A direct solver for time parallelization of wave equations

Laurence HALPERN LAGA - Université Paris 13 and C.N.R.S.

6th Parallel in Time Workshop Monte Verita, Octobre 23, 2017

Joint work with Martin Gander (Genève), Johann Rannou and Juliette Ryan (ONERA) PhD Thuy Thi Bich Tran

2 The wave equation

- An algorithm for the ODE
- Error analysis
- Diagonalization of B
- Optimization of the algorithm
- Application to an industrial case

3 Conclusion and Perspectives

4 Bibliography

Outline

Introduction

- The wave equationAn algorithm for the ODE
 - Error analysis
 - Diagonalization of B
 - Optimization of the algorithm
 - Application to an industrial case
- 3 Conclusion and Perspectives

Bibliography

Outline In

Introduction

The wave equation

Conclusion and Perspective

Bibliography

Parallelism and PDE: distribute the computation

Outline Int

Introduction

The wave equation

Conclusion and Perspective

Bibliography

Time discretization for the heat equation. 0-D

$$d_t u + a u = 0, \quad u(0) = u_0, \quad t \in (0, T) \quad \iff \quad u(t) = e^{-at} u_0.$$

The wave equation

Conclusion and Perspective

Bibliography

Time discretization for the heat equation. 0-D

$$d_t u + au = 0, \quad u(0) = u_0, \quad t \in (0, T) \quad \Longleftrightarrow \quad u(t) = e^{-at}u_0.$$

$$\frac{u^n - u^{n-1}}{k_n} + au^n = 0, \quad u^0 = u_0, \quad \sum k_n = T$$

The wave equation

Conclusion and Perspective

Bibliography

Time discretization for the heat equation. 0-D

$$d_t u + au = 0, \quad u(0) = u_0, \quad t \in (0, T) \quad \iff \quad u(t) = e^{-at} u_0.$$

$$\frac{u^n - u^{n-1}}{k_n} + au^n = 0, \quad u^0 = u_0, \quad \sum k_n = T$$

$$\begin{pmatrix} \frac{1}{k_1} & & \\ -\frac{1}{k_2} & \frac{1}{k_2} & 0 \\ 0 & \ddots & \ddots & \\ & & -\frac{1}{k_N} & \frac{1}{k_N} \end{pmatrix} \begin{pmatrix} u^1 \\ u^2 \\ \vdots \\ u^N \end{pmatrix} + a \begin{pmatrix} u^1 \\ u^2 \\ \vdots \\ u^N \end{pmatrix} = \begin{pmatrix} \frac{1}{k_1} u^0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$(B + a I)\mathbf{u} = F, \quad \mathbf{u} = (u^1, \dots, u^N)$$

・ロト・西ト・モン・モー うべつ

The wave equation

Conclusion and Perspective

Bibliography

Time discretization for the heat equation. 0-D

$$d_t u + au = 0, \quad u(0) = u_0, \quad t \in (0, T) \quad \iff \quad u(t) = e^{-at} u_0.$$

$$\frac{u^n - u^{n-1}}{k_n} + au^n = 0, \quad u^0 = u_0, \quad \sum k_n = T$$

$$\begin{pmatrix} \frac{1}{k_1} & & \\ -\frac{1}{k_2} & \frac{1}{k_2} & 0 \\ 0 & \ddots & \ddots & \\ & -\frac{1}{k_N} & \frac{1}{k_N} \end{pmatrix} \begin{pmatrix} u^1 \\ u^2 \\ \vdots \\ u^N \end{pmatrix} + a \begin{pmatrix} u^1 \\ u^2 \\ \vdots \\ u^N \end{pmatrix} = \begin{pmatrix} \frac{1}{k_1} u^0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$(B + aI)\mathbf{u} = F, \quad \mathbf{u} = (u^1, \dots u^N)$$

$$B = SDS^{-1}, \quad S(D + aI)S^{-1}\mathbf{u} = F$$

The wave equation

Conclusion and Perspective

Bibliography

Time discretization for the heat equation. 0-D

$$d_t u + au = 0, \quad u(0) = u_0, \quad t \in (0, T) \quad \iff \quad u(t) = e^{-at}u_0.$$

$$\frac{u^n - u^{n-1}}{k_n} + au^n = 0, \quad u^0 = u_0, \quad \sum k_n = T$$

$$\begin{pmatrix} \frac{1}{k_1} & & \\ -\frac{1}{k_2} & \frac{1}{k_2} & 0 \\ 0 & \ddots & \ddots & \\ & -\frac{1}{k_N} & \frac{1}{k_N} \end{pmatrix} \begin{pmatrix} u^1 \\ u^2 \\ \vdots \\ u^N \end{pmatrix} + a \begin{pmatrix} u^1 \\ u^2 \\ \vdots \\ u^N \end{pmatrix} = \begin{pmatrix} \frac{1}{k_1} u^0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$(B + a I)\mathbf{u} = F, \quad \mathbf{u} = (u^1, \dots u^N)$$

$$B = SDS^{-1}, \quad S(D + aI)S^{-1}\mathbf{u} = F$$

(1) SG = F, (2) $(D + aI)\mathbf{v} = G$, (3) $\hat{\mathbf{u}} = S\mathbf{v}$.

The wave equation

Conclusion and Perspective

Bibliography

Time discretization for the heat equation. d-D

Resolution by multigrid, or iterative, or direct methods.

$$u = e^{-t\Delta}u_0$$

Bibliography

Time-space discretization for the heat equation.

Discretization in space, M degrees of freedom.

$$M_h \mathbf{u}_h = F_h, \qquad \mathbf{u}_h \in (\mathbb{R}^M)^N.$$

$$M_{h} = \begin{pmatrix} \frac{1}{k_{1}}I_{x} - \Delta_{h} & & \\ -\frac{1}{k_{2}}I_{x} & \frac{1}{k_{2}}I_{x} - \Delta_{h} & & 0 \\ 0 & \ddots & \ddots & \\ & & -\frac{1}{k_{N}}I_{x} & \frac{1}{k_{N}}I_{x} - \Delta_{h} \end{pmatrix}$$

Outline	Introduction	Conclusio

Bibliogr

Time-space discretization for the heat equation.

Discretization in space, M degrees of freedom.

$$M_h \mathbf{u}_h = F_h, \qquad \mathbf{u}_h \in (\mathbb{R}^M)^N.$$

$$M_{h} = \begin{pmatrix} \frac{1}{k_{1}}I_{x} - \Delta_{h} & & \\ -\frac{1}{k_{2}}I_{x} & \frac{1}{k_{2}}I_{x} - \Delta_{h} & & 0 \\ 0 & \ddots & \ddots & \\ & & -\frac{1}{k_{N}}I_{x} & \frac{1}{k_{N}}I_{x} - \Delta_{h} \end{pmatrix}$$

$$M_{h} = B \otimes I_{x} + I_{t} \otimes (-\Delta_{h}), \quad B = \begin{pmatrix} \frac{1}{k_{1}} & & & \\ -\frac{1}{k_{2}} & \frac{1}{k_{2}} & & 0 \\ 0 & \ddots & \ddots & \\ & & -\frac{1}{k_{N}} & \frac{1}{k_{N}} \end{pmatrix}$$

The wave equation

Conclusion and Perspective

Bibliography

Direct method (Maday-Ronquist, CRAS 2007)

$$\underbrace{\left(\underbrace{B\otimes l_{x}+l_{t}\otimes(-\Delta_{h})}_{M_{h}}\right)\mathbf{u}_{h}=F_{h}, \quad B=\left(\begin{array}{ccc} \frac{1}{k_{1}} & & & \\ -\frac{1}{k_{2}} & \frac{1}{k_{2}} & & 0\\ 0 & \ddots & \ddots & \\ & & -\frac{1}{k_{N}} & \frac{1}{k_{N}} \end{array}\right)$$

Outline Intr

Introduction

I he wave equation

Conclusion and Perspective

Bibliography

Direct method (Maday-Ronquist, CRAS 2007)

$$(\underbrace{B \otimes l_x + l_t \otimes (-\Delta_h)}_{M_h}) \mathbf{u}_h = F_h, \quad B = \begin{pmatrix} \frac{1}{k_1} & & \\ -\frac{1}{k_2} & \frac{1}{k_2} & 0 \\ 0 & \ddots & \ddots \\ & & -\frac{1}{k_N} & \frac{1}{k_N} \end{pmatrix}$$

 $B = SDS^{-1}$

Tł

Conclusion and Perspective

Bibliography

Direct method (Maday-Ronquist, CRAS 2007)

$$\underbrace{(\underbrace{B \otimes l_{x} + l_{t} \otimes (-\Delta_{h})}_{M_{h}})}_{M_{h}} \mathbf{u}_{h} = F_{h}, \quad B = \begin{pmatrix} \frac{1}{k_{1}} & & \\ -\frac{1}{k_{2}} & \frac{1}{k_{2}} & & 0\\ 0 & \ddots & \ddots & \\ & & -\frac{1}{k_{N}} & \frac{1}{k_{N}} \end{pmatrix}$$

$$B = SDS^{-1}$$
$$(S \otimes I_x)(D \otimes I_x + I_t \otimes (-\Delta_h))(S^{-1} \otimes I_x) \mathbf{u}_h = F_h$$

・ロト・西・・ヨ・・ヨ・ ヨー うへの

Outline Intr

Introduction

The wave equation

Conclusion and Perspective

Bibliography

Direct method (Maday-Ronquist, CRAS 2007)

$$(\underbrace{B \otimes l_x + l_t \otimes (-\Delta_h)}_{M_h}) \mathbf{u}_h = F_h, \quad B = \begin{pmatrix} \frac{1}{k_1} & & \\ -\frac{1}{k_2} & \frac{1}{k_2} & & 0\\ 0 & \ddots & \ddots & \\ & & -\frac{1}{k_N} & \frac{1}{k_N} \end{pmatrix}$$

 $B = SDS^{-1}$

$$(S \otimes I_x)(D \otimes I_x + I_t \otimes (-\Delta_h))(S^{-1} \otimes I_x) \mathbf{u}_h = F_h$$

$$(1) \quad (S \otimes I_x) G = F_h,$$

2)
$$(\frac{1}{k_n} - \Delta_h)\mathbf{v}^n = G^n, \quad 1 \le n \le N,$$

(3)
$$\widehat{\mathbf{u}}_h = (S \otimes I_x) \mathbf{v}$$

・ロト・白ト・モー・モー もんの

utline Introduction The wave equation

Conclusion and Perspectives

Bibliography

Direct method (Maday-Ronquist, CRAS 2007)

$$\underbrace{(\underbrace{B\otimes l_x+l_t\otimes(-\Delta_h)}_{M_h})}_{M_h}\mathbf{u}_h=F_h, \quad B=\begin{pmatrix}\frac{\frac{1}{k_1}}{-\frac{1}{k_2}}&\frac{1}{k_2}&0\\0&\ddots&\ddots\\&&-\frac{1}{k_N}&\frac{1}{k_N}\end{pmatrix}$$

 $B = SDS^{-1}$

 $(S \otimes I_x)(D \otimes I_x + I_t \otimes (-\Delta_h))(S^{-1} \otimes I_x) \mathbf{u}_h = F_h$

(1)
$$(S \otimes I_x) G = F_h,$$

(2) $(\frac{1}{k_n} - \Delta_h) \mathbf{v}^n = G^n, \quad 1 \le n \le N,$
(3) $\widehat{\mathbf{u}}_h = (S \otimes I_x) \mathbf{v}$

N equations in space can thus be solved independently on the processors. (2) is better conditioned than Δ_h , easily parallelized with OSM.

Direct method (Maday-Ronquist, CRAS 2007)

The method we have just proposed is first order in time, and since it requires that all the time steps are different, the <u>accuracy</u> will be related to the largest time step.

Direct method (Maday-Ronquist, CRAS 2007)

The method we have just proposed is first order in time, and since it requires that all the time steps are different, the <u>accuracy</u> will be related to the largest time step.

In order to make the method more efficient, we propose to use a higher order scheme in time with time steps $k_n = \rho^{n-1}k_1$, with ρ larger but close to 1, e.g. $\rho = 1.2$.

Direct method (Maday-Ronquist, CRAS 2007)

The method we have just proposed is first order in time, and since it requires that all the time steps are different, the <u>accuracy</u> will be related to the largest time step.

In order to make the method more efficient, we propose to use a higher order scheme in time with time steps $k_n = \rho^{n-1}k_1$, with ρ larger but close to 1, e.g. $\rho = 1.2$.

Note that, as can be expected, choosing ρ much closer to 1 may lead to instabilities due to numerical errors.

Error analysis (1)

We look for an exact solution of the form $U_z = \sin(\frac{\pi}{L}x) \sin(\frac{\pi}{L}y) \sin(\omega \pi t)$

(a) space solution on a $30 \times 20 \times 1$ mesh

we use a known solution to compare

- 1) the $\rho = 1$ sequential newmark scheme error
- 2) the ρ < 1 sequential newmark scheme error
- 3) the ρ < 1 parallel newmark scheme error
- 4) the introduced parallelism error (*i.e* (3) (2))

retour sur innovation 🏹

Error analysis (2)

 $N_t = 8, \rho = 0.80 \quad \rightarrow \quad \text{too much discretization error}$

17

◆□ > ◆□ > ◆ = > ◆ = > ◆ □ > ∞∞()

17

retour sur innovation 🏹

Error analysis (2)

 $N_t = 8, \rho = 0.95 \quad
ightarrow ext{too} ext{ much roundoff error}$

retour sur innovation 🏹

Error analysis (2) $N_t = 8, \rho = 0.90 \rightarrow \text{OK}$

17

(日) (日) (日) (日) (日) (日) (日) (日)

The wave equation

Conclusion and Perspective

Bibliography

Specifications

Choice of the timesteps $k_n = \rho^n k_1$, $\sum_{n=1}^N k_n = T$

 $(B \otimes I_x + I_t \otimes (-\Delta_h)) \mathbf{u}_h = F_h, \quad B = SDS^{-1}, \quad D = diag(\mathbf{k}_1, \dots, \mathbf{k}_n).$

(1)
$$(S \otimes I_x) G = F_h,$$
,
(2) $(\frac{1}{k_n} - \Delta_h) \mathbf{v}^n = G^n, \quad 1 \le n \le N,$
(3) $\hat{\mathbf{u}}_h = (S \otimes I_x) V$

Choice of the timesteps $k_n = \rho^n k_1$, $\sum_{n=1}^N k_n = T$

 $(B \otimes I_x + I_t \otimes (-\Delta_h)) \mathbf{u}_h = F_h, \quad B = SDS^{-1}, \quad D = diag(\mathbf{k}_1, \dots, \mathbf{k}_n).$

(1)
$$(\widehat{\mathbf{S}} \otimes I_x) \mathbf{G} = \mathbf{F}_h,$$

(2) $(\frac{1}{k_n} - \Delta_h) \mathbf{v}^n = \mathbf{G}^n, \quad 1 \le n \le N,$
(3) $\widehat{\mathbf{u}}_h = (\widehat{\mathbf{S}} \otimes I_x) \mathbf{v}$

The timesteps have to be all different for B to be diagonalizable.
The matrix S must be easy and cheap to invert (closed form is a must).

Choice of the timesteps $k_n = \rho^n k_1$, $\sum_{n=1}^N k_n = T$

 $(B \otimes I_x + I_t \otimes (-\Delta_h)) \mathbf{u}_h = F_h, \quad B = SDS^{-1}, \quad D = diag(\mathbf{k}_1, \dots, \mathbf{k}_n).$

(1)
$$(\widehat{\mathbf{S}} \otimes I_x) \mathbf{G} = \mathbf{F}_h,$$

(2) $(\frac{1}{k_n} - \Delta_h) \mathbf{v}^n = \mathbf{G}^n, \quad 1 \le n \le N,$
(3) $\widehat{\mathbf{u}}_h = (\widehat{\mathbf{S}} \otimes I_x) \mathbf{v}$

- The matrix S must be easy and cheap to invert (closed form is a must).
- The precision of the scheme can be affected.

Conclusion and Perspectives

Bibliography

Specifications

Choice of the timesteps $k_n = \rho^n k_1$, $\sum_{n=1}^N k_n = T$

 $(B \otimes I_x + I_t \otimes (-\Delta_h)) \mathbf{u}_h = F_h, \quad B = SDS^{-1}, \quad D = diag(\mathbf{k}_1, \dots, \mathbf{k}_n).$

(1)
$$(\widehat{\mathbf{S}} \otimes I_x) \mathbf{G} = \mathbf{F}_h,$$

(2) $(\frac{1}{k_n} - \Delta_h) \mathbf{v}^n = \mathbf{G}^n, \quad 1 \le n \le N,$
(3) $\widehat{\mathbf{u}}_h = (\widehat{\mathbf{S}} \otimes I_x) \mathbf{v}$

- The matrix S must be easy and cheap to invert (closed form is a must).
- The precision of the scheme can be affected.
- Therefore it is better to keep the time steps close to equidistant.

Choice of the timesteps $k_n = \rho^n k_1$, $\sum_{n=1}^N k_n = T$

 $(B \otimes I_x + I_t \otimes (-\Delta_h)) \mathbf{u}_h = F_h, \quad B = SDS^{-1}, \quad D = diag(\mathbf{k}_1, \dots, \mathbf{k}_n).$

(1)
$$(\widehat{\mathbf{S}} \otimes I_x) \mathbf{G} = \mathbf{F}_h,$$

(2) $(\frac{1}{k_n} - \Delta_h) \mathbf{v}^n = \mathbf{G}^n, \quad 1 \le n \le N,$
(3) $\widehat{\mathbf{u}}_h = (\widehat{\mathbf{S}} \otimes I_x) \mathbf{v}$

- The matrix S must be easy and cheap to invert (closed form is a must).
- The precision of the scheme can be affected.
- S Therefore it is better to keep the time steps close to equidistant.
- Then the condition number of matrix S increases, deteriorating the results of steps (1) and (3).

Choice of the timesteps $k_n = \rho^n k_1$, $\sum_{n=1}^N k_n = T$

 $(B \otimes I_x + I_t \otimes (-\Delta_h)) \mathbf{u}_h = F_h, \quad B = SDS^{-1}, \quad D = diag(\mathbf{k}_1, \dots, \mathbf{k}_n).$

(1)
$$(\hat{\mathbf{S}} \otimes I_x) \mathbf{G} = \mathbf{F}_h,$$

(2) $(\frac{1}{k_n} - \Delta_h) \mathbf{v}^n = \mathbf{G}^n, \quad 1 \le n \le N,$
(3) $\hat{\mathbf{u}}_h = (\hat{\mathbf{S}} \otimes I_x) \mathbf{v}$

- The timesteps have to be all different for B to be diagonalizable.
- The matrix S must be easy and cheap to invert (closed form is a must).
- The precision of the scheme can be affected.
- Solution Therefore it is better to keep the time steps close to equidistant.
- Then the condition number of matrix S increases, deteriorating the results of steps (1) and (3).

QUANTIFY ?

Choice of the timesteps $k_n = \rho^n k_1$, $\sum_{n=1}^N k_n = T$

 $(B \otimes I_x + I_t \otimes (-\Delta_h)) \mathbf{u}_h = F_h, \quad B = SDS^{-1}, \quad D = diag(\mathbf{k}_1, \dots, \mathbf{k}_n).$

(1)
$$(\hat{\mathbf{S}} \otimes I_x) \mathbf{G} = \mathbf{F}_h,$$

(2) $(\frac{1}{k_n} - \Delta_h) \mathbf{v}^n = \mathbf{G}^n, \quad 1 \le n \le N,$
(3) $\hat{\mathbf{u}}_h = (\hat{\mathbf{S}} \otimes I_x) \mathbf{v}$

• The timesteps have to be all different for B to be diagonalizable.

- The matrix S must be easy and cheap to invert (closed form is a must).
- The precision of the scheme can be affected.
- Therefore it is better to keep the time steps close to equidistant.
- Then the condition number of matrix S increases, deteriorating the results of steps (1) and (3).

QUANTIFY ? STRATEGIZE ?

Definitions

$$u(t, \cdot) = S(t)u_0$$

$$(B \otimes I_x + I_t \otimes (-\Delta_h))\mathbf{u} = F_h$$

$$\mathbf{u} \longleftrightarrow \quad \mathcal{T} = (k_1, \dots, k_N)$$

$$\mathbf{u} \longleftrightarrow \quad \overline{\mathcal{T}} = (\bar{k}, \dots, \bar{k}),$$

$$(1) \quad (S \otimes I_x)G = \mathbf{F}_h,$$

$$(2) \quad \left(\frac{1}{k_n} - \Delta_h\right)\mathbf{u}^n = G^n, \quad 1 \le n \le N,$$

$$(3) \quad \mathbf{\hat{u}} = (S \otimes I_x)\mathbf{v}.$$

・ロ・・聞・・ヨ・・ヨ・ のへの

The wave equation

+

+

Conclusion and Perspectives

Bibliography

Total error

TRUNCATION ERROR WITH EQUAL TIME STEPS

ERROR DUE TO HETEROGENEOUS TIME STEPS

ERROR DUE TO DIAGONALIZATION

Outline

2 The wave equation

- An algorithm for the ODE
- Error analysis
- Diagonalization of B
- Optimization of the algorithm
- Application to an industrial case

Outline

ntroduction

The wave equation

Conclusion and Perspectiv

Bibliography

Program for the wave equation

• The PDE $\ddot{u} - \Delta u = 0$.

Outline I

The wave equation

Conclusion and Perspective

Bibliography

Program for the wave equation

- The PDE $\ddot{u} \Delta u = 0$.
- Work on the O.D.E. $\ddot{u} + a^2 u = 0$ (Fourier in space, $a = ||\xi||$) with Crank-Nicolson scheme.
Outline I

The wave equation

Conclusion and Perspective

Bibliography

- The PDE $\ddot{u} \Delta u = 0$.
- Work on the O.D.E. $\ddot{u} + a^2 u = 0$ (Fourier in space, $a = ||\xi||$) with Crank-Nicolson scheme.
 - Evaluate the loss of precision produced by a set of $k_n = \rho^{n-1}k_1$ for $\rho = 1 + \varepsilon$.

itroduction

The wave equation

Conclusion and Perspective

Bibliography

- The PDE $\ddot{u} \Delta u = 0$.
- Work on the O.D.E. $\ddot{u} + a^2 u = 0$ (Fourier in space, $a = ||\xi||$) with Crank-Nicolson scheme.
 - Evaluate the loss of precision produced by a set of $k_n = \rho^{n-1}k_1$ for $\rho = 1 + \varepsilon$.

write
$$(B + a^2 I)U = F$$
, and $B = SDS^{-1}$

troduction

The wave equation

Conclusion and Perspective

Bibliography

- The PDE $\ddot{u} \Delta u = 0$.
- Work on the O.D.E. $\ddot{u} + a^2 u = 0$ (Fourier in space, $a = ||\xi||$) with Crank-Nicolson scheme.
 - Evaluate the loss of precision produced by a set of $k_n = \rho^{n-1}k_1$ for $\rho = 1 + \varepsilon$.
 - write $(B + a^2 I)U = F$, and $B = SDS^{-1}$
 - Find explicit forms for S and S^{-1} .

troduction

The wave equation

Conclusion and Perspective

Bibliography

- The PDE $\ddot{u} \Delta u = 0$.
- Work on the O.D.E. $\ddot{u} + a^2 u = 0$ (Fourier in space, $a = ||\xi||$) with Crank-Nicolson scheme.
 - Evaluate the loss of precision produced by a set of $k_n = \rho^{n-1}k_1$ for $\rho = 1 + \varepsilon$.
 - write $(\overline{B} + a^2 I)U = F$, and $B = SDS^{-1}$
 - Find explicit forms for S and S^{-1} .
 - For given a and T, estimate the round-off error for the resolution of the diagonalized system.

itroduction

The wave equation

Conclusion and Perspective

Bibliography

- The PDE $\ddot{u} \Delta u = 0$.
- Work on the O.D.E. $\ddot{u} + a^2 u = 0$ (Fourier in space, $a = ||\xi||$) with Crank-Nicolson scheme.
 - Evaluate the loss of precision produced by a set of $k_n = \rho^{n-1}k_1$ for $\rho = 1 + \varepsilon$.
 - write $(B + a^2 I)U = F$, and $B = SDS^{-1}$
 - Sind explicit forms for S and S^{-1} .
 - For given a and T, estimate the round-off error for the resolution of the diagonalized system.
 - So For given a and T, equilibrate 1 and 4.

troduction

The wave equation

Conclusion and Perspective

Bibliography

Program for the wave equation

- The PDE $\ddot{u} \Delta u = 0$.
- Work on the O.D.E. $\ddot{u} + a^2 u = 0$ (Fourier in space, $a = ||\xi||$) with Crank-Nicolson scheme.
 - Evaluate the loss of precision produced by a set of $k_n = \rho^{n-1}k_1$ for $\rho = 1 + \varepsilon$.

2 write
$$(B + a^2 I)U = F$$
, and $B = SDS^{-1}$

- **③** Find explicit forms for S and S^{-1} .
- For given a and T, estimate the round-off error for the resolution of the diagonalized system.
- For given a and T, equilibrate 1 and 4.
- Apply to the P.D.E.

Perturbation analysis in ε

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

- An algorithm for the ODE
- Error analysis
- Diagonalization of B
- Optimization of the algorithm
- Application to an industrial case

3 Conclusion and Perspectives

4 Bibliography

Outline Intro

The wave equation

Conclusion and Perspective

Bibliography

The Crank-Nicolson method

$$\begin{cases} d_{t}u = \dot{u} \\ d_{t}\dot{u} = \ddot{u} \\ \ddot{u} + a^{2}u = 0 \end{cases} \begin{cases} \frac{1}{k_{n}}(u^{n} - u^{n-1}) = \frac{1}{2}(\dot{u}^{n} + \dot{u}^{n-1}), \\ \frac{1}{k_{n}}(\dot{u}^{n} - \dot{u}^{n-1}) = \frac{1}{2}(\ddot{u}^{n} + \ddot{u}^{n-1}), \\ \ddot{u}^{n} + a^{2}u^{n} = 0. \end{cases} \\ U = \begin{pmatrix} u \\ a\dot{u} \end{pmatrix}, \ U_{n} = \begin{pmatrix} u_{n} \\ a\dot{u}_{n} \end{pmatrix} \end{cases}$$

・ロ・・西・・ヨ・・ヨ・ シック

ntroduction

The wave equation

Conclusion and Perspective

Bibliography

The Crank-Nicolson method

$$\begin{cases} d_t u = \dot{u} \\ d_t \dot{u} = \ddot{u} \\ \ddot{u} + a^2 u = 0 \end{cases} \begin{cases} \frac{1}{k_n} (u^n - u^{n-1}) = \frac{1}{2} (\dot{u}^n + \dot{u}^{n-1}), \\ \frac{1}{k_n} (\dot{u}^n - \dot{u}^{n-1}) = \frac{1}{2} (\ddot{u}^n + \ddot{u}^{n-1}), \\ \ddot{u}^n + a^2 u^n = 0. \end{cases} \\ U = \begin{pmatrix} u \\ a\dot{u} \end{pmatrix}, \ U_n = \begin{pmatrix} u_n \\ a\dot{u}_n \end{pmatrix} \end{cases}$$

$$k_n(\rho) := \rho^{n-1}k_1, \ \mathcal{T}_{\rho} := (k_1 \cdots, k_N) = k_1(1, \cdots, \rho^{N-1}), \ \sum_{n=1}^N k_n = T$$

THEOREM Given a, T and N, for ε small,

$$\|U_N(\mathcal{T}_{1+\varepsilon}) - U_N(\mathcal{T}_1)\| = \phi(\frac{aT}{2N}, N) \varepsilon^2 \|U_0\| + \mathcal{O}(\varepsilon^3),$$

where
$$\phi(y, N) := \frac{N(N^2-1)}{6} \frac{y^3}{(1+y^2)^2}$$

◆□> ◆□> ◆目> ◆目> ◆目> ● ●

16/41

Outline Introd

The wave equation ○○○○○○○○○○○○○○○○○○○○ Conclusion and Perspective

Bibliography

Matrix formulation (J. Rannou, T. Tran's Thesis)

$$\begin{cases} d_t u = \dot{u} \\ d_t \dot{u} = \ddot{u} \\ \ddot{u} - a^2 u = 0 \end{cases} \begin{cases} \frac{1}{k_n} (u^n - u^{n-1}) = \frac{1}{2} (\dot{u}^n + \dot{u}^{n-1}) \\ \frac{1}{k_n} (\dot{u}^n - \dot{u}^{n-1}) = \frac{1}{2} (\ddot{u}^n + \ddot{u}^{n-1}) \\ \ddot{u}^n - a^2 u^n = 0 \end{cases}$$

・ロト・(四)・ (日)・ (日)・ (日)・

Outline Introd

The wave equation ○○○○○○○○○○○○○○○○○○○○ Conclusion and Perspective

Bibliography

Matrix formulation (J. Rannou, T. Tran's Thesis)

$$\begin{cases} d_t u = \dot{u} \\ d_t \dot{u} = \ddot{u} \\ \ddot{u} - a^2 u = 0 \end{cases} \begin{cases} \frac{1}{k_n} (u^n - u^{n-1}) = \frac{1}{2} (\dot{u}^n + \dot{u}^{n-1}) \\ \frac{1}{k_n} (\dot{u}^n - \dot{u}^{n-1}) = \frac{1}{2} (\ddot{u}^n + \ddot{u}^{n-1}) \\ \ddot{u}^n - a^2 u^n = 0 \end{cases}$$
$$\mathbf{u} = (u^1, \cdots, u^N) \qquad (B+al)\mathbf{u} = f$$

・ロ・・西・・ヨ・ ・ヨ・ うへの

Outline Introduction The wave equation

C

Conclusion and Perspectives

Bibliography

Matrix formulation (J. Rannou, T. Tran's Thesis)

$$\begin{cases} d_{t}u = \dot{u} \\ d_{t}\dot{u} = \ddot{u} \\ \ddot{u} - a^{2}u = 0 \end{cases} \begin{cases} \frac{1}{k_{n}}(u^{n} - u^{n-1}) = \frac{1}{2}(\dot{u}^{n} + \dot{u}^{n-1}) \\ \frac{1}{k_{n}}(\dot{u}^{n} - \dot{u}^{n-1}) = \frac{1}{2}(\ddot{u}^{n} + \ddot{u}^{n-1}) \\ \ddot{u}^{n} - a^{2}u^{n} = 0 \end{cases}$$
$$\mathbf{u} = (u^{1}, \cdots, u^{N}) \qquad (B + aI)\mathbf{u} = f$$
$$B = (C^{-1}B_{1})^{2}$$
$$B_{1} = \begin{pmatrix} 1/k_{1} \\ -1/k_{2} & 1/k_{2} \\ \ddots & \ddots \\ & -1/k_{N} & 1/k_{N} \end{pmatrix}$$

Outline Introduction Th

The wave equation

Conclusion and Perspective

Bibliography

Matrix formulation (J. Rannou, T. Tran's Thesis)

$$\begin{cases} d_t u = \dot{u} \\ d_t \dot{u} = \ddot{u} \\ \ddot{u} - a^2 u = 0 \end{cases} \begin{cases} \frac{1}{k_n} (u^n - u^{n-1}) = \frac{1}{2} (\dot{u}^n + \dot{u}^{n-1}) \\ \frac{1}{k_n} (\dot{u}^n - \dot{u}^{n-1}) = \frac{1}{2} (\ddot{u}^n + \ddot{u}^{n-1}) \\ \ddot{u}^n - a^2 u^n = 0 \end{cases}$$

$$\mathbf{u} = (u^1, \cdots, u^N) \qquad (B + aI)\mathbf{u} = f$$

$$B = (C^{-1}B_1)^2$$

$$C = \frac{1}{2} \begin{pmatrix} 1 & & \\ 1 & 1 & & \\ & \ddots & \ddots & \\ & & 1 & 1 \end{pmatrix} \quad B_1 = \frac{1}{k_1} \begin{pmatrix} 1 & & & \\ -\frac{1}{\rho} & \frac{1}{\rho} & & \\ & \ddots & \ddots & \\ & & & -\frac{1}{\rho^{N-1}} & \frac{1}{\rho^{N-1}} \end{pmatrix}$$

17/41

Outline Introduction

The wave equation

Conclusion and Perspective

Bibliography

Computation of the eigenvectors

Special family : triangular unipotent Toeplitz matrices

$$T(X_1, \dots, X_{M-1}) = egin{pmatrix} 1 & & & & \ X_1 & \ddots & & 0 & \ X_2 & \ddots & 1 & & \ dots & \ddots & \ddots & \ddots & \ dots & \ddots & \ddots & \ddots & \ X_{N-1} & & X_2 & X_1 & 1 \end{pmatrix}$$

THEOREM $k_n = \rho^{n-1} k_1 \implies B = VDV^{-1}$, with

$$V = T(P_1, ..., P_{N-1}), \text{ with } P_n := \prod_{j=1}^n \frac{1+\rho^j}{1-\rho^j},$$

$$V^{-1} = T(Q_1, \dots, Q_{N-1}), \text{ with } Q_n := \rho^{-n} \prod_{j=1}^n \frac{1+\rho^{-j+2}}{1-\rho^{-j}}$$

$$D = diag(\frac{4}{k_1^2}, \cdots, \frac{4}{k_N^2})$$

Outline	

ntroduction

The wave equation

Conclusion and Perspective

Bibliography

Sketch of proof

THEOREM

(1)
$$V = T(P_1, ..., P_{N-1})$$
 $P_n = \prod_{i=1}^n \frac{1+\rho^i}{1-\rho^i}$ easy

Outline Int

troduction

The wave equation

Conclusion and Perspective

Bibliography

Sketch of proof

THEOREM

(1)
$$V = T(P_1, ..., P_{N-1})$$
 $P_n = \prod_{i=1}^n \frac{1+\rho^i}{1-\rho^i}$ easy

(2)
$$V^{-1} = T(Q_1, \ldots, Q_{N-1}) \quad Q_n = \prod_{i=1}^n \frac{1+\rho^{-j+2}}{1-\rho^{-j}}$$
 ??

・ロト ・母 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Sketch of proof

THEOREM

(1)
$$V = T(P_1, ..., P_{N-1})$$
 $P_n = \prod_{i=1}^n \frac{1+\rho^i}{1-\rho^i}$ easy

(2)
$$V^{-1} = T(Q_1, \ldots, Q_{N-1}) \quad Q_n = \prod_{i=1}^n \frac{1 + \rho^{-j+2}}{1 - \rho^{-j}}$$
 ??

Equivalent to proving that

 $P_n+P_{n-1}Q_1+\ldots+P_1Q_{n-1}+Q_n=0$ for $1\leq n\leq N-1$ Convention: $P_0=Q_0=1.$

◆□> ◆□> ◆目> ◆目> ◆目> ● ●

1) i i t i i	
outil	

Introductio

The wave equation

Conclusion and Perspective

Bibliography

Sketch of proof

$$\sum_{k=0}^{n} P_k Q_{n-k} = 0, \quad P_n = \prod_{i=1}^{n} \frac{1+\rho^i}{1-\rho^i}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Outline	

Conclusion and Perspectives

Bibliography

Sketch of proof

$$\sum_{k=0}^{n} P_k Q_{n-k} = 0, \quad P_n = \prod_{i=1}^{n} \frac{1+\rho^i}{1-\rho^i}$$

Gauss' hypergeometric series (1812)

$${}_{2}F_{1}(a_{1}, a_{2}; b; x) := \sum_{n=0}^{\infty} \frac{[a_{1}]^{n}[a_{2}]^{n}}{[b]^{n} n!} x^{n},$$
$$[a]^{n} := a(a+1)\cdots(a+n-1) = \frac{\Gamma(a+n)}{\Gamma(a)}$$

・ロト・(型・・ヨ・・ヨ・ うへの)

		1000	111		
Outilite			101	/u	

Introductio

The wave equation

Conclusion and Perspectives

Bibliography

Sketch of proof

$$\sum_{k=0}^{n} P_{k} Q_{n-k} = 0, \quad P_{n} = \prod_{i=1}^{n} \frac{1+\rho^{i}}{1-\rho^{i}}$$

Gauss' hypergeometric series (1812) Heine's q-hypergeometric series (1847)
 ${}_{2}F_{1}(a_{1}, a_{2}; b; x) := \sum_{n=0}^{\infty} \frac{[a_{1}]^{n}[a_{2}]^{n}}{[b]^{n} n!} x^{n}, \quad {}_{2}\varphi_{1}(a_{1}, a_{2}; b; \rho; x) := \sum_{n=0}^{\infty} \frac{(a_{1}; \rho)_{n}(a_{2}; \rho)_{n}}{(b; \rho)_{n}(\rho; \rho)_{n}} x^{n},$
 $[a]^{n} := a(a+1) \cdots (a+n-1) = \frac{\Gamma(a+n)}{\Gamma(a)} \quad (a; \rho)_{n} := (1-a)(1-\rho a) \cdots (1-\rho^{n-1}a)$

・ロト ・四ト ・ヨト ・ヨー うへぐ

Outline	The wave equation	Conclusion and Perspectives
	000000000000000000000000000000000000000	

$$\sum_{k=0}^{n} P_k Q_{n-k} = 0, \quad P_n = \prod_{i=1}^{n} \frac{1+\rho^i}{1-\rho^i}$$

Gauss' hypergeometric series (1812)

$${}_{2}F_{1}(a_{1}, a_{2}; b; x) := \sum_{n=0}^{\infty} \frac{[a_{1}]^{n} [a_{2}]^{n}}{[b]^{n} n!} x^{n},$$
$$[a]^{n} := a(a+1) \cdots (a+n-1) = \frac{\Gamma(a+n)}{\Gamma(a)}$$

Summation formula

$$_{2}F_{1}(a_{1}, a_{2}; b; 1) = \frac{\Gamma(b)\Gamma(b - a_{1} - a_{2})}{\Gamma(b - a_{1})\Gamma(b - a_{2})}$$

Heine's q-hypergeometric series (1847)

$$2\varphi_{1}(a_{1}, a_{2}; b; \rho; x) := \sum_{n=0}^{\infty} \frac{(a_{1}; \rho)_{n}(a_{2}; \rho)_{n}}{(b; \rho)_{n}(\rho; \rho)_{n}} x^{n},$$

$$(a; \rho)_{n} := (1-a)(1-\rho a) \cdots (1-\rho^{n-1}a)$$

Summation formula

$${}_{2}\varphi_{1}(a_{1},a_{2};b;\rho;\frac{b}{a_{1}a_{2}})=\frac{(\frac{b}{a_{1}};\rho)_{\infty}(\frac{b}{a_{2}};\rho)_{\infty}}{(b;\rho)_{\infty}(\frac{b}{a_{1}a_{2}};\rho)_{\infty}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへの

20/41

Outime	Outline		
--------	---------	--	--

Sketch of proof

$$\sum_{k=0}^{n} P_{k} Q_{n-k} = 0, \quad P_{n} = \prod_{i=1}^{n} \frac{1+\rho^{i}}{1-\rho^{i}}$$

Gauss' hypergeometric series (1812)

$$_{2}F_{1}(a_{1}, a_{2}; b; x) := \sum_{n=0}^{\infty} \frac{[a_{1}]^{n}[a_{2}]^{n}}{[b]^{n} n!} x^{n},$$

$$[a]^n := a(a+1)\cdots(a+n-1) = \frac{\Gamma(a+n)}{\Gamma(a)}$$

Summation formula

Heine's q-hypergeometric series (1847)

$${}_{2}\varphi_{1}(a_{1}, a_{2}; b; \rho; x) := \sum_{n=0}^{\infty} \frac{(a_{1}; \rho)_{n}(a_{2}; \rho)_{n}}{(b; \rho)_{n}(\rho; \rho)_{n}} x^{n},$$
$$(a; \rho)_{n} := (1-a)(1-\rho a) \cdots (1-\rho^{n-1}a)$$

$$(a; \rho)_n := (1-a)(1-\rho a) \cdots (1-\rho^{n-1}a)$$

Summation formula

$$_{2}F_{1}(a_{1}, a_{2}; b; 1) = \frac{\Gamma(b)\Gamma(b - a_{1} - a_{2})}{\Gamma(b - a_{1})\Gamma(b - a_{2})}$$

$${}_{2}\varphi_{1}(a_{1},a_{2};b;\rho;\frac{b}{a_{1}a_{2}})=\frac{\left(\frac{b}{a_{1}};\rho\right)_{\infty}\left(\frac{b}{a_{2}};\rho\right)_{\infty}}{(b;\rho)_{\infty}\left(\frac{b}{a_{1}a_{2}};\rho\right)_{\infty}}$$

$$P_n = \frac{(-\rho;\rho)_n}{(\rho;\rho)_n}$$

Outline	Introduct

Conclusion and Perspective

Bibliography

Sketch of proof, continue

$$\sum_{k=0}^{n} P_k Q_{n-k} = 0, \quad P_n = \prod_{i=1}^{n} \frac{1+\rho^i}{1-\rho^i} = \frac{(-\rho;\rho)_n}{(\rho;\rho)_n}$$

$${}_{2}\varphi_{1}(a_{1}, a_{2}; b; \rho; \frac{b}{a_{1}a_{2}}) := \sum_{k=0}^{\infty} \frac{(a_{1}; \rho)_{k}(a_{2}; \rho)_{k}}{(b; \rho)_{k}(\rho; \rho)_{k}} \left(\frac{b}{a_{1}a_{2}}\right)^{k} = \frac{(\frac{b}{a_{1}}; \rho)_{\infty}(\frac{b}{a_{2}}; \rho)_{\infty}}{(b; \rho)_{\infty}(\frac{b}{a_{1}a_{2}}; \rho)_{\infty}}$$
$$(a; \rho)_{k} := \prod^{k-1} (1 - \rho^{i}a)$$

i=0

Outline	Introductic

Conclusion and Perspectives

Bibliography

Sketch of proof, continue

$$\sum_{k=0}^{n} P_k Q_{n-k} = 0, \quad P_n = \prod_{i=1}^{n} \frac{1+\rho^i}{1-\rho^i} = \frac{(-\rho;\rho)_n}{(\rho;\rho)_n}$$

$${}_{2}\varphi_{1}(a_{1}, a_{2}; b; \rho; \frac{b}{a_{1}a_{2}}) := \sum_{k=0}^{\infty} \frac{(a_{1}; \rho)_{k}(a_{2}; \rho)_{k}}{(b; \rho)_{k}(\rho; \rho)_{k}} \left(\frac{b}{a_{1}a_{2}}\right)^{k} = \frac{(\frac{b}{a_{1}}; \rho)_{\infty}(\frac{b}{a_{2}}; \rho)_{\infty}}{(b; \rho)_{\infty}(\frac{b}{a_{1}a_{2}}; \rho)_{\infty}}$$
$$(a; \rho)_{k} := \prod_{i=0}^{k-1} (1 - \rho^{i}a)$$

q-Zhu-Vandermonde formula

Outline	Introd

Conclusion and Perspectives

Bibliography

Sketch of proof, continue

$$\sum_{k=0}^{n} P_k Q_{n-k} = 0, \quad P_n = \prod_{i=1}^{n} \frac{1+\rho^i}{1-\rho^i} = \frac{(-\rho;\rho)_n}{(\rho;\rho)_n}$$

$${}_{2}\varphi_{1}(a_{1},a_{2};b;\rho;\frac{b}{a_{1}a_{2}}) := \sum_{k=0}^{\infty} \frac{(a_{1};\rho)_{k}(a_{2};\rho)_{k}}{(b;\rho)_{k}(\rho;\rho)_{k}} \left(\frac{b}{a_{1}a_{2}}\right)^{k} = \frac{(\frac{b}{a_{1}};\rho)_{\infty}(\frac{b}{a_{2}};\rho)_{\infty}}{(b;\rho)_{\infty}(\frac{b}{a_{1}a_{2}};\rho)_{\infty}}$$

$$(a; \rho)_k := \prod_{i=0}^{k-1} (1 - \rho^i a)$$

q-Zhu-Vandermonde formula

$$a_1 = \rho^{-k}, \ a_2 = -\rho, \ b = -\rho^{-k+2}, \quad \sum_{k=0}^n \frac{(-\rho; \rho)_k (\rho^{-n}; \rho)_k}{(\rho; \rho)_k (-\rho^{-n+2}; \rho)_k} \rho^k = 0.$$

Outline	The

Conclusion and Perspective

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

22/41

Bibliography

Matrix S, properties

Normalize the eigenvectors with respect to the ℓ^2 norm: $S = V\tilde{D}$, $\tilde{d}_i = 1/\|V^{(i)}\|_2$. $B = VDV^{-1} = SDS^{-1}$.

An ended some me
Junit

Introductio

The wave equation

Conclusion and Perspective

Bibliography

Roundoff estimate

(1)
$$(B + aI)\mathbf{u} = F$$
, (2) $\hat{S}(D + aI)\widehat{S^{-1}}\hat{\mathbf{u}} = F$

Backward error analysis (Higham, Golub): u denotes the machine precision

(2)
$$\iff (B+\delta B)\hat{\mathbf{u}} = F, \quad \|\delta B\| \le (2N+1)\underline{u}\| \|S\|S^{-1}\| \|D+aI\| + \mathcal{O}(\underline{u}^2).$$

$$\frac{\|\mathbf{u}-\hat{\mathbf{u}}\|}{\|\mathbf{u}\|} \le \operatorname{cond}(B)\frac{\|\delta B\|}{\|B\|} \le (2N+1)\underline{u}\|B^{-1}\| \|S\|S^{-1}\| \|D+aI\|$$

Outline	

Conclusion and Perspectives

Bibliography

Roundoff estimate

(1)
$$(B + aI)\mathbf{u} = F$$
, (2) $\hat{S}(D + aI)\widehat{S^{-1}}\hat{\mathbf{u}} = F$

Backward error analysis (Higham, Golub): \underline{u} denotes the machine precision

(2)
$$\iff (B+\delta B)\hat{\mathbf{u}} = F, \quad \|\delta B\| \le (2N+1)\underline{u}\| \|S\|S^{-1}\| \|D+aI\| + \mathcal{O}(\underline{u}^2).$$

$$\frac{\|\mathbf{u}-\hat{\mathbf{u}}\|}{\|\mathbf{u}\|} \leq \operatorname{cond}(B)\frac{\|\delta B\|}{\|B\|} \leq (2N+1)\underline{u} \|B^{-1}\| \||S||S^{-1}|\| \|D + aI\|$$

THEOREM.

$$\frac{\mathbf{u}-\hat{\mathbf{u}}\|_{\infty}}{\|\mathbf{u}\|_{\infty}} \lesssim \underline{u} \ \psi_1(\frac{aT}{2N},N)\varepsilon^{-(N-1)},$$

where $\psi_1(y, N) := \frac{2^{2(N+1)}}{(N-1)!} (1 + 2N(N-1))(1 + y^2).$ Sharper estimate: $\psi_3(y, N) := \frac{2^{2N-\frac{1}{2}}N}{(N-1)!} \frac{1}{y^2+1}.$

Figure: Comparison of the logarithm of the functions ψ_j , j = 1, 2, 3

Total error

Total error

Total error \lesssim

ERROR 1: approximation with equal time steps + ERROR 2: due to heterogeneous time steps + ERROR 3: due to diagonalization

・ロ・・母・・ヨ・・ヨ・ うらぐ

Optimization of ε

THEOREM For $\varepsilon = \varepsilon^*(aT, N)$ with

$$arepsilon^*(aT,N) = \left(rac{3\ 2^{2N}}{(N^2-1)(N-1)!}\ rac{1+y^2}{y^3}\ \underline{u}
ight)^{rac{1}{N+1}}, \quad ext{with } y = rac{aT}{2N},$$

the error due to time parallelization is asymptotically comparable to the one produced by the geometric time partition.

Outline	Introductio

Conclusion and Perspectives

Bibliography

Optimization of ε

THEOREM For $\varepsilon = \varepsilon^*(aT, N)$ with

$$\varepsilon^*(aT, N) = \left(rac{3\ 2^{2N}}{(N^2-1)(N-1)!}\ rac{1+y^2}{y^3}\ \underline{u}
ight)^{rac{1}{N+1}}, \quad ext{with}\ y = rac{aT}{2N},$$

the error due to time parallelization is asymptotically comparable to the one produced by the geometric time partition.

$$\underbrace{\phi(y,N)\varepsilon^2}_{\text{dist}} = \underbrace{\psi_3(y,N)\,\underline{u}\,\varepsilon^{-(N-1)}}_{\text{dist}}$$

Discretization error Parallelization error

Introductio

The wave equation

Conclusion and Perspective

Bibliography

Limiting value $\varepsilon^*(aT, N)$

 $\varepsilon^*(aT,N)$

error 2/error 1(blue), and error 1 (red).

Introductio

The wave equation

Conclusion and Perspective

Bibliography

One dimensional wave equation

Figure: Approximate solutions obtained by the time parallel algorithm using diagonalization. Left: $\varepsilon = 0.015$. Middle: $\varepsilon = \varepsilon^* = 0.05$. Right: $\varepsilon = 0.3$.

Outline	

Conclusion and Perspective

Bibliography

Two dimensional wave equation

Figure: Discretization and parallelization errors in 1d, together with our theoretical bounds for the PDE. Left: T = 1, N = 10. Right: T = 2, N = 20.

・ロト・西ト・ヨト・ヨー うへの
Description

Response of a carbon/epoxy laminated composite panel (used in aeronautical industry) to an impact-like loading (transverse isotropic Hooke law).

Figure: Mesh configuration and loading for the elasticity problem.

2000 time steps over the 10ms simulation range. 152607 degrees of freedom, 2000 time steps over the 10ms simulation range (time windows).

Results, MPI

Figure: Computing times for the industrial elasticity problem.

Outline	

The wave equation

Conclusion and Perspectives

Bibliography

Results

Figure: Deflection of the central node on the back face of the plate for the sequential and the parallel solution with N = 16.

N	2	4	8	16			
$Eff := \frac{Time(1proc)}{N \times Time(Nproc)}$	0.96	0.86	0.66	0.45	• → ₹ ₽	æ	90

Introductic

The wave equation

Conclusion and Perspective

Bibliography

Improving the efficiency: asynchronous computations

Ν	Numwin	Time	Error	Eff
1	128	0.497E+01	5.77E-007	
2	64	0.254E+01	6.13E-007	97.83 %
4	32	0.132E+01	7.71E-007	94.13 %
8	16	0.709E+00	1.71E-006	88.75 %
16	8	0.407E+00	5.15E-005	77.65 %

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - ����

Improving the efficiency: asynchronous computations

Ν	Numwin	Time	Error	Eff
1	128	0.497E+01	5.77E-007	
2	64	0.254E+01	6.13E-007	97.83 %
4	32	0.132E+01	7.71E-007	94.13 %
8	16	0.709E+00	1.71E-006	88.75 %
16	8	0.407E+00	5.15E-005	77.65 %

N	2	4	8	16
CG	0.243E+01	0.125E+01	0.636E+00	0.319E+00
Total	0.254E+01	0.132E+01	0.709E+00	0.407E+00

Introduction

- The wave equation
 An algorithm for the ODE
 - Error analysis
 - Diagonalization of B
 - Optimization of the algorithm
 - Application to an industrial case

3 Conclusion and Perspectives

Bibliography

Conclusion

Conclusion

- Robust strategy for parallelization in time. Independent of the space-discretization.
- The gain in optimal number of processors is significative: one could solve the problem using 30 processors, and would obtain an error which is within a factor two of the sequential computation.

Conclusion

- Robust strategy for parallelization in time. Independent of the space-discretization.
- The gain in optimal number of processors is significative: one could solve the problem using 30 processors, and would obtain an error which is within a factor two of the sequential computation.
- S Extension to nonlinear problems, coupled with Newton (DD23).

Perspectives

 Parallelization in space in combination with the time-parallel method to solve the PDE thus adding another dimension to the parallelization process through a completely parallel time-space subdomains.

Perspectives

- Parallelization in space in combination with the time-parallel method to solve the PDE thus adding another dimension to the parallelization process through a completely parallel time-space subdomains.
- Application to control problems.

Introduction

- The wave equation
 An algorithm for the ODE
 - Error analysis
 - Diagonalization of B
 - Optimization of the algorithm
 - Application to an industrial case
- 3 Conclusion and Perspectives

4 Bibliography

ntroduction

The wave equation

Conclusion and Perspective

Bibliography

A few references for iterative methods

	•
	_
	-
	-

J.-L. Lions, Y. Maday, and G. Turinici. Résolution d'EDP par un schéma en temps "pararéel". *C. R. Acad. Sci. Paris Sér. I Math.*, 332(7):661–668, 2001.

- Amodio, Pierluigi, and Luigi Brugnano. Parallel solution in time of ODEs: some achievements and perspectives. *Applied Numerical Mathematics* ,59 (3): 424–435, 2009.
 - M. J. Gander and S. Güttel.

PARAEXP: A parallel integrator for linear initial-value problems. *SIAM Journal on Scientific Computing*, 35(2):C123–C142, 2013.

・ロ・・ 『・・ 『・・ 『・・ 』 うくの

Introduction

The wave equation

Conclusion and Perspective

Bibliography

References for the direct method

Y. Maday and E. M. Rønquist.

Parallelization in time through tensor-product space-time solvers. *Comptes Rendus Mathematiques*, 346(1):113-118, 2008.

J. Rannou, J. Ryan,

Time parallelization of linear transient dynamic problems through the Newmark tensor-product form.

ECCOMAS, Wien, september 2012

M. Gander, L. Halpern, J. Ryan, and T. T. B. Tran. A direct solver for time parallelization. DD22, Lugano, september 2014, proceeding to appear

M. Gander, L. Halpern, J. Rannou, and J. Ryan A Direct Time Parallel Solver by Diagonalization for the Wave Equation. *to be submitted soon*

イロン 不同 とくほう イロン

Outline	

The wave equation

Conclusion and Perspective

Bibliography

Nonlinear problems

$$u_t = f(u), \qquad \frac{u_n - u_{n-1}}{k_n} = f(u_n), \qquad \mathbf{F}(\mathbf{u}) := B\mathbf{u} - f(\mathbf{u}) = 0$$

Newton's method, $D(\mathbf{u}) := \text{diag}(f'(u_1), f'(u_2), \dots, f'(u_n))$
 $(B - D(\mathbf{u}^{m-1}))\mathbf{u}^m = \mathbf{f}(\mathbf{u}^{m-1}) - D(\mathbf{u}^{m-1})\mathbf{u}^{m-1},$
Quasi-Newton $D(\mathbf{u}) \approx \frac{1}{N} \sum_{j=1}^n f'(u_j) I.$

\sim	· · + l	1	
\circ			

ntroduction

The wave equation

Conclusion and Perspective

Bibliography

Nonlinear problems

Figure: Left: linear convergence of the time parallel Quasi-Newton method for two model problems($-u^2$ and \sqrt{u}). Right: accuracy for different choices of the time grid stretching ε .