
HCMC 2017 HPC exercises

Problem n◦1 : matrices

Exercice 0 : From the lecture notes.

Study the exercise on p 16 on tridiagonal matrices

Exercice 1 : Special Matrices.

a) Show that the product of two lower (resp. upper) triangular matrices is a lower (resp. upper)
triangular matrix.
b) Shwo that the inverse of the lower triangular (invertible) matrix L, triangulaire is lower triangular.
Furthermore

(
L−1

)
ii

= 1
Lii
.

c) Show that the product of two banded matrices is a banded matrix, and evaluate it bandwidth in
terms of the bandwidth of the two matrices.

Exercice 2 : Block Matrices.

a) Show that the product of two block lower (resp. upper) triangular matrices is a block lower (resp.

upper) triangular matrix. b) We want to calculate the determinant of the matrix A =

(
A11 A12

A21 A22

)
split in blocks. The blocks A11 and A22 are square.

i) Calculate the determinant of matrices

A1 =

(
A11 0
0 I

)
, A2 =

(
I 0
0 A22

)
Deduce the determinant of

A3 =

(
A11 0
0 A22

)
ii) Calculate the determinant of

A4 =

(
I A12

0 I

)
and the product of the two block matrices(

A11 0
0 A22

)
et
(

I A−111 A12

0 I

)
.

Deduce the determinant of

A5 =

(
A11 A12

0 A22

)
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iii) Calculate the product of block matrices(
I 0

A21A−111 I

)
et
(

A11 A12

0 A22 − A21A−111 A12

)
.

Deduce the determinant of A.
c) Calculate the determinant of the block triangular matrix

A11 A12 A1n

0 A22 A2n

0 0
. . .

0 0 Ann



Exercice 3 : Irréducible Matrices .

A is a square matrix of size n, denoted A = (aij)1≤i,j≤n. We say that A is reducible if there exists
a permutation matrix P such that

tPAP = B =

[
B(11) B(12)

0 B(22)

]
where B(11) and B(22) are square matrices of size p et n − p respectively. Recall that a permutation
matrix is defined by Pij = δiσ(j) where σ is a permutation of the set {1, .., n}.
a) Show that A est reducible if and only if there exists a partition of {1, .., n} in two (disjoint) sets
I and J such that aij = 0 for i in I and j in J .

We define the graph associated to A as the set of points Xi, for 1 ≤ i ≤ n. The points Xi and
Xj are linked by an arch if aij 6= 0. A path is a sequence of archs. We say that the arch is strongly
connected if 2 points can always be related (in order) by a path.
b) Show that a matrix is irreducible if and only if its graph is strongly connected.

Exercice 4 : Diagonally Dominant Matrices.

a) Show the Gerschgörin-Hadamard theorem : any eigenvalue λ of A belongs to the union of discs
Dk defined by

|z − akk| ≤ Λk =
∑

1 ≤ j ≤ n
j 6= k

|akj |

b) Show that if A est irreducible, and if an eigenvalue λ is on the boundary of the union of discs
Dk, then all the circles pass through λ.

We say that A est diagonally dominant if

∀i, 1 ≤ i ≤ n, |aii| ≥ Λi
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We say that A is strictly diagonally dominant if

∀i, 1 ≤ i ≤ n, |aii| > Λi

We say that A est à strongly diagonally dominant if it is diagonally dominant and if furthermore

∃i, 1 ≤ i ≤ n, |aii| > Λi

c) Prove that if A is strictly diagonally dominant, it is invertible.

d) Prove that if A is strongly diagonally dominant and irreducible, it is invertible.

e) Prove that if A is, either strictly diagonally dominant,or strongly diagonally dominant and
irreducible, and if the diagonal entries are strictly positive, then the real part of the eigenvalues
is strictly positive.

Exercice 5 : Discretisation of laplacian in dimension 1.

Consider the boundary value problem on ]a, b[
−u′′ = f sur ]a, b[,
u(a) = 0,
u(b) = 0.

(1)

where f is a continuous function on ]a, b[.
This problem has a unique solution we want to compute by finite differences. a) Show that if u

is C2,

u′′(x) =
u(x+ h)− 2u(x) + u(x− h)

h2
+O(h2) (2)

We split the segment into n intervals of length h = (b− a)/n.
b) Write by using (2) the linear system issued from (1) whose unknowns ui are approximations of
u(a+ ih) for 1 ≤ i ≤ n− 1. Note A the matrix of the system.
c) Show by exercice II that A is symmetric definite positive.
d) Show the maximum principle : If all fi are ≤ 0, then the ui are ≤ 0 and the maximum is reached
for i = 1 ou n− 1.
e) Let a and b two real numbers. For n ≥ 0, note ∆n the tridiagonal le determinant

∆n =

∣∣∣∣∣∣∣∣∣∣∣

a −b 0
−b a
. . . . . .

−b a −b
0 −b a

∣∣∣∣∣∣∣∣∣∣∣
Write a two levels recursion relation on the ∆n.
f) Note Pn(λ) the characteristic polynomial of A. Using the change of variable

λ+ 2 = −2 cos θ,
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prove that Pn(λ) = sin(n+1)θ
sin θ . Deduce that the eigenvalues of A are λk = 4

h2
sin2(kπ2n ) and the associated

eigenvectors u(k) given by u(k)j = sin(kπjn ).
f) Deduce the condition number of A.

Exercice 6 : Discretisation of laplacien in dimension 2.

Consider the boundary value problem on ]0, 1[×]0, 1[{
−∂2u
∂x2
− ∂2u

∂y2
= f sur ]0, 1[×]0, 1[,

u = 0 on the boundary
(3)

Divide the interval [0, 1] horizontally in M + 1 intervals [xi, xi+1], xi = a + ih, 0 ≤ i ≤ M + 1,
with h = 1/(M + 1). Divide the interval [0, 1] vertically en M + 1 intervalles [yj , yj+1], yj = c + jh,
0 ≤ j ≤M + 1. We then obtain a meshing in x, y. A point in the mesh is (xi, yj). An approximation
of u(xi, yj) is noted ui,j .

The Poisson equation (3) is then discretized by (fi,j = f(xi, yj))

−(∆hu)i,j = − 1

h2
(ui+1,j − 2ui,j + ui−1,j)−

1

h2
(ui,j+1 − 2ui,j + ui,j−1) = fi,j ,

1 ≤ i ≤M, 1 ≤ j ≤M
(4)

The nodes of the mesh must be stored as a vector. They can be numbered by increasing j and for
any j by increasing i (see Figure 1).

1 2 3 4

5 6 7 8

9 10 11 12

Figure 1 – numérotation by rows

Suppose only internal degrees of freedom are stored. Then the point (xi, yj) is numbered i+ (j −
1)M . We create a vector Z of all unknowns

Z = (u1,1, u2,1, uM,1), (u1,2, u2,2, uM,2), · · · (u1,M , u2,M , uM,M )

with Zi+(j−1)∗M = ui,j .
a) If the equations are numbered accordingly (the k-th equation is equation at point k, show that
the matrix is block tridiagonal :
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A =
1

h2


B −C 0M
−C B −C

. . . . . . . . .
−C B −C

0M −C B

 (5)

with C = IM , and B is the tridiagonal matrix

B =


4 −1 0
−1 4 −1

. . . . . . . . .
−1 4 −1

0 −1 4


The righthand side is then bi+(j−1)∗M = fi,j , and the system is AZ = b.

b) Show that matrix A est invertible with strictly positive eigenvalues.
c) Show that the eigenvalues of A are λpq = 4

h2
(sin2( pπ2M )+sin2( qπ2M )). Deduce the condition number

of A.
d) Same study with the alternating numbering by columns.

Hints on eigenvalues and eigenvectors Consider the 1−D Laplace operator on [0, 1]
with zero Dirichlet boundary values. The eigenvalues and (normalized) eigenmodes are defined by

−u′′ = λu

and given by
λk = k2π2, uk =

√
2 sin kπx, k ∈ Z

For the discretization matrix of size n,

A =


2 −1 0
−1 2 −1
. . . . . .

−1 2 −1
0 −1 2


The eigenvalues are (cf exercice 5) 4

h2
sin2(kπ2n ) and the associated eigenvectors u(k) given by u(k)j =

uk(xj) =
√

2sin(kπjn ). They forme an orthonormal basis, therefore the matrix Q whos columns are
the u(k) os orthogonale.

Consider now the 2 − D Laplace operator on [0, 1] × [0, 1] with zero Dirichlet boundary values.
The eigenvalues and (normalized) eigenmodes are defined by

−uxx − uyy = λu

We search for eigenfunctions in separate variables : u(x, y) = v(x)w(y).

−v′′(x)w(y)− v(x)w′′(y) = λv(x)w(y)
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−v(x)w′′(y) = (λv(x) + v′′(x))w(y).

−w′′(y)

w(y)
=
λv(x) + v′′(x)

v(x)

On the left we have a function of y, on the right a function of x, they must are constant : there is a
a such that

−w′′(y)

w(y)
=
λv(x) + v′′(x)

v(x)
= a

which gives
w′′(y) + aw(y) = 0, w(0) = w(1) = 0.

This is a 1-D eigenequation, whose solutions are (modulo a multiplicative factor) with a = p2π2 for
p ∈ N

wp =
√

2 sin pπy.

then for each p,
λv(x) + v′′(x) = p2π2v(x)

λv(x) + v′′(x) = p2π2v(x)

v′′(x) + (λ− p2π2)v(x) = 0.

again this is a 1-D eigenmode problem, then

λ− p2π2 = q2π2, vq(x) =
√

2 sin qπx.

An orthonormal system is then

λp,q = (p2 + q2)π2, up,q = 2(sin qπx)(sin pπy)

For the 2−D discrete system, we will do the same as for the continuous case : suppose that the
eigenvalues are

λp,q =
4

h2
(sin2(pπh) + sin2(qπh)), up,qi,j = 2(sin qπxi)(sin pπyj)

and check it directly on equation (4).
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