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Chapitre 1

Classical methods
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1.1 Direct methods

1.1.1 Gauss method

Example

1 3 1 T 9
1 1 -1 Ty | = 1
3 11 6 T3 36
. X N hl;—/



and multiply on the left by M; to put zeros under the diagonal in the first
column :

1 3 1 9
MAlb]=] 0 —2 —2]|-8
0 2 3 9

Multiply now on the left by M; to put zeros under the diagonal in the second
column :

1 00 100
M= -110]|, My=[010
—30 1 011

1 3 11]09

My My[Alb] = 0 —2 —2|-8

0 0 1|1

MI[A|b] = [MA|Mb].
Axr =b <= MAx = Mb: M is a preconditioner.
The matrix U = M A is upper triangular, and solving Ux = Mb is simpler
than solving Ax = b.
Ly=1>

U=MA <= A=LU Az =b <= LUxr=b < {U
=1y

Define L; = M j_l. In the column j, the entries below the diagonal are those
of M; with a change of sign.

100 1 0 0
Li=(1 10|, Le=[0 1 0
301 0 —1 1
1 0 0
L=M"'=MM)'=M'"M;'=0LL, = |1 1 0
3 -1 1

Solving Az = b is then equivalent to performing the LU decomposition,
and solving two triangular systems. Counting of operations :

1. LU decomposition (’)(%) elementary operations.

2. Solve Ly =b O(n?) elementary operations.

3. Solve Uz =y O(n?) elementary operations.

For P values of the righthand side, N,, ~ 22 + P x 2n?.



1.1.2 Codes

function x=BackSubstitution(U,b)

% BACKSUBSTITUTION solves by backsubstitution a linear system
s x=BackSubstitution(U,b) solves Ux=b, U upper triangular by
% backsubstitution

n=length(b);

for k=n:—1:1

s=b(k);

for j=k+1l:n

s=s—U(k,j)*x(]);

end

x(k)=s/U(k,k);

end

x=x(:);

\O

function x=Elimination(A,b)

s ELIMINATION solves a linear system by Gaussian elimination
x=Elimination(A,b) solves the linear system Ax=b using Gaussian
Elimination with partial pivoting. Uses the function

% BackSubstitution

n=length(b);

norma=norm(A,1);

A=[A,b]; % augmented matrix

for i=1:n

[maximum, kmax]=max(abs(A(i:n,i))); % look for Pivot A(kmax,i)
kmax=kmax+i—1;

if maximum < le—14*norma; % only small pivots

error('matrix is singular')

o°® o°

o°

end

if i ~= kmax % interchange rows
h=A(kmax, :); A(kmax,:)=A(i,:); A(i,:)=h;
end

A(i+l:n,i)=A(i+1l:n,i)/A(i,1); % elimination step
A(i+l:n,i+l:n+1)=A(i+1l:n,i+1l:n+1)—A(i+1l:n,i)*A(1i,i+1l:n+l);
end

x=BackSubstitution(A,A(:,n+1));

1.1.3 Theoretical results

Theorem 1.1 (Regular case) Let A be an invertible matriz, with all prin-
cipal minors # 0. Then there exists a unique matrix L lower triangular with
l;; =1 for all i, and a unique matriz U upper triangular, such that A = LU.
Furthermore det (A) = T, ;.

Theorem 1.2 (Partial pivoting) Let A be an invertible matriz. There exist
a permutation matrix P, a matriz L lower triangular with l;; = 1 for all i,
and a matriz U upper triangular, such that

PA=LU



1.1.4 Symmetric definite matrices : Cholewski decom-
position
Theorem 1.3 If A is symmetric definite positive, there exists a unique lower

triangular matriz R with positive entries on the diagonal, such that A = RR”.

1.1.5 Elimination with Givens rotations

This is meant to avoid pivoting. It is used often in connection with the
resolution of least-square problems. In the i step of the Gauss algorithm, we
need to eliminate x; in equations i 4+ 1 to n of the reduced system :

(i) ayw; +-- + @pTn, = b
(l{?) api%; +-+ + QppTp, = bk’

(’n,) L Qpi; +--- + UpnTn = bn

If ay; = 0, nothing needs to be done. If ay; # 0, we multiply equation(i) with
sin @ and equation (k) with cosa and add. This leads to replacing equation
(k) by the linear combination

(K)new = — sina - (i) + cosa - (k).
The idea is to choose « such that the first coefficient in the line vanishes, i.e.
—sina - a; +cosa - ag; = 0.

Since ay; # 0, this defines cotgay;, that is ay; modulo 7. For stability reasons,
line (7) is also modified, end we end up with

(D)pew = cosa - (i)  +sina - (k)
(K)pew = —sina - (i) +cosa - (k)

From which the sine and cosine of «a4; are obtained through well-known tri-
gonometric formulas

sinay; =1 1 4 cotg?ay;, €OSy; = Sin ag; COtEa;.
)

A

k;.j new

COS Qg - Aij —|—sinaki . Alcj
— sinag,; - Aij +cosay - Ay

) new



function x=BackSubstitutionSAXPY(U,b)

% BACKSUBSTITUTIONSAXPY solves linear system by backsubstitution
% x=BackSubstitutionSAXPY(U,b) solves Ux=b by backsubstitution by
% modifying the right hand side (SAXPY variant)n=length(b);
n=length(b);

for i=n:-1:1

x(1)=b(i)/U(i,1);

b(1l:i—1)=b(1:i—1)}x(i)*U(1l:i—1,1i);

end

x=x(1);

function x=EliminationGivens(A,b);

% ELIMINATIONGIVENS solves a linear system using Givens—rotations
% x=EliminationGivens(A,b) solves Ax=b using Givens—rotations. Uses
% the function BackSubstitutionSAXPY.
n=length(A);

for i= 1:n

for k=i+l:n

if A(k,1)~=0

cot=A(i,1i)/A(k,1i); % rotation angle
si=1/sqrt(1l+cot”2); co=sixcot;
A(i,i)=A(i,1i)*co+A(k,i)*si; % rotate rows
h=A(1i,i+1:n)*co+A(k,i+1l:n)x*si;
A(k,i+l:n)=—A(i,i+1l:n)*si+A(k,i+1l:n)x*co;
A(i,i+1l:n)=h;

h=b(i)*co+b(k)*si; % rotate right hand side
b(k)=b(i)*si+b(k)*co; b(i)=h;

end

end;

if A(i,1)==0

error('Matrix is singular');

end;

end

x=BackSubstitutionSAXPY(A,b);

1.1.6 QR Decomposition

Note G which differs from identity only on the rows i and k where
Gii = Gkk = COSQ,  Gik, = — gk = SN

Example for n = 5,

1 0 0 0 0
0 cosa 0 sina O
G*=10 0 1 0 0
0 —sina 0 cosa O
0 0 0 0 1




Multipliying a vector b by G** changes only the components i and k,

b; cosa - b; +sina - b

by —sina - b; 4cosa - by

G*e;, = cosae; —sinae,, G*e,=sinae; + cosaey.

G’ represents the rotation of angle o in the plane generated by e; and
er. (G*())* = G*(—a), (G*(a))*G*(a) = I. Thus it is an orthogonal
matrix. By applying successively Gy, ..., G, whereever a;; is not zero, we
put zeros under the diagonal in the first column. We continue the process
until the triangular matrix R is obtained. Then there are orthogonal matrices
G4, -+, Gy such that Then

Q is an orthogonal matrix,

then
A=QR,

we have reached the QR decomposition of the matrix A.

1.2 Stationary iterative methods

For any splitting A = M — N, write Mz = Nx + b,
Define the sequence Ma™ = Nz™ 4 b.
Mx™t = Nzg™m+b <= Mz™' = (M- A)z"+0b
— "= (I - M1TA)z™ + M
e g™t =™ - M tAx™ + M1
<= fixed point algorithm to solve x — M *Az + M~'b =2
<= fixed point algorithm to solve Mt Az = M~!b.

Again, M is a preconditioner.

o ¢ :=ux —a™ is the error at step m.
o 1" :=b— Ax™ = Ae™ is the residual at step m.
e R=M"N=1—M1A is the iteration matriz.

Then the sequence of the errors satisfies
Me™ ™ = Ne™, ™ = M~ 'Ne™

[l

Stopping criterion Usually, one stops if H+IL|H < €.
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1.2.1 Classical methods
Use A =D — F — F.

Jacobi M =D R:=J=I1-D"1A

Relaxed Jacobi M =1D R=1—-wD'A

Gauss-Seidel M=D-F R=L,=1I-(D-E)'A

SOR M=D-E R:=L,=(D- wE) (1 —w)D +wF)
Richardson M = %I R=1-pA

The relaxed methods are obtained as follows : define 2" as an application
of Jacobi or Gauss-Seidel, then take the centroid of 2™ and 2™ as ™! =
wz™ 4+ (1 — w)x™.

For symmetric positive definite matrices A, Rlchardson is a gradient method
with fixed parameter. There is an optimal value for this parameter, given by

Popt = ﬁ where the \; are the eigenvaues of A.
n

1.2.2 Fundamentals tools

Define the sequence
T =Re™, R=M"'N.
Then ™ = R™ey, and for any norm

le™ < IRBIHle™ [, lle™ [ < =™ ]l]le]).

p(R) = max{|\|, A eigenvalue of R} is the spectral radius of R.
pm(R) = ||R™||*/™ is the mean convergence factor of R.
. poo( ) = im0 ||[R™||Y™ is the asymptotic convergence factor of

R.

Theorem 1.4
e For any matriz R, for any norm, for any m, p,(R) > p(R). The
sequence py,(R) has a limit, called the asymptotic convergence factor
of R and denoted by pso(R).

o The sequence x™ is convergent for any x° if and only if p(R) < 1.

To reduce the initial error by a factor €, we need m iterations, defined by

< (pm(R))™ ~ .

le™]|

lell —

loge
log p(R)’
Then to obtain another decimal digit in the solution, one needs
In(10)
In(p(R))

11

So m ~ It is easier to use the asymptotic value relation, m ~

log e
l0g poo(R)

to choose ¢ = 107!, then m ~ —



The asymptotic convergence rate is F' = —In(p(R)).

Diagonally dominant matrices

Theorem 1.5

e [f Ais a matriz, either strictly diagonally dominant, or irreducible and
strongly diagonally dominant, then the Jacobi algorithm converges.

o [f A is a matriz, either strictly diagonally dominant, or irreducible and
strongly diagonally dominant, then for 0 < w < 1, the SOR algorithm
converges.

M- matrices

A € R™™ 4s a M-matrix if
1. a; >0 fori=1,...,n,
2.a;5; <0 fori#j,1,7=1,...,n,
3. A is invertible,
4. A1 >0.
Theorem 1.6 If A is a M-matrix and A = M — N is a regular splitting

(M is invertible and both M~ and N are nonnegative), then the stationary
method converges.

Symmetric positive definite matrices

Theorem 1.7 (Householder-John) Suppose A is positive. If M+ MT — A
is positive definite, then p(R) < 1.

Corollary 1.1 1. If D+ E+F is positive definite, then Jacobi converges.
2. If w € (0,2), then SOR converges.

Tridiagonale matrices

Theorem 1.8 1. p(Ly) = (p(J)))?* : Jacobi Gauss-Seidel converge or di-
verge simultaneously. If convergent, Gauss-Seidel is twice as fast.

2. Suppose the eigenvalues of J are real. Then Jacobi and SOR converge
or diverge simultaneously for w €]0, 2.

3. Same assumptions, SOR has an optimal parameter w* = ,
1+ /1= (p(]))?
and then p(L+) = w* — 1.

12



FIGURE 1.1 — Variations of p(L,) as a fonction of w
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1.3 Sparse and banded matrices

1.3.1 Direct methods

The first encounter of this name seems to be due to Wilkinson in 69 : any
matriz with enough zeros that it pays to take advantage of them.

Example : a banded matrix, with upper bandwidth p = 3 and lower
bandwidth ¢ = 2, in total p 4+ ¢ 4+ 1 nonzero diagonals.

p=3
(k=01 0 0 0 )
T -4 23 0 6.0 0
0. —12 QR EEEOREG 0
0 0 -40 0 5_ 1 4
10 o~ —a 6 -
\ O 0 0 0 0 -8 0 )

FIGURE 1.2 — A bandmatrix

Then L is lowerbanded with ¢ = 2, and Uis upperbanded with p = 3.

( i 0 0 0 0 0 0)

2 1.0 0 0 0 0

0 -3 1.0 0 0 0

L=l 0 0 -2 1t 0 0 0
0 0 =33 281 0 0

00 0 0 -3 1 0

\0 0 0 0 0 -931)

FIGURE 1.3 — LU decomposition

14



It is not the case anymore, when pivoting is used :

1

0

0

L= 0
0

0

—0.

5 —0.17 —0.05 —0.21 0.025 0.0027

-4 2
0 —12
0 O
0 O
0 0
0 0
0 O

OO OO O

0.6

Here the permutation matrix is

_ o O O O O O

OO OO oo

0

1

0
0

OO O oo+ o

o= O OO

0

o O oo

0

o O o oo

0
0
0
0
0
1 0
1

0 0 0
2 0 0
) 1 4
—-10 —0.6 —24
—-60 6 —23
0 -84 0
0 0 0.275
0 00
0 00
100
0 0 O
0 1 0
0 0 1
0 00

OO O H O OO

In the Cholewsky decomposition, there is no need of permutation, unless
some parameters are very small. Then if A is banded, R is banded with the
same lower bandwidth, but it may be less sparse, in the sense that it can
have more zeros. Consider as an example the 36 x 36 sparse matrix of 2 — D
finite differences in a square. With the command spy de matlab, the nonzero
terms appear in blue :

.
30

P
35

5

10

15

20
nz=158

E

A bandmatrix sparse matrix

Corresponding Cholewski

Even though R has the same bandwidth as A, nonzero diagonals appear.

15



EXERCISE Write the Gauss and Givens algorithms for a tridiagonal matrix
A = diag(c,—1) + diag(d,0) + diag(e, 1).

LU factorization : verify that

ek = U, diy1 = U fro + W1, ex = fr

then it is not necessary to compute fi, and only recursively

Ce = lpup,  Upy1 = dpgr — i eg.

n=length(d);

for k=1:n—1 % LU—decomposition with no pivoting
c(k)=c(k)/d(k);
d(k+1)=d(k+1)—c(k)=*e(k);

end

for k=2:n % forward substitution
b(k)=b(k)—c(k—1)*b(k—1);

end

b(n)=b(n)/d(n); % backward substitution

for k=n—1:-1:1
b(k)=(b(k)—e(k)*b(k+1))/d(k);

end

Givens : verify that the process inserts an extra updiagonal.

n=1length(d);
e(n)=0;
for i=1: n—1 % elimination
if c(i)~=0
t=d(i)/c(i); si=1l/sqrt(1l+txt); co=txsi;
d(i)=d(i)*co+c(i)x*si; h=e(i);
e(i)=h*xco+d(i+1)*si; d(i+1l)=—hx*si+d(i+1)=*co;
c(i)=e(i+1)xsi; e(i+1)=e(i+1)*co;
h=b(i); b(i)=h*xco+b(i+1)x*si;
b(i+1l)=—hx*xsi+b(i+1)*co;
end;
end;
b(n)=b(n)/d(n); % backsubstitution
b(n—1)=(b(n—=1)—e(n—1)*b(n))/d(n—1);
for i=n—2:—1:1,
b(i)=(b(i)—e(i)*b(i+1l)—c(i)=*b(i+2))/d(1);
end;

Creation and manipulation of sparse matrices in matlab

>>8=sparse([2 3 1 2],[1123],[2413]
S =

16




(2,1)
(3,1)
(1,2)
(2,3)

W~ >N

>>S=speye(2,3)

S:

[y

(1,1)
(2,2)

[EE

>>n=4;
>>e=ones(n, 1)
e=

)

>>A=spdiags([e -2%e e],-1:1,n,n)
A =

(1,1) -2
(2,1) 1
(1,2) 1
(2,2) -2
(3,2) 1
(2,3) 1
(3,3) -2
(4,3) 1
(3,4) 1
(4,4) -2
>>full (A)
ans =
-2 1 0 0
1 -2 1 0
0 1 -2 1
0 0 1 -2

>>S=sparse([2 3 1 2],[1 12 3],[2 41 3])

17



(2,1)
(3,1)
(1,2)
(2,3)

W~ >N

>>S=speye(2,3)

S:

[

(1,1)
(2,2)

—

>>n=4;
>>e=ones(n,1)
e:

o e

>>A=spdiags([e -2*%e e],-1:1,n,n)

A =
(1,1) -2
(2,1 1
(1,2) 1
(2,2) -2
(3,2) 1
(2,3) 1
(3,3) -2
(4,3) 1
(3,4) 1
(4,4) -2
>>full(A)
ans =
-2 1 0 0
1 -2 1 0
0 1 -2 1
0 0 1 -2

The direct methods first transform the original system into a triangular

18



matrix, and then solve the simpler triangular system. Therefore a direct
method leads, modulo truncation errors, to the exact solution, after a number
of operations which is a function of the size of the matrix. Thereby, when
the matrix is sparse, the machine performs a large number of redundant
operations due to the large number of multiplication by zero it performs.

1.3.2 TIterative methods

The iterative methods rely on a product matrix vector, therefore are easier
to perform in a sparse way. They have gain a lot of popularity for sparse
matrix, in conjunction with preconditioning and and domain decomposition.
However their success relies on the convergence speed of the algorithm, see
next chapter.

1.3.3 Implementation issues

To minimize computing costs and storage of a sparse matrix, it can be
useful to renumber the matrix coefficients. There are (for the moment) no
absolute ideal renumbering algorithms but one of the most efficient is the
Reverse Cuthill Mackee algorithm.

It is also called the bandwidth reduction problem, also known in the field
of sparse matrix applications as the bandwidth minimization problem (or
BMP in short) :

For a given symmetric sparse matrix, A(nxn), the problem is to reduce its
bandwidth B by permuting rows and columns so as to move all the non-zero
elements of A in a band as close as possible to the diagonal.

In other words, the problem consists in transforming through successive
row and column permutations as for example matrix Al (8x8 input matrix)
into A2 :

1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0
0O 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0
0 1 1 0 1 0 0 0 o o0 1 1 1 0 0 0
O 0 0 1 0 0 1 0 o o0 1 1 1 0 0 0
1 01 01 0 0 0 o 0 1 1 1 1 0 0
O 1 0 0 0 1 0 1 o0 o0 0 1 1 1 0
O 0 0 1 0 0 1 0 o o0 o0 0 01 11
01 0 001 01 o o0 o0 0 0 0 11

=
>
8

Notions of Graph
The graph G(A) corresponding to the matrix A we will have n nodes labelled
i= 1,2, ... ,n. For each non-zero element aij, i < j of A there will be an edge
connecting nodes i and j. From the graph of A we can determine the position
of all off-diagonal non-zero elements of A.

19



Two nodes of G(A) are said to be adjacent if they are connected by an
edge.
Two nodes of G(A) are said to be connected if there is a sequence of edges
joining them such that consecutive edges have a common end point. A graph
is said to be connected if every pair of nodes of the graph are connected. If
G(A) is connected, the corresponding matrix is irreducible.

A component of a graph is a connected subgraph which is not contained
in a larger connected subgraph.

The degree of a node i of G(A) is the number of edges meeting at i. For
the corresponding matrix, this is the number of non-zero off diagonal ele-
ments in row i.

For example, the corresponding graphs of A1l and A2 are

Graph(Al) Graph(A2)

The two graph structures are identical, the only thing that is different is
the node (vertex) labelling. In other words the bandwidth reduction problem
can also be viewed as a graph labelling problem :

Find the node labelling that minimizes the bandwidth B of the adjacency
matrix of the graph G(A) , where we can formally define : B=max|Li-Lj|,
i,j=1..n and Li is the label of node i, Ljj is the label of node j and nodes i and
j are adjacent.
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The Reverse Cuthill Mackee algorithm (RCM)

This algorithm was presented by E. Cuthill and J. McKee in 1969 in
REDUCING THE BANDWIDTH OF SPARSE SYMMETRIC MATRICES
and improved by A. George

Algorithm RCM

Step 0 : Prepare an empty queue QQ and an empty result array R. ;

Step 1 : Select the node in G(A) with the lowest degree (ties are
broken arbitrarily) that hasn’t previously been inserted in the result
array. Let us name it P (for Parent). ;

Step 2 : Add P in the first free position of R. ;

Step 3 : Add to the queue all the nodes adjacent with P in the
increasing order of their degree. ;

Step 4.1 : Extract the first node from the queue and examine it. Let
us name it C (for Child). ;

Step 4.2 : If C hasn’t previously been inserted in R, add it in the first
free position and add to Q all the neighbours of C that are not in R
in the increasing order of their degree. ;

Step 5 : If Q is not empty repeat from Step 4.1 . ;

Step 6 : If there are unexplored nodes (the graph is not connected)
repeat from Step 1 . ;

Step 7 : Reverse the order of the elements in R. Element R]i] is
swaped with element R[n+1-i|. ;

The result array will be interpreted like this : R|L] = i means that the new
label of node i (the one that had the initial label of i) will be L.

Nodes are explored in the increasing order of their degree. Step 7 is not man-
datory, it is the modification introduced by George to the initial algorithm
(it has the purpose of further reducing the profile of a matrix).

Such a renumbering is also a good technique to reduce computing costs
and storage space.

Storage schemes

The main goal is to represent only the non zero elements, and to be
able to perform the common matrix operations. In the following, N denotes
the total number of non zero elements. Only the most popular schemes are
covered here.

— Compressed Sparse Row (CSR)

A real array AA that contains the real non zero values a;; stored row
by row, from row 1 to n. The length of AA is N

An integer array JA that contains the column indices of elements a;;
as stored in AA. The length of JA is N.

An integer array A that contains the pointers to the beginning of
each row in the arrays AA and JA. IA(1) = 0, IA(2) = number of
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non zero elements in row 1, IA(ii+1)= IA(ii) + number of non zero
elements in row ii. The length of TA is n+1, and IA(n+1) = Ny

— Compressed Sparse Column (CSC)
A variation of CSR but based on storing columns instead of rows.

For example , matrix

L. 0. 0. 2. 0.

(3. 4. 0. 5 0. \
A=16. 0. 7. & O
0. 0. 10. 11. 0.

0. 0. 0. 0. 12,

FIGURE 1.4 — Matrix A

will be stored as follows/

JA- |1 4 1 2 4 1 3 4 5 3 4 5

IA 1 3 6 10 12 13

FIGURE 1.5 — Sparse Matrix A storage

The case of a CSR storage leads to an efficient matrix vector product.
The following Fortran 90 segment shows the main loop of the matrix-by-
vector operation for matrices stored in the Compressed Sparse Row stored
format.

DO I=1, N

K1 = TA(CI)

K2 TA(I+1)-1

Y(I) = DOTPRODUCT(A(K1:K2) ,X(JA(K1:K2)))
ENDDO

FIGURE 1.6 — Sparse Matrix vector product

Notice that each iteration of the loop computes a different component of
the resulting vector. This is advantageous because each of these components
can be computed independently.
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Solving a lower or upper triangular system is another important kernel in
sparse matrix computations. The following segment of code shows a simple
and parallel routine for solving LX =Y for the CSR storage format.

X(1) = Y(1)
DO I =2, N
K1 = IAL(I)

K2 = IAL(I+1)-1
X(I)=Y(I)-DOTPRODUCT (AL(K1:K2) ,X(JAL(K1:K2)))
ENDDO

F1GURE 1.7 — Computing LX =Y
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Chapitre 2

Nonstationary methods
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2.1 Non-Stationary iterative methods. Symmetric de-
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2.2.2  Arnoldi algorithm . . . ... ... ... ... ... 32

2.2.3  Full orthogonalization method or FOM . . . . . .. 33

2.2.4  GMRES algorithm . . ... ... ... ....... 35

2.1 Non-Stationary iterative methods. Symme-

tric definite positive matrices

Descent methods

2.1.1 Definition of the iterative methods

Suppose the descent directions p,, are given beforehand. Define

m—+1

m+1 m+1

x ="+ a,p", e =e" —a,p", T =r" — a,, Ap™.

Define the A norm : | ||y||% = (Ay,v).

Theorem 2.1 z is the solution of Ax = b <= it minimizes over RY the

functional J(y) = 3(Ay,y) — (b, y).
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This is equivalent to minimizing G(y) = 2(A(y — z),y — z) = 3|y — z|)%.
At step m, a,, is defined such as to minimize .J in the direction of p,,. Define
the quadratic function of «

1
om(a) = J(@™ 4+ ap™) = J(z™) — a(r™, p™) + §a2(Apm,pm)'

Minimizing ¢,, leads to

m .M

(p T ) m m+1\ __
(Ap™, pm)’ ") =0

oy =

(Tm’pm)Q
Apm’ p'ffl)(A—lrm, Tm)

G = G (1~ ). o =

m

e Steepest descent (gradient a pas optimal) p™ = r™.

xm—&-l — " 4 am,r,m’ em—i—l — ™ am,r,m’ Tm+1 — ([ — amA)pm
rm 2
O = i, (71 =0
)

e Conjugate gradient

")

xm+1 — l,m 4 Oémpm, Ay = (p , T :
(Ap™,p™)
Search p™ as p™ = r™ + B,,p™ !

G(a™) = G(a™)(1 = pim)

(o )

Hm = (Apm,pm)(A—lrm, Tm) (Apm,pm)<A_1’l“m, rm)

Maximize ft,,, or minimize

(Ap™,p™) = B (Ap™H p™ 1) + 2B, (Ap™ ™) + (Ar™, ™)

Apm—lﬂﬁm . .
P = —(ipml pm)l) = (A =0
™2
(rm,rm+1) =0, fBn=——"7"-.
[[rm=t]]?

Properties of the conjugate gradient Choose p® = 7°. Then VYm > 1,
if i £ 0 for i < m.
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(rm™,p') =0 fori <m — 1.
vec(r®, ... r™) = vec(r®, Ar0 ... A™rY).
vec(p?, ..., p™) = vec(r®, Ar® ... A™r0).

(p™, Ap") =0 for i < m — 1.

(r™ r"y =0 fori <m — 1.

AR ol B

Krylov space K = vec(r®, Ar”, .., A™~1s0).

Theorem 2.2 (optimality of CG) A symétrique définie positive,

2" —zlla= inf ly—=la, [z]a=VaTAz.
yex+Knm,

Theorem 2.3 Convergence in at most N steps (size of the matriz). Fur-

thermore
G(z™) < 4 < wA) - 1) G(z™ 1)

VE(A) +1
The conjugate gradient algorithm
a'chosen, p° =7"=b— Az°

while m < Niter or ||r™|| > tol, do

N
" (Ap™,pm)
ZL‘erl = m _’_ampm’
rmtl = ™ — o, Ap™,
||7,,m+1||2
BWL+1 = HTmHQ 3
prtt = = ™,

end.

2.1.2 Comparison of the iterative methods

Basic example :. 1-D Poisson equation —u” = f on (0, 1), with Dirichlet
boundary conditions u(0) = g,4, u(1) = g4. Introduce the second order finite
difference stencil.

1
n+1’

(0,1) :U([Ej,ZL‘j+1), J]j+1—5(]j:h: j:O,,n

_u(l’7;+1) - QU}EQIZ) + u(@i1) ~ flz;), i=1,...n

27



Uy = Gg, Un4+1 = 9d-

(4)
SUDeqp |W (T
|Uz‘—u($i>|<h2 Pre| ’b]| (@)

12
The vector of discrete unknowns is u =" (uq, ..., uy,).
> -1 i
A 0 £
A= 73 . . b= :
0 1 2 -1 £y
—1 2 fn - i_g

The matrix A is symmetric definite positive.

The discrete problem to be solved is

Au=0>

2.1.3 Condition number and error

Define k(A) = [|A||a]|A7Y|2. If A is symmetric > 0, k(A) = 2axd

min \; °

Theorem 2.4
|2 — x|z

]l

and there is a b such that it is equal.

1o — bl
181l

r(A)

Eigenvalues and eigenvectors of A (h x (n+1) = 1).

4 kmh k
W = — sin? L, o) = (sin SO > ,
1<j<n

h? 2 n+1
) sin? ”%h cos? %h 4
Kj oy pr— ~Y
sin? %h sin? %h m2h?

For any iterative method, the eigenfunctions of the iteration matrix are equal
to those of A.
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Eigenvectors of A, n=24=16

-0.2 1
—04f \ / \ / .

\ / \ /
-06f \ / \ / 1

\\ //J \ /
—08f \\ / \ / ]

/ \ /

1 L L \/ L L { \/ I

0 0.5 1 1.5 2 25 3 35
FIGURE 2.1 — Eigenvectors of A
Algorithm Eigenvalues of the iteration matrix R
. 2
Jacobi Me(J) =1 =2y, = cos(kmh)

Gauss-Seidel

M(L1) = ()2 = cos?(krh)

SOR n = \.(L,,) solution of (n+w — 1)? = nw(Ax(J))>
TABLE 2.1 — Eigenvalues of the iteration matrix
Algorithm Convergence factor n= n=230|n=060
Jacobi cosTh 0.81 0.99 | 0.9987
Gauss-Seidel cos? h 0.65 | 0.981 | 0.9973
1 —sin7h
SOR T 0.26 | 0.74 | 0.9021
1+sinwh
K(A)—1
steepest descent # = cos7h 0.81 0.99 | 0.9987
K(A)—1 h —sinh
conjugate gradient (A) =1 _ cosmh—sinmh | o0 | o856 | 0.0020
VEK(A)+1 cosmh+sinmh

TABLE 2.2 — Convergence factor
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Algorithm convergence factor p,, | convergence rate F'
Jacobi 1— % %
Gauss-Seidel 1—¢&? g2
SOR 1—2¢ 2e
Steepest descent 1—¢? 1e?
conjugate gradient 1-—2¢ 2e

TABLE 2.3 — Asymptotic behavior in function of € = 7wh

n | Jacobi and steepest descent | Gauss-Seidel | SOR | conjugate gradient
10 56 28 4 4
100 4760 2380 38 37
In(1
TABLE 2.4 — Reduction factor for one digit M ~ — n(FO)

finite differences, n=5
T

rezidual

—S0R

T
Jacobi
Gauss Seidel

Richardzon
conjugate gradient

I I
100 120

iteration

:11] &0

FI1GURE 2.2 — Convergence history, n =5
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Gauss elimination n?
optimal overrelaxation | n?%/?
FFT nlng(n)
conjugate gradient no/4
multigrid n

TABLE 2.5 — Asymptotic order of the number of elementary operations nee-
ded to solve the 1 — D problem as a function of the number of grid points

finite differences, n=100

T T
— Jacobi
Gauss Seidel

10" ——S0R
Richardson

conjugate gradient

10* \ |
10 \

regidual

10”7 L L L L L L L L L
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

iteration win?

FIGURE 2.3 — Convergence history, n = 100

Not only the conjugate gradient is better, but the convergence rate being (9(/11/2)7 the
number of iterations necessary to increases the precision of one digit is multiplied by v/10
when the mesh size is divided by 10, whereas for the Jacobi or Gauss-Seidel it is divided
by 100. The miracle of multigrids, is that the convergence rate is independent of the mesh
size.

2.2 Krylov methods for non symmetric matrices,
Arnoldi algorithm

2.2.1 Gram-Schmidt orthogonalization and ()R decom-

position
Starting with a free family (v1,- -« , v, -+ ) in a vector space E with a scalar product
(+,-), the process builds an orthonormal family (wy,- -« , Wy, - ) recursively.
v
e. Define w; = .
[[o1]

. Note 71,2 = (v, w1), and define ug = vo — r1 2w;y. By construction us is orthogonal to
u

wy. It only remains to make it of norm 1 by defining rg o = |luz||, we = —2
2,2

e. Suppose we have built (w1, --- ,w;_1) an orthonormal basis of L(v1,--- ,v;_1). Take v;
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and define r; ; = (v;,w;) for 1 <4 < j—1, and

j—1
L]
wj =05 = rigwi, 1=l w; =
T5,3
i=1 >
Then (wn,--- ,w;) is orthonormal. Furthermore, we can rewrite the previous equality as
j—1
vj = T Y rigwi,
i=1

which gives for each j;

J

Uj = Z”'i,jwi . (21)

i=1
Define the matrix K whose columns are the v;, the matrix () whose columns are the wj,

and the upper triangular matrix R whose coeflicients are r; ; for 7 < j, and 0 otherwise.
Then (2.1) takes the matrix form

i
Kij=) mijQri K=QR (2.2)
i=1

The matrix @ is orthogonal, so this is exactly the so-called QR decomposition of the
matrix K. Note that the matrix K DOES NOT NEED TO BE SQUARE, nor the matrix
@, but the matrix R has size m x m.

2.2.2 Arnoldi algorithm

Let A a N x N matrix. The purpose is to build recursively a orthonormal basis of
the Krylov space K,,, = vect(r, Ar,--- , Am~1r) for r € RV, We will take advantage of the
special form of the generating family to proceed a slight modification of Gram Schmidt.

e
Il . |
e. Now we must orthogonalize ¢; and Ar, or equivalently ¢; and Aq; :

e. Define ¢; =

Uz
hii=(Aq,q1), ue=Aq —hi1qi, ho1=usl, ¢= o

s

Then ¢y € Vec(qr, Aqr) = Vec(r, Ar) = Ky and (¢1, g2) is an orthonormal basis of K. All
this can be rewritten as

Agqr = h11q1 + ho1go.
Then K3 = Vec(qr, gz, A’r) = Vec(qi, g2, Agz). Therefore, instead of orthonormalizing
with the new vector A%r, we can do it with the new vector Ags. Define

us
ug = Aga—h12q1 —h22q2, h22 = (Aq2,q2), hi2=(Agq2,q1), h32=|lusl, 3= o
3,2

)

This generalizes in building an orthonormal basis of Xj;1 by

Uj+1

J
ujp1 = Agj — Zhi,j(b’ o hig=(Ag5.4),  hjy1j = llujalls g1 = o
1=1 J »J

Theorem 2.5 If the algorithm goes through m, then (qi,...,qm) s a basis of Kp,.

Below is the matlab script
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for j=1:m do
h(i,j)=(Axv(j,:),v(i,:)) , i=1:i
w(j,:)=Axv(j,:)—sum(h(i,j)v(i,:)
h(j+1,j)=norm(w(j,:),2)
If h(j+1,j) == 0 stop
v(j+1,:)=w(j,:)/h(j+1,7)

The definition of the g; above can be rewritten as

J+1
Agj =Y hija (2.3)
=1
[ h171 R hl,m i
ha1 hap e h2.m
0 h ;
[Aqu"' aACIm] = [QI»"‘ uqm7Qm+1] . 3,2
: 0
0 0 0 hmm—1  hmm
L0 0 0 0 i |

Hessenberg matrix H,,

Define V,,, = [q1, -, gm] € Mnm(R) . Hy, is the m x m matrix obtained from the
(m + 1) x m matrix H,, by deleting the last row.

Proposition 2.1

A‘/m, — m+le - vam + hrr:,+l.’m,€lm+167;v VTA‘/m - Hm,- (24)

m

The first identity is just rewriting (2.3). As for the second one, rewrite the first
one in blocks as

7 Hm,
Vm+1Hm = [Vma qm—i-l] |: T :| = VmHm + hm+17QO+1eZ@-

hm+1,mem
Use this now in the first equality to obtain
AV, = Vi Hyy + hm-‘,—l,m‘]m-{-le%;-

Multiply on the left by V,I'. Since V,,, is orthogonal, and V.2 ¢, 1 = [(q1, @m+1), > (@ms Gma1)]T =
0, we obtain
VIAV,, = H,,.

2.2.3 Full orthogonalization method or FOM

Search for an approximate solution in ¢ 4 K, (4, r¢) in the form x,, = x¢ + V,,y, and
impose 7, LKC,,(A, o). This is equivalent to V.17, = 0, which by

Tm =b— A(xo + me) =10 — AViuy
can be written by (2.4) as

VAV, y = V.Erg or Hyy = |Irolles.
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The small Hessenberg system
Hpy = |lrolles (2.5)

can be solved at each step using a direct method : suppose all the principal minors of H,,
are nonzero. Due to the special structure of H,,, the LU factorization of H,, has the form

1 ... O ull ... ulm

L 1 o 0 0 wuo S Um
L= 0 I , U= 0 0

0 . i : : 0 :

The following matlab code gives the LU factorization

u(l,:)=h(1,:);
for i=1:m—1
1(i)=h(i+1,i)/u(i,i);
for j=i+l:n
u(i+l,j)=h(i+1,j)—1(i)=*u(i,j)
end
end

The computational cost is m? + 2m — 1 operations.

Theorem 2.6 At each step m, 1., is parallel to qpm1.-

Tm =T — Ame =Ty — (VmHm + hm+1,QO+1€Z;L)y =To — VmHmy - hm+1,mmem+1~

But H,,y = ||rolle1, therefore ro — Vi Hyy = 1o — ||ro||Viner = 70 — ||70l|¢x = 0. Therefore
T'm = —hm41mYm@Gm+1 i parallel to gm41.

function [X,R,H,Q]=FOM(A,b,x0);
FOM full orthogonalization method
[X,R,H,Q]=FOM(A,b,x0) computes the decomposition A=QHQ?, Q
orthogonal
and H upper Hessenberg, Q(:,1)=r/norm(r), using Arnoldi in order to
solve the system Ax=b with the full orthogonalization method. X
contains
% the iterates and R the residuals
n=length(A); X=x0;
r=b—A*x0; R=r; rOnorm=norm(r);
Q(:,1)=r/rOnorm;
for k=1:n
v =AxQ(:,k);
for j=1:k
H(3,k)=Q(:,3) "*v; v=v—H(j,K)*Q(:,7);
end
e0=zeros(k,1); e0(1l)=rOnorm; % solve system
y=H\e0; x= x0+Qxy;
X=[X xI;
R=[R b—Axx];

o°

o®

o°

o°
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if k<n
H(k+1,k)=norm(v); Q(:,k+1l)=v/H(k+1l,k);
end
end

2.2.4 GMRES algorithm

Here we minimize at each step the residual r,,, = ro — AV,,,y in K,,,(4,79), which is
equivalent to the minimization of J(y) = ||ro — AVpy|l2 for y in R™. Use the Proposition
to write

ro — AViy = [[rollqr — Vm+1ﬁmy = Ving1(l[roller — ﬁmy)
Since V41 is an orthogonal matrix, then
o = AVimyll = llllroller — Hmyll-

So in FOM we solve EXACTLY the square system H,,y = ||ro]le1, while in GMRES
we solve the LEAST SQUARE problem inf||||ro|le1 — Hmyl||. This small minimization
problem has a special form with a upper Hessenberg matrix, and is best solved by the
Givens reflection method. Let us consider the case of m = 3 (g¢ = ||ro]|).

hi1 hiz hig o

0

hn
- hoy haos h 0
2= Hyy—over= | gt 00 | L | o
0 0 has Ys 0

Multiply successively by the three (m + 1) x (m + 1) Givens matrices

cc s1 0 0 1 0 0 0 1 0 O 0
| =51 a 0 0 1 0 e s2 0 101 0 0
Q=1 o o 10| @ 0—82020’Q3_000353
0 0 0 1 0 0 0 1 0 0 —s3 c3
to make the system triangular, and even better

iL1,1 /:11,2 ]:11,3 u C1

0 h h c

Q3Q2012 = 2.2 23 Y2 | — °

0 0 h3’3 Y3 C3

0 0 0 C4

Therefore
121> = [|Q3Q2Q12]1* = | Ry — ¢"||* + (ca)®

where R is the upperblock of the matrix, and ¢! the upperblock of the vector. Now we
have a regular system, and y is THE solution of

Ry = ¢!,

which is now an upper triangular system.

Remark If A is symmetric, H,, is tridiagonale.

Restarted GMRES For reasons of storage cost, the GMRES algorithm is mostly
used by restarting every M steps :

Compute x1,--- ,Zpr.

If 7z is small enough, stop,

else restart with xg = .
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Chapitre 3

Preconditioning

Contents
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3.2.1 Building the preconditioner . . . .. ... ... .. 42
3.2.2  Computing the invariant subspace . . .. ... .. 43
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3.3.2 Discrete and Fast Fourier Transform . . . . . . .. 50
3.3.3 The algorithm . . ... ... ... ... ... .. 53

3.1 Introduction

Preconditioning : purpose

Take the system AX = b, with A symmetric definite positive, and the conjugate
gradient algorithm. The speed of convergence of the algorithm deteriorates when x(A)
increases. The purpose is to replace the problem by another system, better conditioned.
Let M be a symmetric regular matrix. Multiply the system on the left by M ~!.

AX =b <= M 'AX =M1 <= (M 'AMYMX =M""b

Define B ~ R
A=M"T1TAM™Y, X=MX, b=M""b,
and the new problem to solve AX = b. Since M is symmetric, A is symmetric definite

positive. Write the conjugate gradient algorithm for this “tilde* problem.
The algorithm for A

X0 given, p°=7"= b— AXO.

While m < Niter or ||7™]| > tol, do

N B H7:7n||2

m - T~ ~, b

N (Ap™,p™)

Xm+1 — Xm-l-Oszm,

Pl = o, AP,
||7:m+1||2

5 +1 = =0

T R

Pt = = B ™
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Now define

pm — M_lﬁm, Xm — M_le, rm o= Mfm,
and replace in the algorithme above.

The algorithm for A

0 1.0 1 1 1 0 P’ = M0,
Mp"=M"r"=M"b—-M "AM "MX° +—
¥ =b— AXO.
||,i;m||2 _ (M_le,M_lT‘m) — (M_Q’I"m,’l“m)

(Zm—i-l7 rm—i—l)

6m+1 = (varm)

Define [ = %" | Then

(Aﬁm,ﬁm) _ (M_lAM_lMpm,Mpm) — (Apm7pm)

(", ™)

= —_—— |
(Apm,pm)

Qg =

MXm+1 — MX™ 4 Othpm ‘X'm—&-l —xm 4 ampm ‘

M=yt = pr=tem o, MY AM T MY = ‘rm"'l =r™ — a, Ap™ ‘

Mp™tt =M~ — B Mp™ = ‘pm“ = 2" — B ap™ ‘

The algorithm for A
Define C' = M?2.

0

solve C2% = 70, 0

X0 given, " =b-—AX", p° =20

While m < Niter or ||r™]|| > tol, do

e
3 (Apm, pm)’
Xm+1 = X"+ Oémpma
rmtl = pm g Ap™,
solve Czmtl = pmtl
B » _ (Zm,—i—l),rm-&-l)
- = ¥ 7/
+1 (flm’rm) )
prTt = 2T = Bap™.

How to choose C
C' must be chosen such that

1. A is better conditioned than A,
2. C is easy to invert.

Use an iterative method such that A = C'— N with symmetric C. For instance it can
be a symmetrized version of SOR, named SSOR, defined for w € (0,2) by

1

C=z-w

(D —wEYD YD — wF).

Notice that if A is symmetric definite positive, so is D and its coefficients are positive,
then its square root v/ D is defined naturally as the diagonal matrix of the square roots of
the coefficients. Then C' can be rewritten as

1

- (D—wE)D™ /2,
w(2—w)( )

C=5858", with § =

yielding a natural Cholewski decomposition of C.
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Another possibility is to use an incomplete Cholewski decomposition of A. Even if A
is sparse, that is has many zeros, the process of LU or Cholewski decomposition is very
expensive, since it creates non zero values.

Example : Matrix of finite differences in a square

Poisson equation

1 1
—(Bnu)ig = =55 (Wit = 2uig + tio15) = 55 (W1 = 2uij +uig-1) = fig,
1<i<M1<j<M
9 10 11 12
5 6 7 8
1 2 3 4

FIGURE 3.1 — Numbering by line

The point (x;,y,) has for number i+ (j —1)M. A vector of all unknowns X is created :
Z = (Ul,l, 2,1, UM,l), (U1,2, u2,2, UM,Q), ce (ul,M, U2, M, UM,M)

If the equations are numbered the same way (equation #k is the equation at point k), the
matrix is block-tridiagonal :

B -C O
) -C B -C
A - ﬁ .. .. (3.1)
-¢ B -C
O -C B
4 -1 0
-1 4 -1
C = I]\/[7 B = ’ .
-1 4 -1
0 -1 4

The righthand side is bj4(j—1)«a = fi,j, and the system takes the form AZ = b.

function A=lapld(n)

% lapld one dimensional finite difference approximation
A=Tlapld(n) computes a sparse finite difference
approximation of the one dimensional operator —Delta on the
domain Omega=(0,1) using n interior points

o® o°

o°

h=1/(n+1);
e=ones(n,1);
A=spdiags([—e/h"2 2/h"2xe —e/h"™2],[—1 0 1]1,n,n);
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A=lap2d(nx,ny);

% A=lap2d(nx,ny) matrix of —delta in 2d on a grid

% of nx dinternal points in x and ny internal points in y
% numbered by row. Uses the function kron of matlab
Dxx=lapld(nx);

Dyy=lapld(ny);

A=kron(speye(size(Dyy)),Dxx)+kron(Dyy, speye(size(Dxx)));

Cholewski decomposition of A

The block-Cholewski decomposition of A, A = RRT, is block-bidiagonale, but the
blocks are not tridiagonale as in A, as the spy command of matlab can show, in the case
where M = 15.

100

120

140

160

20 40 60 80 100 120 140 160 20 40 [1] 80 100 120 140 160
nz=1793 nz=2209

spy(A) spy(R)

However, if we look closely to the values of R between the main diagonales where A
was non zero, we see that where the coefficients of A are zero, the coefficients of R are
small. Therefore the incomplete Cholewski preconditioning computes only the values of R
where the coefficient of A is not zero, and gains a lot of computational time.

h2 AL90,60:100)
3.5 ——— h?R(80,ED: 100]

FIGURE 3.2 — Variation of the coeflicients of Cholewski in the line 80 for
M =15

The matlab codes are as follows ([5])
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Ch=tril(A);
for k=1:nn

K);
Cholewski

end
end

Ch(k,k)=sqrt(Ch(k,k));
Ch(k+1:nn,k)=Ch(k+1:nn,k)/Ch(k,

for j=k+l:nn
Ch(j:nn,j)=Ch(j:nn,j)—Ch(j:
nn,k)*Ch(j,Kk);

Incomplete Cholewski

ChI=tril(A);
for k=1:nn

end

ChI(k,k)=sqrt(ChI(k,k));
for j=k+1l:nn
if ChI(j,k) ~= 0
ChI(j,k)=ChI(j,k)/ChI(k
K);
end
end
for j=k+1:nn
for i=j:n
if ChI(i,j) ~=0
ChI(i,j)=ChI(i,j)—
ChI(i,k)*ChI(j,k
);
end
end
end

Then use C = R+ RT.

Comparison For the 2-D finite differences matrix and n = 25 internal points in each
direction, we compare the convergence of the conjugate gradient and various preconditio-
ning : Gauss-Seidel, SSOR with optimal parameter, and incomplete Cholewski. The gain
even with w = 1 is striking. Furthermore Gauss-Seidel is comparable with Incomplete

Cholewski.

finite diff erences 20, n=25

T
conjugate gradient
— preconditioned conjugate gradient Gauss-Seidel
preconditioned conjugat e gradient SS0R

preconditioned conjugate gradient IC

FIGURE 3.3 — Convergence history, influence of preconditioning

41




3.2 Deflation method for GMRES

Contents
3.1 Introduction .. ... .. ..., 37
3.2 Deflation method for GMRES . . . . ... ... .. 42
3.2.1 Building the preconditioner . . . .. .. ... ... 42
3.2.2  Computing the invariant subspace . . .. ... .. 43
3.2.3 Numerical results . . . . .. ... .. ... ..... 43
3.3 Fast methods using Fast Fourier Transform . . . . 45
3.3.1 Presentation of the method . . ... ... ... .. 45
3.3.2 Discrete and Fast Fourier Transform . . . ... .. 50
3.3.3 The algorithm . . .. ... ... ... .. ..., 53

Recall the restarted GMRES algorithm to solve Ax = b :

Algorithm GMRES(m)

Choose xj ;

Lorg=>b—Axo , B = |roll, vi :==10/B ;

2. Generate the Arnoldi basis applied to A and the associated Hessenberg matrix

H,, starting with vq;

3. Compute ¥, which minimises ||Se; — Hy|| and 2, = o + Vit ;

4. If convergence Stop, else set zo = z,, and Go To 1 ;

Here we choose a right preconditioning M in order to garantee a non increasing resi-
dual. This would not be true with a left preconditioner since the residual is multiplied by
M-1
This preconditioner can change at each restart. The algorithm becomes

Algorithm PRECGMRES(m)

Choose g ;

Choose M ;

1. To = b—A:vo 5 ﬁ = HTQH, v = To/ﬁ ;

2. Generate the Arnoldi basis applied to AM ~! and the associated Hessenberg

matrix H,, starting with v;;

3. Compute y,, which minimises ||3e; — ffmyH and 2, = 20 + M~V ym ;

4. If convergence Stop, else set xg = x,, update M and Go To 1 ;

The objective of deflation is to remove the smallest eigenvalues of A which slow down
the GMRES convergence. With a restarted GMRES, information on these eigenvalues is
lost which explains why restarted GMRES can be quite slow and even fail to converge.
Deflation aims to replace them by real positive eigenvalues equal to the largest modulus
of the eigenvalues.

3.2.1 Building the preconditioner

In the following we assume that A is diagonalizable in C with eigenvalues || < |Ag] <
Al
Let P be an invariant subspace of dimension r corresponding to the r smallest eigenvalues
of A and U an orthonormal basis of P. The deflating preconditioner is based on the idea
that the linear system is solved exactly in space P.

Theorem 3.1 if T = UT AU and M = I,,+U(1/|\o|T—1,)UT then M is non singular and

M=t =L, +U(M|T7 ' = I,)UT and the eigenvalues of AM ™1 are Api1, Aryay ooy Ary [ Al
and |A\,| s an eigenvalue of multiplicity at least r.
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Note : If only a close approximation P is known , an improved convergence rate is
still to be obtained.

3.2.2 Computing the invariant subspace

The GMRES algorithm provides the Hesssenberg matrix Hy, = V3,7 AV}, which is the
restriction of A onto the Krylov subspace K (k, A, rg). The eigenvalues of Hj are called
Ritz values. Let H;, = SRST be the Schur canonical form of Hj with the eigenvalues
ordered by increasing values. Then vectors U = V.S approximate the Schur vectors of
A. The largest Ritz value approximates the largest eigenvalue of A thus providing a first
approximation of M.

After each restart new Ritz values can be estimated approximating eigenvalues of
AM~Y also approximating remaining eigenvalues of A. By increasing the invariant sub-
space at each restart , a more powerful preconditioner is thus built.

To avoid loss of orthogonality , these vectors are orthogonalized against the previous basis

U .

Note : In some sense this algorithm recovers the superlinear convergence of the full
GMRES version which behaves as if the smallest eigenvalues were removed. The precondi-
tioner keeps the information on the smallest Ritz values which would be lost by restarting.

Algorithm DEFLGMRES(m)

Choose zj ;
M = In 5
U=;

1l.rg=b—Axg, B=|roll, v1 :==710/8 ;
2. Generate the Arnoldi basis applied to AM ~' and the associated Hessenberg
matrix H,, starting with wvq;
3. Compute y,, which minimises ||3e; — ffmyH and %, = 2o + M WViym ;
4. If convergence Stop, else set ;
o = Tm ;
Compute 1 Schur vectors of H,, noted .5; ;
Compute the approximation of |A,| ;
Orthogonalize V,,,S; against U ;
Increase U with V,,,.5; ;
T=UTAU ;
M=t=1L+U(M|T7 = L)UT
GoTo1;

3.2.3 Numerical results

Results on two matrices of dimension 100 are given . A has the form A = SDS~! with
S = (1, ) an upper bidiagonal matrix.
Case 1: 8=0.9 and D = diag(1,2,...,100)
Case 2 : 8 =0.9 and D = diag(1,100, 200, ..., 10000)

DEFLGMRES(10,1) is compared with GMRES(10) and full GMRES . Tolerance is
set to 1078
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Residual
3
%

Full GMRES

I 1 1 1

A
0 20 40 60 80 100 120
Iteration Number

FIGURE 3.4 — Convergence history, Case 1

Full GMRES

Residual

T DEFLGMRES(10,1)

1 1 1

1 i i 1 L
0 2 40 80 80 100 120 140 180 180 200

Iteration Number

FIGURE 3.5 — Case 2
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3.3 Fast methods using Fast Fourier Transform

3.3.1 Presentation of the method

We'll work with the finite difference approximation of the Laplace equation in dimen-

sion 2.
] (n+1)h, =a
b
=)
C) I
O\ T\ -
<
7 N —~
>/ o\ Y :
Y N D)
. o)) £
Yy
)

N=i+({—-1)n

FIGURE 3.6 — Pavage de [0,a] x [0,b], n =4 and m =3
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@D |
S
(o) =
VS
>/ —
(1)
Yy
1
h a
x
N=i+(—1)n
FIGURE 3.7 — Pavage de [0,a] x [0,b], n =4 and m = 3
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Consider now the general problem Ax = b, where A is a nm X nm symmetric matrix
A, block tridiagonal in the form

B C 0
cC B C
A= A(B,C) = (3.2)
cC B C
0 C B

Each block is a n x n matrix. The vectors b and « can be split by block of size n as well,
2’/ € R" is the sought solution on the ligne j.

b! x!
b = 5 xr =
bTTL mm
The system can be rewritten as
B C 0 ! b'
cC B C x? b’
¢ B C ||z bt

0 C B ™ b



which is a system of m systems of dimension n :

Bx! + Cz? = b
Cx'~! + Bz’ + Czxit! = b
Cz™ '+ Bz™ = b"

Suppose B and C are symmetric, and diagonalise in the same orthonormal basis
(g',...,q"). This is the case for our previous example. Denote by @ the corresponding

orthogonal matrix Q = [g',...,q"]. There exist two diagonal matrices D' and D? such

that
B=QD'QY, C=QD*Q".
Take for example the first equation
Bz!' 4+ Ca? =b'
and replace B and C' :
QDlQTCBl + QDZQTCEZ — bl

Multiply by Q7 :
DlQTwl +D2QTCB2 — QTbl

Denote by (¢!, y?) the coordinates of (b’, z?) in the new basis :

QTv' =¢', QTa'=vy', 1<i<m.
Then the problem takes the form
Dlyl +D2y2 — cl
D2yi=1 4+ Dlyi + D2yit1 -
D2ym—1 + Dlym = cm

These are all diagonal systems. Take the component number j in each block of the
previous system, for 1 < j <n:

1,1 2,2 1
Djyj JrDjyj = ¢
2, 1—1 1, 2, i+1 ]
Djyj —&-Djy;-i-Djyj = c

2 m—1 1
Djyj —l—Djy;” = CE"

which is written in matrix form as
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2 1 2 2 2
Dy Dj Dj Yj ¢
D2 Dl D2 m—1 Cm—l
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For each j, 1 < j < n, define the tridiagonal m x m matrix

1 2
Dj Dj 0
2 1 2
Dj Dj Dj
T, =
2 1 2
D] Dj DJ
2 1
0 Dj DJ
and 2 vectors in R™
¢ vj
dj = : , 2 = :
o yi

We have now n tridiagonal systems of size m,
Tzl =d’, 1<j<n.

which can be solved in parallel with a LU decomposition for instance. For the 2D Laplace
equation with equidistant grid, the computation of the ¢/ and the reconstruction of = can
be done by Fast Fourier transform.

The matrix of the 27 is

Ylso Yy Y y!
7 = (zla 7ZJ7 ,zn) = yi y% y% = yZ
Y Y3 Yn ym

We finally have to compute for each j, 7 = Qy’ where Q is the orthogonal matrix

which diagonalizes B = Ay (h;) + h%ln and C is —ﬁln, the matrix . The eigenvectors of
v

y
B and C are those of Ay(hs), given by (after orthonormalisation)

2 jkm 1
% _ p l<j<nm hy— "+
J n—i—lbmn—i—l7 =J=m n+1’
the eigenvalues of B are those of Ay(hy) + % which are hg + h2 sin? k”h . Define the

matrix @ as the matrix of eigenvectors
Q=[eW, ... ")

Note that @ is symmetric. We want to compute efficiently Qv for any vector v. By

v = ivke(k), Qu = zn:vkq’(k),
k=1

k=1

n k
(@v); = Qv = [ Y v sin 22
k=1

Note that the sum can be extended to kK = n + 1 since the sinus vanishes.

we obtain

n—+1
i Z v, sin + T (3.3)

The next section is occupied with the FFT, we’ll come back to the algorithm later.

(Q'U)] = Q
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3.3.2 Discrete and Fast Fourier Transform
Let n’ = n + 1. The Discrete Fourier Transform of length n’ is defined by

n
_oikin
DFT : wj:E vpe 2, j=1,---,n.

Define » = ¢%'%7 the basic n/— th root of unity, then we rewrite the formula above as

n/ n
DFT:  wy= wvee % =3 ur ™, j=1,... 0. (3.4)

Lemma 3.1 (Inverse DFT) If w = (wj)i<j<n is the discrete Fourier transform of
v = (vj)1<j<n from (3.4), then the inverse discrete Fourier transform is given by

1 &
—Eprrkp, p=1---,n. (3.5)
p=1
Just replace in (3.4),
’n,' 1 TL, n/ n/ k
2] £ PR 39 DTSR ot oI )
k=1 p=1 p=1 p=1 k=1

Since z = P77 is also a n’— root of unity,

’
n

for 2 #1, > 28 =0,
k=1
n
forz=1, 3 zF=
k=1

The last case corresponds to p = j. Therefore

Z“’ Zrup D = w
p=1

and the lemma is proven. |

We now describe the FFT algorithm, and we must suppose that n’ is even, that is
n = 2p We need to specify more r = 277, that we call 7,,. Note for further use that
(ro)" =1 and (r,)? = —1. Split the sum in (3.4) into even (k = 2¢,¢ =1 : p) and odd

terms (k=20—1,£=1:p). Forj=1,---,2p,

3\

_ —kj
w; = VT,
k=1
p . P .
—2¢5 —(26-1)j
wi = VT Y Va1 Ty
=1 (=1
P . P
—245 J —245
= E Ve Ty Ty Z V20—-1 Ty
=1 /=1

Defining for j =1,---,2p,
P P
_ —24j
w =3 o2 1=
=1 =1

Then
wj = uj + 1) ,t
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p p
r_ _ —24j _ —205 _ j
n =2p, uj= E voeT, T, b= E Vog1 T, 0, W =uj+ 1t

We verify that for each j, ujy, = u; and tj4, =1t; :

p
_ } : —2¢(j+p) _ —2tp,
Ujtp = V20T =T, Uj = Uj.

(=1

This implies that we only need to compute (u;,t;) for 1 < j < p. Furthermore

. R T L R Sy
Witp = Ujyp + Ths Livp = Uj + 15,7, = uj — 17,5,

To compute u; and t; note that

P P
—245 2 \—¢
Y v, = v ()Y
=1 =1
2 — 32 —%n 2
But r2, = (e 2 )*=¢" » :r’, =r, Therefore

p p
u; = E vaer, 7, E Vog—1T,
=1 =1

The sums above are similar sums as that defining w;, but with p = n//2. This is the
starting point for a dyadic computation of the w; : the Fast Fourier Transform.

To obtain {w;}1<j<2p from {v;}1<j<ap, do
Compute 77, J=1-.p
p _ P
Compute WzZlmrQZJ, Z V2g—1Tp Jg=1-.p
— =1
Compute Wy = Uy + TZL/tj, Wj4p = Uj — Ti/tj ] = 1a By 28

/;,‘ . !
7,,/—(’ ,'—E opr =1, ,n.

k=1
Initialization : n/ = 2, rpy = —1, wy = —vy +v2, Wy = V1 + Vo.

function w=myFFT(v)

% MYFFT fast Fourier transform

% w=myFFT(v); computes recursively the Fourier tranform of
% the vector v whose length must be a power of 2.
n=length(v);

if n==2,
w=[—v(1)+v(2);v(1)+v(2)];
else
rv=exp(2ixpi/n*(1:n/2)");
t=myFFT(v(1l:2:n—-1));
u=myFFT(v(2:2:n));
w=[u+rv.xt; u-rv.xt];
end;
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n' = 2, r = —1, initialization w; = —v; + vy, wo = vy + va.

function w=myFFT(v)
% MYFFT fast Fourier transform
% w=myFFT(v); computes recursively the Fourier tranform of
% the vector v whose length must be a power of 2.
n=length(v);
if n==2,

w=[—v(1)+v(2);v(1)+v(2)];

else
rp=exp(2ixpi/nx(1l:n/2)"');
t=myFFT(v(1:2:n-1));
u=myFFT(v(2:2:n));
w=[u+rp.*xt; u—rp.*xt];
end;

9 9
P 2 4+ 92

RN
yd

() \

4

N

FIGURE 3.8 - FFT for n’ =4

It is easy to count the number of operations in the algorithm to be O(nlogy(n)).
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3.3.3 The algorithm

We now show how to obtain the computation of Qu in (3.3) with FFT.

veR"” n’=n+1EVEN
n’ .
Qv=,/72; z€R", zj:k;uksin’jg,’f 1<j<n

o =[v;0] € RY,

!’
~ ’ n - _oskim .
DFT(v) =w € R", wj =Y e 1<j<n
k=1
Consider first the even indices zo, -, 2z,_1 :
n/
- . 2Wkw n—1
Zop = E Uk sin —Imwy, L=1,---, .
n! 2
k=1
Consider now the odd indices, z1,--- , 2,
TL/ ( ) n/
- _sk2e-1)w - -k _oskéw
Zo0—1 —Im Y pe T = —Im Y (tpe'n e 2w
k=1 k=1

—Im(DFT({oye’ " 1)), £=1,--- , %L,

Resuming with matlab notations

QFFT
To = ei%
(Qu)ee = —\/735 Im(FFT(9))y, (=1,
(Q'U)Qé_l = - 71—2‘,-1 Im(FFT(ﬁ ° *To(lm,)/))@? l= 1, te

Summarizing the solution of

B C 0 x! b
C B C x? b>
C B C xzm1 bt

0 C B x™m b™

Step 1 : FFT Compute ¢/ = Qb’ by (3.6) for 1 < j < m.

Step 2 : Sort {c!,---,e¢™} The righthand side has been build by rows in the mesh :
b’ is the vector of the values of the forcing term on the line y = j  h,,.
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FIGURE 3.9 — Numbering

€2 €1
c3 cy
ci c3
4 CRr Y
c3 e g gl cs
c3 \c}l 3 ) c3
3 c3
s ci
s ci

FI1GURE 3.10 — Renumbering

The total vector o is numbered from 1 to nm, with N = i+ (j — 1) *n. The matrix
C is built as follows

o(l:n) —=C(,1) for j=1:m

on+1:2n) —C(:2) C(:,3)=sig((j—1)*n+1:j*n )
end

o((m—-1n+1:mn) — C(;,m)
and then instead of reading the columns, we read the rows.

Step 3 : Solving the n tridiagonal systems of size m,
szj:dj, 1<75<n.

o4



with d’ = C(j,:), and

1 2
D! D? 0
2 1 2
Di Dj Dj
T, = :
2 1 2
Di Dj Dj
0 p? D!
1 2 4 jmh
D)=—-—— D= 4 "~ gn? 21—
T TR T TRt )

Step 4 : Reordering the 2/ into y’

Step 5 : Recovering 7 = Qy’ by (3.6).

For this method, we talk about FFT preconditioning, since the system Au = b is
premultiplied by the block-diagonal matrix

QT
QT 0
Q= . =IoQ"
0 QT
That is we write
QAQT Qu = Qb.

The total cost is

2 FFT : 2nlog,y(n),

n resolutions in parallel of tridiagonal systems of size m : m
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Chapitre 4

Multigrid methods

Contents
4.1 Geometric multigrid . . . . ... ... . 0000 57
4.1.1 The V-cycle process . . . . . .. ... ... ..., 58
4.1.2 L®estimates . . . . . . . . .. ... 66
4.2 Algebraic Multigrid AMG .. ............ 70
4.2.1 Imtroduction. . . . .. .. ... ... 70
422 AMG . ... 73

Multigrid methods are a prime source of important advances in algorithmic efficiency
, finding a rapidly increasing number of users. Unlike other known methods, multigrid
offers the possibility of solving problems with N unknowns with O(N) work and storage,
not just for special cases, but for large classes of problems. It relies on the use of several
nested grids.

4.1 Geometric multigrid

For the modal presentation of the method, we refer to [7],[3], [6]. For the finite element
part, we refer to [2].
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Idea behind standard multigrid

A Multigrid V-cycle -

Restriction
transfer from
fine to coarse
grid

[

Prolongation

coarser grid has fewer cells transfer from

(less work & storage) First Coarse __ # coarse to fine grid
Grid \ ’
AY 7/
A 4
. . AY 7

'E’ecws:'vely apply this NS

idea until we have an N 7

easy problem to solve ]

FIGURE 4.1 — scheme for a V-cycle, courtesy of David Keyes, Columbia Uni-
versity

4.1.1 The V- cycle process

One cycle of the multigrid method is given as follows. Suppose we have a grid of size
h. We want to solve A"U" = b". We take an initial guess U", M9 = U" —U", and define

MG(A" b UM)

Step 1 : smoothing N iterations of the smoother, with initial guess U".
Uh,l _ Sh(Ah. bh. Uh A\'l) eh,l — Uh . Uh’l.

The residual is 7! = b/ — AP = Ahehot,
It is projected on the coarse grid

7,2/1, _ P]f/l,rh,l

Step 2 : Coarse resolution The system A2 (7% = 2/ is solved approximately
by p iterations of the multigrid solver on the coarse grid

U2h.r _ ]\[G(Azh 7,2}1,1 U2h.r7l)7 U'Zh,,() _ () 1 § r S p.
It is projected on the fine grid

U}1.2 _ Uh,,'l + ]):Z’I],]/UQ}IJ', eh,? _ eh,l o PthUQh’T

Step 3 : Smoothing again N, iterations of the smoother

UILS _ SII'(AIL, bh. U/),,Z, :\'2)
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If the coarse grid is “sufficiently coarse”, the coarse problem is solved exactly by a
direct method.

We will describe the process in one dimension, in the simple case where the coarse
problem is solved exactly, i.e.

Uh,2 _ Uh,l _ chhUQh

1 _
h = _ 2[ -1 AhUh —_ frh Ah A (R
TL+17 n 9 f ) e M ( )
1 -1
2h = P n/ = n
R 2
Example :
h=23 n=7 2n=2"2%2 n'=3
2 -1 0 0 0 0 O Up
-1 2 -1 0 0 0 0 Uk
0O -1 2 -1 0 0 0 Ul
1 _

A=zl 0 0 -1 2 -1 0 o |, U'=|0f
o 0 0 -1 2 -1 0 Uk
o 0 0 0 -1 2 -1 Uk
o 0 0 0 0 -1 2 Ul

2 -1 0 Ut

1
2h 2h __
A | L2 -1, U= U
0 -1 2 U

The Smoother

We will use one of the stationary methods , relaxed Jacobi or Gauss-Seidel. The matrix
of the iteration is

1
S=I—-—D"1'A orI—(D—-E) A
w
See chapter 1.

ehl = GN1gh0 bl _ph  ghgrhl — gh(fh _ hly = ghehil, (4.1)

Projection on the coarse grid

The fine grid is (kh) = (
1<k<(n-1)/2.

k 2k
<k <n o _
- 1) for 1 < k < n. The coarse grid is (k2h) (n n 1) for

. ‘ ‘ 1
P :R" — ROV (PRI = 2V + 2V + V).

The matrix of P}%h is

1 1 1

i1 520000
P"=fo o L 1 1 9 o] R R

o 0oo0o0 %+ 11
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Define now

PVit3Vet Vs

PV = | 4vs+3Vi+3Vs [ RT R

N

0.02 -

ol

Vs+iVe+iVe

,’,Zh — P/fh ,,h _ P,%h/lh(‘fh'l.

L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

FIGURE 4.2 — Projection from fine to coarse grid

Coarse resolution

Suppose the coarse grid problem is solved exactly.

A42/1, LrZ/i, _ ’,Qh

Projection on the fine grid

We define the projection operator as :

P;ﬁ, . R(nq)/‘z s an/ {

The matrix is

— N

ho_
P2h_

o O O O N

= o= O o

S O v

(chh U‘2h,>2j _ U;Zh,

0

0

0 Uy

0| =2 R*=R" P |Uy| =
: Us

1

1

2
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(P, UM)2j41 = 5 (U + UZY)

U,

U,
%(U1 +Us)
U,
%(UQ +Us)
Us

N




-0.2 L L L L % L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIGURE 4.3 — Projection from coarse to fine grid
Result of the coarse walk

(7)'}2.2 _ (I o ch,,,(AZh)*lP,f’%ﬁlh)eh'l

Lemma 4.1

Ker P AN = {V € R, Vo; =0,5=1---,(n—1)/2}, (4.2)
Ker P2 Ah @ TmPJ, = R™, (4.3)
vV € R(M=D/2 5 (AP PR V)9j41 = 0, (4.4)
P2hARPR = A2h, (4.5)
It is easy to compute for n =7,
3Us — 31U, 2 -1 0\ (U Us
1 1
PrAMU = o5 | L+ 40 =30 | = 5 | -1 2 1| |wa | =47 | o
— 244+ 3Us 0 -1 2 Us Us

Denoting by U¢ the vector of the even coordinates of U, we have proved that for any
vector U € R",

P AN = AU, (4.6)
Therefore the kernel of P,thh is equal to the space of U such that U¢ = 0, which proves
(4.2).
Now by the rank theorem,
dim Ker P2" + dim ZmP2" = n.
Since A" is an isomorphism in R”, dim lCerP,%h = dim KerPthh. Then
dim Ker P2" A" + vg PP = n.
Since P2" = 1(P)T, they have the same rank, and therefore
dim Ker P2 A" + rgPl = n.
Furthermore, any U in KIerP,%hAh N ImPth is equal to Pthw, and Uz; = 0. Since

(P w)a; = w;, this proves that w = 0. Hence (4.3) is proved.
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We now can prove in the same way, first that for V in R(*=1/2 (coarse),

(A"PLV)2jp1 =0, (A"PJV)y; = Vi1 +2V; — Vi) = 2(4%);.

a2
Then using (4.6), V in R=1/2 (coarse),
P APV = AM(PR V) = APV

which finally gives (4.5). |

Lemma 4.2
eh,l _ dh +P2hh62ha

with

h2

h k1 oh _ hi
— (A% )aj11,  €f" = ey;

By (4.3), we can expand e"! as

1_ dh +P2hh€2h

)

with d" € KerP2 A", By (4.2), dgj =0, and

er (Ph 2h) j — 6§h7

which determines the components of e2”. Compute now the odd components,

1 R, hi
62g+1 d23+1 + (P2hhe2h)2j+1 = dgj+1 + §(€?h + e?il) d23+1 + 2(62j + 62j+2)

Therefore
g = 2(262311 62,]1 €10) = 7(Ah€h’1)2j+1
|
Apply the lemma to compute e/2
Pth(AQh)flpghAheh,l — P2hh(A2h) 1P2hAh(dh+Ph Zh) (A2h) P}%hAhPZhh e P2hh€2h
——

A2h

Therefore
o2 — ohl _ chhezh _ dh,

which implies the elegant formula

h,2 h,2 h? Ahehil 712, h,1
ej =0, exfp = D2j1 = T

the even components have disappeared.

Postsmoothing

h,3 — SNth,Q

h2

3 — SNQHo?AhSNleh,O
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Spectral analysis

Eigenvalues and eigenvectors of A (h x (n+1) =1).

4 . S kmh (k) 2 . jkm .
uk:ﬁsm -5 ¢ = ] smn+1 , 1<53<n.

For any iterative method, the eigenfunctions of the iteration matrix are equal to those
of A. Therefore The smoothing matrix S has eigenvalues )y, and eigenvectors ®*). For
relaxed Jacobi or the Gauss-Seidel algorithm, the eigenvalues are

kmh
M (w) 1 — 2wsin? (%) for 1 <k <n,

GS
Ak

cos? krh for 1 <k <n,

Figure 4.4 shows the eigenvalues as a function of k for n = 25 — 1.

1

oz —Jacobl w =

04| —Jacobi w =

Jacobi w =
—Jacobiw =1
— Gauss-Seidel

0 5 10 15 20 25 30 35

[SEIIN NI e e

-0.6 [

-0.8 H

-1

FIGURE 4.4 — Eigenvalues (39) of the relaxed Jacobi iteration matrix as a
function of k for several values of w together with Gauss-Seidel

k2 2h2
* For small k, \{(w) ~1—w 7; .
«Forw=2/3, (n+1)/2<k<n = |N(w)|< 1/3

~—
smoothing factor

(n+1)m

)<1— 4/3sin2(m)

—1/3 <1 —4/3sin?( =1/3

km
2(n+1)
4 h

# For other modes. [/ (w)] € (1/3,1 - 3 sinz(%))

When using Gauss-Seidel as a smoother, one can observe that the eigenvalues are small
in the neighbourhood of k£ ~ (n —1)/2.

For an initial error e/0 = &) 4k eigenmode of A associated to eigenvalue i, the
error and residual after Ny iterations are

et = AWl = AN (),

From
h2
h2 _ h2 h,1
€ = VU, €951 = ?7”2]'4-1

we obtain )

h

h2 _ Ny g (k)
e = 7%)% " ag
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It is easy to see that

n+1—k k n+l—k k o1 o
(I)gj ) _ _(béj)7 (ng+1 ) _ (I)gj)7 q)g)d)d — 5((I>(k) + Hntl k))

2
2 hzﬂk)‘fcvl (@) 4 lrti—h)

If the same smoother is applied in postprocessing,

h2
e = ?Mk)\fcvl ()\fcv2¢’(k) + )‘gilfkq’(nﬂ_k))

2 (n+l1—k)w _ )\st7 and

; GS  _
For Gauss-Seidel \7?;_, = cos® =

eh3 = %MkAfCV1+N2(q)(k)+q)(n+l—k))
= 2sin® #2h cos2(N1+N2)(k7rh)<I>(()’21

= 2sin® #20 cosz(N1+N2)(k7rh)(I>£Z)d
The convergence factor over one round is therefore
(1 — cos(kmh)) cos® NHN2) (krh)
For relaxed Jacobi, A ;_, (w) + A (w) =2(1 — w). and

h2
e = oA O @) + (21— w) = Ap) M)

h2
e’ = A AR = (201 —w) = M) V)@

2

h
h, k
€31 = Ay (AR + (21— w) = )N85,

Choose relaxed Jacobi with w = 2/3. For (n+1)/2 <k < n, |A{| <1/3, and we have

e = 9(1/3) N+ N2 M)

J

and for 1 <k <(n-1)/2,

1 N "
h,3 N k k
|e2j+1| < mz?ol,)l)(x(l — wx) )|‘I>2j+1| < (N +1) (N n 1) |q)2j+1|

For three iterations of the smoother (N=3), the low frequencies have been
damped by a factor 0.1582, and the high frequencies by a factor 0.2963!! The
figures below show the result of one cycle of the above described algorithm, compared to
three iterations of relaxed Jacobi, or Gauss-Seidel, for several inital guesses. n = 10.

64



frequency 1

1 T T
initial guess
one V-cycle
09 3 iterations relaxed Jacobi| |
: 3 iterations Jacobi
08— |
0.7 -
06— |
0.5 -
0.4 —
03— -
02— —
0.1 -
0 _ I — — — — - -
0 0.1 0.2 0.3 0.4 0.5 06 0.7 0.8 0.9 1

FI1GURE 4.5 — Comparison of the iterative methods. Initial guess sin mx

frequency 9
1 - T T
initial guess
one V-cycle
3 iterations relaxed Jacobi|
3 iterations Jacobi

FIGURE 4.6 — Comparison of the iterative methods. Initial guess sin(n —
1)/2nz.
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frequency 19

T
initial guess
one V-cycle

3 iterations relaxed Jacobi| |

3 iterations Jacobi

FIGURE 4.7 — Comparison of the iterative methods. Initial guess sin(n—1)mx

THE EFFECT OF ONE V-CYCLE ON ONE SINGLE MODE FOR n = 201.

Initial guess sin Tx

4.1.2 L*estimates

Suppose the computation on

frequency 99

04

02

“HHHUM‘”H

|

\— ne V-cycle

W

5 &

w
UMMH‘ MH\H“

:?m\urw““wmm\Hmrrrr"”‘“wm\m

Initial guess sin(n — 1)/27x

Jacobi with w = 2/3. Then S = I — h2A"/3 = 1/3B where

1
1
B =
0
Compute
(SU); =
Furthermore
W (SA"eM)gj41 = é(—

from which we deduce that

h

h h
€gj_o €y 1 T ey g —

2
mazj|h?(SAMeM)a;44] < §||€h||oo-
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1
3WUi-1+Uj +Uj1),= 15Ul < [[U]lco-

€gj+2)7

frequency 199

W

oz“H‘

WWWWWWWWWWWWWWWWW
2 HHH HW
<3 VAL

7‘0 02 04 06 08 1

Initial guess sin(n — 1)7x

the coarse grid can be done exactly, and use relaxed



Therefore we obtain

h,1

h,2 h? hoh
e ooZSI;P\?A T2j+1

from formula (??), we deduce for w =2/3 :

b2 1 1 1 1
C2j+1 = T €21 ¥ 52 T €22 T £€2)43:

and therefore we have the error estimate

2
h,2 h,2
ey =0, |62j+1 = §||eh||oo~

Since the smoothing produces for any U € R?"~!

1
(SU); = g(Uj,l +Uj +Uj1),

we have
15U]lse < 1U oo,

and

h,3||oo

2
lle < zllenlloo-
3

THE CONVERGENCE IS INDEPENDENT OF THE SIZE OF THE MATRIX

Number of elementary operations

method number of operations
Gauss elimination n?

optimal overrelaxation n3/?
preconditionned conjugate gradient no/4

FFT nlny(n)
multigrid n

TABLE 4.1 — Asymptotic order of the number of elementary operations as
a function of the number of grid points in one dimension for the Laplace
equation (sparse matrix)

/\ /}wa \. A\ f / \ /
Y VAV VAV AVARRV/

Prolongation
Rastrictien

1 '_:I
V-cycla W-Cyla | Muttigrd

Figure 1 Muifigrid cycies [2]

FIGURE 4.8 — full multigrid
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function A=Ald(eta,a,b,n)

% A1D one dimensional finite difference approximation
A=Ald(a,b,J) computes a sparse finite difference
approximation of the one dimensional operator —Delta on the
domain Omega=(a,b) using n interior points

o® o° of

o°

h=(b—a)/(n+l);
e=ones(n,1);
A=spdiags([—e/h"2 (eta+2/h"2)xe —e/h™2],[—1 0 1],n,n);

% resolution of AU=b by 1 V cycle, starting with a sin function
% size of the matrix A

clear all;close all;

%I= 1 smoother Jacobi, I=2 smoother Gauss—Seidel

% Smoother de depart
N1=2;

% smoother arrivee
N2=1;

h=1/(n+1);
x=0:h:1;
A=A1d(0,0,1,n);

b=ones(n,1);
X=linspace(0,1,1000);
Uex=X.x(1-X)/2;
plot(X,Uex,'y', 'Linewidth',3)
hold on

pause

udex=A\b; Udex=[0;udex;0]
plot(x,Udex, 'm', 'Linewidth"',2)
pause

hold on

k=N;
%initial guess
U=sin(pi*x')+sin(N*pi*xx')+sin(n*pix*xx");
SU=sin(kxpixx"');
uo=U(2:end-1);

plot(x,U, "bx—")

pause

hold on

% N1 iterations of the smoother
% I=1 Jacobi with parameter 2/3
if I==

a=2/3;
elseif I==2

% I=2 Gauss—Seidel
Lo=tril(A,—-1);
Up=triu(A,1l);
D=diag(diag(A));
end
u=uo;
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pause

for i=1:N1
if I==1 % relaxed Jacobi
u=u+ax(b—Axu)./diag(A);
elseif I==2 % Gauss—Seidel

u=(D+Lo)\(—=Upx*u+b) ;
end
U=[0;u;0];
plot(x,U, '*—m")
pause
hold on

end;

spause

r=b—Axu;

n2=(n+1)/2—1;

% projection on the coarse grid

figure(2)

for j=1:n2
V(j)=(r(2xj—=1)+2*r(2*j)+r(2%j+1))/4;

end

xf=x(1:2:end);

V=[0;v';0]

plot(xf,V,'—og', 'Linewidth"',2)

hold on

pause

% exact resolution on the coarse grid

Al=A1d(0,0,1,n2);

w=A1\v';

V=[0;w;0]

plot(xf,V,'—og', 'Linewidth',2)

% projection on the fine grid

w(n2+1)=0;

wf(1l)=w(1)/2;

for j=1:n2
wf(2%j)=w(j);
wf(2%j+1)=(w(j)+w(j+1))/2;

end

V=[0;wf';0]

plot(x,V,'—ob"', 'Linewidth"',2)

hold off

pause

% ajouter a u

figure(1)

u=u+wf';

U=[0;u;0];

plot(x,U,'c")

pause

% N2 iterations of the smoother
for i=1:N2,

69




if I==1 % relaxed Jacobi
u=u+ax(b—Axu)./diag(A);
elseif I==2 % Gauss—Seidel

u=(D+Lo)\(—Up*u+b);
end
% relaxed Jacobi
end;
umg=u;
U=[0;umg;0]
plot(x,U,'r', 'Linewidth',1)
errmg= norm(udex—umg)/norm(udex);
figure(2)
%Jacobi or Gauss—Seidel without coarse grid
a=1
Nt=N1+N2;
u=uo;
for i=1:Nt
if I==1 % relaxed Jacobi
u=u+ax(b—Axu)./diag(A);
elseif I==2 % Gauss—Seidel

u=(D+Lo)\(—Up*u+b) ;
end
U=[0;u;0];
plot(x,U, 'k")
pause
hold on
end;
hold off

errd= sqrt(h)*norm(udex—u);

uo=umg;

% 274 0.0015 5.1839e—05 1.5898e—06

% 276 9.7793e—05 3.6067e—06 1.3291e—07
279 1.5314e—06 5.6711e—08 2.1003e—09

%

4.2 Algebraic Multigrid AMG

4.2.1 Introduction

Two of the drawbacks of the geometric multigrid are 1) for complex geometries, it is
not always easy to extract coarse levels, and 2) linear interpolations do not work well when
confronted with nearly discontinuous coefficients (see [4]).

Algebraic multigrid (see [1]) is a method for solving linear systems based on multigrid
principles, but requires no explicit knowledge of the problem geometry. AMG determines
coarse grids, intergrid transfer operators, and coarse-grid equations based solely on the
matrix entries. Since the method’s introduction, researchers have developed numerous
AMG algorithms with different robustness and efficiency properties that target a variety
of problem classes.

The key points are the following :

— The smoother : in AMG, the smoother is generally fixed to be a simple pointwise
method such as Gauss-Seidel. An error not eliminated by the smoother is called a
smooth error, and must be handled by coarse-grid correction.

— The Coarse Grid : In AMG, the coarse grid is a subset of the fine grid. The
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algorithm chooses points such that the grid is coarsened in directions of strong
matrix connections.
— Defining Interpolation :smooth error e is characterized by small residuals. To derive
interpolation in AMG, it is taken to its extreme and it is assumed that r; =
(Ae); = 0. By rewritting this equation in terms of the coefficients of A, keeping
only coarse coefficients and connected fine coefficients , an interpolation operator
can be defined (for full details see [3])
In the following, we will assume that the problem to be solved Au = f where A is a
real n X *n symmetric definite positive matrix , w and f vectors in R™.
Coarse-grid correction involves operators that transfer information between fine and coarse
"orids", which are denoted in linear algebra terms simply as the vector space R™ and the
lower-dimensional (coarse) vector space R™°. Interpolation (prolongation) maps the coarse
grid to the fine grid and is just the n x nc matrix P : R™ — R". Restriction maps the
fine grid to the coarse grid and is the transpose of interpolation (PT). in this work.
The 2 grid method to solve our problem is then defined as before as follows

Do v; smoothing steps on Au = f;
Compute residual » = f — Au = Ae ;
Solve A.E, = PTr ;

Correct u < u + Pe, ;

Do vy smoothing steps on Au = f

Because AMG is based only on the matrix A, there are few options for defining the
coarse systemA, The most common approach is to use the Galerkin operator, A, = PT AP,
which has the nice property that it minimizes the error after correction (in the energy
norm).

The adjacency graph of the matrix plays an important role in AMG. The graph has
a directed edge from vertex i to vertex j for every nonzero entry a;; in the matrix A (see
Figure 4.9). The grid in AMG is simply the set of vertices in the graph, i.e., grid point i
is just vertex i. If the linear system comes from the discretization of a PDE, then we can
draw the grid points in their actual geometric locations along with the associated graph.
We illustrate this in Figure 4.9 for a simple 2D Laplacian problem.

FIGURE 4.9 — 2D Laplacian adjacency graph

Algebraic smoothness
In AMG, the smoother is generally fixed to be a simple pointwise method such as Gauss-
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Seidel. Error not eliminated by the smoother is called smooth error, and must be handled
by coarse-grid correction. In the classical geometric multigrid setting, smooth error is
smooth in the usual geometric sense. In the AMG setting, however, smooth error may
actually be geometrically oscillatory. We often use the term algebraically smooth to be clear
about the distinction. To see this, consider the following simple 2D example discretized
by finite elements on a uniform mesh :

—aUgy — buyy =f on (2

u=g¢g onl

a=b a»b

Problem 1

Figure 4.10a shows the error after 7 Gauss-Seidel iterations. We see that the error
is geometrically smooth in both the x and y directions in the left-half plane where the
problem is isotropic, but it is geometrically oscillatory in the y direction in the right-half
plane where the problem is anisotropic (Figure 4.10b ).

A » [ = = =
v

(a) Smooth Error after 7 Gauss Seidel (b) Error along x and y
iterations

FIGURE 4.10 — Smoothing error

Asillustrated in figure 4.11, AMG coarsens in directions of geometric smoothness. That
is, in the left-half plane, the grid is coarsened in both directions (so-called full coarsening),
but in the right-half plane, the grid is coarsened only in the x direction (so-called semi-
coarsening). This ability of AMG to "follow the physics" during coarse-grid correction is
another advantage it has over geometric approaches.
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FIGURE 4.11 — Coarse grid

Larger squares correspond to coarser grids.

The key to designing an effective AMG algorithm is to have a good characterization
of smooth error. In general, smooth error corresponds to eigenvectors of A with small
associated eigenvalues (we call these small eigenmodes for short). In other words, smoo-
thing damps large eigenmodes, leaving coarse-grid correction to eliminate the remaining
small eigenmodes of A. The smaller the eigenmode, the more effective must be coarse-grid
correction. This makes the smallest of the eigenmodes, called the near null space or near
kernel of A, particularly important in the design of AMG algorithms.

As an example, we again consider the laplace problem above. Any linear function u is
in the kernel of the differential operator since both uz, and u,, are zero. The same is true
for the discrete operator A (away from boundaries). That is, the near null space of A for
this problem consists of any vector that is almost linear when plotted on the grid. Hence, it
makes perfect sense for AMG to coarsen in directions of geometric smoothness, as shown
in Figure 2. The example underscores the distinction between smooth error (error not
eliminated by the smoother) and the near null space (the smallest eigenmodes of A). In
the example, smooth error consists of functions that are geometrically both smooth and
oscillatory, while the near null space contains only geometrically smooth functions. For
applications where the near null space contains geometrically oscillatory functions (such
as electromagnetics), the approach of coarsening in directions of geometric smoothness is
not sufficient.

4.2.2 AMG

_This method is the classical AMG presented by Brandt, McCormick, Ruge, and
StAiben in Algebraic multigrid (AMG) for sparse matriz equations in In D. J. Evans,
editor, Sparsity and Its Applications. Cambridge University Press, Cambridge, 1984.

Choosing the coarse grid

The coarse grid is a subset of the fine grid. Points are chosen such that the grid is
coarsened in directions of strong connections of the matrix. The procedure for doing this
is actually quite simple.

Let us first define the notion of strengh connection.

Strength of Connection : Given a threshold 6, we say that variable u; strongly depends
on variable u; if

a;j > 0 maxp4i(—aik)
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1) Define a strength matrix, As, by deleting weak connections in A ;

2) First pass : Choose an independent set of fine grid points based on
the graph of As ;

3) Second pass : Choose additional points if needed to satisfy
interpolation requirements ;

The coarsening procedure partitions the grid into C-points (points on the coarse grid)
and F-points (points not on the coarse grid).

Figure 4.12 illustrates the first pass of the algorithm for a 2D Laplacian problem
discretized with finite elements on a uniform mesh. The discretization stencil is given by

-1 -1 -1
-1 8 -1
-1 -1 -1

Since all of the off diagonal coefficients are -1, the connections in the matrix are all
strong connections, regardless of the parameter choice . Thus A and A are the same.

0y Oy Oy OO
HEed
ONORONONG)

ON BON NO)
ONORONONO)

FIGURE 4.12 — Coarsening process

Tlustration of the first pass of the AMG coarsening algorithm for a 9-point discreti-
zation stencil.

(a) The nodes of the graph of the strength matrix are assigned a weight equal to the
number of off-diagonal connections.

(b) A point with maximal weight is chosen as a C-point.

(¢) The neighbors of the new C-point are set to be F-points.

(d) For each new F-point, the weights of its neighbors are increased by one to make them
more likely to be chosen next. The algorithm continues in this way until all points are
either C-points or F-points.

The original AMG interpolation scheme (described below) requires each pair of stron-
gly connected F-points to be strongly connected to a common C-point. The second pass
of the coarsening algorithm searches for F-point pairs that do not satisfy this require-
ment, and changes one of them to a C-point. Researchers later found that the second pass
leads to high computational costs, and they have largely abandoned it in favor of other
approaches for defining interpolation.
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As we saw in the example of Figure 4.11, the AMG coarsening algorithm is able to
produce standard fully coarsened and semi-coarsened grids, and combinations thereof. The
strength matrix is the key to making this happen, but as we see later, it can sometimes be
sensitive to the choice of strength parameter 6. Some researchers today are exploring more
reliable definitions of strength, while others are exploring completely different coarsening
approaches based on so-called compatible relaxation that avoid defining strength altoge-
ther. Another area of active research is parallel coarsening algorithms. It is easy to see
that the algorithm in Figure 4.12 is inherently sequential. Unfortunately, most parallel co-
arsening algorithms lead to increased computational costs and often degrade convergence.

Defining interpolation

We again use the fact that smooth error e is characterized by small eigenmodes

Since the residual r = Ae is such that ||r|| small. We take this to the extreme and
assume that

= (Ae); =

If we rewrite this equation at an F-point i in terms of the coefficients of A, some
regrouping leads to

;i€ = — Z ;€5 — Z a;je; — Z aije;j (4.7)

JeC; JEF? JENY

where :

C; : C-points strongly connected to i
F? : F-points strongly connected to i
N;Y : all points weakly connected to i

The set C} is the set of interpolatory points. That is, these are the points that F-point
i will interpolate from.

The trick to deriving interpolation is to rewrite e; in the last two terms of (4.7) in
terms of either the interpolatory points in C; or the F-point i. This produces an equation
that involves only the F point and its interpolatory points, which we can use directly to
define interpolation. This process is sometimes referred to as "collapsing the stencil", and
it is illustrated in the two figures below for two finite element stencils.

- N . i - , ~ ~
(Cy—1—F —1—C) (e —F——) P 1 L) (cy I (o) () F (0)
IN, V7T N, T 2, e N 7N e
RNV SRR RE U B | %L 2 2 1 1
F -|¥-1— ¥ ¥ —-1-|— ¥ F x | F P ﬁ}: [
:1 a4 1: i 1: B D'T %( !" 2 -2 /{ 1

1 ) 1 1 ) i i )
EJ/‘* F— }Q Cé;,F ;35 fE// PF % © o \\() © ¥ \®

FIGURE 4.13 — Derivation of AMG interpolation for the standard 9-point fi-
nite element stencil. In the second image, we assume that strongly-connected
F-points are interpolated from neighboring interpolatory points. The weights
(all 1/2) are chosen based on the underlying matrix entries such that the
constant function is interpolated exactly. In the third image, we "redistri-
bute" the strong F connections according to the interpolation weights in
the previous step. This produces the "collapsed stencil" in the fourth image,
which leads directly to the interpolation rule in the last image.
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FIGURE 4.14 — Derivation of AMG interpolation for an anisotropic 9-point
finite element stencil. In the second image, weak coefficients are added to the
diagonal to produce the "collapsed stencil" in the third image, which leads
directly to the interpolation rule in the last image

The stencil in Figure 4.14 helps to illustrate one of the potential problems with the
strength of connection definition used in AMG. The stencil comes from a quadrilateral
finite element discretization of the Laplacian on a mesh that is highly stretched in the x
direction. The resulting problem is strongly anisotropic in the y direction, yet this strong
anisotropy is not reflected in the size of the off-diagonal entries. In fact, any value of the
strength threshold # that is less than or equal to 0.25 will turn the corner couplings into
strong connections. The resulting interpolation has 6 interpolatory points instead of 2, and
degrades the convergence of AMG.

Convergence | Coarse Grid Operator | Setup | Solve
Fine Grid | Iterations factor grids complexity | complexity | time time
31«31 9 0.19 5 1.6 1.7 - -
61 = 61 10 0.23 6 1.6 1.6 0.01 0.02
121 = 121 9 0.23 8 1.6 1.7 0.05 0.07
241 = 241 9 0.23 9 1.6 1.7 0.25 0.32
481 = 481 9 0.23 12 1.7 1.7 1.02 1.27
961 = 961 11 0.29 13 1.7 1.7 4.42 6.28
Table 1

Table 1 : AMG results for Problem (1) for different grid sizes with strength threshold
6 = 0.4, and with v; = 15 = 1 smoothing steps of C-F Gauss-Seidel. Iterations were done
until the relative residual was reduced below 10~%. Grid complexity is the total number
of grid points on all grids divided by the number of grid points on the fine grid. Operator
complexity is the total number of nonzeroes in the linear operators on all grids divided
by the number of nonzeroes in the fine grid operator. Setup time is the time required to
choose coarse grids and build interpolation, restriction, and coarse-grid operators.

To conclude on AMG, interest in AMG methods is high, and probably still rising,
because of the increasing importance of terascale simulations on unstructured grids. AMG
has been shown to be a robust, efficient solver on a wide variety of problems of real-world
interest. Much research is underway to find effective ways of parallelizing AMG, which is
essential to large scale computing.
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Chapitre 5

Parallelism

5.1 Substructuring methods
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Principle

— Split the domain into sub-domains,
— solve a "condensed interface problem" : uses solving independantly local problems
in the subdomains (using a direct or an iterative method).
Advantages :
These methods are :
e More robust than classical iterative ones and cheaper than direct methods.
e Better adapted to distributed parallel computing with message passing programming :
— one sub-domain per processor
— interface data update by message passing .
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e Use of sequential legacy codes for local problems, modular approach to parallelism.

5.1.1 Finite element method

Consider the Laplace equation with Dirichlet data

—Au+u = f dansQ,
g sur 092

u

We write a variational formulation in V = H}(Q),
u € HY ), u=gon dQ
YoeV, a(u,v)=(fv) witha(u,v)= [, Vu(z)Vu(z)de + [,u(z)v(x)dz

We introduce a triangulation 7, = UK with Nq vertices S;, i € I inside the open set 2,
and Nyq vertices S; , i € Iyq on the boundary.

Vi ={v e Q)N HYQ),VK € Ty, vn|r € P1}.

where P; is the space of polynomials of degree lower than 1 in two variables (ax + by + ¢).
The discrete formulation in Vj, now is to find wu; such that

Yo € Vi, a(uh,vh) = (f7 Uh)-

A basis of V}, is given by the functions ¢;, basis function associated to S; by ¢;(S;) = dij,
as described in Figures 5.1, 5.2. The expansion of uj on the basis

un = Y un(Si)e; + Y un(Sy)e;

Jj€la Jj€lsq

If the Dirichlet data are homogeneous (g = 0), then the second sum does not exist. Choose
in the discrete formulation vy, = @; for i € Iq.

Vielo, Y un(Spalpie;)+ > un(Syaleie;) = (f,01).

Jj€lq Jj€lon
We call K7 the square matrix of size N x Nq corresponding to interior basis functions,
Kl =alei ¢;), (i,j) € In,
KB the matrix of size Ng X Nagq

K2 =a(pi p)), i€lq, jE€ lsq.
Vielo, Y Khun(S;)+ Y KPun(S;) = (f,¢0):
j€la j€lsq

Define the vector of unknowns U! = {uj(S;)};cr, and the boundary vector UP =
{un(S;)}jer . Define the vector of interior data F' = {(f,¢;)}je1, and the boundary

data G = {(g,%;)}iclon-
K'U'+K'BUB =F, UB=¢G.

K is the matrix of the laplacian with homogeneous Dirichlet data in V}, therefore it is
symmetric definite positive.
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FIGURE 5.1 — Basis hat functions

aliir o)) = /D (Vi) (0) + (e () do, i = support i, D, = support .

FIGURE 5.2 — Mesh, D; support of the basis function ¢; associated to vertex
S;.

5.1.2 Finite element method and the Neumann problem

Consider back to one domain, and the problem

—Au+u = f dans(,
g—z = g sur 0N

We write a variational formulation in V = H(Q),

u€ HY(Q)
Yo eV, a(u,v) = (f,v)+ [oq9(s)v(s)ds

Add to the notations in 5.1.1, KPP the matrix of size Nyq x Nao

KBP =a(pi,p;), (i,4) € Ipa.

Vi € Iq, Z KI uh Z KIBUh <f7 901)

Jj€ln Jj€loq
Vi € IBQy Z K]IzB Z (fv QOZ) (97@1)
j€la Jj€lsq
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which gives in matrix form
K'UT + K1BUB = F!
(KTBYTy! + KBBUB = FB 4 G.

This is the matrix form finite elements discretisation of the Neumann boundary condition.
The first line is the internal discretisation, while the second line involves the Neumann
condition.

5.1.3 The Schur Complement method

The domain 2 is split into two nonoverlapping subdomains 21 and 29, and I" is the
common boundary.

FIGURE 5.3 — Domain Decomposition

un = un(S))e;+ Y un(S))e;+ Y un(S;)e;

SjEQl SjEQz SjEF

aéedy) = [ Vo) Vo,w)ds

J

FIGURE 5.4 — Supports
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uhaSDz Zuh 9017(;0])

alun, i) = > un(Syales o)+ > un(Sialei @)+ > un(S;)alei,¢;)

Sjeﬂl SJEQQ S]'EF
SieQ, S;€Q =D;ND; =0 = a(pi, ¢j) = 0= second sum vanishes
S; €y, S; € =D;ND; =0 = a(pi, p;) = 0= first sum vanishes

For S; € T', all sums contribute. For the last one, the support of S; is split according
to Figure 5.5.

FIGURE 5.5 — Decomposition of the interface nodes

If S; € I" and S; € I are neighbours,

/ o3(@)pi() de = / 0;(@)pi(e) d + / o3(2)pi(x) da
D; ﬂDj D; ﬂDj Ny D; ﬂDj N

and the same for the computation of the gradient and (f, ¢;). The unknown U is split
into three blocks : Uj is the block of the unknowns in the open domain €21, Us is the block
of the unknowns in the open domain 25, Us is the block of the unknowns on the boundary
I'. The matrix K is split according to the previous formula. We shall write

K1 0 K3 U, Iy
0 Koo K23 Us = F 5 (51)
K31 Kz Kz3 Us I3

with K33 = Ki; + K3, and F3 = F + F. We rewrite as a system of three systems.

KU, +Kqi3U3 = Fi
KoU; +Ko3Us = Fy (5.2)
KUy +KsUs +Ks3Us = F3

K11 = [a(wi, 05)]s,,5,€0, *
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Kj; is the matrix of the Laplace problem in €); with homogeneous Dirichlet boundary

conditions on 9€);, and is therefore invertible. Solving the first equation in (5.2) amounts
to solving the Laplace equation in 27 with homogeneous Dirichlet boundary conditions on
091 \T', and Dirichlet data Us on I'. Same for the second equation. The first two problems
can be solved for Uy, Uy knowing Us as

Uy = (K1) ' (FL — Ki3Us), Uz = (Kg2) ™' (F2 — Ka3Us)
Carrying these values into the first equation gives

K31 (K1) Y (Fy — K13U3) + Kao(Kao) ™ H(Fy — Ko3Us) + K33Us = F.

K31 (K1) Y (Fy — K13U3) + Kao(Kao) ™ H(Fy — Ka3Us) + K33Us = F.

SUs = (K33 — K31 K17 K13 — K32 K35 Ko3)Us = G
with G3 = F3 — K31K1_11F1 - K32K2_21F2

The matriz S = K33 — K31K1_11K13 — K32K2_21K23 is the Schur Comple-
ment matriz.

Theorem 5.1 The matriz S est symmetric, positive, definite.
Compute (SUs, Us) by defining U; = —K ;' K13U3, Uy = — K5, Ko3Us, so that
SUs = K33Us + K31Uq + K3oUs.
Define U = (U, Us, Us). Then
(KU,U) = (U, K11U1+K13U3)+(Us, K21U1+K23U3)+(Us, K31U1+K32Ua+K33U3) = (SUs, Us).
|

The computations will be made in parallel as
S=5"4+52

with
St = K§3 — KgiKileig

Then the interface problem will be solved with direct or iterative methods.
The first two equations in (5.2) is the resolution of Laplace equations. But what is the
third one? A Neumann condition Op,u; = ¢ in ©; would be written

K3 U' + K3L,Us = F} +G.
A Neumann condition 9,,us = —g in 23 would be written
K®U? + KLU = F§ - G.

Adding these two equations yields

K31Ur + K32Us + K33Us — F3 =0 (5.3)
which therefore is the discrete version of
Our | Ous _
6’1’1,1 8n2 e
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The full substructuring method can now be understood as the finite element discreti-
zation of : find g defined on the interface I' such that, defining u; and us as the solutions
of

—AUJ‘ = f in Qj,
uj =0on 0Q; — T,

u; =gonl

then 5 5
Y92 onT.

8n1 6712 o
The resolution of the interface problem can be solved either by a direct method, or by an
iterative method, such as a Krylov method.

5.1.4 Direct method for the resolution of the interface
problem

We work on system (5.1), and write a block-LU decomposition of K as follows

Ky | 0| K3 Lin| O 0 Unn| 0 | Us
0 | Koo | Koz | = 0 | Ly | O 0 Uz | U (5.4)
K31 | K32 | K33 L3y | L3z | Lss 0 0 | Uss
We identify
K11 = LUy Ky = LnUss,
Kog = LaoUzp; Koz = LaaUss,
K31 = La1Uni; Ksa = LaaUsz; K3z = Ls1Uis + LaaUzs + L3sUss

Notice that LgiUig = KgiKi_ilKig, therefore K33 - L31 U13 - L32U23 = S, and S = L33U33.
The computations are made in parallel on the processors :

PROCESSOR (i)

Computation and storage of K;;, K;3,
Computation of F* and F}

Decomposition L;;U;; de K,
Computation of U3, Ls;,
Computation of S = Ki; — L3;U;3

ASSEMBLING

Computation of S = S* + 5% and F3 = Fj + F3,
Decomposition L33Uss of S.

We then solve the triangular problems

L11 0 0 Zl F1 Ull 0 U13 Xl Zl
0 |La| O Zy | = F» | 0 | Uz | Uy Xo Zo
L3y | L3z | L33 Z3 3 0 0 | Uss X5 Zs
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PROCESSEUR (1)
Lz = F;, G = Fi — L3; Z;
ASSEMBLING
Uss X3 = Z3
PROCESSOR (i)
Ui X = Z; — Ui X3

5.1.5 The conjugate gradient algorithm
The algorithm is applied to the interface problem
SUs := K33Us — K31 K1' K13Us — K32 Koy KogUs = G := F3 — K31 K[1'F1 — K32 Koy Fo

S is a symmetric positive definite matrix. The conjugate gradient algorithm reduces
to a descent method, defined by the initial guess UY the initial descent direction d° = 70 =
SUY — G3. Let r* be the residual a step k. The next step will be

d,
E_ el
. P = (vk,d*)
U3+1 _ Uéc o pkdk
k+1 _ .k k. k
" =T pk vl 2
e S S el

11

dk

All the products have to be made in parallel. Let us go into details.
For the initialization choose U = 0, thus r* = —G3 = —F3+ K3 K" Fi + K32 K55 Fy.

We define a special box for the product SX :

Product SX

PROCESSOR (1) PROCESSOR (2)
solve K11U1 = 1(13)(7 solve K22U2 = K23X,

SIX = Kl — KaiU; §2X = K3 — KgoUs

\/

ASSEMBLING
SX =S1X + 82X

Initialization

PROCESSOR (1) PROCESSOR (2)

solve K]]U[ = F], G}; = Fgl — Kg]U]
solve KUUl = KlgTO,
Sl’l‘o = Kéd - K31U1

solve KoolUs = Fy, G3 = F? — K3Us
solve K22U2 = K237‘0,
SQT'O = Ki; - K31U2

\/

ASSEMBLING

o = §1d° 4+ 5240

0 _ 1 2 40 _ .0
r’ =—-Gs —Gj,d =7
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STORAGE (DISTRIBUTED MEMORY)

PROCESSOR (1)
K117 K317 K31,37 Fla F3,17 G%

PROCESSOR (2)
Koy, K3, K33, Fa, F3, G3

ITERATION
vk = SdF
K %2
(v, d¥)

Uyt = Uy - ptd*
PRl = ok pkyk
g+l — Rl + ||7"k+1|‘2dk
B [l ||

Note that the scalar products can also be done partly in parallel.

5.1.6 Interest of subtructuring

The interface problem has n unknowns when the full problem has n? unknowns.
It can be proved that the interface problem is much better conditioned than the

full problem.

Therefore the conjugate gradient algorithm converges rapidly.
Futhermore most part of computation part can be made in parallel.

85




5.1.7 The Dirichlet Neumann algorithm

The purpose of the algorithm is to solve the coupling problem

Lu = f on €,
u =0 on 9N

by splitting 2 into two subdomains with interface I', and solving iteratively with an initial
guess go,

Presentation of the algorithm
Luf = fin Qy,

u? =00on OQUQy, u} =g" onl.

Luf = fin Qo,
n = Ouy  Ouf ‘
uy =0 on 0N U Qq, 2 = o on I'.

g . . . . .
where — in {25 is the normal derivative, with v the exterior normal to .

v
g™t =0uz + (1 0)g".

The choice of the parameter is crucial and unfortunately depends on the position of
the interface. If the subdomains and the problems are symmetric, the choice 6 = % is

optimal.

Convergence analysis in one dimension Let £ =17 —d2, Q = (a,b). Take

0 d
¢ in (a,b). Then we have — = —-on the interface at point c.
x

Define the error in the subdomain, e} = u? — u, and A" = g" — u(c). The algorithm
for the error is
Le =0in Qy,

ef =00ondQUQy, el =h"onl.

EGS =0in QQ,
—  Oel de
7 =0o0n 90U, 2="TonT.
ey on 9 ED 5 on

R = el (c) 4+ (1 — 0)h™.
This can be solved as

sh(y/n(z —a))
sh(y/n(c—a))’

The coefficient 5" is determined by the transmission condition d,ef(c) = d e} (c), that
gives

_ ch(y/n(c—a))

sh(y/n(c—a))

esh(\/ﬁ(b —¢))ch(y/n(c

sh(y/n(c — a))ch(y/n(b

Convergence factor p

n_ n
el =h

¢5 = B"sh(y/i(b - ).

—B"ch(y/n(b—c)

3

hn+1 _ (_

—a)) n
—y A

86



If the geometry is symmetric, that is if b — ¢ = ¢ — a, then the convergence factor
reduces to
p=1-20,

that is smaller than 1 for 6 € (0,1), and vanishes for § = 1/2. Suppose now that (¢ —a) =
(b—a)/5. Then defining x = ,/1/5, then

tanh(4y)

tanh() +1)

p=1-06(

It is a linear function of 8, with a slope a = —(tfar;hh((%) +1) e (-5,-2).

Slope of the corvergence fackor

wod,

Therefore p is an decreasing function of 6, and it is equal to 1 for 6§ = 6y, with

2 2
b = g 5 € (501
anh(4x) 5’
tanh(x) +1

Then the algorithm is convergent if and only if § < 6.
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5.1.8 Appendix : matlab scripts in 1-D

function u=SolveDD(f,eta,a,b,ga,gb)

SOLVEDD solves eta—Delta in 1d using finite differences
u=SolveDD(f,eta,a,b,ga,gb,n) solves the one dimensional equation
(eta—Delta)u=f on the domain Omega=(a,b) with Dirichlet boundary
conditions u=ga at x=a and u=gb at x=b using a finite
difference approximation with length(f) interior grid points

o® o° o° o°

o°

J=length(f);

h=(b—a)/(J+1);

% construct 1d finite difference operator

e=ones(J,1);

A=spdiags([—e/h"2 (eta+2/h"2)xe —e/h™2],[—-1 0 11,3,3);

f(1l)=f(1)+ga/h"2; % add boundary conditions into rhs
f(end)=f(end)+gb/h"2;

u=A\f;

u=[ga;u;gbl; % add boundary values to solution

function u=SolveND(f,eta,a,b,ga,gb)

SOLVEND solves eta—Delta in 1d using finite differences
u=SolveND(f,eta,a,b,ga,gb) solves the one dimensional equation
(eta—Delta)u=f on the domain Omega=(a,b) with Neumann boundary
condition u'=ga at x=a and Dirichlet boundary
condition u=gb at x=b using a finite
difference approximation.
note the second order appproximation of the derivative

o® o° o° o° o° o°

o°

J=length(f);

h=(b—a)/J;

% construct 1d finite difference operator

e=ones(J,1);

A=spdiags([—e/h"2 (eta+2/h"2)xe —e/h”™2],[—1 0 11,3,]);
A(1,2)=2xA(1,2); %% Neumann boundary condition

[}

% construct 1d finite difference operator

f(1)=f(1)—2*ga/h; % add boundary conditions into rhs
f(end)=f(end)+gb/h"2;

u=A\f;

u=[u;gbl; % add boundary value to solution on the right
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function [g,ul,u2]=algoDN(f,eta,a,b,step,ga,gb,gl,Nc,Imax,t)
% algoDN solves the Laplace equation by the Dirichlet—Neumann algorithm
%[g,ul,u2]=algoDN(f,eta,a,b,step,ga,gb,g,Nc,Imax,t)
%solves the Laplace equation eta u —Delta u = f in (a,b)
by the Dirichlet—Neumann algorithm on (a+Ncxstep) and (Ncxstep,c)
% note the second order reconstruction of u_1'(c)
g=zeros(1,Imax);
g(1)=gl;
c=a+Ncx*step;
x=(a:step:b);x1l=(a:step:c); x2=(c:step:b);
y= SolveDD(f',eta,a,b,ga,gb);
for j=1:Imax—1
% Dirichlet on (a,c)
fl=f(1:Nc—1);
ul=SolveDD((fl)',eta,a,c,ga,qg(j));
sextraction de u_1'(c) : second order
upl= (—ul(end—1)+(1l+etaxstep”™2/2)*ul(end))/step—step*f(Nc)/2;
% Neumann on (c,b) with u_2'(c)=u_1"'(c)
f2=f(Nc:end);
u2=SolveND((f2)',eta,c,b,upl,gb);
g(j+1)=(1-t)=*g(j)+t*xu2(1);
h=figure
plot(x1l,ul,'b',x2,u2,'m',x,y, " 'r"',c,linspace(ul(end),u2(1),100),'k");
legend('u_1','u_2',"'solution discrete')
title({['Algorithme de Dirichlet—Neumann',' c=',num2str(c), '\theta=",
num2str(t)];...
['Iteration number ',int2str(j)1})
filename = ['figDNpos' int2str(Nc) 'relax' num2str(t) 'iter' int2str
(j) '.eps'l
print(h, '—depsc',filename)

o°

pause% (1)
end
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function u=algoSchur(f,eta,a,b,h,ga,gb,Nc)

% algoSchur solves the Laplace equation by the Schur method
%[g,ul,u2]=algoSchur(f,eta,a,b,step,ga,gb,Nc)

%solves the Laplace equation eta u —Delta u = f in (a,b)
% by the Schur method m on (a+Ncxh) and (Ncxh,c)
J=length(f);

e=ones(J,1);

A=spdiags([—e/h"2 (eta+2/h"2)xe —e/h"™2],[—1 0 11,3,]);
% decomposition of A

A11=A(1:Nc—1,1:Nc—1);

A22=A(Nc+1l:end,Nc+1l:end);

Alg=A(1:Nc—1,Nc);

Agl=A(Nc,1:Nc—1);

A2g=A(Nc+1:end,Nc);

Ag2=A(Nc,Nc+1:end);

Agg=A(Nc,Nc);

%sdecomposition of f

fl=f(1:Nc—1);

f2=f(Nc+1l:end);

fg=f(Nc);

% Construction of the Schur problem

funS=@(x) Agg*x—Agl=*(A11\ (Alg=*x))—Ag2*(A22\ (A2g*X));
fS=fg—Aglx(A11\f1)—Ag2x(A22\f2);

ug=pcg(funsS, fS)

%sreconstruct ul and u2

ul=A11\(f1l-Alg*ug)

u2=A22\ (f2—A2g*ug)

sreconstruct u

u=[ga; ul ; ug ; u2 ; gbl;
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clear all;close all;
% Validation of the Dirichlet and Neumann codes
a=0;
b=1;
Step=(b—a)*0.1./10.7(0:2);
for j=1:length(Step)
step=Step(j);
x=(a:step:b);
y=sin(pixx);
eta=1;
f=(eta+pi™2)*y(2:end—1);
ga=0;gb=0;
sol=SolveDD(f',eta,a,b,ga,gb);
X=a:step/100:b;
Y=sin(pix*X);
figure(1l)
plot(x,sol,'b',X,Y,"'r");
hold on

eld(j)=max(abs(sol—y'));
f=(eta+pi”2)*y(l:end—1);

ga=pi;
soll=SolveND(f',eta,a,b,ga,gb);
plot(x,soll,'b',X,Y,'r");

eln(j)=max(abs(soll—y'));
figure(2)
plot(x,soll—y');
pause
end

figure(3)

loglog(Step,eld, 'm«")

hold on

loglog(Step,eln, 'bo—")

hold on

loglog(Step,Step.”™2,'r")
legend('Dirichlet', 'Neumann', 'slope 2')

% Algorithme de Dirichlet Neumann sur (a,c), (c,b)
clear all; close all;

a=0;

b=1;

J=9;

h=(b—a)/(J+1);

x=(a:h:b);

% eta=1;

% y=X."3;

% f=—6xx(2:end—1)+etaxy(2:end—1);
% ga=0;gb=1;

eta=1;

y=sin(pixx);
f=(eta+pi™2)*xy(2:end—1);
ga=0;gb=0;
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sol=SolveDD(f',eta,a,b,ga,gb);

% position de 1 interface
Nc=floor(length(x)/2);

Nc=2;

c=a+Ncxh;

% nombre d'iterations

Imax=10;

%parametre de relaxation

t=0.5;

% initialisation avec la valeur exacte
gl=y(Nc+1);

% ou initialisation avec 0

g1=0;
[g,ul,u2]=algoDN(f,eta,a,b,h,ga,gb,gl,Nc,Imax,t)
% algorithme

figure(99)

plot(g)

title('Interface value')
xlabel('Iteration number')

% Methode de Schur
u=algoSchur(f',eta,a,b,h,ga,gb,Nc);
splot(x,y,'r',x,yd,'g',x,u,'b")
figure(55)

plot(x,sol,'g',x,u,'b")

N=10;

chi=linspace(0,N,Nx100)
Y=tanh(4*chi)./tanh(chi)+1;
plot(chi,Y,'b")

xlabel('\chi")

ylabel('\alpha')

title('Slope of the convergence factor')
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5.2 Schwarz Algorithms

5.2.1 Introduction and a brief historical review

Schwarz method was brought about by H.A.Schwarz around 1870 to prove the exis-
tence of harmonic functions in open sets that were not disks or rectangles ( as those cases
had been dealt with analytically), or obtained from those above by conformal transforma-
tion. Schwarz’s typical problem is the following ( in the following, £ can be any elliptic
operator , bus mostly our favorite —A).

L(u) = 0, xz €
u(z) = g(x), =€

(5.5)

in domain €2 defined in figure 5.6.

o0

FIGURE 5.6 — The initial Schwarz domain

The classical Schwarz iteration consists in solving one after the other the problem in
each sub-domain ; and 25 defined in figure 5.7

L") = f(x), ze
v (z) = g(z), x€dNQ (5.6)
v H(z) = w'(z), zely
L) = f(z), xz €y
wtl(z) = g(a), redNNnQ, (5.7)
w'tl(z) = v"t(z), z €Ty

Schwarz showed that the sequence (v™, w™) converged using the maximum principle. The
converged value is thus a solution u of (5.5). In 1988, this method was modified by P.L.
Lions in a series of papers presented at Domain Decomposition Conferences in order to
make it parallel in the following way :
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Q) Ty I Q,

o0

FIGURE 5.7 — Schwarz Decomposition

L(v™+) flz), xe
vt z) = g(z), x€0NN (5.8)
V") = w'(z), xel
L™y = f(z), x€
w1 (x) g(z), x€00NNy (5.9)
w't(z) = v'(z), x €T,

He also put it in a hilbertian frame more adapted to using numerical methods. It
was then extended to general geometrical configurations , with an arbitrary number of
sub-domains, and to more general equations. He also suggested modifying transmission
conditions between sub-domains, using Robin type or even boundary elements operators.

The principle of this approach is thus :

— an iterative method,

N sub-domains,

non zero overlapping between sub-domains,

well posed problems in each sub-domain,

convergence of the algorithm (as a function of the overlapping),

easy to implement

Today, for most problems, solution existence and unicity in known in the initial domain.
If a Domain Decomposition method is used, it is mainly for reasons of data storage and
use of fast local solvers.

In the sequel, we will refer to (5.6,5.7) as alternate Schwarz, and (5.8,5.9) as parallel
Schwarz.

5.2.2 A very simple 1D example

Lets us consider the following problem

dz? (5.10)
u— 0asax— too

where f is a "nice" function. For example if f belongs to L?(R), it is well known that
there exists a unique variational solution in H'(R) which furthermore belongs to H2(R) .
Let us look at the Schwarz parallel algorithm with two sub-domains (see figure 5.8) :)
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overlap

FIGURE 5.8 — 1D decomposition in 2 sub-domains with overlap

To initialize the iterative process, (v°,w®) is given, then at iteration n is solved

d2 n
v"—#:f, x €] — o0, L]
v - 0as T — —00 (5.11)

oM (L) = wH(D),

d2 n
w'— == = f, @ €]l 4o
w" = 0as T — 400 (5-12>

w™(0) = v"~1(0),

Theorem 5.2 The algorithm is well defined in H'(—oo, L) x H'(0,+00).
Exercice 5.1 Proof is left as an exercise.

The error in each sub-domain is now defined V" = v" —u € H'(—oco,L), W" =
w® —u € H*(0,+00). V™ (resp. W™) is solution to an homogeneous problem, that is for
f =0. It is solution to an homogeneous differential equation and goes to 0 at —oo (resp.
at +00). It can thus be easily expressed up to a multiplicative constant :

V" =ane®, W" =bye " (5.13)

with the recurrence relation on the coefficients

ane =b,_1e7t, by =an_1 (5.14)
thus
asy, = (e=2E)*aq dpsr = (e2L)F+1p, .15
bar = (e=2L)kbg bor+1 = (e72)kaq

The L? norm of the error can be computed. For example

0% — u||p2(—co,Lp = (€75)* |10 — ul| 22— 00,1 (5.16)

Theorem 5.3 The Domain Decomposition algorithm with Dirichlet transmission condi-

tions converges linearly with a linear coefficient equal to e,
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Alas this means that the smaller the overlap, the slower the convergence will
be.

If Dirichlet conditions are replaced by Neumann conditions or a combination of both,
the same analysis is made.

How can one make convergence independant of the overlap ?

Let us try a Robin condition :

— 4w, =1L
dy (5.17)

(
(= —Bu" = (= —fh z=0.

Let us start the analysis again.

Theorem 5.4 For any a and (B strictly positive, for L > 0, the algorithm associated to
the (5.17) transmission conditions is well defined in H'(—oo, L) x H(0,+00).

Exercice 5.2 Prove the theorem by writing the variational formulation.

Back to (5.13). We now have

—_

ﬁ_
+

a—1 o
— b n— 1
por s Gp—1 (5.18)

ap = n—1, bn =

sy
—_

Theorem 5.5 For any a and [ strictly positive, for any overlap L > 0, the algorithm
associated to the (5.17) transmission conditions converges linearly. It converges in two
iterations if and only ifa =06 =1 .

Exercice 5.3 Prove the theorem using the proof of 5.5.

These transmission conditions are said to be exact. This is because the solution v to the
left hand problem satisfies the transmission condition which is imposed on the right hand
side.

This approach will now be generalized to higher dimensions.

5.2.3 A 2D, 3D tool : the Fourier transform. Optimal
transmission condition

The following notes are 2 dimensional but are easily extendable to 3D and more. Let u
be a function of two variables x and y. Variable y lives on the whole real axis. The partial
Fourier transform with respect to y is defined as :

N 1 i
w(z, k) = ﬁ/ﬂku(z,y)e Y dy

If wis in L2, then @ is in L?, the inverse formula and the Plancherel theorem can be used.
Derivation formulae are obtained :

Tyl’(x’k) = (ik)Pu(x, k)

Let us consider the 2D operator —A + I. For f in L?(R?) , the solution u of
u—Au=f, xcR? (5.19)

and let the Domain Decomposition be given by figure 5.9.
Let us once again look at the parallel Schwarz algorithm with Dirichlet boundary
conditions. A y Fourier transform is carried out. The errors are denoted V™ in Q; and
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(o5

Y

FIGURE 5.9 — 2D decomposition in 2 sub-domains with overlap

W™ in Q5. Their Fourier transform are solution to the ordinary differential equation with
variable x and k appears as a parameter.

ozt K24+ 1)U =0 (5.20)
leading to
V= an(k)eVFHE W = b, (ke VE L (5.21)

with the recurrence relation on the coefficients

any1(k) = by (k)e 2VF L b (k) = an(k) (5.22)
thus

agy(k) = (e2VF ) Pag | agpi (k) = (e72VE )b

(5.23)
bop(k) = (e 2VEFNPhy | bapia (k) = (e 2VFHIE)Pgq

Exercice 5.4 Show that the parallel Schwarz algorithm with overlap converges linearly.

By analogy with the one dimensional case , it is to be noticed that V" and W™ satisfy the
following equations

8{;; —Vk2+1V"=0in (—o0, L)

(5.24)

ag; +VE24+1W" =0 in (0,400)

and the following theorem

Theorem 5.6 The 2D Domain Decomposition algorithm converges in two iterations if
transmission conditions in Fourier variables can be written as

rn—41 R irn R
a‘gx +\/k2+1V”+1:%+\/k2+1W”, r=1L

(5.25)

Tn+1 R 20 R
oW VE2+1 W = —a(;; ~VE2H1V™, =0

or
It remains to find a meaning to these transmission conditions which are expressed as square
roots of operators, which are not easily dealt with. An approximation will be performed.
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5.2.4 Approximation

Let us go back to the two sub-domain case with overlap in 5.11. The exact transmission
conditions are given by (5.25). These conditions will be "approximated" in such a way to
fit a differential operator. Let us consider the Schwarz algorithm with the following general
transmission conditions

awn+l 1 oo™
_ an _ 27 _ ~m =L
5, ¢k @ il
(5.26)
oomtt i1 Ow” n
o + (k) 0 *%Jrl/)(k)wy z=0
Let us continue the Fourier analysis from (5.13).
~VEZ 11 T —VEE 1
nor(k) = L=V L orvimny g g gy = PR ZVREEEL 0 507
P(k) + VE2+1 olk) +VEk2+1
The convergence factor over a double swap is defined as :
p(k, L) = (k) — VK2 +1 o(k) — VE* +1 o 2LVETFT (5.28)
’ Y(k) +VEZ+1 (k) +VE2+1
and we have
ant1(k) = p(k, L)an—1(k),  bns1(k) = p(k, L)bp—1(k) (5.29)

The convergence factor vanishes for the exact transmission conditions. The conver-
gence rate expression induces the following remark : for k large, convergence rate is high,
while for small values of k, overlap has little influence. Thus only for small values of k, is
it necessary to approximate v/ k2 + 1. Thus the following transmission conditions

Owntl 41 Ov"
Tl = T —L
Ox v ar 0 °
(5.30)
vl 1 Ow”
n — n — 0
Oz tv Ox Twh @
For these transmission conditions, the convergence factor is
1—-vVEZ+1 2
p(k, L) = (7+ e—LV’“Z“) . (5.31)
1+VE2+1

Theorem 5.7 The algorithm associated to transmission conditions (5.30) is well defined
in H' (1) x H'(Qy).

Exercice 5.5 Prove the theorem by writing a variational formulation in each H'($;).

Another idea is to perform a 2nd order Taylor development of k2 + 1 :

2

NEe gL

2

Effective transmission conditions are obtained by inverse Fourier transform. For example

k2 /1\821)
1+ 5= 0 220
(+2)v v 292

Transmission conditions are written with respect to the physical variables :
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own Tt _ ot 190%™t oo oy 19%" oL
Ox 2 oy2  Ox 2 0y2’ T
(5.32)
oot 10%m T Guwn . 19%uwm
— — = = w2 2=0
ox 2 Oy? Ox 2 0y?
The convergence factor is obtained by using ¢(k) = (k) =1+ k?/2 :
14+ k22— VE2+1 _} egg)\2
plk,L) = ( . e ) . (5.33)
1+k2/2+VEZ+1

Theorem 5.8 The algorithm associated to transmission conditions (5.30) is well defined
in H (Q1) x HL(Q2) where

H(Q) = {ve HY(Q;),ve H ()}
Exercice 5.6 Prove the theorem by writing a variational formulation in each H'($;).

Theorem 5.9 For any L > 0, for any initial guess (u®,v°) belonging to H*(Q1) x H(Q2)
(resp.H{(Q1) x Hi(Q2)) , the algorithm associated to the transmission conditions(5.50)
(resp. (5.32)) converges in

HY(Qq) x HY(Q2) (resp.HL(Q1) x H{(Q2)). If L > 0, the convergence is linear.

We estimate the Fourier transforms

V= (ol L))" VO

For any L > 0, the sequence V2" converges a.e. in 1, and is bounded by V° in L2(£;).
By the Lebesgue theorem, it converges in L?(£2;). The same holds for the gradients. If
L > 0, we have

V™" L2 (u) < sup lp(k, L) (V"2 ay)
kER
which shows the linear convergence, since

sup |p(k, L)|? < e 2t < 1,
keR

Therefore these methods converge at least as fast as the original parallel Schwarz
method. For general domains, the convergence proof will not be valid anymore, and we
shall use an energy approach.

Another fruitful approach is to approximate v/1 + k2 for a large range of frequencies
by an 2nd order even polynomial in k with coefficient optimization.

5.2.5 A convergence proof for L =0

Let us go back to the algorithm associated to conditions (5.30), and denote by I' the
common interface. The error (V", W™) satisfies

_AWTL+1 + Wn+1 =0

_ n+1 n+1l __
AT‘L/l +V =0 . awnJrl 3 n+1:aﬂ_ "
oyt oW w V*on T
ax + Vn+1 = W + Wn on F (93;‘ afL‘

(5.34)
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Let us multiply equations on the inner points by V"*! and W"*+!  integrate over the
domain and use Green’s formula.

gynti
n+1112 _ n+1 _
V"l @) /rV 9z
own+t
n+1(|2 n+1 —
[ R
By denotes operator - —|— 1 and By operator — 1. We now have

AV, + ﬂ&WMW=/%W”W

MW+WNM+AWNW“W:

[Bz(Wn+1)]2

=7

Let us use the boundary conditions

AV, +

5~

B = [ B W")]2
r

4‘|Wn+1||H1(Q ) + Bl Wn+1 / 82 Vn
T r

Add these two equations

AV F ) + VR o) +/F([32(V”“)]2+ [By(W)]?) =

lAquvwﬁ%mewmn%

This implies that the series with general term ||V"| @11(91) +||W™n| |%Il(92) is convergent
thus its general term goes to 0 when n goes to infinity. The error goes to 0 in H' norm in
each of the sub-domains. Notice that the limit (v, w) satisfies , the meaning of which is to
be specified, the transmission conditions

ov 1o}
—+v = —4wonl
iy x
o _ ow on T (5.35)
ox )
Thus

ov ow
— = —onl
ox ox (5.36)
v = wonl

which are transmission conditions for u. The algorithm limit is therefore wu.

5.2.6 Notions on transmission conditions

Let us consider the problem in €2 described in figure 5.10.

This problem (see Analysis course) has a unique solution in H!(Q2). Furthermore, if
is sufficiently regular, u belongs to H?(Q2). Consider a partition of Q , Q = Q; U Qy and
I'=0;NQ. On T, there are two unit normals at each point : 7; is the outgoing normal
to Q1 and 7o is the outgoing normal to 2o with the relation n; + ns = 0. Let us denote

n = nq thus 7o = —n. The problem is now equivalent to the coupling problem defined in
figure 5.11, where u; is the restriction of w to ; and wus is the restriction of u to 29
Conditions
uy =ug on I
Ou _ Ouy o (5.37)
on  On on
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FIGURE 5.10 — Original problem

FIGURE 5.11 — Two sub-domain decomposition with no overlap.
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are transmission conditions for u.
Let us now identify the transparent condition in Q9. Let g in Hz(T'). The following
problem is now considered :

Lu=01in Qy
u=0on Ty (5.38)
u=gonl

This problem has a unique solution. The trace of the normal derivative can now be

0
defined on T, 87“ We now define Iy by
2

such that any solution to the boundary value problem in 2,

Lu =0 in QQ
(5.40)
u=0onTI5
satisfies identically the equation on I’
ou
— —Kou=0 5.41
8n2 2 ( )

Remark 5.1 Let us define for any (u,v) in H'(Qy),

az(u,v) = (u,v) g1(Q,) = /Q [Vu - Vv + wldz dy

Using the variational formulation for any couple (g,h) in H%(F),

< Kag, h >= as(u,v)

where u is the solution to 5.38 and v is the result of any lifting operator on g in
HY(Qs). As a consequence , Ko is a self-adjoint coercive operator on H%(F),

In the same manner, operator K; is introduced : Let g be in H %(F). Let us consider
the following problem

EU:OiDQQ
u=0onI" (5.42)
u=gonl

This problem has a unique solution. The trace of the normal derivative can now be

defined on T, % K1 is defined by
5711

such that any solution to the boundary value problem in €

u=0onTI

satisfies identically the equation on I’
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—— —Kwu=0 (5.45)

For any (u,v) in H(£2;), let us define

ar(u,v) = (u,v) g1(q,) = / [Vu - Vo +wldz dy
[ 951

Using the variational formulation, for any couple (g, h) in H 3 (T,
< K1g,h >= a;1(u,v)

where u is solution to (5.42) and v is the result of any lifting operator on g in H*($y).
K1 is thus a self-adjoint coercive operator on Hz (T').

Equations
Autt oul
Ul _ }Czugb-‘rl _ ﬂ _ ,Czug,
aTLQ 8TL2 (5 46)
Aul Tt ou”? ’
2 _ KlunJrl _ 1 K:lun
anl 2 5‘n1 1
constitute the exact transmission conditions.
Operators
0
BlT = 76 - Ky
52 (5.47)
Bl =_— K
2 87?,1 !

are exact transmission operators, or transparent operators.

Exercice 5.7 Show that the Domain Decomposition algorithm with conditions (5.46)
converges in two iterations. Generalize to N sub-domains with no overlap.

Exercice 5.8 Recover exact transmission conditions (5.24).

Going through the Schwarz algorithm step by step, we shall now see how it can be
be seen as a Jacobi algorithm on a problem set on the interface. This will allow to apply
more performant solvers.

5.2.7 ldentification of the interface problem

Problem with no overlap

The Domain Decomposition algorithm with no overlap is now studied in a general
form.

Lu™ = f  iny
n+1

Lg =0onIy (5.48)
n

Blu?‘H =Biuy on T

Luft = f  inQy
n+1

Ouy
on

BguZH = Byu} on T’

=0onTy (5.49)

Let us now define an algorithm on the interface in the following way.
For any A defined on I', and f defined on 2, M7 and Ms are defined as
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‘Cul = f7 € Ql
M : (N, f) = uy solution of % =0on Iy (5.50)
n
Biuy=AonT
Luy = f, € Qy
Ms : (N, f) — us solution of % =0on Ty (5.51)
n
BQUQ =Aonl
Notice that M;(\, f) = M;(0, f) + M;(X,0).
Suppose that (A}, A}) are defined by par
AP = Bjuf
But in Qy,
Lu? = f, €4
ouy
an =0on F]
Bju} = Bju} on I
thus

ul = M;(A7, f) (5.52)

We now have the following equalities

N = Bt = BuMs (A, ) = Bi[Ma(0g,0) + M2 0, f)]
AL = Boul = By My (AT, f) = Bo[ My (A7, 0) + My (0, f)]

Thus the interface system

ATT = Bi M5 (A3, 0) + Bi Mo (0, f)
AT = By My (AT, 0) + B My (0, f)

) - 0 By Ms(.,0) M
P B (,0) 0 Ao

This can be written as

(5.53)

Or , setting

An+1 — JA" + BlM2(07 f)
B2M1(07f)

which corresponds to the Jacobi algorithm applied to matrix

( I _BiMa(.,0) )
A=
—ByMy(.,0) I

b ( BM(0, ) )
By M (0, f)
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1D example with overlap

Let us consider the example of a parallel Schwarz method with overlap and Neumann

transmission conditions i.e. By = By = = ot I'={z =0}
d? 1 1
—@U?Jr +up™ = fin Q) = (-0, L) (5.54)
di ntl — diug for x = L,
T T
d2
_@ugﬁ-l + U,;H_l = fin Q = (0, +00) (5.55)
d )
d—u?“ = d—u? for x = 0.
T x
For A € R, M;(),0) is defined by
d2
—F'LL1+U1:O, Z'SL
e (5.56)

which can be solved as
Mi(X,0) = e L

et
BoM; (X, 0) = e E

Similarly we have
d2
———uz +u =0, x>0
dd:z: (5.57)
%ug =Adenz=0

which can be written as
MQ()\, 0) =—-Xe *

et
BiMy(\,0) = e L
Matrix J is
0 1
J=et
1 0
Thus the algorithm
By M (0,
An+1:JAn+ 1 2( f)
BZMl (O, f)

which again can be written as

N = e ID 4 o
Mt = e EAT + 8
The spectral radius of J is strictly less than 1 for any L > 0. The Jacobi algorithm
converges thus towards the solution (A1, A2) to system
1 —e L AM «Q
—e L 1 Ao 153
With no overlap, the algorithm diverges.

Remark 5.2 For any L > 0, the matrix of the system is symmetric positive definite . For
L =0, it is not inversible.
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5.2.8 Substructuring method revisited

Let us go back to the example in chapter 5.1 with a Schwarz algorithm. The approxi-
mate transmission conditions are of Robin type on a boundary I' (no overlap case). Using
chapter 5.1 notations

0 0
Bl 8714‘]7, 62—8777/24—}7

Here p is a strictly positive real number.

—Aup =/
out . oup? e
R L 559

uf =0on I

~Aug = f

ousy . ous! _

e = o5
2 =0on FQ

To compute M; , let us use its definition and write the variational formulation

7AU1 =0

8u1

— +pu; = A1 (560)
ony

U1:OOHF1

We define on Vi = {v € H'(;),v =0 on I';} the bilinear form b; by

bi(v, ) =a1(v,<p)+p/wdy, a1(v,) = | VoVedady. (5.61)
I 1951

The bilinear form a; is the scalar product of V;. It corresponds to a homogeneous
Dirichlet problem. The additional term corresponds to the boundary condition on I'.
M7()\,0) is thus solution to the variational problem in V;

VLp eV, by (Ml /\17 , P / Al(pdy (562)
Moreover M;(0, f) is solution to the variational problem in V}

Ve € Vi, b (M (0, f), / Fpdrdy (5.63)

Let us consider applying a finite element technique, P; for example to this problem.
Basis functions are noted {¢;},<;<nz. Nodes are numbered as inner nodes {S;}1<j<nz ,
and boundary nodes as {Sj}nz y1<j< ~z- Same for the basis functions. If (S;,S;) are such
that that one of them does not belong to I', b1 (¢, ¢;) = a1(y;,¢;j). The system matrix
becomes

K K
B, = 1 ) 9 (5.64)
K3 K33 +pAF

The right hand side {/ A dy} can be expressed as (0, ApA1), and the system can
r
be written by decomposing vector (uj (S;)) into (U, Us) :
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Ky K3
Uy 0

inner points coupling _ (565)
K3 K + pAr Us ArAy
———
boundary
which be written as the following system
Ki11U1 4+ K13U: =0
11U1 13U3 (5.66)
KUy + (K + pAr)Us = ArAy

Matrix K7; is invertible as it is the matrix associated to a homogeneous Dirichlet
problem. U; can be expressed as a function of Us and carrying it in the second equation
as in chapter 5.1 :

Uy = —(K11) ' K13Us,

(5.67)
(K33 — K31(K11) ' K13 + pAr)Us = ArAy

The new Schur Complement matrix in Qi, Sk, is defined from the old one by
Shovin = S* + pAr. It is also symmetric positive definite.
For M;(0, f), with similar notations , the following system is obtained

K1 Up + Ky3U: = F
11U1 13U3 1 (5.68)
Ks1Uy + (K35 + pAr)Us = Fj
and thus Us is solution to system
S}QobinU?’ = F31 - K31(K11)71F1 (569)

It now remains to compute Bo M (A1,0) and Bo M (0, f). To do this, let us note that
thanks to the boundary conditions, we have

0 0

BQMl()\l,O) = 672 +pu1 = *8721 +pu1 = 7/\1 + 2pM1()\1,0)
ou

By My (0, f) = _87n1 +puy = 2pM, (0, f)

Thus

BQMl (/\1,0) = 2p(Sll%obin)_1AFA1 — Al

(5.70)
By My (0, f) = 2(Skopin) ' (F5 — Ks1 (K1) FY).
Similarly we have
By Ma(A2,0) = 2p(S% ... ) T ArAs — A
1M2(A2,0) P(Shobin) iz 2 (5.71)

BiM(0, f) = 2(Shopin) ~ (FF — Kso(K22) ™' Fa).

where So the Schur Complement matrix in .

Remark 5.3 With notation Us, we have implicitly supposed that discretizations coincide
on the common boundary. This is not necessary.

The matrix algorithm associated to the Schwarz can now be written as
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AT 0 —1 4 2p(Shopin) AL (AT

At —T +2p(Skopin) *Ar 0 A
(5.72)
N 2(Sopin) " (F5 — Ka1 (K1)~ Fy)
2(Shopin)(F5 — Kso(K22) ™' )
which is the Jacobi method to solve a system whose matrix is
1 I—-2p(S% ., )Y 1A
( p( Robzn) F) (573)
(I = 2p(Skopin) ' Ar) I

The alternate Schwarz algorithm mentioned in (5.7) corresponds to a Gauss-Seidel
method. Convergence can be accelerated by applying a Krylov method as in chapter 5.1.
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