

ω∗ − 1

1
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Descent methods

The descent directions pm are given. Define

Xm+1 = Xm+αmp
m, em+1 = em−αmp

m, rm+1 = rm−αmAp
m.

Theorem X is the solution of AX = b ⇐⇒ it minimizes over RN

the functional J(y) = 1
2 (Ay , y)− (b, y).

This is equivalent to minimizing G (y) = 1
2 (A(y − X ), y − X )

At each step minimize J in the direction of pm

αm =
(pm, rm)

(Apm, pm)
, (pm, rm+1) = 0

G (xm+1) = G (xm)(1− µm), µm =
(rm, pm)2

(Apm, pm)(A−1rm, rm)
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Steepest descent

pm = rm.

Xm+1 = Xm+αmr
m, em+1 = em−αmr

m, rm+1 = (I−αmA)pm.

αm =
‖rm‖2

(Arm, rm)
, (rm, rm+1) = 0

G (xm+1) = G (xm)

(
1− ‖rm‖4

(Arm, rm)(A−1rm, rm)

)
≤
(
κ(A)− 1

κ(A) + 1

)2

G (xm)
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Conjugate gradient

Xm+1 = Xm + αmp
m, (rm, pm−1) = 0.

Search pm as pm = rm + βmp
m−1

G (xm+1) = G (xm)(1− µm)

µm =
(rm, pm)2

(Apm, pm)(A−1rm, rm)
=

‖rm‖4

(Apm, pm)(A−1rm, rm)

Maximize µm, or minimize

(Apm, pm) = β2
m(Apm−1, pm−1) + 2βm(Apm−1, rm) + (Arm, rm)

βm = − (Apm−1, rm)

Apm−1, pm−1)
⇒ (Apm−1, pm) = 0

(rm, rm+1) = 0, βm =
‖rm‖2

‖rm−1‖2
.
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Other properties

Choose p0 = r0. Then ∀m ≥ 1, if r i 6= 0 for i < m.

1 (rm, pi ) = 0 for i ≤ m − 1.

2 vec(r0, . . . , rm) = vec(r0,Ar0, . . . ,Amr0).

3 vec(p0, . . . , pm) = vec(r0,Ar0, . . . ,Amr0).

4 (pm,Api ) = 0 for i ≤ m − 1.

5 (rm, r i ) = 0 for i ≤ m − 1.

Definition Krylov space Km = vec(r0,Ar0, . . . ,Am−1r0).

Theorem G (xm) = inf
y∈x0+Km

G (y).
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Final properties

Theorem Convergence in at most N steps (size of the matrix)

Theorem G (xm) ≤ 4

(√
κ(A)− 1√
κ(A) + 1

)2

G (xm)
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The algorithm

X 0chosen, p0 = r0 = b − AX 0.

While m < Niter or ‖rm‖ ≥ tol , do

αm =
‖rm‖2

(Apm, pm)
,

Xm+1 = Xm + αmp
m,

rm+1 = rm − αmAp
m,

βm+1 =
‖rm+1‖2

‖rm‖2
,

pm+1 = rm+1 − βm+1p
m.
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1-D Poisson problem
Poisson equation −u′′ = f on (0, 1),
Dirichlet boundary conditions u(0) = gg , u(1) = gd .
Second order finite difference stencil.

(0, 1) = ∪(xj , xj+1), xj+1 − xj = h =
1

n + 1
, j = 0, . . . , n.

−u(xi+1)− 2u(xi ) + u(xi−1)

h2
∼ f (xi ), i = 1, . . . n

u0 = gg , un+1 = gd .

|ui − u(xi )| ≤ h2
supx∈[a,b] |u(4)(x)|

12
.
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1-D Poisson problem

Discrete unknowns U =t (u1, . . . , un).

A =
1

h2


2 −1
−1 2 −1 0

. . .
. . .

. . .

0 −1 2 −1
−1 2

 b =


f1 − gg

h2

f2
...

fn−1

fn − gd
h2


The matrix A is symmetric definite positive.

Discrete problem to be solved is

AX = b

27 / 40



Direct methods Stationary iterative methods Non-Stationary iterative methods Preconditioning

Condition number and error

AX = b, AX̂ = b̂

Define κ(A) = ‖A‖2‖A−1‖2. If A is symmetric > 0, κ(A) = maxλi
minλi

.

Theorem
‖X̂ − X‖2

‖X‖2
≤ κ(A)

‖b̂ − b‖2

‖b‖2

and there is a b such that it is equal.

Eigenvalues of A (h × (n + 1) = 1).

λk =
2

h2
(1− cos

kπ

n + 1
) =

4

h2
sin2 kπh

2
, Vk = (sin

jkπ

n + 1
)1≤i≤n,

κ(A) =
sin2 nπh

2

sin2 πh
2

=
cos2 πh

2

sin2 πh
2

∼ 4

π2h2
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Comparison of the iterative methods

Algorithm spectral radius ρ(R) n = 5 n = 30

Jacobi cosπh 0.81 0.99

Gauss-Seidel (ρ(J))2 = cos2 πh 0.65 0.98

SOR
1− sinπh

1 + sinπh
0.26 0.74

steepest descent
K(A)− 1

K(A) + 1
0.81 0.99

conjugate gradient

√
K(A)− 1√
K(A) + 1

0.51 0.86

Reduction factor for one digit M ∼ − 1

Log10ρ(R)
. For n = 30,

n Jacobi Gauss-Seidel SOR St Des CG

10 56 28 4 56 8

100 4759 2380 37 4759 74
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Asymptotic behavior

Algorithm spectral radius

Jacobi 1− π2

2 h2,
Gauss-Seidel 1− π2h2,

SOR 1− 2πh
gradient 1− πh,

conjugate gradient 1− πh

2
.
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Convergence history
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Number of elementary operations

Gauss elimination n2

optimal overrelaxation n3/2

FFT n ln2(n)

conjugate gradient n5/4

multigrid n

Asymptotic order of the number of elementary operations needed
to solve the 1− D problem as a function of the number of grid
points
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Purpose

Take the system AX = b, with A symmetric definite positive, and
the conjugate gradient algorithm. The speed of convergence of the
algorithm deteriorates when κ(A). The purpose is to replace the
problem by another system, better conditioned. Let M be a
symmetric regular matrix. Multiply the system on the left by M−1.

AX = b ⇐⇒ M−1AX = M−1b ⇐⇒ (M−1AM−1)MX = M−1b

Define
Ã = M−1AM−1, X̃ = MX , b̃ = M−1b,

and the new problem to solve ÃX̃ = b̃. Since M is symmetric, Ã is
symmetric definite positive. Write the conjugate gradient algorithm
for this “tilde“ problem.

34 / 40



Direct methods Stationary iterative methods Non-Stationary iterative methods Preconditioning

The algorithm for Ã

X̃ 0 given, p̃0 = r̃0 = b̃ − ÃX̃ 0.

While m < Niter or ‖r̃m‖ ≥ tol , do

αm =
‖r̃m‖2

(Ãp̃m, p̃m)
,

X̃m+1 = X̃m + αmp̃
m,

r̃m+1 = r̃m − αmÃp̃
m,

βm+1 =
‖r̃m+1‖2

‖r̃m‖2
,

p̃m+1 = r̃m+1 − βm+1p̃
m.

Now define

pm = M−1p̃m, Xm = M−1X̃m, rm = Mr̃m,

and replace in the algorithme above.
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The algorithm for A

Mp0 = M−1r0 = M−1b−M−1AM−1MX 0 ⇐⇒
{
p0 = M−2r0,

r0 = b − AX 0.

‖r̃m‖2 = (M−1rm,M−1rm) = (M−2rm, rm)

Define zm = M−2rm . Then βm+1 =
(zm+1, rm+1)

(zm, rm)
.

(Ãp̃m, p̃m) = (M−1AM−1Mpm,Mpm) = (Apm, pm)

⇒ αm =
(zm, rm)

(Apm, pm)
.

MXm+1 = MXm + αmMpm ⇐⇒ Xm+1 = Xm + αmp
m .

M−1rm+1 = M−1rm−αmM
−1AM−1Mpm ⇐⇒ rm+1 = rm − αmAp

m .

Mpm+1 = M−1rm+1−βm+1Mpm ⇐⇒ pm+1 = zm+1 − βm+1p
m . 36 / 40
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The algorithm for A

Define C = M2.

X 0 given, r0 = b − AX 0, solve Cz0 = r0, p0 = z0.

While m < Niter or ‖rm‖ ≥ tol , do

αm =
(zm, rm)

(Apm, pm)
,

Xm+1 = Xm + αmp
m,

rm+1 = rm − αmAp
m,

βm+1 =
(zm+1, rm+1)

(zm, rm)
,

solve Czm+1 = rm+1,
pm+1 = zm+1 − βm+1p

m.
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How to choose C

C must be chosen such that
1 Ã is better conditioned than A,
2 C is easy to invert.

Use an iterative method such that A = C − N with symmetric C .
For instance it can be a symmetrized version of SOR, named
SSOR, defined for ω ∈ (0, 2) by

C =
1

ω(2− ω)
(D − ωE )D−1(D − ωF ).

Notice that if A is symmetric definite positive, so is D and its
coefficients are positive, then its square root

√
D is defined

naturally as the diagonal matrix of the square roots of the
coefficients. Then C can be rewritten as

C = SST , with S =
1√

ω(2− ω)
(D − ωE )D−1/2,

yielding a natural Cholewski decomposition of C .
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How to choose C , continue

Define furthermore M as the square root of C (M will never been
use), i.e. diagonalize C as PΛPT , with Λii > 0 the eigenvalues of
C , then define the symmetric square root of C as M = P

√
ΛPT .

Notice that λ̃ is an eigenvalue of Ã associated to the eigenvector z̃
if and only if

M−1AM−1z̃ = λ̃z̃ ⇐⇒ M−2AM−1z̃ = λ̃M−1z̃

if and only if λ̃ is an eigenvalue of C−1A associated to the
eigenvector M−1z̃ . The speed of convergence of the iterative
method is measured by the spectral radius of C−1N,
ρ(C−1N) < 1. Note µi the eigenvalues of C−1N. Since
C−1N = I − C−1A, the eigenvalues of C−1A are equal to
1− µi ∈ [1− ρ(C−1N), 1 + ρ(C−1N)].

Therefore κ(Ã) ≤ 1 + ρ(C−1N)

1− ρ(C−1N)
, and the smallest ρ(C−1N), the

smallest the condition number of Ã.
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Comparison

For the 1-D finite differences matrix and n = 100, we compare the
convergence of the conjugate gradient and the preconditioning by
SSOR with ω = 1 and with the optimal parameter. The gain even
with ω = 1 is striking.
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