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€ Direct methods
© Stationary iterative methods
© Non-Stationary iterative methods

Q@ Preconditioning
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Solve AX = b.

@ A is a squared matrix,
@ b is a given righthand side, or a family of given righthand sides

1 3 1 9
1 1 -1 _| 1
3 11 6 36
A X b
1 3 1109 1 3 1109 1 3 1
11 -1]1 | =5lo =2 2|80 —2 -2
3 11 6 |36 0 2 3|09 0 0 1
1 00 1 3 1109 1 3 1109
11 0 1 1 -1]1 |=]0 -2 —2]|-8
311 3 11 6 |36 00 1|1
M (Alb) (U|Mb)
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Direct methods
Description

—8
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Direct methods

Ax = b < Ux: MAx = Mb

M is a preconditioner

1 00 1 0 0
M= -1 10| —L=M'=[1 1 0
-3 1 1 3 -1 1

U=MA «— A=LUAx=b «— LUx=b

© LU decomposition O(z—f) elementary operations.
@ Solve Ly = b O(n?) elementary operations.
© Solve Ux =y O(n?) elementary operations.

For P values of the righthand side, N, ~ % + P x 2n?.
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Direct methods

Theoretical results

Theorem 1 Let A be an invertible matrix, with principal minors
=# 0. Then there exists a unique matrix L lower triangular with

lii = 1 for all i, and a unique matrix U upper triangular, such that
A = LU. Furthermore det (A) = [[7_; uii-

Theorem 2 Let A be an invertible matrix. There exist a
permutation matrix P, a matrix L lower triangular with [;; = 1 for
all 7, and a matrix U upper triangular, such that

PA=LU
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Direct methods
Sparse and banded matrices

p=3
( 2—1—0-——1 0 0 0
T4 2 3 0 0 0 0
0 —-12 3 1 2 0. 0
o 0 0 0 -60 6 —23
K 0 0 0 0 0 -8 -qQ )

A banded matrix, upper bandwidth p = 3 and lower bandwidth
g = 2, in total p + g + 1 nonzero diagonals.
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Direct methods
Sparse and banded matrices

U "
00 12.-5 2 0
U=|00 0 \—ﬁ\—3 0
000 U“‘zo\l) D
000 0 0 9 -—11
\00 0 0 0 0 >1027)
N
(1 0 0 0 0 0 0)
-2 1.0 0 0 0 0
0 -3 i 0 0 0 0
L= 0o 0 2 1 0 0 o0
0 0 =33 281 0 0
0 0 0 0 -3 1 0
\0 0 0 0 0 -931)

L lowerbanded g = 2, and U upperbanded p = 3. 9/40



Direct methods
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Direct methods
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Stationary iterative methods

Stationary iterative methods

AX=b;, A=M-N; MX = NX + b,
MX™H = NX™ + b.
Use A=D-E-F.
@ Jacobi : M = D diagonal part of A.

@ Gauss-Seidel : M = D — E lower part of A.
© Relaxation : U™ obtained by Gauss-Seidel,
Xm™HL — ,Um (1 — w)X™,
1

1 —
M=-D—-E N=F+-—%“D_E
w w

© Richardson algorithm
XML = XM _ pr™m = X™ — p(AX™ — b)
M=21 popt = 3%
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Stationary iterative methods

Stationary methods, continue

MX™TL = NX™ + b = MX™1=(M-AX"+b
= X™l = (] - M71AX™ 4+ M~ 1h
<= fixed point algorithm to solve M~1AX = M~1p

Preconditioning

AX = b M~1AX = M~1bh
X =

—~ M71AX + M~1p
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Stationary iterative methods

Stationary methods, continue

Error e .= X — X™,
Residual r™ := b — AX™ = AX — AX™ = Ae™.

MX™H = NX™ + b
MX = NX + b
Me™ 1 = Ne™

el — M1 pe™

Useful alternative formula R =1 — M~ 1A.
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Stationary iterative methods

Fundamentals tools

XM= RX™+ b, "l =Re™ R=MIN.

Theorem The sequence is convergent for any initial guess X° if
and only if p(R) < 1.

p(R) = max{|\|, \ eigenvalue of A} : convergence factor.

To reduce the initial error by a factor ¢, we need

GG

Ine

Inp(R)
Convergence rate= — In p(R) digits per iteration.

So we have M ~
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Stationary iterative methods

Symmetric positive definite matrices

Householder-John theorem : Suppose A is positive. If
M+ MT — Ais positive definite, then p(R) < 1.

Corollary
O If D+ E + F is positive definite, then Jacobi converges.
Q If w € (0,2), then SOR converges.
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Stationary iterative methods

Tridiagonale matrices

@ p(L1) = (p(J))? : Jacobi Gauss-Seidel converge or diverge
simultaneously. If convergent, Gauss-Seidel is twice as fast.

@ Suppose the eigenvalues of J are real. Then Jacobi and SOR
convergent ou converge or diverge simultaneously for

w €]0, 2.
© Same assumptions, SOR has an optimal parameter
2
w* = ;o p(Lwr) =w" — 1.
1+ /1= (p(4))?

[p(Lo)]
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Non-Stationary iterative methods

Descent methods

The descent directions p,, are given. Define
Xm+1 — Xm—i—ampm, em—l—l _ em_ampm’ rm+1 _ fm—CkmApm.

Theorem X is the solution of AX = b <= it minimizes over RV
the functional J(y) = %(Ay,y) — (b, y).

This is equivalent to minimizing G(y) = 3(A(y — X),y — X)

At each step minimize J in the direction of pp,

(p™,r™) m o m
(Ap™, p™)’ M) =0

Om = (P

(rm7 pm)2

G(x™N) = G(xX")(1 — tm), fim = (Ap™, p™)(A~Lrm, rm)
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Non-Stationary iterative methods

Steepest descent

pm — rm.

Xm+1 _ Xm_+_amrm’ em—f—l _ em_amrm’ rm+1 — (I—amA)pm.

mi|2
U = HI’ H (rm7 rm—f—l) —0

~ (Arm rm)’

66 = 606 (1 G sz )= (KA 1) 667
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Non-Stationary iterative methods

Conjugate gradient

X™ = X" 4 anp™,  (r™, p™ ) =0.
Search p™ as p™ = r™ + B,p™ L
G(x") = G(x™)(1 — pm)
(r™, p™)? e
= (Apm pm)(A=Trm ) T (Ap™, pm)(ALrm, rm)
Maximize ftm,, or minimize

(Ap™, p™) = Bm(Ap™ 4, P 1) + 28m(Ap™ T, r™) + (AP, r™M)

Apm—l’ rm B
Bm = —jpm_l pm_l)) = (Ap" 1 p™) =0
(rm rm+1) —0 6 — ||I’mH2
| S T
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Non-Stationary iterative methods

Other properties

Choose p® = r®. Then Vm > 1, if r' #£0 for i < m.
Q@ (rp)=0fori<m-1.
Q@ vec(r®,...,r™) = vec(r, A0, ... A™/0).
@ vec(p®,...,p™) = vec(r, A0, ... AT(0),
Q (p",Ap')=0fori<m-—1.
Q@ (rry=0fori<m-1.

Definition Krylov space K, = vec(r%, A0, ..., Am~1/0),
Theorem G(x™) = inf  G(y).
yexP+Km
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Non-Stationary iterative methods

Final properties

Theorem Convergence in at most N steps (size of the matrix)

oo (VA1
Theorem G(x )§4<m+1> G(x™)
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Non-Stationary iterative methods

The algorithm

XOhosen, p°=r"=ph—- AX°.

While m < Niter or ||[r™|| > tol, do

I 1
o =
(Ap™, pm)’
Xm+1 — )<m_|_ampm7
rmtl = M a, Ap™,
lrm )2
fn = W
m = e
P = r™T = Bmyap™.
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Non-Stationary iterative methods

1-D Poisson problem
Poisson equation —u” = f on (0, 1),
Dirichlet boundary conditions u(0) = gz, u(1) = g4 -
Second order finite difference stencil.

1
n—+1

(Ovl)ZU(Xj’Xj—I—l)a Xj—i—l_Xj:h: ) j:0,...,n.

u(xi11) — 2u(x;) + u(xi—1 )
_ ulxis1) ;) 0i-1) f), i=1,..n

UO :gg7 Un—l—l :gd
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Non-Stationary iterative methods

1-D Poisson problem

Discrete unknowns U =t (uy, ..., up).
2 -1 fi— &
. ( —1 2 -1 0 \ ( f " \
A= L b= 5
0 —1 2 —1 fn1
\ -1 2 ) \ fo— %

The matrix A is symmetric definite positive.

Discrete problem to be solved is

AX =b
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Non-Stationary iterative methods

Condition number and error

AX=b, AX=b
Define x(A) = ||A|l2]|A2|2. If Ais symmetric > 0, k(A) = D2

min \;

Theorem R R
IX = X2 16— bi2

—= < k(A
X = "R

and there is a b such that it is equal.

Eigenvalues of A (h x (n+1) =1).

Ak = ﬁ(l — cos 1) — 2 5 Vi = (sin 1)1§i§m
sin? ”%h cos? ”2" 4
K = = ~
sin? %h sin? %h m2h?
28 /40

Non-Stationary iterative methods

Comparison of the iterative methods

Algorithm spectral radius p(R) | n=5 | n=30
Jacobi cosTh 0.81 0.99
Gauss-Seidel (p(J))? = cos® h 0.65 0.98
SOR 1= sinmh 026 | 0.74
14 sinmh
K(A) -1
steepest descent m 0.81 0.99
jugate gradient VKA - 1 051 | 0.86
conjugate gradien e : :
Jneate & VK(A) + 1
Reduction factor for one digit M ~ —;. For n = 30,
Logi,0(R)
n Jacobi | Gauss-Seidel | SOR | St Des | CG
10 56 28 4 56 8
100 | 4759 2380 37 4759 74
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Asymptotic behavior

Non-Stationary iterative methods

Algorithm

spectral radius

Jacobi
Gauss-Seidel

SOR
gradient

conjugate gradient

1-Th,
—y e
1—27h
1—mh,
mh

1 ——.
2

Convergence history

il

finite diterences, n=5

| I I I I |
B0 100 120 140 160 180 200
iteration

Non-Stationary iterative methods

idual

fs0n
——conjugste gradisnt
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Non-Stationary iterative methods

Number of elementary operations

Gauss elimination n’
optimal overrelaxation n3/2
FFT nlina(n)
conjugate gradient n°/4
multigrid n

Asymptotic order of the number of elementary operations needed
to solve the 1 — D problem as a function of the number of grid
points

32/40

Preconditioning

Purpose

Take the system AX = b, with A symmetric definite positive, and
the conjugate gradient algorithm. The speed of convergence of the
algorithm deteriorates when k(A). The purpose is to replace the
problem by another system, better conditioned. Let M be a
symmetric regular matrix. Multiply the system on the left by M~1.

AX=b <= MIAX =M1p — (MTAMHYMX = M~ 1b

Define ) ) )
A=M1T1TAM™1, X =MX, b= M1p

and the new problem to solve AX = b. Since M is symmetric, A is
symmetric definite positive. Write the conjugate gradient algorithm
for this “tilde” problem.
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Preconditioning

The algorithm for A

X0 given, Pl =7 = b— AXC.
While m < Niter or ||F|| > tol, do

e
m - ~ . ~ 9
) (Ap™, pm)
Xm—|—1 — Xm+am~,5m7
L = B — 0, AP,
[P |2
Bm+l = =i
S [
prt = P — Bma B

Now define
pm _ M_lﬁm, Xm — M—l)"(m7 Fmo— MT’m,

and replace in the algorithme above.
35/40

Preconditioning

The algorithm for A

Mp® = M0 = M~ 1p—MTAMIMXY —

||T,m||2 — (M—lrm, M—lrm) — (M—2rm, rm)
(Zm—I—l7 rm—l—l)

(zm,rm)

Define | z™ = M~2r™|. Then | i1 =

(Ap™,p™) = (M~TAM~Mp™, Mp™) = (Ap™, p™)
(2, ™)

(Ap™, p™) |

= |lay, =

MX™H = MX™ 4+ apMp™ — | X™ = X™ 4+ app™

MLm= M, MTPAM T I Mp™ — | T = M — o, AP

Mp™ = M — B M = | p™T = 2T — B p™ | e




Preconditioning

The algorithm for A

Define C = M?.
X0 given, P =b—AX? solve C2°=/0 p° =20

While m < Niter or ||r™|| > tol, do

§ (2, rm)
m
(Ap™, p™m)’
Xm+1 — XM 4 ampm7
pm+l —m OémA,Dm,
5 = (Zm+1’rm—f—1)
m — ’
zm rm
solve Cz™t1 = r’"grl, )
pmtt = Mt — P,
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Preconditioning

How to choose C

C must be chosen such that

@ A is better conditioned than A,

© C is easy to invert.
Use an iterative method such that A = C — N with symmetric C.
For instance it can be a symmetrized version of SOR, named
SSOR, defined for w € (0,2) by

1
C=———(D—-wE)DYD — wF).
=)D~ wEIDTHD —wF)
Notice that if A is symmetric definite positive, so is D and its
coefficients are positive, then its square root v/D is defined
naturally as the diagonal matrix of the square roots of the
coefficients. Then C can be rewritten as

C=5ST, withS= L (D —wE)D™Y/2,

w(2 —w)

yielding a natural Cholewski decomposition of C.
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Preconditioning

How to choose C, continue

Define furthermore M as the square root of C (M will never been
use), i.e. diagonalize C as PAPT, with A;; > 0 the eigenvalues of
C, then define the symmetric square root of C as M = Pv/APT.
Notice that \ is an eigenvalue of A associated to the eigenvector Z
if and only if

M TAM 13 = X7 = M 2AM 1z = XM~ 13

if and only if ) is an eigenvalue of C~!A associated to the
eigenvector M~1%. The speed of convergence of the iterative
method is measured by the spectral radius of C1N,
p(C7IN) < 1. Note y; the eigenvalues of C~1N. Since
CIN=1-C 1A, the eigenvalues of C1A are equal to
1—pi€[l—p(CIN),1 +1p(C‘1N)].

- 1+ p(C*N)
Therefore K(A) < 1= p(CIN)
smallest the condition number of A.

, and the smallest p(C~1N), the
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Preconditioning

Comparison

For the 1-D finite differences matrix and n = 100, we compare the
convergence of the conjugate gradient and the preconditioning by
SSOR with w = 1 and with the optimal parameter. The gain even
with w = 1 is striking.

2 finite differences 1D, n=100

conjugate gradient
precondtioned conjugate gradient with w=1
precaonditioned conjugate gradient with optimal w _ 40 /40
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