HCMC 2017 HPC exercises

PROBLEM N°1 : MATRICES

EXERCICE O : FROM THE LECTURE NOTES.

Study the exercise on p 16 on tridiagonal matrices

EXERCICE 1 : SPECIAL MATRICES.

a) Show that the product of two lower (resp. upper) triangular matrices is a lower (resp. upper)
triangular matrix.

b) Shwo that the inverse of the lower triangular (invertible) matrix L, triangulaire is lower triangular.
Furthermore (I[fl)ii = 11%”
c) Show that the product of two banded matrices is a banded matrix, and evaluate it bandwidth in
terms of the bandwidth of the two matrices.

EXERCICE 2 : BLOCK MATRICES.
a) Show that the product of two block lower (resp. upper) triangular matrices is a block lower (resp.
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upper) triangular matrix. b) We want to calculate the determinant of the matrix A = <

split in blocks. The blocks A1y and Ay are square.
i) Calculate the determinant of matrices
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and the product of the two block matrices
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Deduce the determinant of

ii) Calculate the determinant of

Deduce the determinant of



iii) Calculate the product of block matrices
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Deduce the determinant of A.

c) Calculate the determinant of the block triangular matrix
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EXERCICE 3 : IRREDUCIBLE MATRICES .

A is a square matrix of size n, denoted A = (a;j)1<i,j<n. We say that A is reducible if there exists
a permutation matrix P such that
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where B and B(®2) are square matrices of size p et n — p respectively. Recall that a permutation
matrix is defined by P;; = d,,(j) where o is a permutation of the set {1,..,n}.

a) Show that A est reducible if and only if there exists a partition of {1,..,n} in two (disjoint) sets
I and J such that a;; = 0 for 7 in I and j in J.

We define the graph associated to A as the set of points X;, for 1 < i < n. The points X; and
X, are linked by an arch if a;; # 0. A path is a sequence of archs. We say that the arch is strongly
connected if 2 points can always be related (in order) by a path.

b) Show that a matrix is irreducible if and only if its graph is strongly connected.

EXERCICE 4 : DIAGONALLY DOMINANT MATRICES.

a) Show the Gerschgérin-Hadamard theorem : any eigenvalue A of A belongs to the union of discs
Dy, defined by

r—al SAp = > akl
1<j5<n
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b) Show that if A est irreducible, and if an eigenvalue A is on the boundary of the union of discs

Dy, then all the circles pass through A.

We say that A est diagonally dominant if

Vi, 1 <i < n,lay| > A



We say that A is strictly diagonally dominant if
Vi, 1 <i<n,lag| > A

We say that A est & strongly diagonally dominant if it is diagonally dominant and if furthermore
Fi,1 <i<mn,lag| >N\

c) Prove that if A is strictly diagonally dominant, it is invertible.
d) Prove that if A is strongly diagonally dominant and irreducible, it is invertible.

e) Prove that if A is, either strictly diagonally dominant,or strongly diagonally dominant and
irreducible, and if the diagonal entries are strictly positive, then the real part of the eigenvalues
is strictly positive.

EXERCICE 5 : DISCRETISATION OF LAPLACIAN IN DIMENSION 1.

Consider the boundary value problem on |a, b

—u" = f sur |a, b,

u(a) =0, (1)
u(b) = 0.

where f is a continuous function on ]a, b].
This problem has a unique solution we want to compute by finite differences. a) Show that if u

is C?,

We split the segment into n intervals of length h = (b — a)/n.
b) Write by using (2) the linear system issued from (1) whose unknowns w; are approximations of
u(a +ih) for 1 <i <mn —1. Note A the matrix of the system.
c) Show by exercice II that A is symmetric definite positive.
d) Show the maximum principle : If all f; are < 0, then the u; are < 0 and the maximum is reached
fori=1oun—1.
e) Let a and b two real numbers. For n > 0, note A,, the tridiagonal le determinant

a —-b 0

Write a two levels recursion relation on the A,,.
f) Note P,()\) the characteristic polynomial of A. Using the change of variable

A+2=—-2cosb,



prove that P,(\) = W Deduce that the eigenvalues of A are A\, = %SinQ(%) and the associated
eigenvectors u®) given by ug-k) = sm(k—ff)

f) Deduce the condition number of A.

EXERCICE 6 : DISCRETISATION OF LAPLACIEN IN DIMENSION 2.

Consider the boundary value problem on ]0, 1[x]0, 1]

—9% — 9% = f sur ]0,1[x]0, 1, 3)

u = 0 on the boundary
Divide the interval [0,1] horizontally in M + 1 intervals [x;,zj+1], 2 = a +1ih, 0 < i < M + 1,
with h = 1/(M + 1). Divide the interval [0, 1] vertically en M + 1 intervalles [y;,y;+1], y; = ¢+ jh,
0 <j < M + 1. We then obtain a meshing in z,y. A point in the mesh is (z;,y;). An approximation
of u(z;,y;) is noted wu; ; .

The Poisson equation (3) is then discretized by (fi; = f(4,5))

1 1
—(Apuw);; = ——=(u; = 22U+ Ui—1) — = (U1 — 22U U i—1) = fid,
( h ),J hg( +1,5 2J LJ) hg( J+1 N \J 1) f,J (4)

1<i<M1<j<M

The nodes of the mesh must be stored as a vector. They can be numbered by increasing j and for
any j by increasing i (see Figure 1).

9 10 11 12
5 6 7 3
1 2 3 4

FIGURE 1 — numérotation by rows

Suppose only internal degrees of freedom are stored. Then the point (z;,y;) is numbered i + (j —
1)M. We create a vector Z of all unknowns

Z = (u1,1,u2,1,un1), (U1,2, U222, Un2), - - - (U1, 0, U2, M UM, M)

with ZiJr(j,l)*M = Uj; ;-
a) If the equations are numbered accordingly (the k-th equation is equation at point k, show that
the matrix is block tridiagonal :



. -C B -C
A= 2 R (5)
-C B -C
Ons -C B
with C' = Iy, and B is the tridiagonal matrix
4 -1 0
-1 4 -1
B = .
-1 4 -1
0 -1 4

The righthand side is then b;y(j_1).«p = fij, and the system is AZ = b.
b) Show that matrix A est invertible with strictly positive eigenvalues.

c) Show that the eigenvalues of A are A\pq = 75 (sin?(£7) + sin?(357)). Deduce the condition number

2M
of A.
d) Same study with the alternating numbering by columns.

HINTS ON EIGENVALUES AND EIGENVECTORS Consider the 1 — D Laplace operator on [0, 1]
with zero Dirichlet boundary values. The eigenvalues and (normalized) eigenmodes are defined by

—u”" =

and given by
Ne = K272, wp =V2sinkrz, keZ

For the discretization matrix of size n,

k) _
, J
up(zj) = \@sm(k—;{]) They forme an orthonormal basis, therefore the matrix @ whos columns are

The eigenvalues are (cf exercice 5) %sinQ(’;—g) and the associated eigenvectors u*) given by u

the u® os orthogonale.

Consider now the 2 — D Laplace operator on [0, 1] x [0, 1] with zero Dirichlet boundary values.
The eigenvalues and (normalized) eigenmodes are defined by

~Ugy — Uyy = AU
We search for eigenfunctions in separate variables : u(z,y) = v(z)w(y).

—v"(@)w(y) — v(@)w" (y) = o(z)w(y)



—v(@)w"(y) = ((@) + " (2))w(y).
—w'(y) _ Av(z) +v"(z)
w(y) o)
On the left we have a function of g, on the right a function of z, they must are constant : there is a
a such that

—w” (y) _ Mo(z) + 0" (x)
w(y) v(z)

which gives
w’(y) +aw(y) =0, w(0) =w(1)=0.

This is a 1-D eigenequation, whose solutions are (modulo a multiplicative factor) with a = p?r? for
peN
wy = V2 sin prry.

then for each p,
Mo(z) + 0" (z) = p*rPo(x)

(
Mo(z) + 0" (z) = p*r2u(z)
V" (x) + (A — p*r)v(z) = 0.
again this is a 1-D eigenmode problem, then
\—pPn? = ¢*n?, vg(z) = V2sin grz.
An orthonormal system is then
Apq = (p? + ¢*)7?, Up,q = 2(sin gma)(sin pry)
For the 2 — D discrete system, we will do the same as for the continuous case : suppose that the

eigenvalues are

Mg sin?(prh) + sin®(qrh)), ubd = 2(sin gra;)(sin pry;)

4
= ﬁ( ,J

and check it directly on equation (4).



