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Chapitre 1

Classical methods

Contents
1.1 Direct methods . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Gauss method . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Codes . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.3 Theoretical results . . . . . . . . . . . . . . . . . . 7
1.1.4 Symmetric definite matrices : Cholewski decompo-

sition . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.5 Elimination with Givens rotations . . . . . . . . . 8
1.1.6 QR Decomposition . . . . . . . . . . . . . . . . . . 9

1.2 Stationary iterative methods . . . . . . . . . . . . . 10
1.2.1 Classical methods . . . . . . . . . . . . . . . . . . . 11
1.2.2 Fundamentals tools . . . . . . . . . . . . . . . . . . 11

1.3 Sparse and banded matrices . . . . . . . . . . . . . 14
1.3.1 Direct methods . . . . . . . . . . . . . . . . . . . . 14
1.3.2 Iterative methods . . . . . . . . . . . . . . . . . . . 19
1.3.3 Implementation issues . . . . . . . . . . . . . . . . 19

1.1 Direct methods

1.1.1 Gauss method

Example



1 3 1
1 1 −1
3 11 6




︸ ︷︷ ︸
A




x1
x2
x3




︸ ︷︷ ︸
x

=




9
1
36




︸ ︷︷ ︸
b

Take the 3× 4 matrix Ā = [A | b ]. Define

M1 =




1 0 0
−1 1 0
−3 0 1



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and multiply on the left by M1 to put zeros under the diagonal in the first
column :

M1[A | b ] =




1 3 1 9
0 −2 −2 −8
0 2 3 9


 .

Multiply now on the left byM2 to put zeros under the diagonal in the second
column :

M1 =




1 0 0
−1 1 0
−3 0 1


 , M2 =




1 0 0
0 1 0
0 1 1




M2M1[A | b ] =




1 3 1 9
0 −2 −2 −8
0 0 1 1




M [A | b ] = [MA |Mb ].

Ax = b ⇐⇒ MAx = Mb : M is a preconditioner.

The matrix U = MA is upper triangular, and solving Ux = Mb is simpler
than solving Ax = b.

U = MA ⇐⇒ A = LU,Ax = b ⇐⇒ LUx = b ⇐⇒
{
Ly = b

Ux = y

Define Lj = M−1
j . In the column j, the entries below the diagonal are those

of Mj with a change of sign.

L1 =




1 0 0
1 1 0
3 0 1


 , L2 =




1 0 0
0 1 0
0 −1 1




L := M−1 = (M2M1)
−1 = M−1

1 M−1
2 = L1 L2 =




1 0 0
1 1 0
3 −1 1


 .

Solving Ax = b is then equivalent to performing the LU decomposition,
and solving two triangular systems. Counting of operations :

1. LU decomposition O(2n
3

3
) elementary operations.

2. Solve Ly = b O(n2) elementary operations.
3. Solve Ux = y O(n2) elementary operations.
For P values of the righthand side, Nop ∼ 2n3

3
+ P × 2n2.
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1.1.2 Codes
1 function x=BackSubstitution(U,b)

2 % BACKSUBSTITUTION solves by backsubstitution a linear system

3 % x=BackSubstitution(U,b) solves Ux=b, U upper triangular by

4 % backsubstitution

5 n=length(b);

6 for k=n:−1:1
7 s=b(k);

8 for j=k+1:n

9 s=s−U(k,j)*x(j);
10 end

11 x(k)=s/U(k,k);

12 end

13 x=x(:);

1 function x=Elimination(A,b)

2 % ELIMINATION solves a linear system by Gaussian elimination

3 % x=Elimination(A,b) solves the linear system Ax=b using Gaussian

4 % Elimination with partial pivoting. Uses the function

5 % BackSubstitution

6 n=length(b);

7 norma=norm(A,1);

8 A=[A,b]; % augmented matrix

9 for i=1:n

10 [maximum,kmax]=max(abs(A(i:n,i))); % look for Pivot A(kmax,i)

11 kmax=kmax+i−1;
12 if maximum < 1e−14*norma; % only small pivots

13 error('matrix is singular')

14 end

15 if i ~= kmax % interchange rows

16 h=A(kmax,:); A(kmax,:)=A(i,:); A(i,:)=h;

17 end

18 A(i+1:n,i)=A(i+1:n,i)/A(i,i); % elimination step

19 A(i+1:n,i+1:n+1)=A(i+1:n,i+1:n+1)−A(i+1:n,i)*A(i,i+1:n+1);
20 end

21 x=BackSubstitution(A,A(:,n+1));

1.1.3 Theoretical results

Theorem 1.1 (Regular case) Let A be an invertible matrix, with all prin-
cipal minors 6= 0. Then there exists a unique matrix L lower triangular with
lii = 1 for all i, and a unique matrix U upper triangular, such that A = LU .
Furthermore det (A) =

∏n
i=1 uii.

Theorem 1.2 (Partial pivoting) Let A be an invertible matrix. There exist
a permutation matrix P , a matrix L lower triangular with lii = 1 for all i,
and a matrix U upper triangular, such that

PA = LU
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1.1.4 Symmetric definite matrices : Cholewski decom-
position

Theorem 1.3 If A is symmetric definite positive, there exists a unique lower
triangular matrix R with positive entries on the diagonal, such that A = RRT .

1.1.5 Elimination with Givens rotations

This is meant to avoid pivoting. It is used often in connection with the
resolution of least-square problems. In the i step of the Gauss algorithm, we
need to eliminate xi in equations i+ 1 to n of the reduced system :

(i) : aiixi + · · · + ainxn = bi
...

...
(k) : akixi + · · · + aknxn = bk

...
...

(n) : anixi + · · · + annxn = bn

If aki = 0, nothing needs to be done. If aki 6= 0, we multiply equation(i) with
sinα and equation (k) with cosα and add. This leads to replacing equation
(k) by the linear combination

(k)new = − sinα · (i) + cosα · (k).

The idea is to choose α such that the first coefficient in the line vanishes, i.e.

− sinα · aii + cosα · aki = 0.

Since aki 6= 0, this defines cotgαki, that is αki modulo π. For stability reasons,
line (i) is also modified, end we end up with

(i)new = cosα · (i) + sinα · (k)
(k)new = − sinα · (i) + cosα · (k)

From which the sine and cosine of αki are obtained through well-known tri-
gonometric formulas

sinαki = 1/
√

1 + cotg2αki, cosαki = sinαki cotgαki.

Aijnew = cosαki · Aij + sinαki · Akj
Akjnew = − sinαki · Aij + cosαki · Akj

8



1 function x=BackSubstitutionSAXPY(U,b)

2 % BACKSUBSTITUTIONSAXPY solves linear system by backsubstitution

3 % x=BackSubstitutionSAXPY(U,b) solves Ux=b by backsubstitution by

4 % modifying the right hand side (SAXPY variant)n=length(b);

5 n=length(b);

6 for i=n:−1:1
7 x(i)=b(i)/U(i,i);

8 b(1:i−1)=b(1:i−1)−x(i)*U(1:i−1,i);
9 end

10 x=x(:);

1 function x=EliminationGivens(A,b);

2 % ELIMINATIONGIVENS solves a linear system using Givens−rotations
3 % x=EliminationGivens(A,b) solves Ax=b using Givens−rotations. Uses

4 % the function BackSubstitutionSAXPY.

5 n=length(A);

6 for i= 1:n

7 for k=i+1:n

8 if A(k,i)~=0

9 cot=A(i,i)/A(k,i); % rotation angle

10 si=1/sqrt(1+cot^2); co=si*cot;

11 A(i,i)=A(i,i)*co+A(k,i)*si; % rotate rows

12 h=A(i,i+1:n)*co+A(k,i+1:n)*si;

13 A(k,i+1:n)=−A(i,i+1:n)*si+A(k,i+1:n)*co;
14 A(i,i+1:n)=h;

15 h=b(i)*co+b(k)*si; % rotate right hand side

16 b(k)=−b(i)*si+b(k)*co; b(i)=h;

17 end

18 end;

19 if A(i,i)==0

20 error('Matrix is singular');

21 end;

22 end

23 x=BackSubstitutionSAXPY(A,b);

1.1.6 QR Decomposition

Note Gik which differs from identity only on the rows i and k where

gii = gkk = cosα, gik = −gki = sinα

Example for n = 5,

G24 =




1 0 0 0 0
0 cosα 0 sinα 0
0 0 1 0 0
0 − sinα 0 cosα 0
0 0 0 0 1



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Multipliying a vector b by Gik changes only the components i and k,

Gik




...
bi
...
bk
...




=




...
cosα · bi + sinα · bk

...
− sinα · bi + cosα · bk

...




Gikei = cosα ei − sinα ek, Gikek = sinα ei + cosα ek.

Gik represents the rotation of angle α in the plane generated by ei and
ek. (Gik(α))∗ = Gik(−α), (Gik(α))∗Gik(α) = I. Thus it is an orthogonal
matrix. By applying successively G21, . . . , Gn1 whereever ak1 is not zero, we
put zeros under the diagonal in the first column. We continue the process
until the triangular matrix R is obtained. Then there are orthogonal matrices
G1, · · · , GN such that Then

Q∗ = GN . . . G1, QA = R.

Q is an orthogonal matrix,

Q∗Q = GN . . . G1G
∗
1 . . . G

∗
N = I.

then
A = QR,

we have reached the QR decomposition of the matrix A.

1.2 Stationary iterative methods

For any splitting A = M −N, write Mx = Nx+ b,

Define the sequence Mxm+1 = Nxm + b.

Mxm+1 = Nxm + b ⇐⇒ Mxm+1 = (M − A)xm + b
⇐⇒ xm+1 = (I −M−1A)xm +M−1b
⇐⇒ xm+1 = xm −M−1Axm +M−1b
⇐⇒ fixed point algorithm to solve x−M−1Ax+M−1b = x
⇐⇒ fixed point algorithm to solve M−1Ax = M−1b.

Again, M is a preconditioner.

Definition 1.1
• em := x− xm is the error at step m.
• rm := b− Axm = Aem is the residual at step m.
• R = M−1N = I −M−1A is the iteration matrix.

Then the sequence of the errors satisfies

Mem+1 = Nem, em+1 = M−1Nem

Stopping criterion Usually, one stops if ‖r
m‖
‖b‖ < ε.
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1.2.1 Classical methods

Use A = D − E − F .

Jacobi M = D R := J = I −D−1A
Relaxed Jacobi M = 1

ω
D R = I − ωD−1A

Gauss-Seidel M = D − E R := L1 = I − (D − E)−1A
SOR M = 1

ω
D − E, R := Lω = (D − ωE)−1((1− ω)D + ωF )

Richardson M = 1
ρ
I R = I − ρA

The relaxed methods are obtained as follows : define x̂m as an application
of Jacobi or Gauss-Seidel, then take the centroid of x̂m and xm as xm+1 =
ωx̂m + (1− ω)xm.
For symmetric positive definite matrices A, RIchardson is a gradient method
with fixed parameter. There is an optimal value for this parameter, given by
ρopt = 2

λ1+λn
where the λj are the eigenvaues of A.

1.2.2 Fundamentals tools

Define the sequence

em+1 = Rem, R = M−1N.

Then em = Rme0, and for any norm

‖em+1‖ ≤ ‖R‖‖em‖, ‖em‖ ≤ ‖Rm‖‖e0‖.

Definition 1.2
• ρ(R) = max{|λ|, λ eigenvalue of R} is the spectral radius of R.
• ρm(R) = ‖Rm‖1/m is the mean convergence factor of R.
• ρ∞(R) = limm→∞ ‖Rm‖1/m is the asymptotic convergence factor of
R.

Theorem 1.4
• For any matrix R, for any norm, for any m, ρm(R) ≥ ρ(R). The
sequence ρm(R) has a limit, called the asymptotic convergence factor
of R and denoted by ρ∞(R).
• The sequence xm is convergent for any x0 if and only if ρ(R) < 1.

To reduce the initial error by a factor ε, we need m iterations, defined by

‖em‖
‖e0‖ ≤ (ρm(R))m ∼ ε.

So m ∼ log ε

log ρm(R)
. It is easier to use the asymptotic value relation, m ∼

log ε

log ρ∞(R)
. Then to obtain another decimal digit in the solution, one needs

to choose ε = 10−1, then m̄ ∼ − ln(10)

ln(ρ(R))
.
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Definition 1.3 The asymptotic convergence rate is F = − ln(ρ(R)).

Diagonally dominant matrices

Theorem 1.5
• If A is a matrix, either strictly diagonally dominant, or irreducible and
strongly diagonally dominant, then the Jacobi algorithm converges.
• If A is a matrix, either strictly diagonally dominant, or irreducible and
strongly diagonally dominant, then for 0 < ω ≤ 1, the SOR algorithm
converges.

M- matrices

Definition 1.4 A ∈ Rn×n is a M-matrix if

1. aii > 0 for i = 1, . . . , n,

2. aij ≤ 0 for i 6= j, i, j = 1, . . . , n,

3. A is invertible,

4. A−1 ≥ 0.

Theorem 1.6 If A is a M-matrix and A = M − N is a regular splitting
(M is invertible and both M−1 and N are nonnegative), then the stationary
method converges.

Symmetric positive definite matrices

Theorem 1.7 (Householder-John) Suppose A is positive. If M+MT−A
is positive definite, then ρ(R) < 1.

Corollary 1.1 1. If D+E+F is positive definite, then Jacobi converges.

2. If ω ∈ (0, 2), then SOR converges.

Tridiagonale matrices

Theorem 1.8 1. ρ(L1) = (ρ(J))2 : Jacobi Gauss-Seidel converge or di-
verge simultaneously. If convergent, Gauss-Seidel is twice as fast.

2. Suppose the eigenvalues of J are real. Then Jacobi and SOR converge
or diverge simultaneously for ω ∈]0, 2[.

3. Same assumptions, SOR has an optimal parameter ω∗ =
2

1 +
√

1− (ρ(J))2
,

and then ρ(Lω∗) = ω∗ − 1.

12



|ρ(Lω)|

ω1

1

2ω∗

ω∗ − 1

1

Figure 1.1 – Variations of ρ(Lω) as a fonction of ω
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1.3 Sparse and banded matrices

1.3.1 Direct methods

The first encounter of this name seems to be due to Wilkinson in 69 : any
matrix with enough zeros that it pays to take advantage of them.

Example : a banded matrix, with upper bandwidth p = 3 and lower
bandwidth q = 2, in total p+ q + 1 nonzero diagonals.

Figure 1.2 – A bandmatrix

Then L is lowerbanded with q = 2, and U is upperbanded with p = 3.

Figure 1.3 – LU decomposition
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It is not the case anymore, when pivoting is used :

L =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0.6 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
−0.5 −0.17 −0.05 −0.21 0.025 0.0027 1




U =




−4 2 3 0 0 0 0
0 −12 3 1 2 0 0
0 0 −40 0 5 1 4
0 0 0 4 −10 −0.6 −2.4
0 0 0 0 −60 6 −23
0 0 0 0 0 −84 0
0 0 0 0 0 0 0.275




Here the permutation matrix is

P =




0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0




In the Cholewsky decomposition, there is no need of permutation, unless
some parameters are very small. Then if A is banded, R is banded with the
same lower bandwidth, but it may be less sparse, in the sense that it can
have more zeros. Consider as an example the 36× 36 sparse matrix of 2−D
finite differences in a square. With the command spy de matlab, the nonzero
terms appear in blue :

A bandmatrix sparse matrix Corresponding Cholewski

Even though R has the same bandwidth as A, nonzero diagonals appear.

15



Exercise Write the Gauss and Givens algorithms for a tridiagonal matrix
A = diag(c,−1) + diag(d, 0) + diag(e, 1).

LU factorization : verify that

ck = lk uk, dk+1 = lk fk + uk+1, ek = fk.

then it is not necessary to compute fk, and only recursively

ck = lk uk, uk+1 = dk+1 − lk ek.

1 n=length(d);
2 for k=1:n−1 % LU−decomposition with no pivoting
3 c(k)=c(k)/d(k);
4 d(k+1)=d(k+1)−c(k)*e(k);
5 end
6 for k=2:n % forward substitution
7 b(k)=b(k)−c(k−1)*b(k−1);
8 end
9 b(n)=b(n)/d(n); % backward substitution
10 for k=n−1:−1:1
11 b(k)=(b(k)−e(k)*b(k+1))/d(k);
12 end

Givens : verify that the process inserts an extra updiagonal.

1 n=length(d);
2 e(n)=0;
3 for i=1: n−1 % elimination
4 if c(i)~=0
5 t=d(i)/c(i); si=1/sqrt(1+t*t); co=t*si;
6 d(i)=d(i)*co+c(i)*si; h=e(i);
7 e(i)=h*co+d(i+1)*si; d(i+1)=−h*si+d(i+1)*co;
8 c(i)=e(i+1)*si; e(i+1)=e(i+1)*co;
9 h=b(i); b(i)=h*co+b(i+1)*si;
10 b(i+1)=−h*si+b(i+1)*co;
11 end;
12 end;
13 b(n)=b(n)/d(n); % backsubstitution
14 b(n−1)=(b(n−1)−e(n−1)*b(n))/d(n−1);
15 for i=n−2:−1:1,
16 b(i)=(b(i)−e(i)*b(i+1)−c(i)*b(i+2))/d(i);
17 end;

Creation and manipulation of sparse matrices in matlab

>>S=sparse([2 3 1 2],[1 1 2 3],[2 4 1 3])

S =
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(2,1) 2
(3,1) 4
(1,2) 1
(2,3) 3

>>S=speye(2,3)

S =

(1,1) 1
(2,2) 1

>>n=4;
>>e=ones(n,1)
e =

1
1
1
1

>>A=spdiags([e -2*e e],-1:1,n,n)
A =

(1,1) -2
(2,1) 1
(1,2) 1
(2,2) -2
(3,2) 1
(2,3) 1
(3,3) -2
(4,3) 1
(3,4) 1
(4,4) -2

>>full(A)
ans =

-2 1 0 0
1 -2 1 0
0 1 -2 1
0 0 1 -2

>>S=sparse([2 3 1 2],[1 1 2 3],[2 4 1 3])

17



S =

(2,1) 2
(3,1) 4
(1,2) 1
(2,3) 3

>>S=speye(2,3)

S =

(1,1) 1
(2,2) 1

>>n=4;
>>e=ones(n,1)
e =

1
1
1
1

>>A=spdiags([e -2*e e],-1:1,n,n)
A =

(1,1) -2
(2,1) 1
(1,2) 1
(2,2) -2
(3,2) 1
(2,3) 1
(3,3) -2
(4,3) 1
(3,4) 1
(4,4) -2

>>full(A)
ans =

-2 1 0 0
1 -2 1 0
0 1 -2 1
0 0 1 -2

The direct methods first transform the original system into a triangular
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matrix, and then solve the simpler triangular system. Therefore a direct
method leads, modulo truncation errors, to the exact solution, after a number
of operations which is a function of the size of the matrix. Thereby, when
the matrix is sparse, the machine performs a large number of redundant
operations due to the large number of multiplication by zero it performs.

1.3.2 Iterative methods

The iterative methods rely on a product matrix vector, therefore are easier
to perform in a sparse way. They have gain a lot of popularity for sparse
matrix, in conjunction with preconditioning and and domain decomposition.
However their success relies on the convergence speed of the algorithm, see
next chapter.

1.3.3 Implementation issues

To minimize computing costs and storage of a sparse matrix, it can be
useful to renumber the matrix coefficients. There are (for the moment) no
absolute ideal renumbering algorithms but one of the most efficient is the
Reverse Cuthill Mackee algorithm.

It is also called the bandwidth reduction problem, also known in the field
of sparse matrix applications as the bandwidth minimization problem (or
BMP in short) :

For a given symmetric sparse matrix, A(nxn), the problem is to reduce its
bandwidth B by permuting rows and columns so as to move all the non-zero
elements of A in a band as close as possible to the diagonal.

In other words, the problem consists in transforming through successive
row and column permutations as for example matrix A1 (8x8 input matrix)
into A2 :

A1 A2

Notions of Graph
The graph G(A) corresponding to the matrix A we will have n nodes labelled
i = 1,2, ... ,n. For each non-zero element aij, i < j of A there will be an edge
connecting nodes i and j. From the graph of A we can determine the position
of all off-diagonal non-zero elements of A.
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Two nodes of G(A) are said to be adjacent if they are connected by an
edge.
Two nodes of G(A) are said to be connected if there is a sequence of edges
joining them such that consecutive edges have a common end point. A graph
is said to be connected if every pair of nodes of the graph are connected. If
G(A) is connected, the corresponding matrix is irreducible.

A component of a graph is a connected subgraph which is not contained
in a larger connected subgraph.

The degree of a node i of G(A) is the number of edges meeting at i. For
the corresponding matrix, this is the number of non-zero off diagonal ele-
ments in row i.

For example, the corresponding graphs of A1 and A2 are

Graph(A1) Graph(A2)

The two graph structures are identical, the only thing that is different is
the node (vertex) labelling. In other words the bandwidth reduction problem
can also be viewed as a graph labelling problem :

Find the node labelling that minimizes the bandwidth B of the adjacency
matrix of the graph G(A) , where we can formally define : B=max|Li-Lj|,
i,j=1..n and Li is the label of node i, Lj is the label of node j and nodes i and
j are adjacent.
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The Reverse Cuthill Mackee algorithm (RCM)

This algorithm was presented by E. Cuthill and J. McKee in 1969 in
REDUCING THE BANDWIDTH OF SPARSE SYMMETRIC MATRICES
and improved by A. George

Algorithm RCM

Step 0 : Prepare an empty queue Q and an empty result array R. ;
Step 1 : Select the node in G(A) with the lowest degree (ties are
broken arbitrarily) that hasn’t previously been inserted in the result
array. Let us name it P (for Parent). ;
Step 2 : Add P in the first free position of R. ;
Step 3 : Add to the queue all the nodes adjacent with P in the
increasing order of their degree. ;
Step 4.1 : Extract the first node from the queue and examine it. Let
us name it C (for Child). ;
Step 4.2 : If C hasn’t previously been inserted in R, add it in the first
free position and add to Q all the neighbours of C that are not in R
in the increasing order of their degree. ;
Step 5 : If Q is not empty repeat from Step 4.1 . ;
Step 6 : If there are unexplored nodes (the graph is not connected)
repeat from Step 1 . ;
Step 7 : Reverse the order of the elements in R. Element R[i] is
swaped with element R[n+1-i]. ;

The result array will be interpreted like this : R[L] = i means that the new
label of node i (the one that had the initial label of i) will be L.
Nodes are explored in the increasing order of their degree. Step 7 is not man-
datory, it is the modification introduced by George to the initial algorithm
(it has the purpose of further reducing the profile of a matrix).

Such a renumbering is also a good technique to reduce computing costs
and storage space.

Storage schemes

The main goal is to represent only the non zero elements, and to be
able to perform the common matrix operations. In the following, NZ denotes
the total number of non zero elements. Only the most popular schemes are
covered here.

— Compressed Sparse Row (CSR)
A real array AA that contains the real non zero values aij stored row
by row, from row 1 to n. The length of AA is NZ

An integer array JA that contains the column indices of elements aij
as stored in AA. The length of JA is NZ .
An integer array IA that contains the pointers to the beginning of
each row in the arrays AA and JA. IA(1) = 0, IA(2) = number of
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non zero elements in row 1, IA(ii+1)= IA(ii) + number of non zero
elements in row ii. The length of IA is n+1, and IA(n+1) = NZ

— Compressed Sparse Column (CSC)
A variation of CSR but based on storing columns instead of rows.

For example , matrix

Figure 1.4 – Matrix A

will be stored as follows/

Figure 1.5 – Sparse Matrix A storage

The case of a CSR storage leads to an efficient matrix vector product.
The following Fortran 90 segment shows the main loop of the matrix-by-
vector operation for matrices stored in the Compressed Sparse Row stored
format.

Figure 1.6 – Sparse Matrix vector product

Notice that each iteration of the loop computes a different component of
the resulting vector. This is advantageous because each of these components
can be computed independently.
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Solving a lower or upper triangular system is another important kernel in
sparse matrix computations. The following segment of code shows a simple
and parallel routine for solving LX = Y for the CSR storage format.

Figure 1.7 – Computing LX = Y

23



24



Chapitre 2

Nonstationary methods

Contents
2.1 Non-Stationary iterative methods. Symmetric de-

finite positive matrices . . . . . . . . . . . . . . . . 25
2.1.1 Definition of the iterative methods . . . . . . . . . 25
2.1.2 Comparison of the iterative methods . . . . . . . . 27
2.1.3 Condition number and error . . . . . . . . . . . . . 28

2.2 Krylov methods for non symmetric matrices, Ar-
noldi algorithm . . . . . . . . . . . . . . . . . . . . . 31

2.2.1 Gram-Schmidt orthogonalization and QR decom-
position . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.2 Arnoldi algorithm . . . . . . . . . . . . . . . . . . 32
2.2.3 Full orthogonalization method or FOM . . . . . . . 33
2.2.4 GMRES algorithm . . . . . . . . . . . . . . . . . . 35

2.1 Non-Stationary iterative methods. Symme-
tric definite positive matrices

Descent methods

2.1.1 Definition of the iterative methods

Suppose the descent directions pm are given beforehand. Define

xm+1 = xm + αmp
m, em+1 = em − αmpm, rm+1 = rm − αmApm.

Define the A norm : ‖y‖2A = (Ay, y).

Theorem 2.1 x is the solution of Ax = b ⇐⇒ it minimizes over RN the
functional J(y) = 1

2
(Ay, y)− (b, y).
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This is equivalent to minimizing G(y) = 1
2
(A(y − x), y − x) = 1

2
‖y − x‖2A.

At step m, αm is defined such as to minimize J in the direction of pm. Define
the quadratic function of α

ϕm(α) = J(xm + αpm) = J(xm)− α(rm, pm) +
1

2
α2(Apm, pm).

Minimizing ϕm leads to

αm =
(pm, rm)

(Apm, pm)
, (pm, rm+1) = 0

G(xm+1) = G(xm)(1− µm), µm =
(rm, pm)2

(Apm, pm)(A−1rm, rm)

• Steepest descent (gradient à pas optimal) pm = rm.

xm+1 = xm + αmr
m, em+1 = em − αmrm, rm+1 = (I − αmA)pm.

αm =
‖rm‖2

(Arm, rm)
, (rm, rm+1) = 0

G(xm+1) = G(xm)

(
1− ‖rm‖4

(Arm, rm)(A−1rm, rm)

)
≤
(
κ(A)− 1

κ(A) + 1

)2

G(xm)

• Conjugate gradient

xm+1 = xm + αmp
m, αm =

(pm, rm)

(Apm, pm)
, (rm, pm−1) = 0.

Search pm as pm = rm + βmp
m−1

G(xm+1) = G(xm)(1− µm)

µm =
(rm, pm)2

(Apm, pm)(A−1rm, rm)
=

‖rm‖4
(Apm, pm)(A−1rm, rm)

Maximize µm, or minimize

(Apm, pm) = β2
m(Apm−1, pm−1) + 2βm(Apm−1, rm) + (Arm, rm)

βm = − (Apm−1, rm)

(Apm−1, pm−1)
⇒ (Apm−1, pm) = 0

(rm, rm+1) = 0, βm =
‖rm‖2
‖rm−1‖2 .

Properties of the conjugate gradient Choose p0 = r0. Then ∀m ≥ 1,
if ri 6= 0 for i < m.
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1. (rm, pi) = 0 for i ≤ m− 1.
2. vec(r0, . . . , rm) = vec(r0, Ar0, . . . , Amr0).
3. vec(p0, . . . , pm) = vec(r0, Ar0, . . . , Amr0).
4. (pm, Api) = 0 for i ≤ m− 1.
5. (rm, ri) = 0 for i ≤ m− 1.

Definition 2.1 Krylov space Km = vec(r0, Ar0, . . . , Am−1r0).

Theorem 2.2 (optimality of CG) A symétrique définie positive,

‖xm − x‖A = inf
y∈x0+Km

‖y − x‖A, ‖x‖A =
√
xTAx.

Theorem 2.3 Convergence in at most N steps (size of the matrix). Fur-
thermore

G(xm) ≤ 4

(√
κ(A)− 1√
κ(A) + 1

)2

G(xm−1)

The conjugate gradient algorithm

x0chosen, p0 = r0 = b− Ax0.

while m < Niter or ‖rm‖ ≥ tol, do

αm =
‖rm‖2

(Apm, pm)
,

xm+1 = xm + αmp
m,

rm+1 = rm − αmApm,
βm+1 =

‖rm+1‖2
‖rm‖2 ,

pm+1 = rm+1 − βm+1p
m.

end.

2.1.2 Comparison of the iterative methods

Basic example :. 1-D Poisson equation −u′′ = f on (0, 1), with Dirichlet
boundary conditions u(0) = gg, u(1) = gd. Introduce the second order finite
difference stencil.

(0, 1) = ∪(xj, xj+1), xj+1 − xj = h =
1

n+ 1
, j = 0, . . . , n.

−u(xi+1)− 2u(xi) + u(xi−1)

h2
∼ f(xi), i = 1, . . . n
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u0 = gg, un+1 = gd.

|ui − u(xi)| ≤ h2
supx∈[a,b] |u(4)(x)|

12
.

The vector of discrete unknowns is u =t (u1, . . . , un).

A =
1

h2




2 −1
−1 2 −1 0

. . . . . . . . .
0 −1 2 −1

−1 2




b =




f1 − gg
h2

f2
...

fn−1
fn − gd

h2




The matrix A is symmetric definite positive.

The discrete problem to be solved is

Au = b

2.1.3 Condition number and error

Ax = b, Ax̂ = b̂

Define κ(A) = ‖A‖2‖A−1‖2. If A is symmetric > 0, κ(A) = maxλi
minλi

.

Theorem 2.4
‖x̂− x‖2
‖x‖2

≤ κ(A)
‖b̂− b‖2
‖b‖2

and there is a b such that it is equal.

Eigenvalues and eigenvectors of A (h× (n+ 1) = 1).

µk =
4

h2
sin2 kπh

2
, Φ(k) =

(
sin

jkπ

n+ 1

)

1≤j≤n
,

κ(A) =
sin2 nπh

2

sin2 πh
2

=
cos2 πh

2

sin2 πh
2

∼ 4

π2h2

For any iterative method, the eigenfunctions of the iteration matrix are equal
to those of A.

28



0 0.5 1 1.5 2 2.5 3 3.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Eigenvectors of A, n=2 4=16

 

 

 k=1

 k=4

 k=12

Figure 2.1 – Eigenvectors of A

Algorithm Eigenvalues of the iteration matrix R

Jacobi λk(J) = 1− h2

2
µk = cos(kπh)

Gauss-Seidel λk(L1) = (λk(J))2 = cos2(kπh)

SOR η = λk(Lω) solution of (η + ω − 1)2 = ηω(λk(J))2.

Table 2.1 – Eigenvalues of the iteration matrix

Algorithm Convergence factor n = 5 n = 30 n = 60
Jacobi cosπh 0.81 0.99 0.9987

Gauss-Seidel cos2 πh 0.65 0.981 0.9973

SOR
1− sin πh

1 + sin πh
0.26 0.74 0.9021

steepest descent
K(A)− 1

K(A) + 1
= cosπh 0.81 0.99 0.9987

conjugate gradient
√
K(A)− 1√
K(A) + 1

=
cos πh− sin πh

cos πh+ sin πh
0.51 0.86 0.9020

Table 2.2 – Convergence factor
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Algorithm convergence factor ρ∞ convergence rate F
Jacobi 1− ε2

2
ε2

2

Gauss-Seidel 1− ε2 ε2

SOR 1− 2ε 2ε
Steepest descent 1− ε2 1ε2

conjugate gradient 1− 2ε 2ε

Table 2.3 – Asymptotic behavior in function of ε = πh

n Jacobi and steepest descent Gauss-Seidel SOR conjugate gradient
10 56 28 4 4
100 4760 2380 38 37

Table 2.4 – Reduction factor for one digit M ∼ − ln(10)

F

Figure 2.2 – Convergence history, n = 5
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Gauss elimination n2

optimal overrelaxation n3/2

FFT n ln2(n)
conjugate gradient n5/4

multigrid n

Table 2.5 – Asymptotic order of the number of elementary operations nee-
ded to solve the 1−D problem as a function of the number of grid points

Figure 2.3 – Convergence history, n = 100

Not only the conjugate gradient is better, but the convergence rate being O(h1/2), the
number of iterations necessary to increases the precision of one digit is multiplied by

√
10

when the mesh size is divided by 10, whereas for the Jacobi or Gauss-Seidel it is divided
by 100. The miracle of multigrids, is that the convergence rate is independent of the mesh
size.

2.2 Krylov methods for non symmetric matrices,
Arnoldi algorithm

2.2.1 Gram-Schmidt orthogonalization and QR decom-
position

Starting with a free family (v1, · · · , vm, · · · ) in a vector space E with a scalar product
(·, ·), the process builds an orthonormal family (w1, · · · , wm, · · · ) recursively.

•. Define w1 =
v1

‖v1‖
.

•. Note r1,2 = (v2, w1), and define u2 = v2 − r1,2w1. By construction u2 is orthogonal to
w1. It only remains to make it of norm 1 by defining r2,2 = ‖u2‖, w2 =

u2

r2,2
.

•. Suppose we have built (w1, · · · , wj−1) an orthonormal basis of L(v1, · · · , vj−1). Take vj
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and define ri,j = (vj , wi) for 1 ≤ i ≤ j − 1, and

uj = vj −
j−1∑

i=1

ri,jwi, rj,j = ‖uj‖, wj =
uj
rj,j

.

Then (w1, · · · , wj) is orthonormal. Furthermore, we can rewrite the previous equality as

vj = rj,jwj +

j−1∑

i=1

ri,jwi,

which gives for each j ;

vj =

j∑

i=1

ri,jwi . (2.1)

Define the matrix K whose columns are the vj , the matrix Q whose columns are the wj ,
and the upper triangular matrix R whose coefficients are ri,j for i ≤ j, and 0 otherwise.
Then (2.1) takes the matrix form

Kk,j =

j∑

i=1

ri,jQk,i K = QR (2.2)

The matrix Q is orthogonal, so this is exactly the so-called QR decomposition of the
matrix K. Note that the matrix K DOES NOT NEED TO BE SQUARE, nor the matrix
Q, but the matrix R has size m×m.

2.2.2 Arnoldi algorithm
Let A a N × N matrix. The purpose is to build recursively a orthonormal basis of

the Krylov space Km = vect(r,Ar, · · · , Am−1r) for r ∈ RN . We will take advantage of the
special form of the generating family to proceed a slight modification of Gram Schmidt.
•. Define q1 =

r

‖r‖ .
•. Now we must orthogonalize q1 and Ar, or equivalently q1 and Aq1 :

h1,1 = (Aq1, q1), u2 = Aq1 − h1,1q1, h2,1 = ‖u2‖, q2 =
u2

h2,1
.

Then q2 ∈ V ec(q1, Aq1) = V ec(r,Ar) = K2 and (q1, q2) is an orthonormal basis of K2. All
this can be rewritten as

Aq1 = h1,1q1 + h2,1q2.

Then K3 = V ec(q1, q2, A
2r) = V ec(q1, q2, Aq2). Therefore, instead of orthonormalizing

with the new vector A2r, we can do it with the new vector Aq2. Define

u3 = Aq2−h1,2q1−h2,2q2, h2,2 = (Aq2, q2), h1,2 = (Aq2, q1), h3,2 = ‖u3‖, q3 =
u3

h3,2
.

This generalizes in building an orthonormal basis of Kj+1 by

uj+1 = Aqj −
j∑

i=1

hi,jqi , hi,j = (Aqj , qi), hj+1,j = ‖uj+1‖, qj+1 =
uj+1

hj+1,j
.

Theorem 2.5 If the algorithm goes through m, then (q1, . . . , qm) is a basis of Km.

Below is the matlab script
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1 for j=1:m do
2 h(i,j)=(A*v(j,:),v(i,:)) , i=1:i
3 w(j,:)=A*v(j,:)−sum(h(i,j)v(i,:)
4 h(j+1,j)=norm(w(j,:),2)
5 If h(j+1,j) == 0 stop
6 v(j+1,:)= w(j,:)/h(j+1,j)

The definition of the qj above can be rewritten as

Aqj =

j+1∑

i=1

hi,jqi , (2.3)

[Aq1, · · · , Aqm] = [q1, · · · , qm, qm+1]




h1,1 · · · h1,m

h2,1 h2,2 · · · h2,m

0 h3,2
. . . . . .

...
... 0

. . . . . .
...

0 0 0 hm,m−1 hm,m
0 0 0 0 hm+1,m




︸ ︷︷ ︸
Hessenberg matrix H̃m

Define Vm = [q1, · · · , qm] ∈ MN,m(R) . Hm is the m ×m matrix obtained from the
(m+ 1)×m matrix H̃m by deleting the last row.

Proposition 2.1

AVm = Vm+1H̃m = VmHm + hm+1,mqm+1e
T
m, V TmAVm = Hm. (2.4)

Proof The first identity is just rewriting (2.3). As for the second one, rewrite the first
one in blocks as

Vm+1H̃m = [Vm, qm+1]

[
Hm

hm+1,me
T
m

]
= VmHm + hm+1,mqm+1e

T
m.

Use this now in the first equality to obtain

AVm = VmHm + hm+1,mqm+1e
T
m.

Multiply on the left by V Tm . Since Vm is orthogonal, and V Tm qm+1 = [(q1, qm+1), · · · , (qm, qm+1)]T =
0, we obtain

V TmAVm = Hm.

2.2.3 Full orthogonalization method or FOM
Search for an approximate solution in x0 +Km(A, r0) in the form xm = x0 +Vmy, and

impose rm⊥Km(A, r0). This is equivalent to V Tm rm = 0, which by

rm = b−A(x0 + Vmy) = r0 −AVmy

can be written by (2.4) as

V TmAVmy = V Tm r0 or Hmy = ‖r0‖e1.
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The small Hessenberg system
Hmy = ‖r0‖e1 (2.5)

can be solved at each step using a direct method : suppose all the principal minors of Hm

are nonzero. Due to the special structure of Hm, the LU factorization of Hm has the form

L =




1 · · · 0
l1 1 · · · 0

0 l2
. . . . . .

...
... 0

. . . . . .
...

0 0 0 lm−1 1



, U =




u11 · · · u1m

0 u22 · · · u2m

0 0
. . . . . .

...
... 0

. . . . . .
...

0 0 0 0 umm




The following matlab code gives the LU factorization

1 u(1,:)=h(1,:);
2 for i=1:m−1
3 l(i)=h(i+1,i)/u(i,i);
4 for j=i+1:n
5 u(i+1,j)=h(i+1,j)−l(i)*u(i,j)
6 end
7 end

The computational cost is m2 + 2m− 1 operations.

Theorem 2.6 At each step m, rm is parallel to qm+1.

Proof

rm = r0 −AVmy = r0 − (VmHm + hm+1,mqm+1e
T
m)y = r0 − VmHmy − hm+1,mymqm+1.

But Hmy = ‖r0‖e1, therefore r0 − VmHmy = r0 − ‖r0‖Vme1 = r0 − ‖r0‖q1 = 0. Therefore
rm = −hm+1,mymqm+1 is parallel to qm+1.

1 function [X,R,H,Q]=FOM(A,b,x0);

2 % FOM full orthogonalization method

3 % [X,R,H,Q]=FOM(A,b,x0) computes the decomposition A=QHQ?, Q

orthogonal

4 % and H upper Hessenberg, Q(:,1)=r/norm(r), using Arnoldi in order to

5 % solve the system Ax=b with the full orthogonalization method. X

contains

6 % the iterates and R the residuals

7 n=length(A); X=x0;

8 r=b−A*x0; R=r; r0norm=norm(r);

9 Q(:,1)=r/r0norm;

10 for k=1:n

11 v =A*Q(:,k);

12 for j=1:k

13 H(j,k)=Q(:,j)'*v; v=v−H(j,k)*Q(:,j);
14 end

15 e0=zeros(k,1); e0(1)=r0norm; % solve system

16 y=H\e0; x= x0+Q*y;

17 X=[X x];

18 R=[R b−A*x];
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19 if k<n

20 H(k+1,k)=norm(v); Q(:,k+1)=v/H(k+1,k);

21 end

22 end

2.2.4 GMRES algorithm
Here we minimize at each step the residual rm = r0 − AVmy in Km(A, r0), which is

equivalent to the minimization of J(y) = ‖r0 −AVmy‖2 for y in Rm. Use the Proposition
to write

r0 −AVmy = ‖r0‖q1 − Vm+1H̃my = Vm+1(‖r0‖e1 − H̃my).

Since Vm+1 is an orthogonal matrix, then

‖r0 −AVmy‖ = ‖‖r0‖e1 − H̃my‖.

So in FOM we solve EXACTLY the square system Hmy = ‖r0‖e1, while in GMRES
we solve the LEAST SQUARE problem inf ‖‖r0‖e1 − H̃my‖. This small minimization
problem has a special form with a upper Hessenberg matrix, and is best solved by the
Givens reflection method. Let us consider the case of m = 3 (σ0 = ‖r0‖).

z = H̃3y − σ0e1 =




h1,1 h1,2 h1,3

h2,1 h2,2 h2,3

0 h3,2 h3,3

0 0 h4,3







y1

y2

y3


−




σ0

0
0
0




Multiply successively by the three (m+ 1)× (m+ 1) Givens matrices

Q1 =




c1 s1 0 0
−s1 c1 0 0

0 0 1 0
0 0 0 1


 , Q2 =




1 0 0 0
0 c2 s2 0
0 −s2 c2 0
0 0 0 1


 , Q3 =




1 0 0 0
0 1 0 0
0 0 c3 s3

0 0 −s3 c3


 ,

to make the system triangular, and even better

Q3Q2Q1z =




h̃1,1 h̃1,2 h̃1,3

0 h̃2,2 h̃2,3

0 0 h̃3,3

0 0 0







y1

y2

y3


−




c1
c2
c3
c4




Therefore
‖z‖2 = ‖Q3Q2Q1z‖2 = ‖Ry − cI‖2 + (c4)2

where R is the upperblock of the matrix, and cI the upperblock of the vector. Now we
have a regular system, and y is THE solution of

Ry = cI ,

which is now an upper triangular system.
Remark If A is symmetric, Hm is tridiagonale.
Restarted GMRES For reasons of storage cost, the GMRES algorithm is mostly

used by restarting every M steps :
Compute x1, · · · , xM .
If rM is small enough, stop,
else restart with x0 = xM .
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Chapitre 3
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Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Deflation method for GMRES . . . . . . . . . . . . 42

3.2.1 Building the preconditioner . . . . . . . . . . . . . 42
3.2.2 Computing the invariant subspace . . . . . . . . . 43
3.2.3 Numerical results . . . . . . . . . . . . . . . . . . . 43

3.3 Fast methods using Fast Fourier Transform . . . . 45
3.3.1 Presentation of the method . . . . . . . . . . . . . 45
3.3.2 Discrete and Fast Fourier Transform . . . . . . . . 50
3.3.3 The algorithm . . . . . . . . . . . . . . . . . . . . 53

3.1 Introduction
Preconditioning : purpose
Take the system AX = b, with A symmetric definite positive, and the conjugate

gradient algorithm. The speed of convergence of the algorithm deteriorates when κ(A)
increases. The purpose is to replace the problem by another system, better conditioned.
Let M be a symmetric regular matrix. Multiply the system on the left by M−1.

AX = b ⇐⇒ M−1AX = M−1b ⇐⇒ (M−1AM−1)MX = M−1b

Define
Ã = M−1AM−1, X̃ = MX, b̃ = M−1b,

and the new problem to solve ÃX̃ = b̃. Since M is symmetric, Ã is symmetric definite
positive. Write the conjugate gradient algorithm for this “tilde“ problem.

The algorithm for Ã

X̃0 given, p̃0 = r̃0 = b̃− ÃX̃0.

While m < Niter or ‖r̃m‖ ≥ tol, do

αm =
‖r̃m‖2

(Ãp̃m, p̃m)
,

X̃m+1 = X̃m + αmp̃
m,

r̃m+1 = r̃m − αmÃp̃m,
βm+1 =

‖r̃m+1‖2
‖r̃m‖2 ,

p̃m+1 = r̃m+1 − βm+1p̃
m.

37



Now define
pm = M−1p̃m, Xm = M−1X̃m, rm = Mr̃m,

and replace in the algorithme above.
The algorithm for A

Mp0 = M−1r0 = M−1b−M−1AM−1MX0 ⇐⇒
{
p0 = M−2r0,

r0 = b−AX0.

‖r̃m‖2 = (M−1rm,M−1rm) = (M−2rm, rm)

Define zm = M−2rm . Then βm+1 =
(zm+1, rm+1)

(zm, rm)
.

(Ãp̃m, p̃m) = (M−1AM−1Mpm,Mpm) = (Apm, pm)

⇒ αm =
(zm, rm)

(Apm, pm)
.

MXm+1 = MXm + αmMpm ⇐⇒ Xm+1 = Xm + αmp
m .

M−1rm+1 = M−1rm − αmM−1AM−1Mpm ⇐⇒ rm+1 = rm − αmApm .

Mpm+1 = M−1rm+1 − βm+1Mpm ⇐⇒ pm+1 = zm+1 − βm+1p
m .

The algorithm for A
Define C = M2.

X0 given, r0 = b−AX0, solve Cz0 = r0, p0 = z0.

While m < Niter or ‖rm‖ ≥ tol, do

αm =
(zm, rm)

(Apm, pm)
,

Xm+1 = Xm + αmp
m,

rm+1 = rm − αmApm,
solve Czm+1 = rm+1,

βm+1 =
(zm+1, rm+1)

(zm, rm)
,

pm+1 = zm+1 − βm+1p
m.

How to choose C
C must be chosen such that
1. Ã is better conditioned than A,
2. C is easy to invert.
Use an iterative method such that A = C −N with symmetric C. For instance it can

be a symmetrized version of SOR, named SSOR, defined for ω ∈ (0, 2) by

C =
1

ω(2− ω)
(D − ωE)D−1(D − ωF ).

Notice that if A is symmetric definite positive, so is D and its coefficients are positive,
then its square root

√
D is defined naturally as the diagonal matrix of the square roots of

the coefficients. Then C can be rewritten as

C = SST , with S =
1√

ω(2− ω)
(D − ωE)D−1/2,

yielding a natural Cholewski decomposition of C.
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Another possibility is to use an incomplete Cholewski decomposition of A. Even if A
is sparse, that is has many zeros, the process of LU or Cholewski decomposition is very
expensive, since it creates non zero values.

Example : Matrix of finite differences in a square
Poisson equation

−(∆hu)i,j = − 1

h2
(ui+1,j − 2ui,j + ui−1,j)−

1

h2
(ui,j+1 − 2ui,j + ui,j−1) = fi,j ,

1 ≤ i ≤M, 1 ≤ j ≤M

1 2 3 4

5 6 7 8

9 10 11 12

Figure 3.1 – Numbering by line

The point (xi, yj) has for number i+(j−1)M . A vector of all unknowns X is created :

Z = (u1,1, u2,1, uM,1), (u1,2, u2,2, uM,2), · · · (u1,M , u2,M , uM,M )

with Zi+(j−1)∗M = ui,j .
If the equations are numbered the same way (equation #k is the equation at point k), the
matrix is block-tridiagonal :

A =
1

h2




B −C 0M
−C B −C

. . . . . . . . .
−C B −C

0M −C B




(3.1)

C = IM , B =




4 −1 0
−1 4 −1

. . . . . . . . .
−1 4 −1

0 −1 4




The righthand side is bi+(j−1)∗M = fi,j , and the system takes the form AZ = b.

1 function A=lap1d(n)

2 % lap1d one dimensional finite difference approximation

3 % A=lap1d(n) computes a sparse finite difference

4 % approximation of the one dimensional operator −Delta on the

5 % domain Omega=(0,1) using n interior points

6
7 h=1/(n+1);

8 e=ones(n,1);

9 A=spdiags([−e/h^2 2/h^2*e −e/h^2],[−1 0 1],n,n);
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1 A=lap2d(nx,ny);

2 % A=lap2d(nx,ny) matrix of −delta in 2d on a grid

3 % of nx internal points in x and ny internal points in y

4 % numbered by row. Uses the function kron of matlab

5 Dxx=lap1d(nx);

6 Dyy=lap1d(ny);

7
8 A=kron(speye(size(Dyy)),Dxx)+kron(Dyy,speye(size(Dxx)));

Cholewski decomposition of A

The block-Cholewski decomposition of A, A = RRT , is block-bidiagonale, but the
blocks are not tridiagonale as in A, as the spy command of matlab can show, in the case
where M = 15.

spy(A) spy(R)

However, if we look closely to the values of R between the main diagonales where A
was non zero, we see that where the coefficients of A are zero, the coefficients of R are
small. Therefore the incomplete Cholewski preconditioning computes only the values of R
where the coefficient of A is not zero, and gains a lot of computational time.

Figure 3.2 – Variation of the coefficients of Cholewski in the line 80 for
M = 15

The matlab codes are as follows ([5])
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Cholewski

1 Ch=tril(A);
2 for k=1:nn
3 Ch(k,k)=sqrt(Ch(k,k));
4 Ch(k+1:nn,k)=Ch(k+1:nn,k)/Ch(k,

k);
5 for j=k+1:nn
6 Ch(j:nn,j)=Ch(j:nn,j)−Ch(j:

nn,k)*Ch(j,k);
7 end
8 end

Incomplete Cholewski

1 ChI=tril(A);
2 for k=1:nn
3 ChI(k,k)=sqrt(ChI(k,k));
4 for j=k+1:nn
5 if ChI(j,k) ~= 0
6 ChI(j,k)=ChI(j,k)/ChI(k

,k);
7 end
8 end
9 for j=k+1:nn
10 for i=j:n
11 if ChI(i,j) ~= 0
12 ChI(i,j)=ChI(i,j)−

ChI(i,k)*ChI(j,k
);

13 end
14 end
15 end
16 end

Then use C = R ∗RT .
Comparison For the 2-D finite differences matrix and n = 25 internal points in each

direction, we compare the convergence of the conjugate gradient and various preconditio-
ning : Gauss-Seidel, SSOR with optimal parameter, and incomplete Cholewski. The gain
even with ω = 1 is striking. Furthermore Gauss-Seidel is comparable with Incomplete
Cholewski.

Figure 3.3 – Convergence history, influence of preconditioning
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3.2 Deflation method for GMRES

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 37
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3.2.3 Numerical results . . . . . . . . . . . . . . . . . . . 43

3.3 Fast methods using Fast Fourier Transform . . . . 45
3.3.1 Presentation of the method . . . . . . . . . . . . . 45
3.3.2 Discrete and Fast Fourier Transform . . . . . . . . 50
3.3.3 The algorithm . . . . . . . . . . . . . . . . . . . . 53

Recall the restarted GMRES algorithm to solve Ax = b :

Algorithm GMRES(m)
Choose x0 ;
1. r0 = b−Ax0 , β = ‖r0‖, v1 := r0/β ;
2. Generate the Arnoldi basis applied to A and the associated Hessenberg matrix
H̃m starting with v1;

3. Compute ym which minimises ‖βe1 − H̃my‖ and xm = x0 + Vmym ;
4. If convergence Stop, else set x0 = xm and Go To 1 ;
Here we choose a right preconditioning M in order to garantee a non increasing resi-

dual. This would not be true with a left preconditioner since the residual is multiplied by
M−1
This preconditioner can change at each restart. The algorithm becomes

Algorithm PRECGMRES(m)
Choose x0 ;
Choose M ;
1. r0 = b−Ax0 , β = ‖r0‖, v1 := r0/β ;
2. Generate the Arnoldi basis applied to AM−1 and the associated Hessenberg
matrix H̃m starting with v1;

3. Compute ym which minimises ‖βe1 − H̃my‖ and xm = x0 +M−1Vmym ;
4. If convergence Stop, else set x0 = xm update M and Go To 1 ;
The objective of deflation is to remove the smallest eigenvalues of A which slow down

the GMRES convergence. With a restarted GMRES, information on these eigenvalues is
lost which explains why restarted GMRES can be quite slow and even fail to converge.
Deflation aims to replace them by real positive eigenvalues equal to the largest modulus
of the eigenvalues.

3.2.1 Building the preconditioner
In the following we assume that A is diagonalizable in C with eigenvalues |λ1| ≤ |λ2| ≤

|λn|.
Let P be an invariant subspace of dimension r corresponding to the r smallest eigenvalues
of A and U an orthonormal basis of P. The deflating preconditioner is based on the idea
that the linear system is solved exactly in space P.

Theorem 3.1 if T = UTAU andM = In+U(1/|λn|T−Ir)UT then M is non singular and
M−1 = In +U(|λn|T−1− Ir)UT and the eigenvalues of AM−1 are λr+1, λr+2, ..., λr, |λn|,
and |λn| is an eigenvalue of multiplicity at least r.
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Note : If only a close approximation P̃ is known , an improved convergence rate is
still to be obtained.

3.2.2 Computing the invariant subspace

The GMRES algorithm provides the Hesssenberg matrix Hk = Vk
TAVk, which is the

restriction of A onto the Krylov subspace K(k,A, r0). The eigenvalues of Hk are called
Ritz values. Let Hk = SRST be the Schur canonical form of Hk with the eigenvalues
ordered by increasing values. Then vectors U = VkS approximate the Schur vectors of
A. The largest Ritz value approximates the largest eigenvalue of A thus providing a first
approximation of M .

After each restart new Ritz values can be estimated approximating eigenvalues of
AM−1] also approximating remaining eigenvalues of A. By increasing the invariant sub-
space at each restart , a more powerful preconditioner is thus built.
To avoid loss of orthogonality , these vectors are orthogonalized against the previous basis
U .

Note : In some sense this algorithm recovers the superlinear convergence of the full
GMRES version which behaves as if the smallest eigenvalues were removed. The precondi-
tioner keeps the information on the smallest Ritz values which would be lost by restarting.

Algorithm DEFLGMRES(m)
Choose x0 ;
M = In ;
U= ;
1. r0 = b−Ax0 , β = ‖r0‖, v1 := r0/β ;
2. Generate the Arnoldi basis applied to AM−1 and the associated Hessenberg
matrix H̃m starting with v1;

3. Compute ym which minimises ‖βe1 − H̃my‖ and xm = x0 +M−1Vmym ;
4. If convergence Stop, else set ;

x0 = xm ;
Compute l Schur vectors of Hm noted Sl ;
Compute the approximation of |λn| ;
Orthogonalize VmSl against U ;
Increase U with VmSl ;
T = UTAU ;
M−1 = In + U(|λn|T−1 − Ir)UT ;
Go To 1 ;

3.2.3 Numerical results

Results on two matrices of dimension 100 are given . A has the form A = SDS−1 with
S = (1, β) an upper bidiagonal matrix.
Case 1 : β = 0.9 and D = diag(1, 2, ..., 100)
Case 2 : β = 0.9 and D = diag(1, 100, 200, ..., 10000)

DEFLGMRES(10,1) is compared with GMRES(10) and full GMRES . Tolerance is
set to 10−8
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Figure 3.4 – Convergence history, Case 1

Figure 3.5 – Case 2
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3.3 Fast methods using Fast Fourier Transform

3.3.1 Presentation of the method
We’ll work with the finite difference approximation of the Laplace equation in dimen-

sion 2.

1	 2	 3	 4	

5	 6	 7	 8	

9	 10	 11	 12	

N = i + (j � 1) n

i

j
(n + 1)hx = a

(m
+

1)
h

y
=

b

a

b

Figure 3.6 – Pavage de [0, a]× [0, b], n = 4 and m = 3

A =



B C 0
C B C
0 C B


 size(blocks)=n

−ui+1,j − 2ui,j + ui−1,j
h2x

−ui,j+1 − 2ui,j + ui,j−1
h2y

= fi,j
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1	 2	 3	 4	

5	 6	 7	 8	

9	 10	 11	 12	

N = i + (j � 1) n

i

j
(n + 1)hx = a

(m
+

1)
h

y
=

b

a

b

Figure 3.7 – Pavage de [0, a]× [0, b], n = 4 and m = 3




2

h2
x
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2

h2
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0 0 − 1
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y

0 0 0 0 0 0 0

− 1

h2
x

2

h2
x

+
2

h2
y

− 1

h2
x

0 0 − 1

h2
y

0 0 0 0 0 0

0 − 1

h2
x

2

h2
x

+
2

h2
y

− 1

h2
x
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y
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y
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0 0 0 0
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+
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0 0 0
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0 0 − 1

h2
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0

0 0 0 − 1

h2
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h2
x

2

h2
x

+
2

h2
y

0 0 0 − 1

h2
y

0 0 0 0 − 1

h2
y

0 0 0
2

h2
x

+
2

h2
y

− 1

h2
x

0 0

0 0 0 0 0 − 1

h2
y

0 0 − 1

h2
x

2

h2
x

+
2

h2
y

− 1

h2
x

0

0 0 0 0 0 0 − 1

h2
y

0 0 − 1

h2
x

2

h2
x

+
2

h2
y

− 1

h2
x

0 0 0 0 0 0 0 − 1

h2
y

0 0 − 1

h2
x

2

h2
x

+
2

h2
y




A =



B C 0
C B C
0 C B


 = I3 ⊗ A1(hx) + A1(hy)⊗ I4.
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B =




2

h2
x

+
2

h2
y

− 1

h2
x

0 0

− 1

h2
x

2

h2
x

+
2

h2
y

− 1

h2
x

0

0 − 1

h2
x

2

h2
x

+
2

h2
y

− 1

h2
x

0 0 − 1

h2
x

2

h2
x

+
2

h2
y




= A1(hx)+
2

h2
y

In

C = −




1

h2
y

0 0 0

0
1

h2
y

0 0

0 0
1

h2
y

0

0 0 0
1

h2
y




= − 1

h2
y

In.

Consider now the general problem Ax = b, where A is a nm× nm symmetric matrix
A, block tridiagonal in the form

A = A(B,C) =




B C 0

C B C

. . . . . . . . .

C B C

0 C B




. (3.2)

Each block is a n× n matrix. The vectors b and x can be split by block of size n as well,
xj ∈ Rn is the sought solution on the ligne j.

b =




b1

...

bm


 , x =




x1

...

xm




The system can be rewritten as



B C 0

C B C

. . . . . . . . .

C B C

0 C B







x1

x2

...

xm−1

xm




=




b1

b2

...

bm−1

bm




47



which is a system of m systems of dimension n :

Bx1 + Cx2 = b1

. . .

Cxi−1 +Bxi + Cxi+1 = bi

. . .

Cxm−1 +Bxm = bm

Suppose B and C are symmetric, and diagonalise in the same orthonormal basis
(q1, . . . , qn). This is the case for our previous example. Denote by Q the corresponding
orthogonal matrix Q = [q1, . . . , qn]. There exist two diagonal matrices D1 and D2 such
that

B = QD1QT , C = QD2QT .

Take for example the first equation

Bx1 + Cx2 = b1

and replace B and C :
QD1QTx1 +QD2QTx2 = b1

Multiply by QT :
D1QTx1 +D2QTx2 = QT b1

Denote by (ci,yi) the coordinates of (bi,xi) in the new basis :

QT bi = ci, QTxi = yi, 1 ≤ i ≤ m.

Then the problem takes the form

D1y1 +D2y2 = c1

. . .

D2yi−1 +D1yi +D2yi+1 = ci

. . .

D2ym−1 +D1ym = cm

These are all diagonal systems. Take the component number j in each block of the
previous system, for 1 ≤ j ≤ n :

D1
jy

1
j +D2

jy
2
j = c1j

. . . =

D2
jy
i−1
j +D1

jy
i
j +D2

jy
i+1
j = cij

. . .

D2
jy
m−1
j +D1

jy
m
j = cmj

which is written in matrix form as



D1
j D2

j 0

D2
j D1

j D2
j

. . . . . . . . .

D2
j D1

j D2
j

0 D2
j D1

j







y1
j

y2
j

...

ym−1
j

ymj




=




c1j

c2j
...

cm−1
j

cmj



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For each j, 1 ≤ j ≤ n, define the tridiagonal m×m matrix

Tj =




D1
j D2

j 0

D2
j D1

j D2
j

. . . . . . . . .

D2
j D1

j D2
j

0 D2
j D1

j




and 2 vectors in Rm

dj =




c1j
...

cmj


 , zj =




y1
j

...

ymj




We have now n tridiagonal systems of size m,

Tjz
j = dj , 1 ≤ j ≤ n.

which can be solved in parallel with a LU decomposition for instance. For the 2D Laplace
equation with equidistant grid, the computation of the cj and the reconstruction of x can
be done by Fast Fourier transform.
The matrix of the zj is

Z = (z1, . . . ,zj , . . . ,zn) =




y1
1 , . . . y

1
2 . . . , y

1
n

...

yi1 . . . y
i
2 . . . y

i
n

...

ym1 . . . ym2 , . . . , y
m
n




=




y1

...

yi

...

ym




We finally have to compute for each j, xj = Qyj where Q is the orthogonal matrix

which diagonalizes B = A1(hx) + 2
h2
y
In and C is − 1

h2
y

In, the matrix . The eigenvectors of

B and C are those of A1(hx), given by (after orthonormalisation)

Φ
(k)
j =

√
2

n+ 1
sin

jkπ

n+ 1
, 1 ≤ j ≤ n, hx =

1

n+ 1
,

the eigenvalues of B are those of A1(hx) + 2
h2
y
, which are 2

h2
y

+ 4
h2
x

sin2 kπhx
2 . Define the

matrix Q as the matrix of eigenvectors

Q = [Φ(1), · · · ,Φ(n)].

Note that Q is symmetric. We want to compute efficiently Qv for any vector v. By

v =

n∑

k=1

vke
(k), Qv =

n∑

k=1

vkΦ
(k),

we obtain

(Qv)j = (QTv)j =

√
2

n+ 1

n∑

k=1

vk sin
kjπ

n+ 1
.

Note that the sum can be extended to k = n+ 1 since the sinus vanishes.

(Qv)j = (QTv)j =

√
2

n+ 1

n+1∑

k=1

vk sin
kjπ

n+ 1
. (3.3)

The next section is occupied with the FFT, we’ll come back to the algorithm later.
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3.3.2 Discrete and Fast Fourier Transform
Let n′ = n+ 1. The Discrete Fourier Transform of length n′ is defined by

DFT : wj =

n′∑

k=1

vk e
−2i kjπ

n′ , j = 1, · · · , n′.

Define r = e2i π
n′ the basic n′− th root of unity, then we rewrite the formula above as

DFT : wj =

n′∑

k=1

vk e
−2i kjπ

n′ =

n′∑

k=1

vk r
−kj , j = 1, · · · , n′. (3.4)

Lemma 3.1 (Inverse DFT) If w = (wj)1≤j≤n′ is the discrete Fourier transform of
v = (vj)1≤j≤n′ from (3.4), then the inverse discrete Fourier transform is given by

vk =
1

n′

n′∑

p=1

wp r
kp, p = 1, · · · , n′. (3.5)

Proof Just replace in (3.4),

n′∑

k=1


 1

n′

n′∑

p=1

wp r
kp


 r−kj =

1

n′

n′∑

p=1

wp

n′∑

k=1

rk(p−j). =
1

n′

n′∑

p=1

wp

n′∑

k=1

(
rp−j

)k
.

Since z = rp−j is also a n′− root of unity,




for z 6= 1,
n′∑
k=1

zk = 0,

for z = 1,
n′∑
k=1

zk = n′.

The last case corresponds to p = j. Therefore

1

n′

n′∑

p=1

wp

n′∑

k=1

rk(p−j) = wj

and the lemma is proven.

We now describe the FFT algorithm, and we must suppose that n′ is even, that is
n′ = 2p. We need to specify more r = e2i π

n′ , that we call rn′ . Note for further use that
(rn′)

n′ = 1 and (rn′)
p = −1. Split the sum in (3.4) into even (k = 2`, ` = 1 : p) and odd

terms (k = 2`− 1, ` = 1 : p). For j = 1, · · · , 2p,

wj =
n′∑
k=1

vk r
−kj
n′

wj =
p∑
`=1

v2` r
−2`j
n′ +

p∑
`=1

v2`−1 r
−(2`−1)j
n′

=
p∑
`=1

v2` r
−2`j
n′ + rjn′

p∑
`=1

v2`−1 r
−2`j
n′ .

Defining for j = 1, · · · , 2p,

uj =

p∑

`=1

v2` r
−2`j
n′ , tj =

p∑

`=1

v2`−1 r
−2`j
n′ .

Then
wj = uj + rjn′tj .
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n′ = 2p, uj =

p∑

`=1

v2` r
−2`j
n′ , tj =

p∑

`=1

v2`−1 r
−2`j
n′ , wj = uj + rjn′tj .

We verify that for each j, uj+p = uj and tj+p = tj :

uj+p =

p∑

`=1

v2` r
−2`(j+p)
n′ = r−2`p

n′ uj = uj .

This implies that we only need to compute (uj , tj) for 1 ≤ j ≤ p. Furthermore

wj+p = uj+p + rj+pn′ tj+p = uj + rjn′r
p
n′tj = uj − rjn′tj .

To compute uj and tj note that
p∑

`=1

v2` r
−2`j
n′ =

p∑

`=1

v2` (r2
n′)
−`j .

But r2
n′ = (e−

2iπ
2p )2 = e−

2iπ
p : r2

n′ = rp. Therefore

uj =

p∑

`=1

v2` r
−`j
p , tj =

p∑

`=1

v2`−1 r
−`j
p .

The sums above are similar sums as that defining wj , but with p = n′/2. This is the
starting point for a dyadic computation of the wj : the Fast Fourier Transform.

To obtain {wj}1≤j≤2p from {vj}1≤j≤2p, do

Compute rjn′ j = 1, · · · , p

Compute uj =

p∑

`=1

v2` r
−`j
p , tj =

p∑

`=1

v2`−1 r
−`j
p j = 1, · · · , p

Compute wj = uj + rjn′tj , wj+p = uj − rjn′tj j = 1, · · · , p.

rn′ = e2i π
n′ , wj =

n′∑

k=1

vk r
−kj , j = 1, · · · , n′.

Initialization : n′ = 2, rn′ = −1, w1 = −v1 + v2, w2 = v1 + v2.

1 function w=myFFT(v)
2 % MYFFT fast Fourier transform
3 % w=myFFT(v); computes recursively the Fourier tranform of
4 % the vector v whose length must be a power of 2.
5 n=length(v);
6 if n==2,
7 w=[−v(1)+v(2);v(1)+v(2)];
8 else
9 rv=exp(2i*pi/n*(1:n/2)');
10 t=myFFT(v(1:2:n−1));
11 u=myFFT(v(2:2:n));
12 w=[u+rv.*t; u−rv.*t];
13 end;
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r = e2i π
n′ , wj =

n′∑

k=1

vk r
−kj , j = 1, · · · , n′.

n′ = 2, r = −1, initialization w1 = −v1 + v2, w2 = v1 + v2.

1 function w=myFFT(v)
2 % MYFFT fast Fourier transform
3 % w=myFFT(v); computes recursively the Fourier tranform of
4 % the vector v whose length must be a power of 2.
5 n=length(v);
6 if n==2,
7 w=[−v(1)+v(2);v(1)+v(2)];
8 else
9 rp=exp(2i*pi/n*(1:n/2)');
10 t=myFFT(v(1:2:n−1));
11 u=myFFT(v(2:2:n));
12 w=[u+rp.*t; u−rp.*t];
13 end;
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2 + 2i
2

2� 2i
10

1
CCA

Figure 3.8 – FFT for n′ = 4

It is easy to count the number of operations in the algorithm to be O(n log2(n)).
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3.3.3 The algorithm

We now show how to obtain the computation of Qv in (3.3) with FFT.

v ∈ Rn, n′ = n+ 1 EVEN

Qv =
√

2
n+1 z ∈ Rn, zj =

n′∑
k=1

vk sin kjπ
n′ 1 ≤ j ≤ n,

ṽ = [v; 0] ∈ Rn′ ,

DFT (ṽ) = w ∈ Rn′ , wj =
n′∑
k=1

ṽk e
−2i kjπ

n′ 1 ≤ j ≤ n′

Consider first the even indices z2, · · · , zn−1 :

z2` =

n′∑

k=1

ṽk sin
2`kπ

n′
= −Imw`, ` = 1, · · · , n− 1

2
.

Consider now the odd indices, z1, · · · , zn

z2`−1 = −Im
n′∑
k=1

ṽke
−i k(2`−1)π

n′ = −Im
n′∑
k=1

(ṽke
i kπ
n′ )e−2i k`π

n′

= −Im(DFT ({ṽkei
kπ
n′ }k))`, ` = 1, · · · , n+1

2 .

Resuming with matlab notations

QFFT

r0 = ei
π
n′

(Qv)2` = −
√

2
n+1 Im(FFT (ṽ))`, ` = 1, · · · , n−1

2

(Qv)2`−1 = −
√

2
n+1 Im(FFT (ṽ · ∗r0(1:n′)′))`, ` = 1, · · · , n+1

2

(3.6)

Summarizing the solution of




B C 0

C B C

. . . . . . . . .

C B C

0 C B







x1

x2

...

xm−1

xm




=




b1

b2

...

bm−1

bm




Step 1 : FFT Compute cj = Qbj by (3.6) for 1 ≤ j ≤ m.

Step 2 : Sort {c1, · · · , cm} The righthand side has been build by rows in the mesh :
bj is the vector of the values of the forcing term on the line y = j ∗ hy.

53



1	 2	 3	 4	

5	 6	 7	 8	

9	 10	 11	 12	

N = i + (j � 1) n
i

j

a

b
n = 4, m = 3

i

j

a

b

b1
1

b2
1

b3
1 b3

2 b3
3 b3

4

b2
4

b1
4

b1
3

b2
3b2

2

b1
2

b2T

b1T

b3T

Figure 3.9 – Numbering
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Figure 3.10 – Renumbering

The total vector σ is numbered from 1 to nm, with N = i+(j−1)∗n. The matrix
C is built as follows

σ(1 : n) → C(:, 1)

σ(n+ 1 : 2n) → C(:, 2)
...

σ((m− 1)n+ 1 : mn) → C(:,m)

1 for j=1:m
2 C(:,j)=sig((j−1)*n+1:j*n )
3 end

and then instead of reading the columns, we read the rows.

Step 3 : Solving the n tridiagonal systems of size m,

Tjz
j = dj , 1 ≤ j ≤ n.
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with dj = C(j, :), and

Tj =




D1
j D2

j 0

D2
j D1

j D2
j

. . . . . . . . .

D2
j D1

j D2
j

0 D2
j D1

j




,

D2
j = − 1

h2
y

, D1
j =

2

h2
y

+
4

h2
x

sin2 jπh

2(n+ 1)
.

Step 4 : Reordering the zj into yj

Step 5 : Recovering xj = Qyj by (3.6).

For this method, we talk about FFT preconditioning, since the system Au = b is
premultiplied by the block-diagonal matrix

Q =




QT

QT 0

. . .

0 QT




= I ⊗QT

That is we write
QAQTQu = Qb.

The total cost is
2 FFT : 2n log2(n),
n resolutions in parallel of tridiagonal systems of size m : m
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Chapitre 4

Multigrid methods

Contents
4.1 Geometric multigrid . . . . . . . . . . . . . . . . . . 57

4.1.1 The V- cycle process . . . . . . . . . . . . . . . . . 58

4.1.2 L∞estimates . . . . . . . . . . . . . . . . . . . . . 66

4.2 Algebraic Multigrid AMG . . . . . . . . . . . . . . 70

4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 70

4.2.2 AMG . . . . . . . . . . . . . . . . . . . . . . . . . 73

Multigrid methods are a prime source of important advances in algorithmic efficiency
, finding a rapidly increasing number of users. Unlike other known methods, multigrid
offers the possibility of solving problems with N unknowns with O(N) work and storage,
not just for special cases, but for large classes of problems. It relies on the use of several
nested grids.

4.1 Geometric multigrid

For the modal presentation of the method, we refer to [7],[3], [6]. For the finite element
part, we refer to [2].
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Figure 4.1 – scheme for a V-cycle, courtesy of David Keyes, Columbia Uni-
versity

4.1.1 The V- cycle process
One cycle of the multigrid method is given as follows. Suppose we have a grid of size

h. We want to solve AhŪh = bh. We take an initial guess Uh, eh,0 = Ūh−Uh, and define
MG(Ah, bh, Uh)

Step 1 : smoothing N1 iterations of the smoother, with initial guess Uh.

Uh,1 = Sh(Ah, bh, Uh, N1), eh,1 = Ūh − Uh,1.

The residual is rh,1 = bh −AhUh,1 = Aheh,1.
It is projected on the coarse grid

r2h = P 2h
h rh,1

Step 2 : Coarse resolution The system A2hŨ2h = r2h is solved approximately
by p iterations of the multigrid solver on the coarse grid

U2h,r = MG(A2h, r2h, U2h,r−1), U2h,0 = 0, 1 ≤ r ≤ p.

It is projected on the fine grid

Uh,2 = Uh,1 + Ph2hU
2h,r, eh,2 = eh,1 − Ph2hU2h,r

Step 3 : Smoothing again N2 iterations of the smoother

Uh,3 = Sh(Ah, bh, Uh,2, N2).
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If the coarse grid is “sufficiently coarse”, the coarse problem is solved exactly by a
direct method.

We will describe the process in one dimension, in the simple case where the coarse
problem is solved exactly, i.e.

Uh,2 = Uh,1 − Ph2hŨ2h

h =
1

n+ 1
, n = 2` − 1, AhŪh = fh, Ah ∈Mn(R)

2h =
1
n+1

2

, n′ =
n− 1

2

Example :
h = 2−3, n = 7, 2h = 2−2, n′ = 3.

Ah =
1

h2




2 −1 0 0 0 0 0

−1 2 −1 0 0 0 0

0 −1 2 −1 0 0 0

0 0 −1 2 −1 0 0

0 0 0 −1 2 −1 0

0 0 0 0 −1 2 −1

0 0 0 0 0 −1 2




, Ūh =




Ūh1

Ūh2

Ūh3

Ūh4

Ūh5

Ūh6

Ūh7




A2h =
1

4h2




2 −1 0

−1 2 −1

0 −1 2


 , U2h =




U2h
1

U2h
2

U2h
3




The Smoother

We will use one of the stationary methods , relaxed Jacobi or Gauss-Seidel. The matrix
of the iteration is

S = I − 1

ω
D−1A or I − (D − E)−1A.

See chapter 1.

eh,1 = SN1eh,0, rh,1 = bh −AhUh,1 = Ah(Ūh − Uh,1) = Aheh,1. (4.1)

Projection on the coarse grid

The fine grid is (kh) = (
k

n+ 1
) for 1 ≤ k ≤ n. The coarse grid is (k2h) = (

2k

n+ 1
) for

1 ≤ k ≤ (n− 1)/2.

P 2h
h : Rn → R(n−1)/2, (P 2h

h V h)j =
1

4
(V h2j−1 + 2V h2j + V h2j+1).

The matrix of P 2h
h is

P 2h
h =




1
4

1
2

1
4 0 0 0 0

0 0 1
4

1
2

1
4 0 0

0 0 0 0 1
4

1
2

1
4


 R7 → R3
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P 2h
h V =




1
4V1 + 1

2V2 + 1
4V3

1
4V3 + 1

2V4 + 1
4V5

1
4V5 + 1

2V6 + 1
4V7


 R7 → R3

Define now

r2h := P 2h
h rh = P 2h

h Aheh,1.
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Figure 4.2 – Projection from fine to coarse grid

Coarse resolution

Suppose the coarse grid problem is solved exactly.

A2hŨ2h = r2h

.

Projection on the fine grid

We define the projection operator as :

Ph2h : R(n−1)/2 → Rn,

{
(Ph2hU

2h)2j = U2h
j

(Ph2hU
2h)2j+1 = 1

2 (U2h
j + U2h

j+1)

The matrix is

Ph2h =




1
2 0 0

1 0 0

1
2

1
2 0

0 1 0

0 1
2

1
2

0 0 1

0 0 1
2




= 2(P 2h
h )T R3 → R7 Ph2h




U1

U2

U3


 =




1
2U1

U1

1
2 (U1 + U2)

U2

1
2 (U2 + U3)

U3

1
2U3



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Figure 4.3 – Projection from coarse to fine grid

Result of the coarse walk

eh,2 = (I − Ph2h(A2h)−1P 2h
h Ah)eh,1

Lemma 4.1

KerP 2h
h Ah = {V ∈ Rn, V2j = 0, j = 1 · · · , (n− 1)/2}, (4.2)

KerP 2h
h Ah ⊕ ImPh2h = Rn, (4.3)

∀V ∈ R(n−1)/2,∀j, (AhPh2hV )2j+1 = 0, (4.4)
P 2h
h AhPh2h = A2h. (4.5)

Proof It is easy to compute for n = 7,

P 2h
h AhU =

1

h2




1
2U2 − 1

4U4

− 1
4U2 + 1

2U4 − 1
4U6

− 1
444 + 1

2U6


 =

1

4h2




2 −1 0

−1 2 −1

0 −1 2







U2

U4

U6


 = A2h




U2

U4

U6




Denoting by Ue the vector of the even coordinates of U , we have proved that for any
vector U ∈ Rn,

P 2h
h AhU = A2hUe. (4.6)

Therefore the kernel of P 2h
h Ah is equal to the space of U such that Ue = 0, which proves

(4.2).
Now by the rank theorem,

dimKerP 2h
h + dim ImP 2h

h = n.

Since Ah is an isomorphism in Rn, dimKerP 2h
h = dimKerP 2h

h Ah. Then

dimKerP 2h
h Ah + rgP 2h

h = n.

Since P 2h
h = 1

2 (Ph2h)T , they have the same rank, and therefore

dimKerP 2h
h Ah + rgPh2h = n.

Furthermore, any U in KerP 2h
h Ah ∩ ImPh2h is equal to Ph2hw, and U2j = 0. Since

(Ph2hw)2j = wj , this proves that w = 0. Hence (4.3) is proved.
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We now can prove in the same way, first that for V in R(n−1)/2 (coarse),

(AhPh2hV )2j+1 = 0, (AhPh2hV )2j =
1

2h2
(−Vj−1 + 2Vj − Vj+1) = 2(A2hv)j .

Then using (4.6), V in R(n−1)/2 (coarse),

P 2h
h AhPh2hV = A2h(Ph2hV )e = A2hV

which finally gives (4.5).

Lemma 4.2
eh,1 = dh + Ph2he

2h,

with

dh2j = 0, dh2j+1 =
h2

2
(Aheh,1)2j+1, e2h

j = eh,12j

Proof By (4.3), we can expand eh,1 as

eh,1 = dh + Ph2he
2h,

with dh ∈ KerP 2h
h Ah. By (4.2), dh2j = 0, and

eh,12j = (Ph2he
2h)2j = e2h

j ,

which determines the components of e2h. Compute now the odd components,

eh,12j+1 = dh2j+1 + (Ph2he
2h)2j+1 = dh2j+1 +

1

2
(e2h
j + e2h

j+1) = dh2j+1 +
1

2
(eh,12j + eh,12j+2)

Therefore

dh2j+1 =
1

2
(2eh,12j+1 − eh,12j − eh2j+2) =

h2

2
(Aheh,1)2j+1.

Apply the lemma to compute eh,2.

Ph2h(A2h)−1P 2h
h Aheh,1 = Ph2h(A2h)−1P 2h

h Ah(dh+Ph2he
2h) = Ph2h(A2h)−1 P 2h

h AhPh2h︸ ︷︷ ︸
A2h

e2h = Ph2he
2h.

Therefore
eh,2 = eh,1 − Ph2he2h = dh,

which implies the elegant formula

eh,22j = 0, eh,22j+1 =
h2

2
(Aheh,1)2j+1 =

h2

2
rh,12j+1.

the even components have disappeared.

Postsmoothing

eh,3 = SN2eh,2.

eh,3 = SN2Πo
h2

2
AhSN1eh,0
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Spectral analysis
Eigenvalues and eigenvectors of A (h× (n+ 1) = 1).

µk =
4

h2
sin2 kπh

2
, Φ

(k)
j =

√
2

n+ 1

(
sin

jkπ

n+ 1

)
, 1 ≤ j ≤ n.

For any iterative method, the eigenfunctions of the iteration matrix are equal to those
of A. Therefore The smoothing matrix S has eigenvalues λk, and eigenvectors Φ(k). For
relaxed Jacobi or the Gauss-Seidel algorithm, the eigenvalues are

λJk (ω) = 1− 2ω sin2 (
kπh

2
) for 1 ≤ k ≤ n,

λGSk = cos2 kπh for 1 ≤ k ≤ n,

Figure 4.4 shows the eigenvalues as a function of k for n = 25 − 1.
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1
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Jacobi ω =
2

3

Jacobi ω = 1

Gauss-Seidel

Figure 4.4 – Eigenvalues (39) of the relaxed Jacobi iteration matrix as a
function of k for several values of ω together with Gauss-Seidel

∗ For small k, λJk (ω) ∼ 1− ωk
2π2h2

2
.

∗ For ω = 2/3, (n+ 1)/2 ≤ k ≤ n ⇒ |λJk (ω)| ≤ 1/3︸︷︷︸
smoothing factor

−1/3 < 1− 4/3 sin2(
kπ

2(n+ 1)
) ≤ 1− 4/3 sin2(

(n+ 1)π

4(n+ 1)
) = 1/3

∗ For other modes. |λJk (ω)| ∈ (1/3, 1− 4

3
sin2(

πh

2
))

When using Gauss-Seidel as a smoother, one can observe that the eigenvalues are small
in the neighbourhood of k ∼ (n− 1)/2.

For an initial error eh,0 = Φ(k), #k eigenmode of A associated to eigenvalue µk, the
error and residual after N1 iterations are

eh,1 = λN1

k Φ(k), rh,1 = µkλ
N1

k Φ(k).

From

eh,22j = 0, eh,22j+1 =
h2

2
rh,12j+1

we obtain

eh,2 =
h2

2
µkλ

N1

k Φ
(k)
odd.
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It is easy to see that

Φ
(n+1−k)
2j = −Φ

(k)
2j , Φ

(n+1−k)
2j+1 = Φ

(k)
2j , Φ

(k)
odd =

1

2
(Φ(k) + Φ(n+1−k))

eh,2 =
h2

4
µkλ

N1

k (Φ(k) + Φ(n+1−k))

If the same smoother is applied in postprocessing,

eh,3 =
h2

4
µkλ

N1

k (λN2

k Φ(k) + λN2

n+1−kΦ(n+1−k))

For Gauss-Seidel λGSn+1−k = cos2 (n+1−k)π
n+1 = λGSk , and

eh,3 = h2

4 µkλ
N1+N2

k (Φ(k) + Φ(n+1−k))

= 2 sin2 kπh
2 cos2(N1+N2)(kπh)Φ

(k)
odd

= 2 sin2 kπh
2 cos2(N1+N2)(kπh)Φ

(k)
odd

The convergence factor over one round is therefore

(1− cos(kπh)) cos2(N1+N2)(kπh)

For relaxed Jacobi, λJn+1−k(ω) + λJk (ω) = 2(1− ω). and

eh,3 =
h2

4
µkλ

N1

k (λN2

k Φ(k) + (2(1− ω)− λk)N2Φ(n+1−k)

eh,32j =
h2

4
µkλ

N1

k (λN2

k − (2(1− ω)− λk)N2)Φ
(k)
2j

eh,32j+1 =
h2

4
µkλ

N1

k (λN2

k + (2(1− ω)− λk)N2)Φ
(k)
2j+1

Choose relaxed Jacobi with ω = 2/3. For (n+ 1)/2 ≤ k ≤ n, |λJk | ≤ 1/3, and we have

eh,3j = 2(1/3)N1+N2 |Φ(k)
j |

and for 1 ≤ k ≤ (n− 1)/2 ,

|eh,32j+1| ≤ sup
x∈(0,1)

(x(1− ωx)N )|Φk2j+1| ≤
1

ω(N + 1)

(
N

N + 1

)N
|Φk2j+1|

For three iterations of the smoother (N=3), the low frequencies have been
damped by a factor 0.1582, and the high frequencies by a factor 0.2963 ! ! The
figures below show the result of one cycle of the above described algorithm, compared to
three iterations of relaxed Jacobi, or Gauss-Seidel, for several inital guesses. n = 10.

64



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
frequency 1

 

 

initial guess

one V−cycle

3 iterations relaxed Jacobi

3 iterations Jacobi

Figure 4.5 – Comparison of the iterative methods. Initial guess sinπx
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Figure 4.6 – Comparison of the iterative methods. Initial guess sin(n −
1)/2πx.
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Figure 4.7 – Comparison of the iterative methods. Initial guess sin(n−1)πx.

The effect of one V-cycle on one single mode for n = 201.
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4.1.2 L∞estimates
Suppose the computation on the coarse grid can be done exactly, and use relaxed

Jacobi with ω = 2/3. Then S = I − h2Ah/3 = 1/3B where

B =




1 1

1 1 1 0

. . . . . . . . .

0 1 1 1

1 1




.

Compute

(SU)j =
1

3
(Uj−1 + Uj + Uj+1),⇒ ‖SU‖∞ ≤ ‖U‖∞.

Furthermore

h2(SAheh)2j+1 =
1

6
(−eh2j−2 + eh2j−1 + eh2j+1 − eh2j+2),

from which we deduce that

maxj |h2(SAheh)2j+1| ≤
2

3
‖eh‖∞.
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Therefore we obtain

‖eh,2‖∞ = sup
j
|h

2

2
Ahrh,12j+1|

from formula (??), we deduce for ω = 2/3 :

eh,22j+1 = −1

6
e2j−1 +

1

6
e2j +

1

6
e2j+2 −

1

6
e2j+3.

and therefore we have the error estimate

eh,22j = 0, |eh,22j+1| =
2

3
‖eh‖∞.

Since the smoothing produces for any U ∈ R2n−1

(SU)j =
1

3
(Uj−1 + Uj + Uj+1),

we have
‖SU‖∞ ≤ ‖U‖∞,

and

‖eh,3‖∞ ≤
2

3
‖eh‖∞.

The convergence is independent of the size of the matrix

Number of elementary operations

method number of operations

Gauss elimination n2

optimal overrelaxation n3/2

preconditionned conjugate gradient n5/4

FFT n ln2(n)

multigrid n

Table 4.1 – Asymptotic order of the number of elementary operations as
a function of the number of grid points in one dimension for the Laplace
equation (sparse matrix)

Figure 4.8 – full multigrid

67



1 function A=A1d(eta,a,b,n)
2 % A1D one dimensional finite difference approximation
3 % A=A1d(a,b,J) computes a sparse finite difference
4 % approximation of the one dimensional operator −Delta on the
5 % domain Omega=(a,b) using n interior points
6
7 h=(b−a)/(n+1);
8 e=ones(n,1);
9 A=spdiags([−e/h^2 (eta+2/h^2)*e −e/h^2],[−1 0 1],n,n);

1 % resolution of AU=b by 1 V cycle, starting with a sin function
2 % size of the matrix A
3 clear all;close all;
4 %I= 1 smoother Jacobi, I=2 smoother Gauss−Seidel
5 I=1
6 N=2^5;
7 n=2*N−1;
8 % Smoother de depart
9 N1=2;
10 % smoother arrivee
11 N2=1;
12
13 h=1/(n+1);
14 x=0:h:1;
15 A=A1d(0,0,1,n);
16 b=ones(n,1);
17 X=linspace(0,1,1000);
18 Uex=X.*(1−X)/2;
19 plot(X,Uex,'y','Linewidth',3)
20 hold on
21 pause
22 udex=A\b; Udex=[0;udex;0]
23 plot(x,Udex,'m','Linewidth',2)
24 pause
25 hold on
26 k=N;
27 %initial guess
28 U=sin(pi*x')+sin(N*pi*x')+sin(n*pi*x');
29 %U=sin(k*pi*x');
30 uo=U(2:end−1);
31 plot(x,U,'b*−')
32 pause
33 hold on
34
35 % N1 iterations of the smoother
36 % I=1 Jacobi with parameter 2/3
37 if I==1
38 a=2/3;
39 elseif I==2
40 % I=2 Gauss−Seidel
41 Lo=tril(A,−1);
42 Up=triu(A,1);
43 D=diag(diag(A));
44 end
45 u=uo;
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46 pause
47
48 for i=1:N1
49 if I==1 % relaxed Jacobi
50 u=u+a*(b−A*u)./diag(A);
51 elseif I==2 % Gauss−Seidel
52
53 u=(D+Lo)\(−Up*u+b);
54 end
55 U=[0;u;0];
56 plot(x,U,'*−m')
57 pause
58 hold on
59
60
61
62 end;
63
64 %pause
65 r=b−A*u;
66 n2=(n+1)/2−1;
67 % projection on the coarse grid
68 figure(2)
69 for j=1:n2
70 v(j)=(r(2*j−1)+2*r(2*j)+r(2*j+1))/4;
71 end
72 xf=x(1:2:end);
73 V=[0;v';0]
74 plot(xf,V,'−−og','Linewidth',2)
75 hold on
76 pause
77 % exact resolution on the coarse grid
78 A1=A1d(0,0,1,n2);
79 w=A1\v';
80 V=[0;w;0]
81 plot(xf,V,'−−og','Linewidth',2)
82 % projection on the fine grid
83 w(n2+1)=0;
84 wf(1)=w(1)/2;
85 for j=1:n2
86 wf(2*j)=w(j);
87 wf(2*j+1)=(w(j)+w(j+1))/2;
88 end
89 V=[0;wf';0]
90 plot(x,V,'−−ob','Linewidth',2)
91 hold off
92 pause
93 % ajouter a u
94 figure(1)
95 u=u+wf';
96 U=[0;u;0];
97 plot(x,U,'c')
98 pause
99
100 % N2 iterations of the smoother
101 for i=1:N2,
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102 if I==1 % relaxed Jacobi
103 u=u+a*(b−A*u)./diag(A);
104 elseif I==2 % Gauss−Seidel
105
106 u=(D+Lo)\(−Up*u+b);
107 end
108 % relaxed Jacobi
109 end;
110 umg=u;
111 U=[0;umg;0]
112 plot(x,U,'r','Linewidth',1)
113 errmg= norm(udex−umg)/norm(udex);
114 figure(2)
115 %Jacobi or Gauss−Seidel without coarse grid
116 a=1
117 Nt=N1+N2;
118 u=uo;
119 for i=1:Nt
120 if I==1 % relaxed Jacobi
121 u=u+a*(b−A*u)./diag(A);
122 elseif I==2 % Gauss−Seidel
123
124 u=(D+Lo)\(−Up*u+b);
125 end
126 U=[0;u;0];
127 plot(x,U,'k')
128 pause
129 hold on
130 end;
131 hold off
132
133 errd= sqrt(h)*norm(udex−u);
134 uo=umg;
135
136 % 2^4 0.0015 5.1839e−05 1.5898e−06
137 % 2^6 9.7793e−05 3.6067e−06 1.3291e−07
138 % 2^9 1.5314e−06 5.6711e−08 2.1003e−09

4.2 Algebraic Multigrid AMG

4.2.1 Introduction
Two of the drawbacks of the geometric multigrid are 1) for complex geometries, it is

not always easy to extract coarse levels, and 2) linear interpolations do not work well when
confronted with nearly discontinuous coefficients (see [4]).

Algebraic multigrid (see [1]) is a method for solving linear systems based on multigrid
principles, but requires no explicit knowledge of the problem geometry. AMG determines
coarse grids, intergrid transfer operators, and coarse-grid equations based solely on the
matrix entries. Since the method’s introduction, researchers have developed numerous
AMG algorithms with different robustness and efficiency properties that target a variety
of problem classes.

The key points are the following :
— The smoother : in AMG, the smoother is generally fixed to be a simple pointwise

method such as Gauss-Seidel. An error not eliminated by the smoother is called a
smooth error, and must be handled by coarse-grid correction.

— The Coarse Grid : In AMG, the coarse grid is a subset of the fine grid. The
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algorithm chooses points such that the grid is coarsened in directions of strong
matrix connections.

— Defining Interpolation :smooth error e is characterized by small residuals. To derive
interpolation in AMG, it is taken to its extreme and it is assumed that ri =
(Ae)i = 0. By rewritting this equation in terms of the coefficients of A, keeping
only coarse coefficients and connected fine coefficients , an interpolation operator
can be defined (for full details see [3])

In the following, we will assume that the problem to be solved Au = f where A is a
real n× ∗n symmetric definite positive matrix , u and f vectors in Rn.
Coarse-grid correction involves operators that transfer information between fine and coarse
"grids", which are denoted in linear algebra terms simply as the vector space Rn and the
lower-dimensional (coarse) vector space Rnc. Interpolation (prolongation) maps the coarse
grid to the fine grid and is just the n × nc matrix P : Rnc → Rn. Restriction maps the
fine grid to the coarse grid and is the transpose of interpolation (PT ). in this work.

The 2 grid method to solve our problem is then defined as before as follows

Do ν1 smoothing steps on Au = f ;
Compute residual r = f −Au = Ae ;
Solve AcEc = PT r ;
Correct u← u+ Pec ;
Do ν2 smoothing steps on Au = f

Because AMG is based only on the matrix A, there are few options for defining the
coarse systemAc The most common approach is to use the Galerkin operator, Ac = PTAP ,
which has the nice property that it minimizes the error after correction (in the energy
norm).

The adjacency graph of the matrix plays an important role in AMG. The graph has
a directed edge from vertex i to vertex j for every nonzero entry aij in the matrix A (see
Figure 4.9). The grid in AMG is simply the set of vertices in the graph, i.e., grid point i
is just vertex i. If the linear system comes from the discretization of a PDE, then we can
draw the grid points in their actual geometric locations along with the associated graph.
We illustrate this in Figure 4.9 for a simple 2D Laplacian problem.

Figure 4.9 – 2D Laplacian adjacency graph

Algebraic smoothness
In AMG, the smoother is generally fixed to be a simple pointwise method such as Gauss-
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Seidel. Error not eliminated by the smoother is called smooth error, and must be handled
by coarse-grid correction. In the classical geometric multigrid setting, smooth error is
smooth in the usual geometric sense. In the AMG setting, however, smooth error may
actually be geometrically oscillatory. We often use the term algebraically smooth to be clear
about the distinction. To see this, consider the following simple 2D example discretized
by finite elements on a uniform mesh :

Problem 1

Figure 4.10a shows the error after 7 Gauss-Seidel iterations. We see that the error
is geometrically smooth in both the x and y directions in the left-half plane where the
problem is isotropic, but it is geometrically oscillatory in the y direction in the right-half
plane where the problem is anisotropic (Figure 4.10b ).

(a) Smooth Error after 7 Gauss Seidel
iterations

(b) Error along x and y

Figure 4.10 – Smoothing error

As illustrated in figure 4.11, AMG coarsens in directions of geometric smoothness. That
is, in the left-half plane, the grid is coarsened in both directions (so-called full coarsening),
but in the right-half plane, the grid is coarsened only in the x direction (so-called semi-
coarsening). This ability of AMG to "follow the physics" during coarse-grid correction is
another advantage it has over geometric approaches.
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Figure 4.11 – Coarse grid

Larger squares correspond to coarser grids.
The key to designing an effective AMG algorithm is to have a good characterization

of smooth error. In general, smooth error corresponds to eigenvectors of A with small
associated eigenvalues (we call these small eigenmodes for short). In other words, smoo-
thing damps large eigenmodes, leaving coarse-grid correction to eliminate the remaining
small eigenmodes of A. The smaller the eigenmode, the more effective must be coarse-grid
correction. This makes the smallest of the eigenmodes, called the near null space or near
kernel of A, particularly important in the design of AMG algorithms.

As an example, we again consider the laplace problem above. Any linear function u is
in the kernel of the differential operator since both uxx and uyy are zero. The same is true
for the discrete operator A (away from boundaries). That is, the near null space of A for
this problem consists of any vector that is almost linear when plotted on the grid. Hence, it
makes perfect sense for AMG to coarsen in directions of geometric smoothness, as shown
in Figure 2. The example underscores the distinction between smooth error (error not
eliminated by the smoother) and the near null space (the smallest eigenmodes of A). In
the example, smooth error consists of functions that are geometrically both smooth and
oscillatory, while the near null space contains only geometrically smooth functions. For
applications where the near null space contains geometrically oscillatory functions (such
as electromagnetics), the approach of coarsening in directions of geometric smoothness is
not sufficient.

4.2.2 AMG
This method is the classical AMG presented by Brandt, McCormick, Ruge, and

StÃ¼ben in Algebraic multigrid (AMG) for sparse matrix equations in In D. J. Evans,
editor, Sparsity and Its Applications. Cambridge University Press, Cambridge, 1984.

Choosing the coarse grid

The coarse grid is a subset of the fine grid. Points are chosen such that the grid is
coarsened in directions of strong connections of the matrix. The procedure for doing this
is actually quite simple.

Let us first define the notion of strengh connection.
Strength of Connection : Given a threshold θ, we say that variable ui strongly depends
on variable uj if

aij ≥ θ maxk 6=i(−aik)
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1) Define a strength matrix, As, by deleting weak connections in A ;
2) First pass : Choose an independent set of fine grid points based on
the graph of As ;
3) Second pass : Choose additional points if needed to satisfy
interpolation requirements ;

The coarsening procedure partitions the grid into C-points (points on the coarse grid)
and F-points (points not on the coarse grid).

Figure 4.12 illustrates the first pass of the algorithm for a 2D Laplacian problem
discretized with finite elements on a uniform mesh. The discretization stencil is given by




−1 −1 −1

−1 8 −1

−1 −1 −1




Since all of the off diagonal coefficients are -1, the connections in the matrix are all
strong connections, regardless of the parameter choice θ. Thus As and A are the same.

Figure 4.12 – Coarsening process

Illustration of the first pass of the AMG coarsening algorithm for a 9-point discreti-
zation stencil.
(a) The nodes of the graph of the strength matrix are assigned a weight equal to the
number of off-diagonal connections.
(b) A point with maximal weight is chosen as a C-point.
(c) The neighbors of the new C-point are set to be F-points.
(d) For each new F-point, the weights of its neighbors are increased by one to make them
more likely to be chosen next. The algorithm continues in this way until all points are
either C-points or F-points.

The original AMG interpolation scheme (described below) requires each pair of stron-
gly connected F-points to be strongly connected to a common C-point. The second pass
of the coarsening algorithm searches for F-point pairs that do not satisfy this require-
ment, and changes one of them to a C-point. Researchers later found that the second pass
leads to high computational costs, and they have largely abandoned it in favor of other
approaches for defining interpolation.
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As we saw in the example of Figure 4.11, the AMG coarsening algorithm is able to
produce standard fully coarsened and semi-coarsened grids, and combinations thereof. The
strength matrix is the key to making this happen, but as we see later, it can sometimes be
sensitive to the choice of strength parameter θ. Some researchers today are exploring more
reliable definitions of strength, while others are exploring completely different coarsening
approaches based on so-called compatible relaxation that avoid defining strength altoge-
ther. Another area of active research is parallel coarsening algorithms. It is easy to see
that the algorithm in Figure 4.12 is inherently sequential. Unfortunately, most parallel co-
arsening algorithms lead to increased computational costs and often degrade convergence.

Defining interpolation

We again use the fact that smooth error e is characterized by small eigenmodes
Since the residual r = Ae is such that ||r|| small. We take this to the extreme and

assume that

ri = (Ae)i = 0

If we rewrite this equation at an F-point i in terms of the coefficients of A, some
regrouping leads to

aiiei = −
∑

j∈Ci
aijej −

∑

j∈F si

aijej −
∑

j∈Nwi

aijej (4.7)

where :
Ci : C-points strongly connected to i
F si : F-points strongly connected to i
Nw
i : all points weakly connected to i

The set Ci is the set of interpolatory points. That is, these are the points that F-point
i will interpolate from.

The trick to deriving interpolation is to rewrite ej in the last two terms of (4.7) in
terms of either the interpolatory points in Ci or the F-point i. This produces an equation
that involves only the F point and its interpolatory points, which we can use directly to
define interpolation. This process is sometimes referred to as "collapsing the stencil", and
it is illustrated in the two figures below for two finite element stencils.

Figure 4.13 – Derivation of AMG interpolation for the standard 9-point fi-
nite element stencil. In the second image, we assume that strongly-connected
F-points are interpolated from neighboring interpolatory points. The weights
(all 1/2) are chosen based on the underlying matrix entries such that the
constant function is interpolated exactly. In the third image, we "redistri-
bute" the strong F connections according to the interpolation weights in
the previous step. This produces the "collapsed stencil" in the fourth image,
which leads directly to the interpolation rule in the last image.
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Figure 4.14 – Derivation of AMG interpolation for an anisotropic 9-point
finite element stencil. In the second image, weak coefficients are added to the
diagonal to produce the "collapsed stencil" in the third image, which leads
directly to the interpolation rule in the last image

The stencil in Figure 4.14 helps to illustrate one of the potential problems with the
strength of connection definition used in AMG. The stencil comes from a quadrilateral
finite element discretization of the Laplacian on a mesh that is highly stretched in the x
direction. The resulting problem is strongly anisotropic in the y direction, yet this strong
anisotropy is not reflected in the size of the off-diagonal entries. In fact, any value of the
strength threshold θ that is less than or equal to 0.25 will turn the corner couplings into
strong connections. The resulting interpolation has 6 interpolatory points instead of 2, and
degrades the convergence of AMG.

Table 1

Table 1 : AMG results for Problem (1) for different grid sizes with strength threshold
θ = 0.4, and with ν1 = ν2 = 1 smoothing steps of C-F Gauss-Seidel. Iterations were done
until the relative residual was reduced below 10−9. Grid complexity is the total number
of grid points on all grids divided by the number of grid points on the fine grid. Operator
complexity is the total number of nonzeroes in the linear operators on all grids divided
by the number of nonzeroes in the fine grid operator. Setup time is the time required to
choose coarse grids and build interpolation, restriction, and coarse-grid operators.

To conclude on AMG, interest in AMG methods is high, and probably still rising,
because of the increasing importance of terascale simulations on unstructured grids. AMG
has been shown to be a robust, efficient solver on a wide variety of problems of real-world
interest. Much research is underway to find effective ways of parallelizing AMG, which is
essential to large scale computing.
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Chapitre 5

Parallelism

5.1 Substructuring methods
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Principle
— Split the domain into sub-domains,
— solve a "condensed interface problem" : uses solving independantly local problems

in the subdomains (using a direct or an iterative method).
Advantages :

These methods are :
• More robust than classical iterative ones and cheaper than direct methods.
• Better adapted to distributed parallel computing with message passing programming :
→ one sub-domain per processor
→ interface data update by message passing .
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• Use of sequential legacy codes for local problems, modular approach to parallelism.

5.1.1 Finite element method
Consider the Laplace equation with Dirichlet data




−∆u+ u = f dans Ω,

u = g sur ∂Ω

We write a variational formulation in V = H1
0 (Ω),

u ∈ H1(Ω), u = g on ∂Ω

∀v ∈ V, a(u, v) = (f, v) with a(u, v) =
∫

Ω
∇u(x)∇v(x)dx+

∫
Ω
u(x)v(x)dx

We introduce a triangulation Th = ∪K with NΩ vertices Si, i ∈ IΩ inside the open set Ω,
and N∂Ω vertices Si , i ∈ I∂Ω on the boundary.

Vh = {v ∈ C0(Ω) ∩H1
0 (Ω),∀K ∈ Th, vh|K ∈ P1}.

where P1 is the space of polynomials of degree lower than 1 in two variables (ax+ by+ c).
The discrete formulation in Vh now is to find uh such that

∀vh ∈ Vh, a(uh, vh) = (f, vh).

A basis of Vh is given by the functions ϕi, basis function associated to Si by ϕi(Sj) = δij ,
as described in Figures 5.1, 5.2. The expansion of uh on the basis

uh =
∑

j∈IΩ
uh(Sj)ϕj +

∑

j∈I∂Ω

uh(Sj)ϕj .

If the Dirichlet data are homogeneous (g = 0), then the second sum does not exist. Choose
in the discrete formulation vh = ϕi for i ∈ IΩ.

∀i ∈ IΩ,
∑

j∈IΩ
uh(Sj)a(ϕi, ϕj) +

∑

j∈I∂Ω

uh(Sj)a(ϕi, ϕj) = (f, ϕi).

We call KI the square matrix of size NΩ ×NΩ corresponding to interior basis functions,

KI
ij = a(ϕi, ϕj), (i, j) ∈ IΩ,

KIB the matrix of size NΩ ×N∂Ω

KIB
ij = a(ϕi, ϕj), i ∈ IΩ, j ∈ I∂Ω.

∀i ∈ IΩ,
∑

j∈IΩ
KI
ijuh(Sj) +

∑

j∈I∂Ω

KIB
ij uh(Sj) = (f, ϕi).

Define the vector of unknowns U I = {uh(Sj)}j∈IΩ and the boundary vector UB =
{uh(Sj)}j∈I∂Ω

. Define the vector of interior data F = {(f, ϕj)}j∈IΩ and the boundary
data G = {(g, ϕj)}j∈I∂Ω

.

KI U I +KIB UB = F, UB = G.

K is the matrix of the laplacian with homogeneous Dirichlet data in Vh, therefore it is
symmetric definite positive.
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Figure 5.1 – Basis hat functions

a(ϕi, ϕj) =

∫

Di∩Dj
(∇ϕi(x)∇ϕj(x) + ϕi(x)ϕj(x)) dx, Di = support ϕi, Dj = support ϕj .

Si

Di

Si

Di

Si

Di

Figure 5.2 – Mesh, Di support of the basis function ϕi associated to vertex
Si.

5.1.2 Finite element method and the Neumann problem
Consider back to one domain, and the problem




−∆u+ u = f dans Ω,

∂u
∂n = g sur ∂Ω

We write a variational formulation in V = H1(Ω),

u ∈ H1(Ω)

∀v ∈ V, a(u, v) = (f, v) +
∫
∂Ω
g(s)v(s)ds

Add to the notations in 5.1.1, KBB the matrix of size N∂Ω ×N∂Ω

KBB
ij = a(ϕi, ϕj), (i, j) ∈ I∂Ω.

∀i ∈ IΩ,
∑

j∈IΩ
KI
ijuh(Sj) +

∑

j∈I∂Ω

KIB
ij uh(Sj) = (f, ϕi).

∀i ∈ I∂Ω,
∑

j∈IΩ
KIB
ji uh(Sj) +

∑

j∈I∂Ω

KBB
ij uh(Sj) = (f, ϕi) + (g, ϕi).
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which gives in matrix form

KIU I +KIBUB = F I

(KIB)TU I +KBBUB = FB +G.

This is the matrix form finite elements discretisation of the Neumann boundary condition.
The first line is the internal discretisation, while the second line involves the Neumann
condition.

5.1.3 The Schur Complement method
The domain Ω is split into two nonoverlapping subdomains Ω1 and Ω2, and Γ is the

common boundary.

⌦1 ⌦2

�

Figure 5.3 – Domain Decomposition

uh =
∑

Sj∈Ω1

uh(Sj)ϕj +
∑

Sj∈Ω2

uh(Sj)ϕj +
∑

Sj∈Γ

uh(Sj)ϕj

a(�i, �j) =

Z

Di\Dj

r�i(x) · r�j(x) dx

⌦2⌦1

Figure 5.4 – Supports
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a(uh, ϕi) =
∑

uh(Sj)a(ϕi, ϕj)

a(uh, ϕi) =
∑

Sj∈Ω1

uh(Sj)a(ϕi, ϕj) +
∑

Sj∈Ω2

uh(Sj)a(ϕi, ϕj) +
∑

Sj∈Γ

uh(Sj)a(ϕi, ϕj)

Si ∈ Ω1, Sj ∈ Ω2 ⇒ Di ∩ Dj = ∅ ⇒ a(ϕi, ϕj) = 0⇒ second sum vanishes

Si ∈ Ω2, Sj ∈ Ω1 ⇒ Di ∩ Dj = ∅ ⇒ a(ϕi, ϕj) = 0⇒ first sum vanishes

For Si ∈ Γ, all sums contribute. For the last one, the support of Si is split according
to Figure 5.5.

Figure 5.5 – Decomposition of the interface nodes

If Si ∈ Γ and Sj ∈ Γ are neighbours,
∫

Di∩Dj
ϕj(x)ϕi(x) dx =

∫

Di∩Dj∩Ω1

ϕj(x)ϕi(x) dx+

∫

Di∩Dj∩Ω2

ϕj(x)ϕi(x) dx

and the same for the computation of the gradient and (f, ϕl). The unknown U is split
into three blocks : U1 is the block of the unknowns in the open domain Ω1, U2 is the block
of the unknowns in the open domain Ω2, U3 is the block of the unknowns on the boundary
Γ. The matrix K is split according to the previous formula. We shall write




K11 0 K13

0 K22 K23

K31 K32 K33







U1

U2

U3


 =




F1

F2

F3


 , (5.1)

with K33 = K1
33 +K2

33 and F3 = F 1
3 + F 2

3 . We rewrite as a system of three systems.




K11U1 +K13U3 = F1

K22U2 +K23U3 = F2

K31U1 +K32U2 +K33U3 = F3

(5.2)

K11 = [a(ϕi, ϕj)]Si,Sj∈Ω1
:
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Kjj is the matrix of the Laplace problem in Ωj with homogeneous Dirichlet boundary
conditions on ∂Ωj , and is therefore invertible. Solving the first equation in (5.2) amounts
to solving the Laplace equation in Ω1 with homogeneous Dirichlet boundary conditions on
∂Ω1 \Γ, and Dirichlet data U3 on Γ. Same for the second equation. The first two problems
can be solved for U1, U2 knowing U3 as

U1 = (K11)−1(F1 −K13U3), U2 = (K22)−1(F2 −K23U3)

Carrying these values into the first equation gives

K31(K11)−1(F1 −K13U3) +K32(K22)−1(F2 −K23U3) +K33U3 = F3.

K31(K11)−1(F1 −K13U3) +K32(K22)−1(F2 −K23U3) +K33U3 = F3.

SU3 = (K33 −K31K
−1
11 K13 −K32K

−1
22 K23)U3 = G3

with G3 = F3 −K31K
−1
11 F1 −K32K

−1
22 F2

Definition 5.1 The matrix S = K33 −K31K
−1
11 K13 −K32K

−1
22 K23 is the Schur Comple-

ment matrix.

Theorem 5.1 The matrix S est symmetric, positive, definite.

Proof Compute (SU3, U3) by defining U1 = −K−1
11 K13U3, U2 = −K−1

22 K23U3, so that

SU3 = K33U3 +K31U1 +K32U2.

Define U = (U1, U2, U3). Then

(KU,U) = (U1,K11U1+K13U3)+(U2,K21U1+K23U3)+(U3,K31U1+K32U2+K33U3) = (SU3, U3).

The computations will be made in parallel as

S = S1 + S2

with
Si = Ki

33 −K3iK
−1
ii Ki3

Then the interface problem will be solved with direct or iterative methods.
The first two equations in (5.2) is the resolution of Laplace equations. But what is the

third one ? A Neumann condition ∂n1
u1 = g in Ω1 would be written

K31U1 +K1
33U3 = F 1

3 +G.

A Neumann condition ∂n2u2 = −g in Ω2 would be written

K32U2 +K2
33U3 = F 2

3 −G.

Adding these two equations yields

K31U1 +K32U2 +K33U3 − F3 = 0 (5.3)

which therefore is the discrete version of

∂u1

∂n1
+
∂u2

∂n2
= 0.
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The full substructuring method can now be understood as the finite element discreti-
zation of : find g defined on the interface Γ such that, defining u1 and u2 as the solutions
of

−∆uj = f in Ωj ,

uj = 0 on ∂Ωj − Γ,

uj = g on Γ

then
∂u1

∂n1
+
∂u2

∂n2
= 0 on Γ.

The resolution of the interface problem can be solved either by a direct method, or by an
iterative method, such as a Krylov method.

5.1.4 Direct method for the resolution of the interface
problem

We work on system (5.1), and write a block-LU decomposition of K as follows



K11 0 K13

0 K22 K23

K31 K32 K33


 =




L11 0 0

0 L22 0

L31 L32 L33







U11 0 U13

0 U22 U23

0 0 U33


 (5.4)

We identify
K11 = L11U11; K13 = L11U13,

K22 = L22U22; K23 = L22U23,

K31 = L31U11; K32 = L32U22; K33 = L31U13 + L32U23 + L33U33

Notice that L3iUi3 = K3iK
−1
ii Ki3, therefore K33−L31U13−L32U23 = S, and S = L33U33.

The computations are made in parallel on the processors :

Processor (i)

Computation and storage of Kii, Ki3,
Computation of F i and F i3

Decomposition LiiUii de Kii,
Computation of Ui3, L3i,
Computation of Si = Ki

33 − L3iUi3

Assembling

Computation of S = S1 + S2 and F3 = F 1
3 + F 2

3 ,
Decomposition L33U33 of S.

We then solve the triangular problems



L11 0 0

0 L22 0

L31 L32 L33







Z1

Z2

Z3


 =




F1

F2

F3


 ,




U11 0 U13

0 U22 U23

0 0 U33







X1

X2

X3


 =




Z1

Z2

Z3



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Processeur (i)
Liizi = Fi, Gi3 = F i3 − L3iZi

Assembling
L33Z3 = G1

3 +G2
3

U33X3 = Z3

Processor (i)
UiiXi = Zi − Ui3X3

5.1.5 The conjugate gradient algorithm
The algorithm is applied to the interface problem

SU3 := K33U3 −K31K
−1
11 K13U3 −K32K

−1
22 K23U3 = G3 := F3 −K31K

−1
11 F1 −K32K

−1
22 F2

S is a symmetric positive definite matrix. The conjugate gradient algorithm reduces
to a descent method, defined by the initial guess U0

3 ,the initial descent direction d0 = r0 =
SU0

3 −G3. Let rk be the residual a step k. The next step will be

vk = Sdk

ρk = ‖rk‖2
(vk,dk)

Uk+1
3 = Uk3 − ρkdk
rk+1 = rk − ρkvk

dk+1 = rk+1 + ‖rk+1‖2
‖rk‖2 dk

All the products have to be made in parallel. Let us go into details.
For the initialization choose U0

3 = 0, thus r0 = −G3 = −F3 +K31K
−1
11 F1 +K32K

−1
22 F2.

We define a special box for the product SX :

Product SX

Processor (1)
solve K11U1 = K13X,
S1X = K1

33 − K31U1

Processor (2)
solve K22U2 = K23X,
S2X = K2

33 − K32U2

Assembling
SX = S1X + S2X

Initialization

Processor (1)
solve K11U1 = F1, G1

3 = F 1
3 − K31U1

solve K11U1 = K13r
0,

S1r0 = K1
33 − K31U1

Processor (2)
solve K22U2 = F2, G2

3 = F 2
3 − K32U2

solve K22U2 = K23r
0,

S2r0 = K2
33 − K31U2

Assembling
r0 = −G1

3 − G2
3, d

0 = r0

v0 = S1d0 + S2d0
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Storage (Distributed Memory)
Processor (1)

K11, K31, K
1
33, F1, F

1
3 , G

1
3

Processor (2)
K22, K32, K

2
33, F2, F

2
3 , G

2
3

Iteration

vk = Sdk

ρk =
‖rk‖2

(vk, dk)

Uk+1
3 = Uk3 − ρkdk

rk+1 = rk − ρkvk

dk+1 = rk+1 +
‖rk+1‖2
‖rk‖2 dk

Note that the scalar products can also be done partly in parallel.

5.1.6 Interest of subtructuring
• The interface problem has n unknowns when the full problem has n2 unknowns.
• It can be proved that the interface problem is much better conditioned than the

full problem.
• Therefore the conjugate gradient algorithm converges rapidly.
• Futhermore most part of computation part can be made in parallel.
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5.1.7 The Dirichlet Neumann algorithm
The purpose of the algorithm is to solve the coupling problem

Lu = f on Ω,

u = 0 on ∂Ω

by splitting Ω into two subdomains with interface Γ, and solving iteratively with an initial
guess g0,

Presentation of the algorithm




Lun1 = f in Ω1,

un1 = 0 on ∂Ω ∪ Ω1, un1 = gn on Γ.





Lun2 = f in Ω2,

un2 = 0 on ∂Ω ∪ Ω2,
∂un2
∂ν

=
∂un1
∂ν

on Γ.

where
∂

∂ν
in Ω2 is the normal derivative, with ν the exterior normal to Ω2.

gn+1 = θun2 + (1− θ)gn.
The choice of the parameter is crucial and unfortunately depends on the position of

the interface. If the subdomains and the problems are symmetric, the choice θ = 1
2 is

optimal.

Convergence analysis in one dimension Let L = η − d2
x, Ω = (a, b). Take

c in (a, b). Then we have
∂

∂ν
= − d

dx
on the interface at point c.

Define the error in the subdomain, enj = unj − u, and hn = gn − u(c). The algorithm
for the error is 




Len1 = 0 in Ω1,

en1 = 0 on ∂Ω ∪ Ω1, en1 = hn on Γ.




Len2 = 0 in Ω2,

en2 = 0 on ∂Ω ∪ Ω2,
∂en2
∂ν

=
∂en1
∂ν

on Γ.

hn+1 = θen2 (c) + (1− θ)hn.
This can be solved as

en1 = hn
sh(
√
η(x− a))

sh(
√
η(c− a))

, en2 = βnsh(
√
η(b− x)).

The coefficient βn is determined by the transmission condition dxe
n
2 (c) = dxe

n
1 (c), that

gives

−βnch(
√
η(b− c) = hn

ch(
√
η(c− a))

sh(
√
η(c− a))

hn+1 = (−θ sh(
√
η(b− c))ch(

√
η(c− a))

sh(
√
η(c− a))ch(

√
η(b− c)) + (1− θ)

︸ ︷︷ ︸
Convergence factor ρ

) hn.
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If the geometry is symmetric, that is if b − c = c − a, then the convergence factor
reduces to

ρ = 1− 2θ,

that is smaller than 1 for θ ∈ (0, 1), and vanishes for θ = 1/2. Suppose now that (c− a) =
(b− a)/5. Then defining χ =

√
η/5, then

ρ = 1− θ( tanh(4χ)

tanh(χ)
+ 1).

It is a linear function of θ, with a slope α = −( tanh(4χ)
tanh(χ) + 1) ∈ (−5,−2).

Therefore ρ is an decreasing function of θ, and it is equal to 1 for θ = θ0, with

θ0 =
2

tanh(4χ)
tanh(χ) + 1

∈ (
2

5
, 1).

Then the algorithm is convergent if and only if θ ≤ θ0.
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5.1.8 Appendix : matlab scripts in 1-D

1 function u=SolveDD(f,eta,a,b,ga,gb)
2 % SOLVEDD solves eta−Delta in 1d using finite differences
3 % u=SolveDD(f,eta,a,b,ga,gb,n) solves the one dimensional equation
4 % (eta−Delta)u=f on the domain Omega=(a,b) with Dirichlet boundary
5 % conditions u=ga at x=a and u=gb at x=b using a finite
6 % difference approximation with length(f) interior grid points
7
8 J=length(f);
9 h=(b−a)/(J+1);
10 % construct 1d finite difference operator
11 e=ones(J,1);
12 A=spdiags([−e/h^2 (eta+2/h^2)*e −e/h^2],[−1 0 1],J,J);
13 f(1)=f(1)+ga/h^2; % add boundary conditions into rhs
14 f(end)=f(end)+gb/h^2;
15 u=A\f;
16 u=[ga;u;gb]; % add boundary values to solution

1 function u=SolveND(f,eta,a,b,ga,gb)
2 % SOLVEND solves eta−Delta in 1d using finite differences
3 % u=SolveND(f,eta,a,b,ga,gb) solves the one dimensional equation
4 % (eta−Delta)u=f on the domain Omega=(a,b) with Neumann boundary
5 % condition u'=ga at x=a and Dirichlet boundary
6 % condition u=gb at x=b using a finite
7 % difference approximation.
8 % note the second order appproximation of the derivative
9
10 J=length(f);
11 h=(b−a)/J;
12 % construct 1d finite difference operator
13 e=ones(J,1);
14 A=spdiags([−e/h^2 (eta+2/h^2)*e −e/h^2],[−1 0 1],J,J);
15 A(1,2)=2*A(1,2); %% Neumann boundary condition
16 % construct 1d finite difference operator
17 f(1)=f(1)−2*ga/h; % add boundary conditions into rhs
18 f(end)=f(end)+gb/h^2;
19 u=A\f;
20 u=[u;gb]; % add boundary value to solution on the right
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1 function [g,u1,u2]=algoDN(f,eta,a,b,step,ga,gb,g1,Nc,Imax,t)
2 % algoDN solves the Laplace equation by the Dirichlet−Neumann algorithm
3 %[g,u1,u2]=algoDN(f,eta,a,b,step,ga,gb,g,Nc,Imax,t)
4 %solves the Laplace equation eta u −Delta u = f in (a,b)
5 % by the Dirichlet−Neumann algorithm on (a+Nc*step) and (Nc*step,c)
6 % note the second order reconstruction of u_1'(c)
7 g=zeros(1,Imax);
8 g(1)=g1;
9 c=a+Nc*step;
10 x=(a:step:b);x1=(a:step:c); x2=(c:step:b);
11 y= SolveDD(f',eta,a,b,ga,gb);
12 for j=1:Imax−1
13 % Dirichlet on (a,c)
14 f1=f(1:Nc−1);
15 u1=SolveDD((f1)',eta,a,c,ga,g(j));
16 %extraction de u_1'(c) : second order
17 up1= (−u1(end−1)+(1+eta*step^2/2)*u1(end))/step−step*f(Nc)/2;
18 % Neumann on (c,b) with u_2'(c)=u_1'(c)
19 f2=f(Nc:end);
20 u2=SolveND((f2)',eta,c,b,up1,gb);
21 g(j+1)=(1−t)*g(j)+t*u2(1);
22 h=figure
23 plot(x1,u1,'b',x2,u2,'m',x,y,'r',c,linspace(u1(end),u2(1),100),'k');
24 legend('u_1','u_2','solution discrete')
25 title({['Algorithme de Dirichlet−Neumann',' c=',num2str(c),'\theta=',

num2str(t)];...
26 ['Iteration number ',int2str(j)]})
27 filename = ['figDNpos' int2str(Nc) 'relax' num2str(t) 'iter' int2str

(j) '.eps']
28 print(h,'−depsc',filename)
29
30 pause%(1)
31 end
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1 function u=algoSchur(f,eta,a,b,h,ga,gb,Nc)
2 % algoSchur solves the Laplace equation by the Schur method
3 %[g,u1,u2]=algoSchur(f,eta,a,b,step,ga,gb,Nc)
4 %solves the Laplace equation eta u −Delta u = f in (a,b)
5 % by the Schur method m on (a+Nc*h) and (Nc*h,c)
6 J=length(f);
7 e=ones(J,1);
8 A=spdiags([−e/h^2 (eta+2/h^2)*e −e/h^2],[−1 0 1],J,J);
9 % decomposition of A
10 A11=A(1:Nc−1,1:Nc−1);
11 A22=A(Nc+1:end,Nc+1:end);
12 A1g=A(1:Nc−1,Nc);
13 Ag1=A(Nc,1:Nc−1);
14 A2g=A(Nc+1:end,Nc);
15 Ag2=A(Nc,Nc+1:end);
16 Agg=A(Nc,Nc);
17 %decomposition of f
18 f1=f(1:Nc−1);
19 f2=f(Nc+1:end);
20 fg=f(Nc);
21 % Construction of the Schur problem
22 funS=@(x) Agg*x−Ag1*(A11\(A1g*x))−Ag2*(A22\(A2g*x));
23 fS=fg−Ag1*(A11\f1)−Ag2*(A22\f2);
24 ug=pcg(funS,fS)
25 %reconstruct u1 and u2
26 u1=A11\(f1−A1g*ug)
27 u2=A22\(f2−A2g*ug)
28 %reconstruct u
29 u=[ga; u1 ; ug ; u2 ; gb];
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1 clear all;close all;
2 % Validation of the Dirichlet and Neumann codes
3 a=0;
4 b=1;
5 Step=(b−a)*0.1./10.^(0:2);
6 for j=1:length(Step)
7 step=Step(j);
8 x=(a:step:b);
9 y=sin(pi*x);
10 eta=1;
11 f=(eta+pi^2)*y(2:end−1);
12 ga=0;gb=0;
13 sol=SolveDD(f',eta,a,b,ga,gb);
14 X=a:step/100:b;
15 Y=sin(pi*X);
16 figure(1)
17 plot(x,sol,'b',X,Y,'r');
18 hold on
19
20 e1d(j)=max(abs(sol−y'));
21 f=(eta+pi^2)*y(1:end−1);
22 ga=pi;
23 sol1=SolveND(f',eta,a,b,ga,gb);
24 plot(x,sol1,'b',X,Y,'r');
25
26 e1n(j)=max(abs(sol1−y'));
27 figure(2)
28 plot(x,sol1−y');
29 pause
30 end
31
32 figure(3)
33 loglog(Step,e1d,'m*−')
34 hold on
35 loglog(Step,e1n,'bo−')
36 hold on
37 loglog(Step,Step.^2,'r')
38 legend('Dirichlet','Neumann','slope 2')
39
40
41 % Algorithme de Dirichlet Neumann sur (a,c), (c,b)
42 clear all; close all;
43 a=0;
44 b=1;
45 J=9;
46 h=(b−a)/(J+1);
47 x=(a:h:b);
48 % eta=1;
49 % y=x.^3;
50 % f=−6*x(2:end−1)+eta*y(2:end−1);
51 % ga=0;gb=1;
52 eta=1;
53 y=sin(pi*x);
54 f=(eta+pi^2)*y(2:end−1);
55 ga=0;gb=0;
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56 sol=SolveDD(f',eta,a,b,ga,gb);
57 % position de l interface
58 Nc=floor(length(x)/2);
59 Nc=2;
60 c=a+Nc*h;
61 % nombre d'iterations
62 Imax=10;
63 %parametre de relaxation
64 t=0.5;
65 % initialisation avec la valeur exacte
66 g1=y(Nc+1);
67 % ou initialisation avec 0
68 g1=0;
69 [g,u1,u2]=algoDN(f,eta,a,b,h,ga,gb,g1,Nc,Imax,t)
70 % algorithme
71 figure(99)
72 plot(g)
73 title('Interface value')
74 xlabel('Iteration number')
75
76 % Methode de Schur
77 u=algoSchur(f',eta,a,b,h,ga,gb,Nc);
78 %plot(x,y,'r',x,yd,'g',x,u,'b')
79 figure(55)
80 plot(x,sol,'g',x,u,'b')
81
82
83 %%
84 N=10;
85 chi=linspace(0,N,N*100)
86 Y=tanh(4*chi)./tanh(chi)+1;
87 plot(chi,Y,'b')
88 xlabel('\chi')
89 ylabel('\alpha')
90 title('Slope of the convergence factor')
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5.2 Schwarz Algorithms

5.2.1 Introduction and a brief historical review
Schwarz method was brought about by H.A.Schwarz around 1870 to prove the exis-

tence of harmonic functions in open sets that were not disks or rectangles ( as those cases
had been dealt with analytically), or obtained from those above by conformal transforma-
tion. Schwarz’s typical problem is the following ( in the following, L can be any elliptic
operator , bus mostly our favorite −∆).

L(u) = 0, x ∈ Ω

u(x) = g(x), x ∈ ∂Ω
(5.5)

in domain Ω defined in figure 5.6.

Ω

∂Ω

Figure 5.6 – The initial Schwarz domain

The classical Schwarz iteration consists in solving one after the other the problem in
each sub-domain Ω1 and Ω2 defined in figure 5.7





L(vn+1) = f(x), x ∈ Ω1

vn+1(x) = g(x), x ∈ ∂Ω ∩ Ω1

vn+1(x) = wn(x), x ∈ Γ1

(5.6)





L(wn+1) = f(x), x ∈ Ω2

wn+1(x) = g(x), x ∈ ∂Ω ∩ Ω2

wn+1(x) = vn+1(x), x ∈ Γ2

(5.7)

Schwarz showed that the sequence (vn, wn) converged using the maximum principle. The
converged value is thus a solution u of (5.5). In 1988, this method was modified by P.L.
Lions in a series of papers presented at Domain Decomposition Conferences in order to
make it parallel in the following way :
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Ω1 Ω2
Γ1Γ2

∂Ω

Figure 5.7 – Schwarz Decomposition





L(vn+1) = f(x), x ∈ Ω1

vn+1(x) = g(x), x ∈ ∂Ω ∩ Ω1

vn+1(x) = wn(x), x ∈ Γ1

(5.8)





L(wn+1) = f(x), x ∈ Ω2

wn+1(x) = g(x), x ∈ ∂Ω ∩ Ω2

wn+1(x) = vn(x), x ∈ Γ2

(5.9)

He also put it in a hilbertian frame more adapted to using numerical methods. It
was then extended to general geometrical configurations , with an arbitrary number of
sub-domains, and to more general equations. He also suggested modifying transmission
conditions between sub-domains, using Robin type or even boundary elements operators.

The principle of this approach is thus :
— an iterative method,
— N sub-domains,
— non zero overlapping between sub-domains,
— well posed problems in each sub-domain,
— convergence of the algorithm (as a function of the overlapping),
— easy to implement

Today, for most problems, solution existence and unicity in known in the initial domain.
If a Domain Decomposition method is used, it is mainly for reasons of data storage and
use of fast local solvers.

In the sequel, we will refer to (5.6,5.7) as alternate Schwarz, and (5.8,5.9) as parallel
Schwarz.

5.2.2 A very simple 1D example
Lets us consider the following problem





u− d2u

dx2
= f, x ∈ R,

u→ 0 as x→ ±∞
(5.10)

where f is a "nice" function. For example if f belongs to L2(R), it is well known that
there exists a unique variational solution in H1(R) which furthermore belongs to H2(R) .

Let us look at the Schwarz parallel algorithm with two sub-domains (see figure 5.8) :)
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Ω1
Ω2

L0

overlap

Figure 5.8 – 1D decomposition in 2 sub-domains with overlap

To initialize the iterative process, (v0, w0) is given, then at iteration n is solved





vn − d2vn

dx2
= f, x ∈]−∞, L[

vn → 0 as x→ −∞
vn(L) = wn−1(L),

(5.11)





wn − d2wn

dx2
= f, x ∈]L,+∞[

wn → 0 as x→ +∞
wn(0) = vn−1(0),

(5.12)

Theorem 5.2 The algorithm is well defined in H1(−∞, L)×H1(0,+∞).

Exercice 5.1 Proof is left as an exercise.

The error in each sub-domain is now defined V n = vn − u ∈ H1(−∞, L), Wn =
wn − u ∈ H1(0,+∞). V n (resp. Wn) is solution to an homogeneous problem, that is for
f = 0. It is solution to an homogeneous differential equation and goes to 0 at −∞ (resp.
at +∞). It can thus be easily expressed up to a multiplicative constant :

V n = ane
x, Wn = bne

−x (5.13)

with the recurrence relation on the coefficients

ane
L = bn−1e

−L, bn = an−1 (5.14)

thus




a2k = (e−2L)ka0

b2k = (e−2L)kb0





a2k+1 = (e−2L)k+1b0

b2k+1 = (e−2L)ka0

(5.15)

The L2 norm of the error can be computed. For example

||v2k − u||L2(]−∞,L[) = (e−L)2k||v0 − u||L2(]−∞,L[) (5.16)

Theorem 5.3 The Domain Decomposition algorithm with Dirichlet transmission condi-
tions converges linearly with a linear coefficient equal to e−L.
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Alas this means that the smaller the overlap, the slower the convergence will
be.

If Dirichlet conditions are replaced by Neumann conditions or a combination of both,
the same analysis is made.

How can one make convergence independant of the overlap ?
Let us try a Robin condition :





(
d

dx
+ α)vn = (

d

dx
+ α)wn−1, x = L

(
d

dx
− β)wn = (

d

dx
− β)vn−1, x = 0.

(5.17)

Let us start the analysis again.

Theorem 5.4 For any α and β strictly positive, for L ≥ 0, the algorithm associated to
the (5.17) transmission conditions is well defined in H1(−∞, L)×H1(0,+∞).

Exercice 5.2 Prove the theorem by writing the variational formulation.

Back to (5.13). We now have

an =
α− 1

α+ 1
e−2Lbn−1, bn =

β − 1

β + 1
an−1 (5.18)

Theorem 5.5 For any α and β strictly positive, for any overlap L ≥ 0, the algorithm
associated to the (5.17) transmission conditions converges linearly. It converges in two
iterations if and only if α = β = 1 .

Exercice 5.3 Prove the theorem using the proof of 5.3.

These transmission conditions are said to be exact. This is because the solution v to the
left hand problem satisfies the transmission condition which is imposed on the right hand
side.

This approach will now be generalized to higher dimensions.

5.2.3 A 2D, 3D tool : the Fourier transform. Optimal
transmission condition

The following notes are 2 dimensional but are easily extendable to 3D and more. Let u
be a function of two variables x and y. Variable y lives on the whole real axis. The partial
Fourier transform with respect to y is defined as :

û(x, k) =
1√
2π

∫

R
u(x, y)e−ikydy

If u is in L2, then û is in L2, the inverse formula and the Plancherel theorem can be used.
Derivation formulae are obtained :

∂̂pu

∂yp
(x, k) = (ik)pû(x, k)

Let us consider the 2D operator −∆ + I. For f in L2(R2) , the solution u of

u−∆u = f, x ∈ R2, (5.19)

and let the Domain Decomposition be given by figure 5.9.
Let us once again look at the parallel Schwarz algorithm with Dirichlet boundary

conditions. A y Fourier transform is carried out. The errors are denoted V n in Ω1 and
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L

Ω1

Ω2

x

y

Figure 5.9 – 2D decomposition in 2 sub-domains with overlap

Wn in Ω2. Their Fourier transform are solution to the ordinary differential equation with
variable x and k appears as a parameter.

− ∂2Û

∂x2
+ (k2 + 1)Û = 0 (5.20)

leading to
V n = an(k)e

√
k2+1x, Wn = bn(k)e−

√
k2+1x (5.21)

with the recurrence relation on the coefficients

an+1(k) = bn(k)e−2
√
k2+1L, bn+1(k) = an(k) (5.22)

thus




a2p(k) = (e−2
√
k2+1L)pa0

b2p(k) = (e−2
√
k2+1L)pb0





a2p+1(k) = (e−2
√
k2+1L)p+1b0

b2p+1(k) = (e−2
√
k2+1L)pa0

(5.23)

Exercice 5.4 Show that the parallel Schwarz algorithm with overlap converges linearly.

By analogy with the one dimensional case , it is to be noticed that V n and Wn satisfy the
following equations





∂V̂ n

∂x
−
√
k2 + 1 V̂ n = 0 in (−∞, L)

∂Ŵn

∂x
+
√
k2 + 1 Ŵn = 0 in (0,+∞)

(5.24)

and the following theorem

Theorem 5.6 The 2D Domain Decomposition algorithm converges in two iterations if
transmission conditions in Fourier variables can be written as





∂V̂ n+1

∂x
+
√
k2 + 1 V̂ n+1 =

∂Ŵn

∂x
+
√
k2 + 1 Ŵn, x = L

∂Ŵn+1

∂x
−
√
k2 + 1 Ŵn+1 =

∂V̂ n

∂x
−
√
k2 + 1 V̂ n, x = 0

(5.25)

It remains to find a meaning to these transmission conditions which are expressed as square
roots of operators, which are not easily dealt with. An approximation will be performed.
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5.2.4 Approximation
Let us go back to the two sub-domain case with overlap in 5.11. The exact transmission

conditions are given by (5.25). These conditions will be "approximated" in such a way to
fit a differential operator. Let us consider the Schwarz algorithm with the following general
transmission conditions





∂ŵn+1

∂x
− ϕ(k) ŵn+1 =

∂v̂n

∂x
− ϕ(k) v̂n, x = L

∂v̂n+1

∂x
+ ψ(k) v̂n+1 =

∂ŵn

∂x
+ ψ(k) ŵn, x = 0

(5.26)

Let us continue the Fourier analysis from (5.13).

an+1(k) =
ψ(k)−

√
k2 + 1

ψ(k) +
√
k2 + 1

e−2L
√
k2+1bn(k), bn+1(k) =

ϕ(k)−
√
k2 + 1

ϕ(k) +
√
k2 + 1

an(k) (5.27)

The convergence factor over a double swap is defined as :

ρ(k, L) =
ψ(k)−

√
k2 + 1

ψ(k) +
√
k2 + 1

ϕ(k)−
√
k2 + 1

ϕ(k) +
√
k2 + 1

e−2L
√
k2+1. (5.28)

and we have

an+1(k) = ρ(k, L)an−1(k), bn+1(k) = ρ(k, L)bn−1(k) (5.29)

The convergence factor vanishes for the exact transmission conditions. The conver-
gence rate expression induces the following remark : for k large, convergence rate is high,
while for small values of k, overlap has little influence. Thus only for small values of k, is
it necessary to approximate

√
k2 + 1. Thus the following transmission conditions





∂wn+1

∂x
− wn+1 =

∂vn

∂x
− vn, x = L

∂vn+1

∂x
+ vn+1 =

∂wn

∂x
+ wn, x = 0

(5.30)

For these transmission conditions, the convergence factor is

ρ(k, L) =
(1−

√
k2 + 1

1 +
√
k2 + 1

e−L
√
k2+1

)2

. (5.31)

Theorem 5.7 The algorithm associated to transmission conditions (5.30) is well defined
in H1(Ω1)×H1(Ω2).

Exercice 5.5 Prove the theorem by writing a variational formulation in each H1(Ωi).

Another idea is to perform a 2nd order Taylor development of
√
k2 + 1 :

√
k2 + 1 ≈ 1 +

k2

2

Effective transmission conditions are obtained by inverse Fourier transform. For example

(1 +
k2

2
)v̂ =

̂
v − 1

2

∂2v

∂y2
.

Transmission conditions are written with respect to the physical variables :
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



∂wn+1

∂x
− wn+1 +

1

2

∂2wn+1

∂y2
=
∂vn

∂x
− vn +

1

2

∂2vn

∂y2
, x = L

∂vn+1

∂x
+ vn+1 − 1

2

∂2vn+1

∂y2
=
∂wn

∂x
+ wn − 1

2

∂2wn

∂y2
, x = 0.

(5.32)

The convergence factor is obtained by using ϕ(k) = ψ(k) = 1 + k2/2 :

ρ(k, L) =
(1 + k2/2−

√
k2 + 1

1 + k2/2 +
√
k2 + 1

e−L
√
k2+1

)2

. (5.33)

Theorem 5.8 The algorithm associated to transmission conditions (5.30) is well defined
in H1

1 (Ω1)×H1
1 (Ω2) where

H1
1 (Ωi) = {v ∈ H1(Ωi), v ∈ H1(Γi)}

Exercice 5.6 Prove the theorem by writing a variational formulation in each H1(Ωi).

Theorem 5.9 For any L > 0, for any initial guess (u0, v0) belonging to H1(Ω1)×H1(Ω2)
(resp.H1

1 (Ω1) × H1
1 (Ω2)) , the algorithm associated to the transmission conditions(5.30)

(resp. (5.32)) converges in
H1(Ω1)×H1(Ω2) (resp.H1

1 (Ω1)×H1
1 (Ω2)). If L > 0, the convergence is linear.

Proof We estimate the Fourier transforms

V 2n = (ρ(k, L))
n
V 0

For any L ≥ 0, the sequence V 2n converges a.e. in Ω1, and is bounded by V 0 in L2(Ω1).
By the Lebesgue theorem, it converges in L2(Ω1). The same holds for the gradients. If
L > 0, we have

||V n+1||L2(Ω1) ≤ sup
k∈R
|ρ(k, L)|2 ||V n−1||L2(Ω1)

which shows the linear convergence, since

sup
k∈R
|ρ(k, L)|2 ≤ e−2L < 1.

Therefore these methods converge at least as fast as the original parallel Schwarz
method. For general domains, the convergence proof will not be valid anymore, and we
shall use an energy approach.

Another fruitful approach is to approximate
√

1 + k2 for a large range of frequencies
by an 2nd order even polynomial in k with coefficient optimization.

5.2.5 A convergence proof for L = 0

Let us go back to the algorithm associated to conditions (5.30), and denote by Γ the
common interface. The error (V n,Wn) satisfies




−∆V n+1 + V n+1 = 0

∂V n+1

∂x
+ V n+1 =

∂Wn

∂x
+Wn on Γ





−∆Wn+1 +Wn+1 = 0

∂Wn+1

∂x
−Wn+1 =

∂V n

∂x
− V n on Γ

(5.34)
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Let us multiply equations on the inner points by V n+1 and Wn+1, integrate over the
domain and use Green’s formula.

||V n+1||2H1(Ω1) −
∫

Γ

V n+1 ∂V
n+1

∂x
= 0

||Wn+1||2H1(Ω2) −
∫

Γ

Wn+1 ∂W
n+1

∂x
= 0

B1 denotes operator ∂
∂x + 1 and B2 operator ∂

∂x − 1. We now have

4||V n+1||2H1(Ω1) +

∫

Γ

[B2(V n+1)]2 =

∫

Γ

[B1(V n+1)]2

4||Wn+1||2H1(Ω2) +

∫

Γ

[B1(Wn+1)]2 =

∫

Γ

[B2(Wn+1)]2

Let us use the boundary conditions

4||V n+1||2H1(Ω1) +

∫

Γ

[B2(V n+1)]2 =

∫

Γ

[B1(Wn)]2

4||Wn+1||2H1(Ω2) +

∫

Γ

[B1(Wn+1)]2 =

∫

Γ

[B2(V n)]2

Add these two equations

4[||V n+1||2H1(Ω1) + ||Wn+1||2H1(Ω2)] +

∫

Γ

(
[B2(V n+1)]2 + [B1(Wn+1)]2

)
=

∫

Γ

(
[B2(V n)]2 + [B1(Wn)]2

)

This implies that the series with general term ||V n||2H1(Ω1) +||Wn||2H1(Ω2) is convergent
thus its general term goes to 0 when n goes to infinity. The error goes to 0 in H1 norm in
each of the sub-domains. Notice that the limit (v, w) satisfies , the meaning of which is to
be specified, the transmission conditions





∂v

∂x
+ v =

∂w

∂x
+ w on Γ

∂v

∂x
− v =

∂w

∂x
− w on Γ

(5.35)

Thus




∂v

∂x
=

∂w

∂x
on Γ

v = w on Γ
(5.36)

which are transmission conditions for u. The algorithm limit is therefore u.

5.2.6 Notions on transmission conditions
Let us consider the problem in Ω described in figure 5.10.
This problem (see Analysis course) has a unique solution in H1(Ω). Furthermore, if Ω

is sufficiently regular, u belongs to H2(Ω). Consider a partition of Ω , Ω̄ = Ω̄1 ∪ Ω̄2 and
Γ = Ω̄1 ∩ Ω̄2. On Γ , there are two unit normals at each point : n̄1 is the outgoing normal
to Ω1 and n̄2 is the outgoing normal to Ω2 with the relation n̄1 + n̄2 = 0. Let us denote
n̄ = n̄1 thus n̄2 = −n̄. The problem is now equivalent to the coupling problem defined in
figure 5.11, where u1 is the restriction of u to Ω1 and u2 is the restriction of u to Ω2

Conditions
u1 = u2 on Γ
∂u1

∂n
=
∂u2

∂n
on Γ

(5.37)
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Ω

∂Ω

Lu := −∆u+ u = f

u = 0

Figure 5.10 – Original problem

Ω1
Ω2

Γ

Γ2

Γ1

Lu1 = f Lu2 = f

u1 = 0

u2 = 0

u1 = u2

∂u1

∂n
=

∂u2

∂n

Figure 5.11 – Two sub-domain decomposition with no overlap.
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are transmission conditions for u.
Let us now identify the transparent condition in Ω2. Let g in H

1
2 (Γ). The following

problem is now considered :




Lu = 0 in Ω2

u = 0 on Γ2

u = g on Γ

(5.38)

This problem has a unique solution. The trace of the normal derivative can now be

defined on Γ,
∂u

∂n2
. We now define K2 by

K2g =
∂u

∂n2
(5.39)

such that any solution to the boundary value problem in Ω2




Lu = 0 in Ω2

u = 0 on Γ2

(5.40)

satisfies identically the equation on Γ

∂u

∂n2
−K2u = 0 (5.41)

Remark 5.1 Let us define for any (u, v) in H1(Ω2),

a2(u, v) = (u, v)H1(Ω2) =

∫

Ω2

[∇u · ∇v + uv]dx dy

Using the variational formulation for any couple (g, h) in H
1
2 (Γ),

< K2g, h >= a2(u, v)

where u is the solution to 5.38 and v is the result of any lifting operator on g in
H1(Ω2). As a consequence , K2 is a self-adjoint coercive operator on H

1
2 (Γ).

In the same manner, operator K1 is introduced : Let g be in H
1
2 (Γ). Let us consider

the following problem




Lu = 0 in Ω2

u = 0 on Γ1

u = g on Γ

(5.42)

This problem has a unique solution. The trace of the normal derivative can now be

defined on Γ,
∂u

∂n1
. K1 is defined by

K1g =
∂u

∂n1
(5.43)

such that any solution to the boundary value problem in Ω1




Lu = 0 in Ω1

u = 0 on Γ1

(5.44)

satisfies identically the equation on Γ
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∂u

∂n1
−K1u = 0 (5.45)

For any (u, v) in H1(Ω1), let us define

a1(u, v) = (u, v)H1(Ω1) =

∫

Ω1

[∇u · ∇v + uv]dx dy

Using the variational formulation, for any couple (g, h) in H
1
2 (Γ,

< K1g, h >= a1(u, v)

where u is solution to (5.42) and v is the result of any lifting operator on g in H1(Ω1).
K1 is thus a self-adjoint coercive operator on H

1
2 (Γ).

Equations
∂un+1

1

∂n2
−K2u

n+1
1 =

∂un2
∂n2

−K2u
n
2

∂un+1
2

∂n1
−K1u

n+1
2 =

∂un1
∂n1

−K1u
n
1

(5.46)

constitute the exact transmission conditions.
Operators

BT1 =
∂

∂n2
−K2

BT2 =
∂

∂n1
−K1

(5.47)

are exact transmission operators, or transparent operators.

Exercice 5.7 Show that the Domain Decomposition algorithm with conditions (5.46)
converges in two iterations. Generalize to N sub-domains with no overlap.

Exercice 5.8 Recover exact transmission conditions (5.24).

Going through the Schwarz algorithm step by step, we shall now see how it can be
be seen as a Jacobi algorithm on a problem set on the interface. This will allow to apply
more performant solvers.

5.2.7 Identification of the interface problem
Problem with no overlap

The Domain Decomposition algorithm with no overlap is now studied in a general
form.





Lun+1
1 = f, in Ω1

∂un+1
1

∂n
= 0 on Γ1

B1u
n+1
1 = B1u

n
2 on Γ

(5.48)





Lun+1
2 = f, in Ω2

∂un+1
2

∂n
= 0 on Γ2

B2u
n+1
2 = B2u

n
1 on Γ

(5.49)

Let us now define an algorithm on the interface in the following way.
For any λ defined on Γ, and f defined on Ω, M1 and M2 are defined as
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M1 : (λ, f) 7→ u1 solution of





Lu1 = f, ∈ Ω1

∂u1

∂n
= 0 on Γ1

B1u1 = λ on Γ

(5.50)

M2 : (λ, f) 7→ u2 solution of





Lu2 = f, ∈ Ω2

∂u2

∂n
= 0 on Γ2

B2u2 = λ on Γ

(5.51)

Notice that Mj(λ, f) = Mj(0, f) +Mj(λ, 0).
Suppose that (λn1 , λ

n
2 ) are defined by par

λnj = Bjunj
But in Ωj , 




Lunj = f, ∈ Ωj
∂unj
∂n

= 0 on Γj

Bjunj = Bjunj on Γ

thus
unj = Mj(λ

n
j , f) (5.52)

We now have the following equalities

λn+1
1 = B1u

n+1
1 = B1M2(λn2 , f) = B1[M2(λn2 , 0) +M2(0, f)]

λn+1
2 = B2u

n+1
2 = B2M1(λn1 , f) = B2[M1(λn1 , 0) +M1(0, f)]

Thus the interface system

λn+1
1 = B1M2(λn2 , 0) + B1M2(0, f)

λn+1
2 = B2M1(λn1 , 0) + B2M1(0, f)

(5.53)

Or , setting

J(λ1, λ2) =


 0 B1M2(., 0)

B2M1(., 0) 0




 λ1

λ2




This can be written as

Λn+1 = JΛn +


 B1M2(0, f)

B2M1(0, f)




which corresponds to the Jacobi algorithm applied to matrix

A =


 I −B1M2(., 0)

−B2M1(., 0) I




and the system

AΛ = b =


 B1M2(0, f)

B2M1(0, f)



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1D example with overlap
Let us consider the example of a parallel Schwarz method with overlap and Neumann

transmission conditions i.e. B1 ≡ B2 ≡
d

dx
on Γ = {x = 0}.




− d2

dx2
un+1

1 + un+1
1 = f in Ω1 = (−∞, L)

d

dx
un+1

1 =
d

dx
un2 for x = L,

(5.54)




− d2

dx2
un+1

2 + un+1
2 = f in Ω2 = (0,+∞)

d

dx
un+1

2 =
d

dx
un1 for x = 0.

(5.55)

For λ ∈ R, M1(λ, 0) is defined by



− d2

dx2
u1 + u1 = 0, x ≤ L

d

dx
u1(L) = λ

(5.56)

which can be solved as
M1(λ, 0) = λex−L

et
B2M1(λ, 0) = λe−L

Similarly we have 


− d2

dx2
u2 + u2 = 0, x ≥ 0

d

dx
u2 = λ en x = 0

(5.57)

which can be written as
M2(λ, 0) = −λe−x

et
B1M2(λ, 0) = λe−L

Matrix J is

J = e−L


 0 1

1 0




Thus the algorithm

Λn+1 = JΛn +


 B1M2(0, f)

B2M1(0, f)




which again can be written as




λn+1
1 = e−Lλn2 + α

λn+1
2 = e−Lλn1 + β

The spectral radius of J is strictly less than 1 for any L > 0. The Jacobi algorithm
converges thus towards the solution (λ1, λ2) to system


 1 −e−L

−e−L 1




 λ1

λ2


 =


 α

β




With no overlap, the algorithm diverges.

Remark 5.2 For any L > 0, the matrix of the system is symmetric positive definite . For
L = 0 , it is not inversible.
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5.2.8 Substructuring method revisited
Let us go back to the example in chapter 5.1 with a Schwarz algorithm. The approxi-

mate transmission conditions are of Robin type on a boundary Γ (no overlap case). Using
chapter 5.1 notations

B1 =
∂

∂n1
+ p, B2 =

∂

∂n2
+ p.

Here p is a strictly positive real number.




−∆un1 = f

∂un1
∂n1

+ pun1 =
∂un−1

2

∂n1
+ pun−1

2 on Γ

un1 = 0 on Γ1

(5.58)





−∆un2 = f

∂un2
∂n2

+ pun2 =
∂un−1

2

∂n2
+ pun−1

2 on Γ

un2 = 0 on Γ2

(5.59)

To compute M1 , let us use its definition and write the variational formulation




−∆u1 = 0
∂u1

∂n1
+ pu1 = λ1

u1 = 0 on Γ1

(5.60)

We define on V1 = {v ∈ H1(Ω1), v = 0 on Γ1} the bilinear form b1 by

b1(v, ϕ) = a1(v, ϕ) + p

∫

Γ

vϕdy, a1(v, ϕ) =

∫

Ω1

∇v∇ϕdxdy. (5.61)

The bilinear form a1 is the scalar product of V1. It corresponds to a homogeneous
Dirichlet problem. The additional term corresponds to the boundary condition on Γ.

M1(λ1, 0) is thus solution to the variational problem in V1

∀ϕ ∈ V1, b1(M1(λ1, 0), ϕ) =

∫

Γ

λ1ϕdy (5.62)

Moreover M1(0, f) is solution to the variational problem in V1

∀ϕ ∈ V1, b1(M1(0, f), ϕ) =

∫

Ω

fϕdxdy (5.63)

Let us consider applying a finite element technique, P1 for example to this problem.
Basis functions are noted {ϕj}1≤j≤N2

S
. Nodes are numbered as inner nodes {Sj}1≤j≤N2

int
,

and boundary nodes as {Sj}N2
int+1≤j≤N2

S
. Same for the basis functions. If (Si, Sj) are such

that that one of them does not belong to Γ, b1(ϕi, ϕj) = a1(ϕi, ϕj). The system matrix
becomes

B1 =


 K11 K13

K31 K1
33 + pAΓ


 (5.64)

The right hand side {
∫

Γ

λ1ϕjdy} can be expressed as (0, AΓΛ1), and the system can

be written by decomposing vector (u1
h(Sj)) into (U1, U3) :
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


K11︸︷︷︸
inner points

K13︸︷︷︸
coupling

K31 K1
33 + pAΓ︸ ︷︷ ︸
boundary





 U1

U3


 =


 0

AΓΛ1


 (5.65)

which be written as the following system




K11U1 +K13U3 = 0

K31U1 + (K1
33 + pAΓ)U3 = AΓΛ1

(5.66)

Matrix K11 is invertible as it is the matrix associated to a homogeneous Dirichlet
problem. U1 can be expressed as a function of U3 and carrying it in the second equation
as in chapter 5.1 :

U1 = −(K11)−1K13U3,

(K1
33 −K31(K11)−1K13 + pAΓ)U3 = AΓΛ1

(5.67)

The new Schur Complement matrix in Ω1, S1
Robin is defined from the old one by

S1
Robin = S1 + pAΓ. It is also symmetric positive definite.

For M1(0, f), with similar notations , the following system is obtained




K11U1 +K13U3 = F1

K31U1 + (K1
33 + pAΓ)U3 = F 1

3

(5.68)

and thus U3 is solution to system

S1
RobinU3 = F 1

3 −K31(K11)−1F1 (5.69)

It now remains to compute B2M1(Λ1, 0) and B2M1(0, f). To do this, let us note that
thanks to the boundary conditions, we have

B2M1(λ1, 0) =
∂u1

∂n2
+ pu1 = −∂u1

∂n1
+ pu1 = −λ1 + 2pM1(λ1, 0)

B2M1(0, f) = −∂u1

∂n1
+ pu1 = 2pM1(0, f)

Thus

B2M1(λ1, 0) = 2p(S1
Robin)−1AΓΛ1 − Λ1

B2M1(0, f) = 2(S1
Robin)−1(F 1

3 −K31(K11)−1F1).
(5.70)

Similarly we have

B1M2(λ2, 0) = 2p(S2
Robin)−1AΓΛ2 − Λ2

B1M2(0, f) = 2(S2
Robin)−1(F 2

3 −K32(K22)−1F2).
(5.71)

where S2 the Schur Complement matrix in Ω2.

Remark 5.3 With notation U3, we have implicitly supposed that discretizations coincide
on the common boundary. This is not necessary.

The matrix algorithm associated to the Schwarz can now be written as
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
Λn+1

1

Λn+1
2


 =


 0 −I + 2p(S2

Robin)−1AΓ

−I + 2p(S1
Robin)−1AΓ 0




Λn1

Λn2




+


2(S1

Robin)−1(F 1
3 −K31(K11)−1F1)

2(S2
Robin)−1(F 2

3 −K32(K22)−1F2)




(5.72)

which is the Jacobi method to solve a system whose matrix is

 I (I − 2p(S2

Robin)−1AΓ)

(I − 2p(S1
Robin)−1AΓ) I


 (5.73)

The alternate Schwarz algorithm mentioned in (5.7) corresponds to a Gauss-Seidel
method. Convergence can be accelerated by applying a Krylov method as in chapter 5.1.
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